2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
5 * derived from arch/x86/kvm/x86.c
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
20 #include <asm/xsave.h>
26 static u32
xstate_required_size(u64 xstate_bv
)
29 u32 ret
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
31 xstate_bv
&= XSTATE_EXTEND_MASK
;
33 if (xstate_bv
& 0x1) {
34 u32 eax
, ebx
, ecx
, edx
;
35 cpuid_count(0xD, feature_bit
, &eax
, &ebx
, &ecx
, &edx
);
36 ret
= max(ret
, eax
+ ebx
);
46 u64
kvm_supported_xcr0(void)
48 u64 xcr0
= KVM_SUPPORTED_XCR0
& host_xcr0
;
50 if (!kvm_x86_ops
->mpx_supported())
51 xcr0
&= ~(XSTATE_BNDREGS
| XSTATE_BNDCSR
);
56 void kvm_update_cpuid(struct kvm_vcpu
*vcpu
)
58 struct kvm_cpuid_entry2
*best
;
59 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
61 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
65 /* Update OSXSAVE bit */
66 if (cpu_has_xsave
&& best
->function
== 0x1) {
67 best
->ecx
&= ~(bit(X86_FEATURE_OSXSAVE
));
68 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
69 best
->ecx
|= bit(X86_FEATURE_OSXSAVE
);
73 if (best
->ecx
& bit(X86_FEATURE_TSC_DEADLINE_TIMER
))
74 apic
->lapic_timer
.timer_mode_mask
= 3 << 17;
76 apic
->lapic_timer
.timer_mode_mask
= 1 << 17;
79 best
= kvm_find_cpuid_entry(vcpu
, 0xD, 0);
81 vcpu
->arch
.guest_supported_xcr0
= 0;
82 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
84 vcpu
->arch
.guest_supported_xcr0
=
85 (best
->eax
| ((u64
)best
->edx
<< 32)) &
87 vcpu
->arch
.guest_xstate_size
= best
->ebx
=
88 xstate_required_size(vcpu
->arch
.xcr0
);
91 kvm_pmu_cpuid_update(vcpu
);
94 static int is_efer_nx(void)
96 unsigned long long efer
= 0;
98 rdmsrl_safe(MSR_EFER
, &efer
);
99 return efer
& EFER_NX
;
102 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
105 struct kvm_cpuid_entry2
*e
, *entry
;
108 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
109 e
= &vcpu
->arch
.cpuid_entries
[i
];
110 if (e
->function
== 0x80000001) {
115 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
116 entry
->edx
&= ~(1 << 20);
117 printk(KERN_INFO
"kvm: guest NX capability removed\n");
121 /* when an old userspace process fills a new kernel module */
122 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
123 struct kvm_cpuid
*cpuid
,
124 struct kvm_cpuid_entry __user
*entries
)
127 struct kvm_cpuid_entry
*cpuid_entries
;
130 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
133 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
137 if (copy_from_user(cpuid_entries
, entries
,
138 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
140 for (i
= 0; i
< cpuid
->nent
; i
++) {
141 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
142 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
143 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
144 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
145 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
146 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
147 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
148 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
149 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
150 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
152 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
153 cpuid_fix_nx_cap(vcpu
);
155 kvm_apic_set_version(vcpu
);
156 kvm_x86_ops
->cpuid_update(vcpu
);
157 kvm_update_cpuid(vcpu
);
160 vfree(cpuid_entries
);
165 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
166 struct kvm_cpuid2
*cpuid
,
167 struct kvm_cpuid_entry2 __user
*entries
)
172 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
175 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
176 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
178 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
179 kvm_apic_set_version(vcpu
);
180 kvm_x86_ops
->cpuid_update(vcpu
);
181 kvm_update_cpuid(vcpu
);
188 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
189 struct kvm_cpuid2
*cpuid
,
190 struct kvm_cpuid_entry2 __user
*entries
)
195 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
198 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
199 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
204 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
208 static void cpuid_mask(u32
*word
, int wordnum
)
210 *word
&= boot_cpu_data
.x86_capability
[wordnum
];
213 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
216 entry
->function
= function
;
217 entry
->index
= index
;
218 cpuid_count(entry
->function
, entry
->index
,
219 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
223 #define F(x) bit(X86_FEATURE_##x)
225 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2
*entry
,
226 u32 func
, u32 index
, int *nent
, int maxnent
)
230 entry
->eax
= 1; /* only one leaf currently */
234 entry
->ecx
= F(MOVBE
);
241 entry
->function
= func
;
242 entry
->index
= index
;
247 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
248 u32 index
, int *nent
, int maxnent
)
251 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
253 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
255 unsigned f_lm
= F(LM
);
257 unsigned f_gbpages
= 0;
260 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
261 unsigned f_invpcid
= kvm_x86_ops
->invpcid_supported() ? F(INVPCID
) : 0;
262 unsigned f_mpx
= kvm_x86_ops
->mpx_supported() ? F(MPX
) : 0;
265 const u32 kvm_supported_word0_x86_features
=
266 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
267 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
268 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
269 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
270 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLUSH
) |
271 0 /* Reserved, DS, ACPI */ | F(MMX
) |
272 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
273 0 /* HTT, TM, Reserved, PBE */;
274 /* cpuid 0x80000001.edx */
275 const u32 kvm_supported_word1_x86_features
=
276 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
277 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
278 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
279 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
280 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
281 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
282 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
283 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
285 const u32 kvm_supported_word4_x86_features
=
286 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
287 * but *not* advertised to guests via CPUID ! */
288 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
289 0 /* DS-CPL, VMX, SMX, EST */ |
290 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
291 F(FMA
) | F(CX16
) | 0 /* xTPR Update, PDCM */ |
292 F(PCID
) | 0 /* Reserved, DCA */ | F(XMM4_1
) |
293 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
294 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
296 /* cpuid 0x80000001.ecx */
297 const u32 kvm_supported_word6_x86_features
=
298 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
299 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
300 F(3DNOWPREFETCH
) | F(OSVW
) | 0 /* IBS */ | F(XOP
) |
301 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
303 /* cpuid 0xC0000001.edx */
304 const u32 kvm_supported_word5_x86_features
=
305 F(XSTORE
) | F(XSTORE_EN
) | F(XCRYPT
) | F(XCRYPT_EN
) |
306 F(ACE2
) | F(ACE2_EN
) | F(PHE
) | F(PHE_EN
) |
310 const u32 kvm_supported_word9_x86_features
=
311 F(FSGSBASE
) | F(BMI1
) | F(HLE
) | F(AVX2
) | F(SMEP
) |
312 F(BMI2
) | F(ERMS
) | f_invpcid
| F(RTM
) | f_mpx
| F(RDSEED
) |
315 /* all calls to cpuid_count() should be made on the same cpu */
320 if (*nent
>= maxnent
)
323 do_cpuid_1_ent(entry
, function
, index
);
328 entry
->eax
= min(entry
->eax
, (u32
)0xd);
331 entry
->edx
&= kvm_supported_word0_x86_features
;
332 cpuid_mask(&entry
->edx
, 0);
333 entry
->ecx
&= kvm_supported_word4_x86_features
;
334 cpuid_mask(&entry
->ecx
, 4);
335 /* we support x2apic emulation even if host does not support
336 * it since we emulate x2apic in software */
337 entry
->ecx
|= F(X2APIC
);
339 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
340 * may return different values. This forces us to get_cpu() before
341 * issuing the first command, and also to emulate this annoying behavior
342 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
344 int t
, times
= entry
->eax
& 0xff;
346 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
347 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
348 for (t
= 1; t
< times
; ++t
) {
349 if (*nent
>= maxnent
)
352 do_cpuid_1_ent(&entry
[t
], function
, 0);
353 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
358 /* function 4 has additional index. */
362 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
363 /* read more entries until cache_type is zero */
365 if (*nent
>= maxnent
)
368 cache_type
= entry
[i
- 1].eax
& 0x1f;
371 do_cpuid_1_ent(&entry
[i
], function
, i
);
373 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
379 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
380 /* Mask ebx against host capability word 9 */
382 entry
->ebx
&= kvm_supported_word9_x86_features
;
383 cpuid_mask(&entry
->ebx
, 9);
384 // TSC_ADJUST is emulated
385 entry
->ebx
|= F(TSC_ADJUST
);
395 case 0xa: { /* Architectural Performance Monitoring */
396 struct x86_pmu_capability cap
;
397 union cpuid10_eax eax
;
398 union cpuid10_edx edx
;
400 perf_get_x86_pmu_capability(&cap
);
403 * Only support guest architectural pmu on a host
404 * with architectural pmu.
407 memset(&cap
, 0, sizeof(cap
));
409 eax
.split
.version_id
= min(cap
.version
, 2);
410 eax
.split
.num_counters
= cap
.num_counters_gp
;
411 eax
.split
.bit_width
= cap
.bit_width_gp
;
412 eax
.split
.mask_length
= cap
.events_mask_len
;
414 edx
.split
.num_counters_fixed
= cap
.num_counters_fixed
;
415 edx
.split
.bit_width_fixed
= cap
.bit_width_fixed
;
416 edx
.split
.reserved
= 0;
418 entry
->eax
= eax
.full
;
419 entry
->ebx
= cap
.events_mask
;
421 entry
->edx
= edx
.full
;
424 /* function 0xb has additional index. */
428 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
429 /* read more entries until level_type is zero */
431 if (*nent
>= maxnent
)
434 level_type
= entry
[i
- 1].ecx
& 0xff00;
437 do_cpuid_1_ent(&entry
[i
], function
, i
);
439 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
446 u64 supported
= kvm_supported_xcr0();
448 entry
->eax
&= supported
;
449 entry
->edx
&= supported
>> 32;
450 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
451 for (idx
= 1, i
= 1; idx
< 64; ++idx
) {
452 u64 mask
= ((u64
)1 << idx
);
453 if (*nent
>= maxnent
)
456 do_cpuid_1_ent(&entry
[i
], function
, idx
);
457 if (entry
[i
].eax
== 0 || !(supported
& mask
))
460 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
466 case KVM_CPUID_SIGNATURE
: {
467 static const char signature
[12] = "KVMKVMKVM\0\0";
468 const u32
*sigptr
= (const u32
*)signature
;
469 entry
->eax
= KVM_CPUID_FEATURES
;
470 entry
->ebx
= sigptr
[0];
471 entry
->ecx
= sigptr
[1];
472 entry
->edx
= sigptr
[2];
475 case KVM_CPUID_FEATURES
:
476 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
477 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
478 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
479 (1 << KVM_FEATURE_ASYNC_PF
) |
480 (1 << KVM_FEATURE_PV_EOI
) |
481 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
) |
482 (1 << KVM_FEATURE_PV_UNHALT
);
485 entry
->eax
|= (1 << KVM_FEATURE_STEAL_TIME
);
492 entry
->eax
= min(entry
->eax
, 0x8000001a);
495 entry
->edx
&= kvm_supported_word1_x86_features
;
496 cpuid_mask(&entry
->edx
, 1);
497 entry
->ecx
&= kvm_supported_word6_x86_features
;
498 cpuid_mask(&entry
->ecx
, 6);
500 case 0x80000007: /* Advanced power management */
501 /* invariant TSC is CPUID.80000007H:EDX[8] */
502 entry
->edx
&= (1 << 8);
503 /* mask against host */
504 entry
->edx
&= boot_cpu_data
.x86_power
;
505 entry
->eax
= entry
->ebx
= entry
->ecx
= 0;
508 unsigned g_phys_as
= (entry
->eax
>> 16) & 0xff;
509 unsigned virt_as
= max((entry
->eax
>> 8) & 0xff, 48U);
510 unsigned phys_as
= entry
->eax
& 0xff;
514 entry
->eax
= g_phys_as
| (virt_as
<< 8);
515 entry
->ebx
= entry
->edx
= 0;
519 entry
->ecx
= entry
->edx
= 0;
525 /*Add support for Centaur's CPUID instruction*/
527 /*Just support up to 0xC0000004 now*/
528 entry
->eax
= min(entry
->eax
, 0xC0000004);
531 entry
->edx
&= kvm_supported_word5_x86_features
;
532 cpuid_mask(&entry
->edx
, 5);
534 case 3: /* Processor serial number */
535 case 5: /* MONITOR/MWAIT */
536 case 6: /* Thermal management */
541 entry
->eax
= entry
->ebx
= entry
->ecx
= entry
->edx
= 0;
545 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
555 static int do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 func
,
556 u32 idx
, int *nent
, int maxnent
, unsigned int type
)
558 if (type
== KVM_GET_EMULATED_CPUID
)
559 return __do_cpuid_ent_emulated(entry
, func
, idx
, nent
, maxnent
);
561 return __do_cpuid_ent(entry
, func
, idx
, nent
, maxnent
);
566 struct kvm_cpuid_param
{
570 bool (*qualifier
)(const struct kvm_cpuid_param
*param
);
573 static bool is_centaur_cpu(const struct kvm_cpuid_param
*param
)
575 return boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
;
578 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user
*entries
,
579 __u32 num_entries
, unsigned int ioctl_type
)
584 if (ioctl_type
!= KVM_GET_EMULATED_CPUID
)
588 * We want to make sure that ->padding is being passed clean from
589 * userspace in case we want to use it for something in the future.
591 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
592 * have to give ourselves satisfied only with the emulated side. /me
595 for (i
= 0; i
< num_entries
; i
++) {
596 if (copy_from_user(pad
, entries
[i
].padding
, sizeof(pad
)))
599 if (pad
[0] || pad
[1] || pad
[2])
605 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2
*cpuid
,
606 struct kvm_cpuid_entry2 __user
*entries
,
609 struct kvm_cpuid_entry2
*cpuid_entries
;
610 int limit
, nent
= 0, r
= -E2BIG
, i
;
612 static const struct kvm_cpuid_param param
[] = {
613 { .func
= 0, .has_leaf_count
= true },
614 { .func
= 0x80000000, .has_leaf_count
= true },
615 { .func
= 0xC0000000, .qualifier
= is_centaur_cpu
, .has_leaf_count
= true },
616 { .func
= KVM_CPUID_SIGNATURE
},
617 { .func
= KVM_CPUID_FEATURES
},
622 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
623 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
625 if (sanity_check_entries(entries
, cpuid
->nent
, type
))
629 cpuid_entries
= vzalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
634 for (i
= 0; i
< ARRAY_SIZE(param
); i
++) {
635 const struct kvm_cpuid_param
*ent
= ¶m
[i
];
637 if (ent
->qualifier
&& !ent
->qualifier(ent
))
640 r
= do_cpuid_ent(&cpuid_entries
[nent
], ent
->func
, ent
->idx
,
641 &nent
, cpuid
->nent
, type
);
646 if (!ent
->has_leaf_count
)
649 limit
= cpuid_entries
[nent
- 1].eax
;
650 for (func
= ent
->func
+ 1; func
<= limit
&& nent
< cpuid
->nent
&& r
== 0; ++func
)
651 r
= do_cpuid_ent(&cpuid_entries
[nent
], func
, ent
->idx
,
652 &nent
, cpuid
->nent
, type
);
659 if (copy_to_user(entries
, cpuid_entries
,
660 nent
* sizeof(struct kvm_cpuid_entry2
)))
666 vfree(cpuid_entries
);
671 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
673 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
674 int j
, nent
= vcpu
->arch
.cpuid_nent
;
676 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
677 /* when no next entry is found, the current entry[i] is reselected */
678 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
679 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
680 if (ej
->function
== e
->function
) {
681 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
685 return 0; /* silence gcc, even though control never reaches here */
688 /* find an entry with matching function, matching index (if needed), and that
689 * should be read next (if it's stateful) */
690 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
691 u32 function
, u32 index
)
693 if (e
->function
!= function
)
695 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
697 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
698 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
703 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
704 u32 function
, u32 index
)
707 struct kvm_cpuid_entry2
*best
= NULL
;
709 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
710 struct kvm_cpuid_entry2
*e
;
712 e
= &vcpu
->arch
.cpuid_entries
[i
];
713 if (is_matching_cpuid_entry(e
, function
, index
)) {
714 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
715 move_to_next_stateful_cpuid_entry(vcpu
, i
);
722 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
724 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
726 struct kvm_cpuid_entry2
*best
;
728 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
729 if (!best
|| best
->eax
< 0x80000008)
731 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
733 return best
->eax
& 0xff;
737 EXPORT_SYMBOL_GPL(cpuid_maxphyaddr
);
740 * If no match is found, check whether we exceed the vCPU's limit
741 * and return the content of the highest valid _standard_ leaf instead.
742 * This is to satisfy the CPUID specification.
744 static struct kvm_cpuid_entry2
* check_cpuid_limit(struct kvm_vcpu
*vcpu
,
745 u32 function
, u32 index
)
747 struct kvm_cpuid_entry2
*maxlevel
;
749 maxlevel
= kvm_find_cpuid_entry(vcpu
, function
& 0x80000000, 0);
750 if (!maxlevel
|| maxlevel
->eax
>= function
)
752 if (function
& 0x80000000) {
753 maxlevel
= kvm_find_cpuid_entry(vcpu
, 0, 0);
757 return kvm_find_cpuid_entry(vcpu
, maxlevel
->eax
, index
);
760 void kvm_cpuid(struct kvm_vcpu
*vcpu
, u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
762 u32 function
= *eax
, index
= *ecx
;
763 struct kvm_cpuid_entry2
*best
;
765 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
768 best
= check_cpuid_limit(vcpu
, function
, index
);
776 *eax
= *ebx
= *ecx
= *edx
= 0;
777 trace_kvm_cpuid(function
, *eax
, *ebx
, *ecx
, *edx
);
779 EXPORT_SYMBOL_GPL(kvm_cpuid
);
781 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
783 u32 function
, eax
, ebx
, ecx
, edx
;
785 function
= eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
786 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
787 kvm_cpuid(vcpu
, &eax
, &ebx
, &ecx
, &edx
);
788 kvm_register_write(vcpu
, VCPU_REGS_RAX
, eax
);
789 kvm_register_write(vcpu
, VCPU_REGS_RBX
, ebx
);
790 kvm_register_write(vcpu
, VCPU_REGS_RCX
, ecx
);
791 kvm_register_write(vcpu
, VCPU_REGS_RDX
, edx
);
792 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
794 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);