vt: vt_ioctl: fix VT_DISALLOCATE freeing in-use virtual console
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
blobf08c54740cbee6e93c4c1030c7a34addec9268c4
1 /*
2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
34 #include <drm/drmP.h>
35 #include <drm/drm_syncobj.h>
36 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_clflush.h"
40 #include "i915_trace.h"
41 #include "intel_drv.h"
42 #include "intel_frontbuffer.h"
44 enum {
45 FORCE_CPU_RELOC = 1,
46 FORCE_GTT_RELOC,
47 FORCE_GPU_RELOC,
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 #define __EXEC_OBJECT_HAS_REF BIT(31)
52 #define __EXEC_OBJECT_HAS_PIN BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
54 #define __EXEC_OBJECT_NEEDS_MAP BIT(28)
55 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
56 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 #define __EXEC_HAS_RELOC BIT(31)
60 #define __EXEC_VALIDATED BIT(30)
61 #define __EXEC_INTERNAL_FLAGS (~0u << 30)
62 #define UPDATE PIN_OFFSET_FIXED
64 #define BATCH_OFFSET_BIAS (256*1024)
66 #define __I915_EXEC_ILLEGAL_FLAGS \
67 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
69 /* Catch emission of unexpected errors for CI! */
70 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
71 #undef EINVAL
72 #define EINVAL ({ \
73 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
74 22; \
76 #endif
78 /**
79 * DOC: User command execution
81 * Userspace submits commands to be executed on the GPU as an instruction
82 * stream within a GEM object we call a batchbuffer. This instructions may
83 * refer to other GEM objects containing auxiliary state such as kernels,
84 * samplers, render targets and even secondary batchbuffers. Userspace does
85 * not know where in the GPU memory these objects reside and so before the
86 * batchbuffer is passed to the GPU for execution, those addresses in the
87 * batchbuffer and auxiliary objects are updated. This is known as relocation,
88 * or patching. To try and avoid having to relocate each object on the next
89 * execution, userspace is told the location of those objects in this pass,
90 * but this remains just a hint as the kernel may choose a new location for
91 * any object in the future.
93 * At the level of talking to the hardware, submitting a batchbuffer for the
94 * GPU to execute is to add content to a buffer from which the HW
95 * command streamer is reading.
97 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
98 * Execlists, this command is not placed on the same buffer as the
99 * remaining items.
101 * 2. Add a command to invalidate caches to the buffer.
103 * 3. Add a batchbuffer start command to the buffer; the start command is
104 * essentially a token together with the GPU address of the batchbuffer
105 * to be executed.
107 * 4. Add a pipeline flush to the buffer.
109 * 5. Add a memory write command to the buffer to record when the GPU
110 * is done executing the batchbuffer. The memory write writes the
111 * global sequence number of the request, ``i915_request::global_seqno``;
112 * the i915 driver uses the current value in the register to determine
113 * if the GPU has completed the batchbuffer.
115 * 6. Add a user interrupt command to the buffer. This command instructs
116 * the GPU to issue an interrupt when the command, pipeline flush and
117 * memory write are completed.
119 * 7. Inform the hardware of the additional commands added to the buffer
120 * (by updating the tail pointer).
122 * Processing an execbuf ioctl is conceptually split up into a few phases.
124 * 1. Validation - Ensure all the pointers, handles and flags are valid.
125 * 2. Reservation - Assign GPU address space for every object
126 * 3. Relocation - Update any addresses to point to the final locations
127 * 4. Serialisation - Order the request with respect to its dependencies
128 * 5. Construction - Construct a request to execute the batchbuffer
129 * 6. Submission (at some point in the future execution)
131 * Reserving resources for the execbuf is the most complicated phase. We
132 * neither want to have to migrate the object in the address space, nor do
133 * we want to have to update any relocations pointing to this object. Ideally,
134 * we want to leave the object where it is and for all the existing relocations
135 * to match. If the object is given a new address, or if userspace thinks the
136 * object is elsewhere, we have to parse all the relocation entries and update
137 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
138 * all the target addresses in all of its objects match the value in the
139 * relocation entries and that they all match the presumed offsets given by the
140 * list of execbuffer objects. Using this knowledge, we know that if we haven't
141 * moved any buffers, all the relocation entries are valid and we can skip
142 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
143 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
145 * The addresses written in the objects must match the corresponding
146 * reloc.presumed_offset which in turn must match the corresponding
147 * execobject.offset.
149 * Any render targets written to in the batch must be flagged with
150 * EXEC_OBJECT_WRITE.
152 * To avoid stalling, execobject.offset should match the current
153 * address of that object within the active context.
155 * The reservation is done is multiple phases. First we try and keep any
156 * object already bound in its current location - so as long as meets the
157 * constraints imposed by the new execbuffer. Any object left unbound after the
158 * first pass is then fitted into any available idle space. If an object does
159 * not fit, all objects are removed from the reservation and the process rerun
160 * after sorting the objects into a priority order (more difficult to fit
161 * objects are tried first). Failing that, the entire VM is cleared and we try
162 * to fit the execbuf once last time before concluding that it simply will not
163 * fit.
165 * A small complication to all of this is that we allow userspace not only to
166 * specify an alignment and a size for the object in the address space, but
167 * we also allow userspace to specify the exact offset. This objects are
168 * simpler to place (the location is known a priori) all we have to do is make
169 * sure the space is available.
171 * Once all the objects are in place, patching up the buried pointers to point
172 * to the final locations is a fairly simple job of walking over the relocation
173 * entry arrays, looking up the right address and rewriting the value into
174 * the object. Simple! ... The relocation entries are stored in user memory
175 * and so to access them we have to copy them into a local buffer. That copy
176 * has to avoid taking any pagefaults as they may lead back to a GEM object
177 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
178 * the relocation into multiple passes. First we try to do everything within an
179 * atomic context (avoid the pagefaults) which requires that we never wait. If
180 * we detect that we may wait, or if we need to fault, then we have to fallback
181 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
182 * bells yet?) Dropping the mutex means that we lose all the state we have
183 * built up so far for the execbuf and we must reset any global data. However,
184 * we do leave the objects pinned in their final locations - which is a
185 * potential issue for concurrent execbufs. Once we have left the mutex, we can
186 * allocate and copy all the relocation entries into a large array at our
187 * leisure, reacquire the mutex, reclaim all the objects and other state and
188 * then proceed to update any incorrect addresses with the objects.
190 * As we process the relocation entries, we maintain a record of whether the
191 * object is being written to. Using NORELOC, we expect userspace to provide
192 * this information instead. We also check whether we can skip the relocation
193 * by comparing the expected value inside the relocation entry with the target's
194 * final address. If they differ, we have to map the current object and rewrite
195 * the 4 or 8 byte pointer within.
197 * Serialising an execbuf is quite simple according to the rules of the GEM
198 * ABI. Execution within each context is ordered by the order of submission.
199 * Writes to any GEM object are in order of submission and are exclusive. Reads
200 * from a GEM object are unordered with respect to other reads, but ordered by
201 * writes. A write submitted after a read cannot occur before the read, and
202 * similarly any read submitted after a write cannot occur before the write.
203 * Writes are ordered between engines such that only one write occurs at any
204 * time (completing any reads beforehand) - using semaphores where available
205 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
206 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
207 * reads before starting, and any read (either using set-domain or pread) must
208 * flush all GPU writes before starting. (Note we only employ a barrier before,
209 * we currently rely on userspace not concurrently starting a new execution
210 * whilst reading or writing to an object. This may be an advantage or not
211 * depending on how much you trust userspace not to shoot themselves in the
212 * foot.) Serialisation may just result in the request being inserted into
213 * a DAG awaiting its turn, but most simple is to wait on the CPU until
214 * all dependencies are resolved.
216 * After all of that, is just a matter of closing the request and handing it to
217 * the hardware (well, leaving it in a queue to be executed). However, we also
218 * offer the ability for batchbuffers to be run with elevated privileges so
219 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
220 * Before any batch is given extra privileges we first must check that it
221 * contains no nefarious instructions, we check that each instruction is from
222 * our whitelist and all registers are also from an allowed list. We first
223 * copy the user's batchbuffer to a shadow (so that the user doesn't have
224 * access to it, either by the CPU or GPU as we scan it) and then parse each
225 * instruction. If everything is ok, we set a flag telling the hardware to run
226 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
229 struct i915_execbuffer {
230 struct drm_i915_private *i915; /** i915 backpointer */
231 struct drm_file *file; /** per-file lookup tables and limits */
232 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
233 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
234 struct i915_vma **vma;
235 unsigned int *flags;
237 struct intel_engine_cs *engine; /** engine to queue the request to */
238 struct i915_gem_context *ctx; /** context for building the request */
239 struct i915_address_space *vm; /** GTT and vma for the request */
241 struct i915_request *request; /** our request to build */
242 struct i915_vma *batch; /** identity of the batch obj/vma */
244 /** actual size of execobj[] as we may extend it for the cmdparser */
245 unsigned int buffer_count;
247 /** list of vma not yet bound during reservation phase */
248 struct list_head unbound;
250 /** list of vma that have execobj.relocation_count */
251 struct list_head relocs;
254 * Track the most recently used object for relocations, as we
255 * frequently have to perform multiple relocations within the same
256 * obj/page
258 struct reloc_cache {
259 struct drm_mm_node node; /** temporary GTT binding */
260 unsigned long vaddr; /** Current kmap address */
261 unsigned long page; /** Currently mapped page index */
262 unsigned int gen; /** Cached value of INTEL_GEN */
263 bool use_64bit_reloc : 1;
264 bool has_llc : 1;
265 bool has_fence : 1;
266 bool needs_unfenced : 1;
268 struct i915_request *rq;
269 u32 *rq_cmd;
270 unsigned int rq_size;
271 } reloc_cache;
273 u64 invalid_flags; /** Set of execobj.flags that are invalid */
274 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
276 u32 batch_start_offset; /** Location within object of batch */
277 u32 batch_len; /** Length of batch within object */
278 u32 batch_flags; /** Flags composed for emit_bb_start() */
281 * Indicate either the size of the hastable used to resolve
282 * relocation handles, or if negative that we are using a direct
283 * index into the execobj[].
285 int lut_size;
286 struct hlist_head *buckets; /** ht for relocation handles */
289 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
292 * Used to convert any address to canonical form.
293 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
294 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
295 * addresses to be in a canonical form:
296 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
297 * canonical form [63:48] == [47]."
299 #define GEN8_HIGH_ADDRESS_BIT 47
300 static inline u64 gen8_canonical_addr(u64 address)
302 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
305 static inline u64 gen8_noncanonical_addr(u64 address)
307 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
310 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
312 return intel_engine_requires_cmd_parser(eb->engine) ||
313 (intel_engine_using_cmd_parser(eb->engine) &&
314 eb->args->batch_len);
317 static int eb_create(struct i915_execbuffer *eb)
319 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
320 unsigned int size = 1 + ilog2(eb->buffer_count);
323 * Without a 1:1 association between relocation handles and
324 * the execobject[] index, we instead create a hashtable.
325 * We size it dynamically based on available memory, starting
326 * first with 1:1 assocative hash and scaling back until
327 * the allocation succeeds.
329 * Later on we use a positive lut_size to indicate we are
330 * using this hashtable, and a negative value to indicate a
331 * direct lookup.
333 do {
334 gfp_t flags;
336 /* While we can still reduce the allocation size, don't
337 * raise a warning and allow the allocation to fail.
338 * On the last pass though, we want to try as hard
339 * as possible to perform the allocation and warn
340 * if it fails.
342 flags = GFP_KERNEL;
343 if (size > 1)
344 flags |= __GFP_NORETRY | __GFP_NOWARN;
346 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
347 flags);
348 if (eb->buckets)
349 break;
350 } while (--size);
352 if (unlikely(!size))
353 return -ENOMEM;
355 eb->lut_size = size;
356 } else {
357 eb->lut_size = -eb->buffer_count;
360 return 0;
363 static bool
364 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
365 const struct i915_vma *vma,
366 unsigned int flags)
368 if (vma->node.size < entry->pad_to_size)
369 return true;
371 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
372 return true;
374 if (flags & EXEC_OBJECT_PINNED &&
375 vma->node.start != entry->offset)
376 return true;
378 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
379 vma->node.start < BATCH_OFFSET_BIAS)
380 return true;
382 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
383 (vma->node.start + vma->node.size - 1) >> 32)
384 return true;
386 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
387 !i915_vma_is_map_and_fenceable(vma))
388 return true;
390 return false;
393 static inline bool
394 eb_pin_vma(struct i915_execbuffer *eb,
395 const struct drm_i915_gem_exec_object2 *entry,
396 struct i915_vma *vma)
398 unsigned int exec_flags = *vma->exec_flags;
399 u64 pin_flags;
401 if (vma->node.size)
402 pin_flags = vma->node.start;
403 else
404 pin_flags = entry->offset & PIN_OFFSET_MASK;
406 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
407 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
408 pin_flags |= PIN_GLOBAL;
410 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
411 return false;
413 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
414 if (unlikely(i915_vma_pin_fence(vma))) {
415 i915_vma_unpin(vma);
416 return false;
419 if (vma->fence)
420 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
423 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
424 return !eb_vma_misplaced(entry, vma, exec_flags);
427 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
429 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
431 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
432 __i915_vma_unpin_fence(vma);
434 __i915_vma_unpin(vma);
437 static inline void
438 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
440 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
441 return;
443 __eb_unreserve_vma(vma, *flags);
444 *flags &= ~__EXEC_OBJECT_RESERVED;
447 static int
448 eb_validate_vma(struct i915_execbuffer *eb,
449 struct drm_i915_gem_exec_object2 *entry,
450 struct i915_vma *vma)
452 if (unlikely(entry->flags & eb->invalid_flags))
453 return -EINVAL;
455 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
456 return -EINVAL;
459 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
460 * any non-page-aligned or non-canonical addresses.
462 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
463 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
464 return -EINVAL;
466 /* pad_to_size was once a reserved field, so sanitize it */
467 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
468 if (unlikely(offset_in_page(entry->pad_to_size)))
469 return -EINVAL;
470 } else {
471 entry->pad_to_size = 0;
474 if (unlikely(vma->exec_flags)) {
475 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
476 entry->handle, (int)(entry - eb->exec));
477 return -EINVAL;
481 * From drm_mm perspective address space is continuous,
482 * so from this point we're always using non-canonical
483 * form internally.
485 entry->offset = gen8_noncanonical_addr(entry->offset);
487 if (!eb->reloc_cache.has_fence) {
488 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
489 } else {
490 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
491 eb->reloc_cache.needs_unfenced) &&
492 i915_gem_object_is_tiled(vma->obj))
493 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
496 if (!(entry->flags & EXEC_OBJECT_PINNED))
497 entry->flags |= eb->context_flags;
499 return 0;
502 static int
503 eb_add_vma(struct i915_execbuffer *eb,
504 unsigned int i, unsigned batch_idx,
505 struct i915_vma *vma)
507 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
508 int err;
510 GEM_BUG_ON(i915_vma_is_closed(vma));
512 if (!(eb->args->flags & __EXEC_VALIDATED)) {
513 err = eb_validate_vma(eb, entry, vma);
514 if (unlikely(err))
515 return err;
518 if (eb->lut_size > 0) {
519 vma->exec_handle = entry->handle;
520 hlist_add_head(&vma->exec_node,
521 &eb->buckets[hash_32(entry->handle,
522 eb->lut_size)]);
525 if (entry->relocation_count)
526 list_add_tail(&vma->reloc_link, &eb->relocs);
529 * Stash a pointer from the vma to execobj, so we can query its flags,
530 * size, alignment etc as provided by the user. Also we stash a pointer
531 * to the vma inside the execobj so that we can use a direct lookup
532 * to find the right target VMA when doing relocations.
534 eb->vma[i] = vma;
535 eb->flags[i] = entry->flags;
536 vma->exec_flags = &eb->flags[i];
539 * SNA is doing fancy tricks with compressing batch buffers, which leads
540 * to negative relocation deltas. Usually that works out ok since the
541 * relocate address is still positive, except when the batch is placed
542 * very low in the GTT. Ensure this doesn't happen.
544 * Note that actual hangs have only been observed on gen7, but for
545 * paranoia do it everywhere.
547 if (i == batch_idx) {
548 if (entry->relocation_count &&
549 !(eb->flags[i] & EXEC_OBJECT_PINNED))
550 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
551 if (eb->reloc_cache.has_fence)
552 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
554 eb->batch = vma;
557 err = 0;
558 if (eb_pin_vma(eb, entry, vma)) {
559 if (entry->offset != vma->node.start) {
560 entry->offset = vma->node.start | UPDATE;
561 eb->args->flags |= __EXEC_HAS_RELOC;
563 } else {
564 eb_unreserve_vma(vma, vma->exec_flags);
566 list_add_tail(&vma->exec_link, &eb->unbound);
567 if (drm_mm_node_allocated(&vma->node))
568 err = i915_vma_unbind(vma);
569 if (unlikely(err))
570 vma->exec_flags = NULL;
572 return err;
575 static inline int use_cpu_reloc(const struct reloc_cache *cache,
576 const struct drm_i915_gem_object *obj)
578 if (!i915_gem_object_has_struct_page(obj))
579 return false;
581 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
582 return true;
584 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
585 return false;
587 return (cache->has_llc ||
588 obj->cache_dirty ||
589 obj->cache_level != I915_CACHE_NONE);
592 static int eb_reserve_vma(const struct i915_execbuffer *eb,
593 struct i915_vma *vma)
595 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
596 unsigned int exec_flags = *vma->exec_flags;
597 u64 pin_flags;
598 int err;
600 pin_flags = PIN_USER | PIN_NONBLOCK;
601 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
602 pin_flags |= PIN_GLOBAL;
605 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
606 * limit address to the first 4GBs for unflagged objects.
608 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
609 pin_flags |= PIN_ZONE_4G;
611 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
612 pin_flags |= PIN_MAPPABLE;
614 if (exec_flags & EXEC_OBJECT_PINNED) {
615 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
616 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
617 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
618 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
621 err = i915_vma_pin(vma,
622 entry->pad_to_size, entry->alignment,
623 pin_flags);
624 if (err)
625 return err;
627 if (entry->offset != vma->node.start) {
628 entry->offset = vma->node.start | UPDATE;
629 eb->args->flags |= __EXEC_HAS_RELOC;
632 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
633 err = i915_vma_pin_fence(vma);
634 if (unlikely(err)) {
635 i915_vma_unpin(vma);
636 return err;
639 if (vma->fence)
640 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
643 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
644 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
646 return 0;
649 static int eb_reserve(struct i915_execbuffer *eb)
651 const unsigned int count = eb->buffer_count;
652 struct list_head last;
653 struct i915_vma *vma;
654 unsigned int i, pass;
655 int err;
658 * Attempt to pin all of the buffers into the GTT.
659 * This is done in 3 phases:
661 * 1a. Unbind all objects that do not match the GTT constraints for
662 * the execbuffer (fenceable, mappable, alignment etc).
663 * 1b. Increment pin count for already bound objects.
664 * 2. Bind new objects.
665 * 3. Decrement pin count.
667 * This avoid unnecessary unbinding of later objects in order to make
668 * room for the earlier objects *unless* we need to defragment.
671 pass = 0;
672 err = 0;
673 do {
674 list_for_each_entry(vma, &eb->unbound, exec_link) {
675 err = eb_reserve_vma(eb, vma);
676 if (err)
677 break;
679 if (err != -ENOSPC)
680 return err;
682 /* Resort *all* the objects into priority order */
683 INIT_LIST_HEAD(&eb->unbound);
684 INIT_LIST_HEAD(&last);
685 for (i = 0; i < count; i++) {
686 unsigned int flags = eb->flags[i];
687 struct i915_vma *vma = eb->vma[i];
689 if (flags & EXEC_OBJECT_PINNED &&
690 flags & __EXEC_OBJECT_HAS_PIN)
691 continue;
693 eb_unreserve_vma(vma, &eb->flags[i]);
695 if (flags & EXEC_OBJECT_PINNED)
696 list_add(&vma->exec_link, &eb->unbound);
697 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
698 list_add_tail(&vma->exec_link, &eb->unbound);
699 else
700 list_add_tail(&vma->exec_link, &last);
702 list_splice_tail(&last, &eb->unbound);
704 switch (pass++) {
705 case 0:
706 break;
708 case 1:
709 /* Too fragmented, unbind everything and retry */
710 err = i915_gem_evict_vm(eb->vm);
711 if (err)
712 return err;
713 break;
715 default:
716 return -ENOSPC;
718 } while (1);
721 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
723 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
724 return 0;
725 else
726 return eb->buffer_count - 1;
729 static int eb_select_context(struct i915_execbuffer *eb)
731 struct i915_gem_context *ctx;
733 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
734 if (unlikely(!ctx))
735 return -ENOENT;
737 eb->ctx = ctx;
738 eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
740 eb->context_flags = 0;
741 if (ctx->flags & CONTEXT_NO_ZEROMAP)
742 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
744 return 0;
747 static int eb_lookup_vmas(struct i915_execbuffer *eb)
749 struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
750 struct drm_i915_gem_object *obj;
751 unsigned int i, batch;
752 int err;
754 if (unlikely(i915_gem_context_is_closed(eb->ctx)))
755 return -ENOENT;
757 if (unlikely(i915_gem_context_is_banned(eb->ctx)))
758 return -EIO;
760 INIT_LIST_HEAD(&eb->relocs);
761 INIT_LIST_HEAD(&eb->unbound);
763 batch = eb_batch_index(eb);
765 for (i = 0; i < eb->buffer_count; i++) {
766 u32 handle = eb->exec[i].handle;
767 struct i915_lut_handle *lut;
768 struct i915_vma *vma;
770 vma = radix_tree_lookup(handles_vma, handle);
771 if (likely(vma))
772 goto add_vma;
774 obj = i915_gem_object_lookup(eb->file, handle);
775 if (unlikely(!obj)) {
776 err = -ENOENT;
777 goto err_vma;
780 vma = i915_vma_instance(obj, eb->vm, NULL);
781 if (unlikely(IS_ERR(vma))) {
782 err = PTR_ERR(vma);
783 goto err_obj;
786 lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
787 if (unlikely(!lut)) {
788 err = -ENOMEM;
789 goto err_obj;
792 err = radix_tree_insert(handles_vma, handle, vma);
793 if (unlikely(err)) {
794 kmem_cache_free(eb->i915->luts, lut);
795 goto err_obj;
798 /* transfer ref to ctx */
799 if (!vma->open_count++)
800 i915_vma_reopen(vma);
801 list_add(&lut->obj_link, &obj->lut_list);
802 list_add(&lut->ctx_link, &eb->ctx->handles_list);
803 lut->ctx = eb->ctx;
804 lut->handle = handle;
806 add_vma:
807 err = eb_add_vma(eb, i, batch, vma);
808 if (unlikely(err))
809 goto err_vma;
811 GEM_BUG_ON(vma != eb->vma[i]);
812 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
813 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
814 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
817 eb->args->flags |= __EXEC_VALIDATED;
818 return eb_reserve(eb);
820 err_obj:
821 i915_gem_object_put(obj);
822 err_vma:
823 eb->vma[i] = NULL;
824 return err;
827 static struct i915_vma *
828 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
830 if (eb->lut_size < 0) {
831 if (handle >= -eb->lut_size)
832 return NULL;
833 return eb->vma[handle];
834 } else {
835 struct hlist_head *head;
836 struct i915_vma *vma;
838 head = &eb->buckets[hash_32(handle, eb->lut_size)];
839 hlist_for_each_entry(vma, head, exec_node) {
840 if (vma->exec_handle == handle)
841 return vma;
843 return NULL;
847 static void eb_release_vmas(const struct i915_execbuffer *eb)
849 const unsigned int count = eb->buffer_count;
850 unsigned int i;
852 for (i = 0; i < count; i++) {
853 struct i915_vma *vma = eb->vma[i];
854 unsigned int flags = eb->flags[i];
856 if (!vma)
857 break;
859 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
860 vma->exec_flags = NULL;
861 eb->vma[i] = NULL;
863 if (flags & __EXEC_OBJECT_HAS_PIN)
864 __eb_unreserve_vma(vma, flags);
866 if (flags & __EXEC_OBJECT_HAS_REF)
867 i915_vma_put(vma);
871 static void eb_reset_vmas(const struct i915_execbuffer *eb)
873 eb_release_vmas(eb);
874 if (eb->lut_size > 0)
875 memset(eb->buckets, 0,
876 sizeof(struct hlist_head) << eb->lut_size);
879 static void eb_destroy(const struct i915_execbuffer *eb)
881 GEM_BUG_ON(eb->reloc_cache.rq);
883 if (eb->lut_size > 0)
884 kfree(eb->buckets);
887 static inline u64
888 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
889 const struct i915_vma *target)
891 return gen8_canonical_addr((int)reloc->delta + target->node.start);
894 static void reloc_cache_init(struct reloc_cache *cache,
895 struct drm_i915_private *i915)
897 cache->page = -1;
898 cache->vaddr = 0;
899 /* Must be a variable in the struct to allow GCC to unroll. */
900 cache->gen = INTEL_GEN(i915);
901 cache->has_llc = HAS_LLC(i915);
902 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
903 cache->has_fence = cache->gen < 4;
904 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
905 cache->node.allocated = false;
906 cache->rq = NULL;
907 cache->rq_size = 0;
910 static inline void *unmask_page(unsigned long p)
912 return (void *)(uintptr_t)(p & PAGE_MASK);
915 static inline unsigned int unmask_flags(unsigned long p)
917 return p & ~PAGE_MASK;
920 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
922 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
924 struct drm_i915_private *i915 =
925 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
926 return &i915->ggtt;
929 static void reloc_gpu_flush(struct reloc_cache *cache)
931 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
932 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
933 i915_gem_object_unpin_map(cache->rq->batch->obj);
934 i915_gem_chipset_flush(cache->rq->i915);
936 i915_request_add(cache->rq);
937 cache->rq = NULL;
940 static void reloc_cache_reset(struct reloc_cache *cache)
942 void *vaddr;
944 if (cache->rq)
945 reloc_gpu_flush(cache);
947 if (!cache->vaddr)
948 return;
950 vaddr = unmask_page(cache->vaddr);
951 if (cache->vaddr & KMAP) {
952 if (cache->vaddr & CLFLUSH_AFTER)
953 mb();
955 kunmap_atomic(vaddr);
956 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
957 } else {
958 wmb();
959 io_mapping_unmap_atomic((void __iomem *)vaddr);
960 if (cache->node.allocated) {
961 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
963 ggtt->vm.clear_range(&ggtt->vm,
964 cache->node.start,
965 cache->node.size);
966 drm_mm_remove_node(&cache->node);
967 } else {
968 i915_vma_unpin((struct i915_vma *)cache->node.mm);
972 cache->vaddr = 0;
973 cache->page = -1;
976 static void *reloc_kmap(struct drm_i915_gem_object *obj,
977 struct reloc_cache *cache,
978 unsigned long page)
980 void *vaddr;
982 if (cache->vaddr) {
983 kunmap_atomic(unmask_page(cache->vaddr));
984 } else {
985 unsigned int flushes;
986 int err;
988 err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
989 if (err)
990 return ERR_PTR(err);
992 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
993 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
995 cache->vaddr = flushes | KMAP;
996 cache->node.mm = (void *)obj;
997 if (flushes)
998 mb();
1001 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1002 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1003 cache->page = page;
1005 return vaddr;
1008 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1009 struct reloc_cache *cache,
1010 unsigned long page)
1012 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1013 unsigned long offset;
1014 void *vaddr;
1016 if (cache->vaddr) {
1017 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1018 } else {
1019 struct i915_vma *vma;
1020 int err;
1022 if (use_cpu_reloc(cache, obj))
1023 return NULL;
1025 err = i915_gem_object_set_to_gtt_domain(obj, true);
1026 if (err)
1027 return ERR_PTR(err);
1029 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1030 PIN_MAPPABLE |
1031 PIN_NONBLOCK |
1032 PIN_NONFAULT);
1033 if (IS_ERR(vma)) {
1034 memset(&cache->node, 0, sizeof(cache->node));
1035 err = drm_mm_insert_node_in_range
1036 (&ggtt->vm.mm, &cache->node,
1037 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1038 0, ggtt->mappable_end,
1039 DRM_MM_INSERT_LOW);
1040 if (err) /* no inactive aperture space, use cpu reloc */
1041 return NULL;
1042 } else {
1043 err = i915_vma_put_fence(vma);
1044 if (err) {
1045 i915_vma_unpin(vma);
1046 return ERR_PTR(err);
1049 cache->node.start = vma->node.start;
1050 cache->node.mm = (void *)vma;
1054 offset = cache->node.start;
1055 if (cache->node.allocated) {
1056 wmb();
1057 ggtt->vm.insert_page(&ggtt->vm,
1058 i915_gem_object_get_dma_address(obj, page),
1059 offset, I915_CACHE_NONE, 0);
1060 } else {
1061 offset += page << PAGE_SHIFT;
1064 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1065 offset);
1066 cache->page = page;
1067 cache->vaddr = (unsigned long)vaddr;
1069 return vaddr;
1072 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1073 struct reloc_cache *cache,
1074 unsigned long page)
1076 void *vaddr;
1078 if (cache->page == page) {
1079 vaddr = unmask_page(cache->vaddr);
1080 } else {
1081 vaddr = NULL;
1082 if ((cache->vaddr & KMAP) == 0)
1083 vaddr = reloc_iomap(obj, cache, page);
1084 if (!vaddr)
1085 vaddr = reloc_kmap(obj, cache, page);
1088 return vaddr;
1091 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1093 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1094 if (flushes & CLFLUSH_BEFORE) {
1095 clflushopt(addr);
1096 mb();
1099 *addr = value;
1102 * Writes to the same cacheline are serialised by the CPU
1103 * (including clflush). On the write path, we only require
1104 * that it hits memory in an orderly fashion and place
1105 * mb barriers at the start and end of the relocation phase
1106 * to ensure ordering of clflush wrt to the system.
1108 if (flushes & CLFLUSH_AFTER)
1109 clflushopt(addr);
1110 } else
1111 *addr = value;
1114 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1115 struct i915_vma *vma,
1116 unsigned int len)
1118 struct reloc_cache *cache = &eb->reloc_cache;
1119 struct drm_i915_gem_object *obj;
1120 struct i915_request *rq;
1121 struct i915_vma *batch;
1122 u32 *cmd;
1123 int err;
1125 GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1127 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1128 if (IS_ERR(obj))
1129 return PTR_ERR(obj);
1131 cmd = i915_gem_object_pin_map(obj,
1132 cache->has_llc ?
1133 I915_MAP_FORCE_WB :
1134 I915_MAP_FORCE_WC);
1135 i915_gem_object_unpin_pages(obj);
1136 if (IS_ERR(cmd))
1137 return PTR_ERR(cmd);
1139 err = i915_gem_object_set_to_wc_domain(obj, false);
1140 if (err)
1141 goto err_unmap;
1143 batch = i915_vma_instance(obj, vma->vm, NULL);
1144 if (IS_ERR(batch)) {
1145 err = PTR_ERR(batch);
1146 goto err_unmap;
1149 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1150 if (err)
1151 goto err_unmap;
1153 rq = i915_request_alloc(eb->engine, eb->ctx);
1154 if (IS_ERR(rq)) {
1155 err = PTR_ERR(rq);
1156 goto err_unpin;
1159 err = i915_request_await_object(rq, vma->obj, true);
1160 if (err)
1161 goto err_request;
1163 err = eb->engine->emit_bb_start(rq,
1164 batch->node.start, PAGE_SIZE,
1165 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1166 if (err)
1167 goto err_request;
1169 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1170 err = i915_vma_move_to_active(batch, rq, 0);
1171 if (err)
1172 goto skip_request;
1174 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1175 if (err)
1176 goto skip_request;
1178 rq->batch = batch;
1179 i915_vma_unpin(batch);
1181 cache->rq = rq;
1182 cache->rq_cmd = cmd;
1183 cache->rq_size = 0;
1185 /* Return with batch mapping (cmd) still pinned */
1186 return 0;
1188 skip_request:
1189 i915_request_skip(rq, err);
1190 err_request:
1191 i915_request_add(rq);
1192 err_unpin:
1193 i915_vma_unpin(batch);
1194 err_unmap:
1195 i915_gem_object_unpin_map(obj);
1196 return err;
1199 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1200 struct i915_vma *vma,
1201 unsigned int len)
1203 struct reloc_cache *cache = &eb->reloc_cache;
1204 u32 *cmd;
1206 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1207 reloc_gpu_flush(cache);
1209 if (unlikely(!cache->rq)) {
1210 int err;
1212 /* If we need to copy for the cmdparser, we will stall anyway */
1213 if (eb_use_cmdparser(eb))
1214 return ERR_PTR(-EWOULDBLOCK);
1216 if (!intel_engine_can_store_dword(eb->engine))
1217 return ERR_PTR(-ENODEV);
1219 err = __reloc_gpu_alloc(eb, vma, len);
1220 if (unlikely(err))
1221 return ERR_PTR(err);
1224 cmd = cache->rq_cmd + cache->rq_size;
1225 cache->rq_size += len;
1227 return cmd;
1230 static u64
1231 relocate_entry(struct i915_vma *vma,
1232 const struct drm_i915_gem_relocation_entry *reloc,
1233 struct i915_execbuffer *eb,
1234 const struct i915_vma *target)
1236 u64 offset = reloc->offset;
1237 u64 target_offset = relocation_target(reloc, target);
1238 bool wide = eb->reloc_cache.use_64bit_reloc;
1239 void *vaddr;
1241 if (!eb->reloc_cache.vaddr &&
1242 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1243 !reservation_object_test_signaled_rcu(vma->resv, true))) {
1244 const unsigned int gen = eb->reloc_cache.gen;
1245 unsigned int len;
1246 u32 *batch;
1247 u64 addr;
1249 if (wide)
1250 len = offset & 7 ? 8 : 5;
1251 else if (gen >= 4)
1252 len = 4;
1253 else
1254 len = 3;
1256 batch = reloc_gpu(eb, vma, len);
1257 if (IS_ERR(batch))
1258 goto repeat;
1260 addr = gen8_canonical_addr(vma->node.start + offset);
1261 if (wide) {
1262 if (offset & 7) {
1263 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1264 *batch++ = lower_32_bits(addr);
1265 *batch++ = upper_32_bits(addr);
1266 *batch++ = lower_32_bits(target_offset);
1268 addr = gen8_canonical_addr(addr + 4);
1270 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1271 *batch++ = lower_32_bits(addr);
1272 *batch++ = upper_32_bits(addr);
1273 *batch++ = upper_32_bits(target_offset);
1274 } else {
1275 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1276 *batch++ = lower_32_bits(addr);
1277 *batch++ = upper_32_bits(addr);
1278 *batch++ = lower_32_bits(target_offset);
1279 *batch++ = upper_32_bits(target_offset);
1281 } else if (gen >= 6) {
1282 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1283 *batch++ = 0;
1284 *batch++ = addr;
1285 *batch++ = target_offset;
1286 } else if (gen >= 4) {
1287 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1288 *batch++ = 0;
1289 *batch++ = addr;
1290 *batch++ = target_offset;
1291 } else {
1292 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1293 *batch++ = addr;
1294 *batch++ = target_offset;
1297 goto out;
1300 repeat:
1301 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1302 if (IS_ERR(vaddr))
1303 return PTR_ERR(vaddr);
1305 clflush_write32(vaddr + offset_in_page(offset),
1306 lower_32_bits(target_offset),
1307 eb->reloc_cache.vaddr);
1309 if (wide) {
1310 offset += sizeof(u32);
1311 target_offset >>= 32;
1312 wide = false;
1313 goto repeat;
1316 out:
1317 return target->node.start | UPDATE;
1320 static u64
1321 eb_relocate_entry(struct i915_execbuffer *eb,
1322 struct i915_vma *vma,
1323 const struct drm_i915_gem_relocation_entry *reloc)
1325 struct i915_vma *target;
1326 int err;
1328 /* we've already hold a reference to all valid objects */
1329 target = eb_get_vma(eb, reloc->target_handle);
1330 if (unlikely(!target))
1331 return -ENOENT;
1333 /* Validate that the target is in a valid r/w GPU domain */
1334 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1335 DRM_DEBUG("reloc with multiple write domains: "
1336 "target %d offset %d "
1337 "read %08x write %08x",
1338 reloc->target_handle,
1339 (int) reloc->offset,
1340 reloc->read_domains,
1341 reloc->write_domain);
1342 return -EINVAL;
1344 if (unlikely((reloc->write_domain | reloc->read_domains)
1345 & ~I915_GEM_GPU_DOMAINS)) {
1346 DRM_DEBUG("reloc with read/write non-GPU domains: "
1347 "target %d offset %d "
1348 "read %08x write %08x",
1349 reloc->target_handle,
1350 (int) reloc->offset,
1351 reloc->read_domains,
1352 reloc->write_domain);
1353 return -EINVAL;
1356 if (reloc->write_domain) {
1357 *target->exec_flags |= EXEC_OBJECT_WRITE;
1360 * Sandybridge PPGTT errata: We need a global gtt mapping
1361 * for MI and pipe_control writes because the gpu doesn't
1362 * properly redirect them through the ppgtt for non_secure
1363 * batchbuffers.
1365 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1366 IS_GEN6(eb->i915)) {
1367 err = i915_vma_bind(target, target->obj->cache_level,
1368 PIN_GLOBAL);
1369 if (WARN_ONCE(err,
1370 "Unexpected failure to bind target VMA!"))
1371 return err;
1376 * If the relocation already has the right value in it, no
1377 * more work needs to be done.
1379 if (!DBG_FORCE_RELOC &&
1380 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1381 return 0;
1383 /* Check that the relocation address is valid... */
1384 if (unlikely(reloc->offset >
1385 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1386 DRM_DEBUG("Relocation beyond object bounds: "
1387 "target %d offset %d size %d.\n",
1388 reloc->target_handle,
1389 (int)reloc->offset,
1390 (int)vma->size);
1391 return -EINVAL;
1393 if (unlikely(reloc->offset & 3)) {
1394 DRM_DEBUG("Relocation not 4-byte aligned: "
1395 "target %d offset %d.\n",
1396 reloc->target_handle,
1397 (int)reloc->offset);
1398 return -EINVAL;
1402 * If we write into the object, we need to force the synchronisation
1403 * barrier, either with an asynchronous clflush or if we executed the
1404 * patching using the GPU (though that should be serialised by the
1405 * timeline). To be completely sure, and since we are required to
1406 * do relocations we are already stalling, disable the user's opt
1407 * out of our synchronisation.
1409 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1411 /* and update the user's relocation entry */
1412 return relocate_entry(vma, reloc, eb, target);
1415 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1417 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1418 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1419 struct drm_i915_gem_relocation_entry __user *urelocs;
1420 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1421 unsigned int remain;
1423 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1424 remain = entry->relocation_count;
1425 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1426 return -EINVAL;
1429 * We must check that the entire relocation array is safe
1430 * to read. However, if the array is not writable the user loses
1431 * the updated relocation values.
1433 if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1434 return -EFAULT;
1436 do {
1437 struct drm_i915_gem_relocation_entry *r = stack;
1438 unsigned int count =
1439 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1440 unsigned int copied;
1443 * This is the fast path and we cannot handle a pagefault
1444 * whilst holding the struct mutex lest the user pass in the
1445 * relocations contained within a mmaped bo. For in such a case
1446 * we, the page fault handler would call i915_gem_fault() and
1447 * we would try to acquire the struct mutex again. Obviously
1448 * this is bad and so lockdep complains vehemently.
1450 pagefault_disable();
1451 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1452 pagefault_enable();
1453 if (unlikely(copied)) {
1454 remain = -EFAULT;
1455 goto out;
1458 remain -= count;
1459 do {
1460 u64 offset = eb_relocate_entry(eb, vma, r);
1462 if (likely(offset == 0)) {
1463 } else if ((s64)offset < 0) {
1464 remain = (int)offset;
1465 goto out;
1466 } else {
1468 * Note that reporting an error now
1469 * leaves everything in an inconsistent
1470 * state as we have *already* changed
1471 * the relocation value inside the
1472 * object. As we have not changed the
1473 * reloc.presumed_offset or will not
1474 * change the execobject.offset, on the
1475 * call we may not rewrite the value
1476 * inside the object, leaving it
1477 * dangling and causing a GPU hang. Unless
1478 * userspace dynamically rebuilds the
1479 * relocations on each execbuf rather than
1480 * presume a static tree.
1482 * We did previously check if the relocations
1483 * were writable (access_ok), an error now
1484 * would be a strange race with mprotect,
1485 * having already demonstrated that we
1486 * can read from this userspace address.
1488 offset = gen8_canonical_addr(offset & ~UPDATE);
1489 __put_user(offset,
1490 &urelocs[r-stack].presumed_offset);
1492 } while (r++, --count);
1493 urelocs += ARRAY_SIZE(stack);
1494 } while (remain);
1495 out:
1496 reloc_cache_reset(&eb->reloc_cache);
1497 return remain;
1500 static int
1501 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1503 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1504 struct drm_i915_gem_relocation_entry *relocs =
1505 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1506 unsigned int i;
1507 int err;
1509 for (i = 0; i < entry->relocation_count; i++) {
1510 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1512 if ((s64)offset < 0) {
1513 err = (int)offset;
1514 goto err;
1517 err = 0;
1518 err:
1519 reloc_cache_reset(&eb->reloc_cache);
1520 return err;
1523 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1525 const char __user *addr, *end;
1526 unsigned long size;
1527 char __maybe_unused c;
1529 size = entry->relocation_count;
1530 if (size == 0)
1531 return 0;
1533 if (size > N_RELOC(ULONG_MAX))
1534 return -EINVAL;
1536 addr = u64_to_user_ptr(entry->relocs_ptr);
1537 size *= sizeof(struct drm_i915_gem_relocation_entry);
1538 if (!access_ok(VERIFY_READ, addr, size))
1539 return -EFAULT;
1541 end = addr + size;
1542 for (; addr < end; addr += PAGE_SIZE) {
1543 int err = __get_user(c, addr);
1544 if (err)
1545 return err;
1547 return __get_user(c, end - 1);
1550 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1552 const unsigned int count = eb->buffer_count;
1553 unsigned int i;
1554 int err;
1556 for (i = 0; i < count; i++) {
1557 const unsigned int nreloc = eb->exec[i].relocation_count;
1558 struct drm_i915_gem_relocation_entry __user *urelocs;
1559 struct drm_i915_gem_relocation_entry *relocs;
1560 unsigned long size;
1561 unsigned long copied;
1563 if (nreloc == 0)
1564 continue;
1566 err = check_relocations(&eb->exec[i]);
1567 if (err)
1568 goto err;
1570 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1571 size = nreloc * sizeof(*relocs);
1573 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1574 if (!relocs) {
1575 kvfree(relocs);
1576 err = -ENOMEM;
1577 goto err;
1580 /* copy_from_user is limited to < 4GiB */
1581 copied = 0;
1582 do {
1583 unsigned int len =
1584 min_t(u64, BIT_ULL(31), size - copied);
1586 if (__copy_from_user((char *)relocs + copied,
1587 (char __user *)urelocs + copied,
1588 len)) {
1589 kvfree(relocs);
1590 err = -EFAULT;
1591 goto err;
1594 copied += len;
1595 } while (copied < size);
1598 * As we do not update the known relocation offsets after
1599 * relocating (due to the complexities in lock handling),
1600 * we need to mark them as invalid now so that we force the
1601 * relocation processing next time. Just in case the target
1602 * object is evicted and then rebound into its old
1603 * presumed_offset before the next execbuffer - if that
1604 * happened we would make the mistake of assuming that the
1605 * relocations were valid.
1607 user_access_begin();
1608 for (copied = 0; copied < nreloc; copied++)
1609 unsafe_put_user(-1,
1610 &urelocs[copied].presumed_offset,
1611 end_user);
1612 end_user:
1613 user_access_end();
1615 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1618 return 0;
1620 err:
1621 while (i--) {
1622 struct drm_i915_gem_relocation_entry *relocs =
1623 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1624 if (eb->exec[i].relocation_count)
1625 kvfree(relocs);
1627 return err;
1630 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1632 const unsigned int count = eb->buffer_count;
1633 unsigned int i;
1635 if (unlikely(i915_modparams.prefault_disable))
1636 return 0;
1638 for (i = 0; i < count; i++) {
1639 int err;
1641 err = check_relocations(&eb->exec[i]);
1642 if (err)
1643 return err;
1646 return 0;
1649 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1651 struct drm_device *dev = &eb->i915->drm;
1652 bool have_copy = false;
1653 struct i915_vma *vma;
1654 int err = 0;
1656 repeat:
1657 if (signal_pending(current)) {
1658 err = -ERESTARTSYS;
1659 goto out;
1662 /* We may process another execbuffer during the unlock... */
1663 eb_reset_vmas(eb);
1664 mutex_unlock(&dev->struct_mutex);
1667 * We take 3 passes through the slowpatch.
1669 * 1 - we try to just prefault all the user relocation entries and
1670 * then attempt to reuse the atomic pagefault disabled fast path again.
1672 * 2 - we copy the user entries to a local buffer here outside of the
1673 * local and allow ourselves to wait upon any rendering before
1674 * relocations
1676 * 3 - we already have a local copy of the relocation entries, but
1677 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1679 if (!err) {
1680 err = eb_prefault_relocations(eb);
1681 } else if (!have_copy) {
1682 err = eb_copy_relocations(eb);
1683 have_copy = err == 0;
1684 } else {
1685 cond_resched();
1686 err = 0;
1688 if (err) {
1689 mutex_lock(&dev->struct_mutex);
1690 goto out;
1693 /* A frequent cause for EAGAIN are currently unavailable client pages */
1694 flush_workqueue(eb->i915->mm.userptr_wq);
1696 err = i915_mutex_lock_interruptible(dev);
1697 if (err) {
1698 mutex_lock(&dev->struct_mutex);
1699 goto out;
1702 /* reacquire the objects */
1703 err = eb_lookup_vmas(eb);
1704 if (err)
1705 goto err;
1707 GEM_BUG_ON(!eb->batch);
1709 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1710 if (!have_copy) {
1711 pagefault_disable();
1712 err = eb_relocate_vma(eb, vma);
1713 pagefault_enable();
1714 if (err)
1715 goto repeat;
1716 } else {
1717 err = eb_relocate_vma_slow(eb, vma);
1718 if (err)
1719 goto err;
1724 * Leave the user relocations as are, this is the painfully slow path,
1725 * and we want to avoid the complication of dropping the lock whilst
1726 * having buffers reserved in the aperture and so causing spurious
1727 * ENOSPC for random operations.
1730 err:
1731 if (err == -EAGAIN)
1732 goto repeat;
1734 out:
1735 if (have_copy) {
1736 const unsigned int count = eb->buffer_count;
1737 unsigned int i;
1739 for (i = 0; i < count; i++) {
1740 const struct drm_i915_gem_exec_object2 *entry =
1741 &eb->exec[i];
1742 struct drm_i915_gem_relocation_entry *relocs;
1744 if (!entry->relocation_count)
1745 continue;
1747 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1748 kvfree(relocs);
1752 return err;
1755 static int eb_relocate(struct i915_execbuffer *eb)
1757 if (eb_lookup_vmas(eb))
1758 goto slow;
1760 /* The objects are in their final locations, apply the relocations. */
1761 if (eb->args->flags & __EXEC_HAS_RELOC) {
1762 struct i915_vma *vma;
1764 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1765 if (eb_relocate_vma(eb, vma))
1766 goto slow;
1770 return 0;
1772 slow:
1773 return eb_relocate_slow(eb);
1776 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1778 const unsigned int count = eb->buffer_count;
1779 unsigned int i;
1780 int err;
1782 for (i = 0; i < count; i++) {
1783 unsigned int flags = eb->flags[i];
1784 struct i915_vma *vma = eb->vma[i];
1785 struct drm_i915_gem_object *obj = vma->obj;
1787 if (flags & EXEC_OBJECT_CAPTURE) {
1788 struct i915_capture_list *capture;
1790 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1791 if (unlikely(!capture))
1792 return -ENOMEM;
1794 capture->next = eb->request->capture_list;
1795 capture->vma = eb->vma[i];
1796 eb->request->capture_list = capture;
1800 * If the GPU is not _reading_ through the CPU cache, we need
1801 * to make sure that any writes (both previous GPU writes from
1802 * before a change in snooping levels and normal CPU writes)
1803 * caught in that cache are flushed to main memory.
1805 * We want to say
1806 * obj->cache_dirty &&
1807 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1808 * but gcc's optimiser doesn't handle that as well and emits
1809 * two jumps instead of one. Maybe one day...
1811 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1812 if (i915_gem_clflush_object(obj, 0))
1813 flags &= ~EXEC_OBJECT_ASYNC;
1816 if (flags & EXEC_OBJECT_ASYNC)
1817 continue;
1819 err = i915_request_await_object
1820 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1821 if (err)
1822 return err;
1825 for (i = 0; i < count; i++) {
1826 unsigned int flags = eb->flags[i];
1827 struct i915_vma *vma = eb->vma[i];
1829 err = i915_vma_move_to_active(vma, eb->request, flags);
1830 if (unlikely(err)) {
1831 i915_request_skip(eb->request, err);
1832 return err;
1835 __eb_unreserve_vma(vma, flags);
1836 vma->exec_flags = NULL;
1838 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1839 i915_vma_put(vma);
1841 eb->exec = NULL;
1843 /* Unconditionally flush any chipset caches (for streaming writes). */
1844 i915_gem_chipset_flush(eb->i915);
1846 return 0;
1849 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1851 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1852 return false;
1854 /* Kernel clipping was a DRI1 misfeature */
1855 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1856 if (exec->num_cliprects || exec->cliprects_ptr)
1857 return false;
1860 if (exec->DR4 == 0xffffffff) {
1861 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1862 exec->DR4 = 0;
1864 if (exec->DR1 || exec->DR4)
1865 return false;
1867 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1868 return false;
1870 return true;
1873 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1875 u32 *cs;
1876 int i;
1878 if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1879 DRM_DEBUG("sol reset is gen7/rcs only\n");
1880 return -EINVAL;
1883 cs = intel_ring_begin(rq, 4 * 2 + 2);
1884 if (IS_ERR(cs))
1885 return PTR_ERR(cs);
1887 *cs++ = MI_LOAD_REGISTER_IMM(4);
1888 for (i = 0; i < 4; i++) {
1889 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1890 *cs++ = 0;
1892 *cs++ = MI_NOOP;
1893 intel_ring_advance(rq, cs);
1895 return 0;
1898 static struct i915_vma *
1899 shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
1901 struct drm_i915_private *dev_priv = eb->i915;
1902 struct i915_address_space *vm;
1903 u64 flags;
1906 * PPGTT backed shadow buffers must be mapped RO, to prevent
1907 * post-scan tampering
1909 if (CMDPARSER_USES_GGTT(dev_priv)) {
1910 flags = PIN_GLOBAL;
1911 vm = &dev_priv->ggtt.vm;
1912 } else if (eb->vm->has_read_only) {
1913 flags = PIN_USER;
1914 vm = eb->vm;
1915 i915_gem_object_set_readonly(obj);
1916 } else {
1917 DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
1918 return ERR_PTR(-EINVAL);
1921 return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags);
1924 static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
1926 struct drm_i915_gem_object *shadow_batch_obj;
1927 struct i915_vma *vma;
1928 u64 batch_start;
1929 u64 shadow_batch_start;
1930 int err;
1932 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1933 PAGE_ALIGN(eb->batch_len));
1934 if (IS_ERR(shadow_batch_obj))
1935 return ERR_CAST(shadow_batch_obj);
1937 vma = shadow_batch_pin(eb, shadow_batch_obj);
1938 if (IS_ERR(vma))
1939 goto out;
1941 batch_start = gen8_canonical_addr(eb->batch->node.start) +
1942 eb->batch_start_offset;
1944 shadow_batch_start = gen8_canonical_addr(vma->node.start);
1946 err = intel_engine_cmd_parser(eb->ctx,
1947 eb->engine,
1948 eb->batch->obj,
1949 batch_start,
1950 eb->batch_start_offset,
1951 eb->batch_len,
1952 shadow_batch_obj,
1953 shadow_batch_start);
1955 if (err) {
1956 i915_vma_unpin(vma);
1959 * Unsafe GGTT-backed buffers can still be submitted safely
1960 * as non-secure.
1961 * For PPGTT backing however, we have no choice but to forcibly
1962 * reject unsafe buffers
1964 if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES))
1965 /* Execute original buffer non-secure */
1966 vma = NULL;
1967 else
1968 vma = ERR_PTR(err);
1970 goto out;
1973 eb->vma[eb->buffer_count] = i915_vma_get(vma);
1974 eb->flags[eb->buffer_count] =
1975 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1976 vma->exec_flags = &eb->flags[eb->buffer_count];
1977 eb->buffer_count++;
1978 eb->batch_start_offset = 0;
1979 eb->batch = vma;
1981 /* eb->batch_len unchanged */
1983 if (CMDPARSER_USES_GGTT(eb->i915))
1984 eb->batch_flags |= I915_DISPATCH_SECURE;
1986 out:
1987 i915_gem_object_unpin_pages(shadow_batch_obj);
1988 return vma;
1991 static void
1992 add_to_client(struct i915_request *rq, struct drm_file *file)
1994 rq->file_priv = file->driver_priv;
1995 list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1998 static int eb_submit(struct i915_execbuffer *eb)
2000 int err;
2002 err = eb_move_to_gpu(eb);
2003 if (err)
2004 return err;
2006 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2007 err = i915_reset_gen7_sol_offsets(eb->request);
2008 if (err)
2009 return err;
2012 err = eb->engine->emit_bb_start(eb->request,
2013 eb->batch->node.start +
2014 eb->batch_start_offset,
2015 eb->batch_len,
2016 eb->batch_flags);
2017 if (err)
2018 return err;
2020 return 0;
2024 * Find one BSD ring to dispatch the corresponding BSD command.
2025 * The engine index is returned.
2027 static unsigned int
2028 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2029 struct drm_file *file)
2031 struct drm_i915_file_private *file_priv = file->driver_priv;
2033 /* Check whether the file_priv has already selected one ring. */
2034 if ((int)file_priv->bsd_engine < 0)
2035 file_priv->bsd_engine = atomic_fetch_xor(1,
2036 &dev_priv->mm.bsd_engine_dispatch_index);
2038 return file_priv->bsd_engine;
2041 #define I915_USER_RINGS (4)
2043 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2044 [I915_EXEC_DEFAULT] = RCS,
2045 [I915_EXEC_RENDER] = RCS,
2046 [I915_EXEC_BLT] = BCS,
2047 [I915_EXEC_BSD] = VCS,
2048 [I915_EXEC_VEBOX] = VECS
2051 static struct intel_engine_cs *
2052 eb_select_engine(struct drm_i915_private *dev_priv,
2053 struct drm_file *file,
2054 struct drm_i915_gem_execbuffer2 *args)
2056 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2057 struct intel_engine_cs *engine;
2059 if (user_ring_id > I915_USER_RINGS) {
2060 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2061 return NULL;
2064 if ((user_ring_id != I915_EXEC_BSD) &&
2065 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
2066 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2067 "bsd dispatch flags: %d\n", (int)(args->flags));
2068 return NULL;
2071 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
2072 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2074 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2075 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2076 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2077 bsd_idx <= I915_EXEC_BSD_RING2) {
2078 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2079 bsd_idx--;
2080 } else {
2081 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2082 bsd_idx);
2083 return NULL;
2086 engine = dev_priv->engine[_VCS(bsd_idx)];
2087 } else {
2088 engine = dev_priv->engine[user_ring_map[user_ring_id]];
2091 if (!engine) {
2092 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2093 return NULL;
2096 return engine;
2099 static void
2100 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2102 while (n--)
2103 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2104 kvfree(fences);
2107 static struct drm_syncobj **
2108 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2109 struct drm_file *file)
2111 const unsigned long nfences = args->num_cliprects;
2112 struct drm_i915_gem_exec_fence __user *user;
2113 struct drm_syncobj **fences;
2114 unsigned long n;
2115 int err;
2117 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2118 return NULL;
2120 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2121 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2122 if (nfences > min_t(unsigned long,
2123 ULONG_MAX / sizeof(*user),
2124 SIZE_MAX / sizeof(*fences)))
2125 return ERR_PTR(-EINVAL);
2127 user = u64_to_user_ptr(args->cliprects_ptr);
2128 if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2129 return ERR_PTR(-EFAULT);
2131 fences = kvmalloc_array(nfences, sizeof(*fences),
2132 __GFP_NOWARN | GFP_KERNEL);
2133 if (!fences)
2134 return ERR_PTR(-ENOMEM);
2136 for (n = 0; n < nfences; n++) {
2137 struct drm_i915_gem_exec_fence fence;
2138 struct drm_syncobj *syncobj;
2140 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2141 err = -EFAULT;
2142 goto err;
2145 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2146 err = -EINVAL;
2147 goto err;
2150 syncobj = drm_syncobj_find(file, fence.handle);
2151 if (!syncobj) {
2152 DRM_DEBUG("Invalid syncobj handle provided\n");
2153 err = -ENOENT;
2154 goto err;
2157 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2158 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2160 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2163 return fences;
2165 err:
2166 __free_fence_array(fences, n);
2167 return ERR_PTR(err);
2170 static void
2171 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2172 struct drm_syncobj **fences)
2174 if (fences)
2175 __free_fence_array(fences, args->num_cliprects);
2178 static int
2179 await_fence_array(struct i915_execbuffer *eb,
2180 struct drm_syncobj **fences)
2182 const unsigned int nfences = eb->args->num_cliprects;
2183 unsigned int n;
2184 int err;
2186 for (n = 0; n < nfences; n++) {
2187 struct drm_syncobj *syncobj;
2188 struct dma_fence *fence;
2189 unsigned int flags;
2191 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2192 if (!(flags & I915_EXEC_FENCE_WAIT))
2193 continue;
2195 fence = drm_syncobj_fence_get(syncobj);
2196 if (!fence)
2197 return -EINVAL;
2199 err = i915_request_await_dma_fence(eb->request, fence);
2200 dma_fence_put(fence);
2201 if (err < 0)
2202 return err;
2205 return 0;
2208 static void
2209 signal_fence_array(struct i915_execbuffer *eb,
2210 struct drm_syncobj **fences)
2212 const unsigned int nfences = eb->args->num_cliprects;
2213 struct dma_fence * const fence = &eb->request->fence;
2214 unsigned int n;
2216 for (n = 0; n < nfences; n++) {
2217 struct drm_syncobj *syncobj;
2218 unsigned int flags;
2220 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2221 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2222 continue;
2224 drm_syncobj_replace_fence(syncobj, fence);
2228 static int
2229 i915_gem_do_execbuffer(struct drm_device *dev,
2230 struct drm_file *file,
2231 struct drm_i915_gem_execbuffer2 *args,
2232 struct drm_i915_gem_exec_object2 *exec,
2233 struct drm_syncobj **fences)
2235 struct drm_i915_private *i915 = to_i915(dev);
2236 struct i915_execbuffer eb;
2237 struct dma_fence *in_fence = NULL;
2238 struct sync_file *out_fence = NULL;
2239 int out_fence_fd = -1;
2240 int err;
2242 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2243 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2244 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2246 eb.i915 = i915;
2247 eb.file = file;
2248 eb.args = args;
2249 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2250 args->flags |= __EXEC_HAS_RELOC;
2252 eb.exec = exec;
2253 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2254 eb.vma[0] = NULL;
2255 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2257 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2258 if (USES_FULL_PPGTT(eb.i915))
2259 eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2260 reloc_cache_init(&eb.reloc_cache, eb.i915);
2262 eb.buffer_count = args->buffer_count;
2263 eb.batch_start_offset = args->batch_start_offset;
2264 eb.batch_len = args->batch_len;
2266 eb.batch_flags = 0;
2267 if (args->flags & I915_EXEC_SECURE) {
2268 if (INTEL_GEN(i915) >= 11)
2269 return -ENODEV;
2271 /* Return -EPERM to trigger fallback code on old binaries. */
2272 if (!HAS_SECURE_BATCHES(i915))
2273 return -EPERM;
2275 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2276 return -EPERM;
2278 eb.batch_flags |= I915_DISPATCH_SECURE;
2280 if (args->flags & I915_EXEC_IS_PINNED)
2281 eb.batch_flags |= I915_DISPATCH_PINNED;
2283 eb.engine = eb_select_engine(eb.i915, file, args);
2284 if (!eb.engine)
2285 return -EINVAL;
2287 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2288 if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2289 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
2290 return -EINVAL;
2292 if (eb.engine->id != RCS) {
2293 DRM_DEBUG("RS is not available on %s\n",
2294 eb.engine->name);
2295 return -EINVAL;
2298 eb.batch_flags |= I915_DISPATCH_RS;
2301 if (args->flags & I915_EXEC_FENCE_IN) {
2302 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2303 if (!in_fence)
2304 return -EINVAL;
2307 if (args->flags & I915_EXEC_FENCE_OUT) {
2308 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2309 if (out_fence_fd < 0) {
2310 err = out_fence_fd;
2311 goto err_in_fence;
2315 err = eb_create(&eb);
2316 if (err)
2317 goto err_out_fence;
2319 GEM_BUG_ON(!eb.lut_size);
2321 err = eb_select_context(&eb);
2322 if (unlikely(err))
2323 goto err_destroy;
2326 * Take a local wakeref for preparing to dispatch the execbuf as
2327 * we expect to access the hardware fairly frequently in the
2328 * process. Upon first dispatch, we acquire another prolonged
2329 * wakeref that we hold until the GPU has been idle for at least
2330 * 100ms.
2332 intel_runtime_pm_get(eb.i915);
2334 err = i915_mutex_lock_interruptible(dev);
2335 if (err)
2336 goto err_rpm;
2338 err = eb_relocate(&eb);
2339 if (err) {
2341 * If the user expects the execobject.offset and
2342 * reloc.presumed_offset to be an exact match,
2343 * as for using NO_RELOC, then we cannot update
2344 * the execobject.offset until we have completed
2345 * relocation.
2347 args->flags &= ~__EXEC_HAS_RELOC;
2348 goto err_vma;
2351 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2352 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2353 err = -EINVAL;
2354 goto err_vma;
2356 if (eb.batch_start_offset > eb.batch->size ||
2357 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2358 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2359 err = -EINVAL;
2360 goto err_vma;
2363 if (eb.batch_len == 0)
2364 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2366 if (eb_use_cmdparser(&eb)) {
2367 struct i915_vma *vma;
2369 vma = eb_parse(&eb);
2370 if (IS_ERR(vma)) {
2371 err = PTR_ERR(vma);
2372 goto err_vma;
2377 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2378 * batch" bit. Hence we need to pin secure batches into the global gtt.
2379 * hsw should have this fixed, but bdw mucks it up again. */
2380 if (eb.batch_flags & I915_DISPATCH_SECURE) {
2381 struct i915_vma *vma;
2384 * So on first glance it looks freaky that we pin the batch here
2385 * outside of the reservation loop. But:
2386 * - The batch is already pinned into the relevant ppgtt, so we
2387 * already have the backing storage fully allocated.
2388 * - No other BO uses the global gtt (well contexts, but meh),
2389 * so we don't really have issues with multiple objects not
2390 * fitting due to fragmentation.
2391 * So this is actually safe.
2393 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2394 if (IS_ERR(vma)) {
2395 err = PTR_ERR(vma);
2396 goto err_vma;
2399 eb.batch = vma;
2402 /* All GPU relocation batches must be submitted prior to the user rq */
2403 GEM_BUG_ON(eb.reloc_cache.rq);
2405 /* Allocate a request for this batch buffer nice and early. */
2406 eb.request = i915_request_alloc(eb.engine, eb.ctx);
2407 if (IS_ERR(eb.request)) {
2408 err = PTR_ERR(eb.request);
2409 goto err_batch_unpin;
2412 if (in_fence) {
2413 err = i915_request_await_dma_fence(eb.request, in_fence);
2414 if (err < 0)
2415 goto err_request;
2418 if (fences) {
2419 err = await_fence_array(&eb, fences);
2420 if (err)
2421 goto err_request;
2424 if (out_fence_fd != -1) {
2425 out_fence = sync_file_create(&eb.request->fence);
2426 if (!out_fence) {
2427 err = -ENOMEM;
2428 goto err_request;
2433 * Whilst this request exists, batch_obj will be on the
2434 * active_list, and so will hold the active reference. Only when this
2435 * request is retired will the the batch_obj be moved onto the
2436 * inactive_list and lose its active reference. Hence we do not need
2437 * to explicitly hold another reference here.
2439 eb.request->batch = eb.batch;
2441 trace_i915_request_queue(eb.request, eb.batch_flags);
2442 err = eb_submit(&eb);
2443 err_request:
2444 i915_request_add(eb.request);
2445 add_to_client(eb.request, file);
2447 if (fences)
2448 signal_fence_array(&eb, fences);
2450 if (out_fence) {
2451 if (err == 0) {
2452 fd_install(out_fence_fd, out_fence->file);
2453 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2454 args->rsvd2 |= (u64)out_fence_fd << 32;
2455 out_fence_fd = -1;
2456 } else {
2457 fput(out_fence->file);
2461 err_batch_unpin:
2462 if (eb.batch_flags & I915_DISPATCH_SECURE)
2463 i915_vma_unpin(eb.batch);
2464 err_vma:
2465 if (eb.exec)
2466 eb_release_vmas(&eb);
2467 mutex_unlock(&dev->struct_mutex);
2468 err_rpm:
2469 intel_runtime_pm_put(eb.i915);
2470 i915_gem_context_put(eb.ctx);
2471 err_destroy:
2472 eb_destroy(&eb);
2473 err_out_fence:
2474 if (out_fence_fd != -1)
2475 put_unused_fd(out_fence_fd);
2476 err_in_fence:
2477 dma_fence_put(in_fence);
2478 return err;
2481 static size_t eb_element_size(void)
2483 return (sizeof(struct drm_i915_gem_exec_object2) +
2484 sizeof(struct i915_vma *) +
2485 sizeof(unsigned int));
2488 static bool check_buffer_count(size_t count)
2490 const size_t sz = eb_element_size();
2493 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2494 * array size (see eb_create()). Otherwise, we can accept an array as
2495 * large as can be addressed (though use large arrays at your peril)!
2498 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2502 * Legacy execbuffer just creates an exec2 list from the original exec object
2503 * list array and passes it to the real function.
2506 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2507 struct drm_file *file)
2509 struct drm_i915_gem_execbuffer *args = data;
2510 struct drm_i915_gem_execbuffer2 exec2;
2511 struct drm_i915_gem_exec_object *exec_list = NULL;
2512 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2513 const size_t count = args->buffer_count;
2514 unsigned int i;
2515 int err;
2517 if (!check_buffer_count(count)) {
2518 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2519 return -EINVAL;
2522 exec2.buffers_ptr = args->buffers_ptr;
2523 exec2.buffer_count = args->buffer_count;
2524 exec2.batch_start_offset = args->batch_start_offset;
2525 exec2.batch_len = args->batch_len;
2526 exec2.DR1 = args->DR1;
2527 exec2.DR4 = args->DR4;
2528 exec2.num_cliprects = args->num_cliprects;
2529 exec2.cliprects_ptr = args->cliprects_ptr;
2530 exec2.flags = I915_EXEC_RENDER;
2531 i915_execbuffer2_set_context_id(exec2, 0);
2533 if (!i915_gem_check_execbuffer(&exec2))
2534 return -EINVAL;
2536 /* Copy in the exec list from userland */
2537 exec_list = kvmalloc_array(count, sizeof(*exec_list),
2538 __GFP_NOWARN | GFP_KERNEL);
2539 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2540 __GFP_NOWARN | GFP_KERNEL);
2541 if (exec_list == NULL || exec2_list == NULL) {
2542 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2543 args->buffer_count);
2544 kvfree(exec_list);
2545 kvfree(exec2_list);
2546 return -ENOMEM;
2548 err = copy_from_user(exec_list,
2549 u64_to_user_ptr(args->buffers_ptr),
2550 sizeof(*exec_list) * count);
2551 if (err) {
2552 DRM_DEBUG("copy %d exec entries failed %d\n",
2553 args->buffer_count, err);
2554 kvfree(exec_list);
2555 kvfree(exec2_list);
2556 return -EFAULT;
2559 for (i = 0; i < args->buffer_count; i++) {
2560 exec2_list[i].handle = exec_list[i].handle;
2561 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2562 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2563 exec2_list[i].alignment = exec_list[i].alignment;
2564 exec2_list[i].offset = exec_list[i].offset;
2565 if (INTEL_GEN(to_i915(dev)) < 4)
2566 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2567 else
2568 exec2_list[i].flags = 0;
2571 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2572 if (exec2.flags & __EXEC_HAS_RELOC) {
2573 struct drm_i915_gem_exec_object __user *user_exec_list =
2574 u64_to_user_ptr(args->buffers_ptr);
2576 /* Copy the new buffer offsets back to the user's exec list. */
2577 for (i = 0; i < args->buffer_count; i++) {
2578 if (!(exec2_list[i].offset & UPDATE))
2579 continue;
2581 exec2_list[i].offset =
2582 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2583 exec2_list[i].offset &= PIN_OFFSET_MASK;
2584 if (__copy_to_user(&user_exec_list[i].offset,
2585 &exec2_list[i].offset,
2586 sizeof(user_exec_list[i].offset)))
2587 break;
2591 kvfree(exec_list);
2592 kvfree(exec2_list);
2593 return err;
2597 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2598 struct drm_file *file)
2600 struct drm_i915_gem_execbuffer2 *args = data;
2601 struct drm_i915_gem_exec_object2 *exec2_list;
2602 struct drm_syncobj **fences = NULL;
2603 const size_t count = args->buffer_count;
2604 int err;
2606 if (!check_buffer_count(count)) {
2607 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2608 return -EINVAL;
2611 if (!i915_gem_check_execbuffer(args))
2612 return -EINVAL;
2614 /* Allocate an extra slot for use by the command parser */
2615 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2616 __GFP_NOWARN | GFP_KERNEL);
2617 if (exec2_list == NULL) {
2618 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2619 count);
2620 return -ENOMEM;
2622 if (copy_from_user(exec2_list,
2623 u64_to_user_ptr(args->buffers_ptr),
2624 sizeof(*exec2_list) * count)) {
2625 DRM_DEBUG("copy %zd exec entries failed\n", count);
2626 kvfree(exec2_list);
2627 return -EFAULT;
2630 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2631 fences = get_fence_array(args, file);
2632 if (IS_ERR(fences)) {
2633 kvfree(exec2_list);
2634 return PTR_ERR(fences);
2638 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2641 * Now that we have begun execution of the batchbuffer, we ignore
2642 * any new error after this point. Also given that we have already
2643 * updated the associated relocations, we try to write out the current
2644 * object locations irrespective of any error.
2646 if (args->flags & __EXEC_HAS_RELOC) {
2647 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2648 u64_to_user_ptr(args->buffers_ptr);
2649 unsigned int i;
2651 /* Copy the new buffer offsets back to the user's exec list. */
2652 user_access_begin();
2653 for (i = 0; i < args->buffer_count; i++) {
2654 if (!(exec2_list[i].offset & UPDATE))
2655 continue;
2657 exec2_list[i].offset =
2658 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2659 unsafe_put_user(exec2_list[i].offset,
2660 &user_exec_list[i].offset,
2661 end_user);
2663 end_user:
2664 user_access_end();
2667 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2668 put_fence_array(args, fences);
2669 kvfree(exec2_list);
2670 return err;