2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
35 #include <drm/drm_syncobj.h>
36 #include <drm/i915_drm.h>
39 #include "i915_gem_clflush.h"
40 #include "i915_trace.h"
41 #include "intel_drv.h"
42 #include "intel_frontbuffer.h"
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 #define __EXEC_OBJECT_HAS_REF BIT(31)
52 #define __EXEC_OBJECT_HAS_PIN BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
54 #define __EXEC_OBJECT_NEEDS_MAP BIT(28)
55 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
56 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 #define __EXEC_HAS_RELOC BIT(31)
60 #define __EXEC_VALIDATED BIT(30)
61 #define __EXEC_INTERNAL_FLAGS (~0u << 30)
62 #define UPDATE PIN_OFFSET_FIXED
64 #define BATCH_OFFSET_BIAS (256*1024)
66 #define __I915_EXEC_ILLEGAL_FLAGS \
67 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
69 /* Catch emission of unexpected errors for CI! */
70 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
73 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
79 * DOC: User command execution
81 * Userspace submits commands to be executed on the GPU as an instruction
82 * stream within a GEM object we call a batchbuffer. This instructions may
83 * refer to other GEM objects containing auxiliary state such as kernels,
84 * samplers, render targets and even secondary batchbuffers. Userspace does
85 * not know where in the GPU memory these objects reside and so before the
86 * batchbuffer is passed to the GPU for execution, those addresses in the
87 * batchbuffer and auxiliary objects are updated. This is known as relocation,
88 * or patching. To try and avoid having to relocate each object on the next
89 * execution, userspace is told the location of those objects in this pass,
90 * but this remains just a hint as the kernel may choose a new location for
91 * any object in the future.
93 * At the level of talking to the hardware, submitting a batchbuffer for the
94 * GPU to execute is to add content to a buffer from which the HW
95 * command streamer is reading.
97 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
98 * Execlists, this command is not placed on the same buffer as the
101 * 2. Add a command to invalidate caches to the buffer.
103 * 3. Add a batchbuffer start command to the buffer; the start command is
104 * essentially a token together with the GPU address of the batchbuffer
107 * 4. Add a pipeline flush to the buffer.
109 * 5. Add a memory write command to the buffer to record when the GPU
110 * is done executing the batchbuffer. The memory write writes the
111 * global sequence number of the request, ``i915_request::global_seqno``;
112 * the i915 driver uses the current value in the register to determine
113 * if the GPU has completed the batchbuffer.
115 * 6. Add a user interrupt command to the buffer. This command instructs
116 * the GPU to issue an interrupt when the command, pipeline flush and
117 * memory write are completed.
119 * 7. Inform the hardware of the additional commands added to the buffer
120 * (by updating the tail pointer).
122 * Processing an execbuf ioctl is conceptually split up into a few phases.
124 * 1. Validation - Ensure all the pointers, handles and flags are valid.
125 * 2. Reservation - Assign GPU address space for every object
126 * 3. Relocation - Update any addresses to point to the final locations
127 * 4. Serialisation - Order the request with respect to its dependencies
128 * 5. Construction - Construct a request to execute the batchbuffer
129 * 6. Submission (at some point in the future execution)
131 * Reserving resources for the execbuf is the most complicated phase. We
132 * neither want to have to migrate the object in the address space, nor do
133 * we want to have to update any relocations pointing to this object. Ideally,
134 * we want to leave the object where it is and for all the existing relocations
135 * to match. If the object is given a new address, or if userspace thinks the
136 * object is elsewhere, we have to parse all the relocation entries and update
137 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
138 * all the target addresses in all of its objects match the value in the
139 * relocation entries and that they all match the presumed offsets given by the
140 * list of execbuffer objects. Using this knowledge, we know that if we haven't
141 * moved any buffers, all the relocation entries are valid and we can skip
142 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
143 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
145 * The addresses written in the objects must match the corresponding
146 * reloc.presumed_offset which in turn must match the corresponding
149 * Any render targets written to in the batch must be flagged with
152 * To avoid stalling, execobject.offset should match the current
153 * address of that object within the active context.
155 * The reservation is done is multiple phases. First we try and keep any
156 * object already bound in its current location - so as long as meets the
157 * constraints imposed by the new execbuffer. Any object left unbound after the
158 * first pass is then fitted into any available idle space. If an object does
159 * not fit, all objects are removed from the reservation and the process rerun
160 * after sorting the objects into a priority order (more difficult to fit
161 * objects are tried first). Failing that, the entire VM is cleared and we try
162 * to fit the execbuf once last time before concluding that it simply will not
165 * A small complication to all of this is that we allow userspace not only to
166 * specify an alignment and a size for the object in the address space, but
167 * we also allow userspace to specify the exact offset. This objects are
168 * simpler to place (the location is known a priori) all we have to do is make
169 * sure the space is available.
171 * Once all the objects are in place, patching up the buried pointers to point
172 * to the final locations is a fairly simple job of walking over the relocation
173 * entry arrays, looking up the right address and rewriting the value into
174 * the object. Simple! ... The relocation entries are stored in user memory
175 * and so to access them we have to copy them into a local buffer. That copy
176 * has to avoid taking any pagefaults as they may lead back to a GEM object
177 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
178 * the relocation into multiple passes. First we try to do everything within an
179 * atomic context (avoid the pagefaults) which requires that we never wait. If
180 * we detect that we may wait, or if we need to fault, then we have to fallback
181 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
182 * bells yet?) Dropping the mutex means that we lose all the state we have
183 * built up so far for the execbuf and we must reset any global data. However,
184 * we do leave the objects pinned in their final locations - which is a
185 * potential issue for concurrent execbufs. Once we have left the mutex, we can
186 * allocate and copy all the relocation entries into a large array at our
187 * leisure, reacquire the mutex, reclaim all the objects and other state and
188 * then proceed to update any incorrect addresses with the objects.
190 * As we process the relocation entries, we maintain a record of whether the
191 * object is being written to. Using NORELOC, we expect userspace to provide
192 * this information instead. We also check whether we can skip the relocation
193 * by comparing the expected value inside the relocation entry with the target's
194 * final address. If they differ, we have to map the current object and rewrite
195 * the 4 or 8 byte pointer within.
197 * Serialising an execbuf is quite simple according to the rules of the GEM
198 * ABI. Execution within each context is ordered by the order of submission.
199 * Writes to any GEM object are in order of submission and are exclusive. Reads
200 * from a GEM object are unordered with respect to other reads, but ordered by
201 * writes. A write submitted after a read cannot occur before the read, and
202 * similarly any read submitted after a write cannot occur before the write.
203 * Writes are ordered between engines such that only one write occurs at any
204 * time (completing any reads beforehand) - using semaphores where available
205 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
206 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
207 * reads before starting, and any read (either using set-domain or pread) must
208 * flush all GPU writes before starting. (Note we only employ a barrier before,
209 * we currently rely on userspace not concurrently starting a new execution
210 * whilst reading or writing to an object. This may be an advantage or not
211 * depending on how much you trust userspace not to shoot themselves in the
212 * foot.) Serialisation may just result in the request being inserted into
213 * a DAG awaiting its turn, but most simple is to wait on the CPU until
214 * all dependencies are resolved.
216 * After all of that, is just a matter of closing the request and handing it to
217 * the hardware (well, leaving it in a queue to be executed). However, we also
218 * offer the ability for batchbuffers to be run with elevated privileges so
219 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
220 * Before any batch is given extra privileges we first must check that it
221 * contains no nefarious instructions, we check that each instruction is from
222 * our whitelist and all registers are also from an allowed list. We first
223 * copy the user's batchbuffer to a shadow (so that the user doesn't have
224 * access to it, either by the CPU or GPU as we scan it) and then parse each
225 * instruction. If everything is ok, we set a flag telling the hardware to run
226 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
229 struct i915_execbuffer
{
230 struct drm_i915_private
*i915
; /** i915 backpointer */
231 struct drm_file
*file
; /** per-file lookup tables and limits */
232 struct drm_i915_gem_execbuffer2
*args
; /** ioctl parameters */
233 struct drm_i915_gem_exec_object2
*exec
; /** ioctl execobj[] */
234 struct i915_vma
**vma
;
237 struct intel_engine_cs
*engine
; /** engine to queue the request to */
238 struct i915_gem_context
*ctx
; /** context for building the request */
239 struct i915_address_space
*vm
; /** GTT and vma for the request */
241 struct i915_request
*request
; /** our request to build */
242 struct i915_vma
*batch
; /** identity of the batch obj/vma */
244 /** actual size of execobj[] as we may extend it for the cmdparser */
245 unsigned int buffer_count
;
247 /** list of vma not yet bound during reservation phase */
248 struct list_head unbound
;
250 /** list of vma that have execobj.relocation_count */
251 struct list_head relocs
;
254 * Track the most recently used object for relocations, as we
255 * frequently have to perform multiple relocations within the same
259 struct drm_mm_node node
; /** temporary GTT binding */
260 unsigned long vaddr
; /** Current kmap address */
261 unsigned long page
; /** Currently mapped page index */
262 unsigned int gen
; /** Cached value of INTEL_GEN */
263 bool use_64bit_reloc
: 1;
266 bool needs_unfenced
: 1;
268 struct i915_request
*rq
;
270 unsigned int rq_size
;
273 u64 invalid_flags
; /** Set of execobj.flags that are invalid */
274 u32 context_flags
; /** Set of execobj.flags to insert from the ctx */
276 u32 batch_start_offset
; /** Location within object of batch */
277 u32 batch_len
; /** Length of batch within object */
278 u32 batch_flags
; /** Flags composed for emit_bb_start() */
281 * Indicate either the size of the hastable used to resolve
282 * relocation handles, or if negative that we are using a direct
283 * index into the execobj[].
286 struct hlist_head
*buckets
; /** ht for relocation handles */
289 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
292 * Used to convert any address to canonical form.
293 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
294 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
295 * addresses to be in a canonical form:
296 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
297 * canonical form [63:48] == [47]."
299 #define GEN8_HIGH_ADDRESS_BIT 47
300 static inline u64
gen8_canonical_addr(u64 address
)
302 return sign_extend64(address
, GEN8_HIGH_ADDRESS_BIT
);
305 static inline u64
gen8_noncanonical_addr(u64 address
)
307 return address
& GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT
, 0);
310 static inline bool eb_use_cmdparser(const struct i915_execbuffer
*eb
)
312 return intel_engine_requires_cmd_parser(eb
->engine
) ||
313 (intel_engine_using_cmd_parser(eb
->engine
) &&
314 eb
->args
->batch_len
);
317 static int eb_create(struct i915_execbuffer
*eb
)
319 if (!(eb
->args
->flags
& I915_EXEC_HANDLE_LUT
)) {
320 unsigned int size
= 1 + ilog2(eb
->buffer_count
);
323 * Without a 1:1 association between relocation handles and
324 * the execobject[] index, we instead create a hashtable.
325 * We size it dynamically based on available memory, starting
326 * first with 1:1 assocative hash and scaling back until
327 * the allocation succeeds.
329 * Later on we use a positive lut_size to indicate we are
330 * using this hashtable, and a negative value to indicate a
336 /* While we can still reduce the allocation size, don't
337 * raise a warning and allow the allocation to fail.
338 * On the last pass though, we want to try as hard
339 * as possible to perform the allocation and warn
344 flags
|= __GFP_NORETRY
| __GFP_NOWARN
;
346 eb
->buckets
= kzalloc(sizeof(struct hlist_head
) << size
,
357 eb
->lut_size
= -eb
->buffer_count
;
364 eb_vma_misplaced(const struct drm_i915_gem_exec_object2
*entry
,
365 const struct i915_vma
*vma
,
368 if (vma
->node
.size
< entry
->pad_to_size
)
371 if (entry
->alignment
&& !IS_ALIGNED(vma
->node
.start
, entry
->alignment
))
374 if (flags
& EXEC_OBJECT_PINNED
&&
375 vma
->node
.start
!= entry
->offset
)
378 if (flags
& __EXEC_OBJECT_NEEDS_BIAS
&&
379 vma
->node
.start
< BATCH_OFFSET_BIAS
)
382 if (!(flags
& EXEC_OBJECT_SUPPORTS_48B_ADDRESS
) &&
383 (vma
->node
.start
+ vma
->node
.size
- 1) >> 32)
386 if (flags
& __EXEC_OBJECT_NEEDS_MAP
&&
387 !i915_vma_is_map_and_fenceable(vma
))
394 eb_pin_vma(struct i915_execbuffer
*eb
,
395 const struct drm_i915_gem_exec_object2
*entry
,
396 struct i915_vma
*vma
)
398 unsigned int exec_flags
= *vma
->exec_flags
;
402 pin_flags
= vma
->node
.start
;
404 pin_flags
= entry
->offset
& PIN_OFFSET_MASK
;
406 pin_flags
|= PIN_USER
| PIN_NOEVICT
| PIN_OFFSET_FIXED
;
407 if (unlikely(exec_flags
& EXEC_OBJECT_NEEDS_GTT
))
408 pin_flags
|= PIN_GLOBAL
;
410 if (unlikely(i915_vma_pin(vma
, 0, 0, pin_flags
)))
413 if (unlikely(exec_flags
& EXEC_OBJECT_NEEDS_FENCE
)) {
414 if (unlikely(i915_vma_pin_fence(vma
))) {
420 exec_flags
|= __EXEC_OBJECT_HAS_FENCE
;
423 *vma
->exec_flags
= exec_flags
| __EXEC_OBJECT_HAS_PIN
;
424 return !eb_vma_misplaced(entry
, vma
, exec_flags
);
427 static inline void __eb_unreserve_vma(struct i915_vma
*vma
, unsigned int flags
)
429 GEM_BUG_ON(!(flags
& __EXEC_OBJECT_HAS_PIN
));
431 if (unlikely(flags
& __EXEC_OBJECT_HAS_FENCE
))
432 __i915_vma_unpin_fence(vma
);
434 __i915_vma_unpin(vma
);
438 eb_unreserve_vma(struct i915_vma
*vma
, unsigned int *flags
)
440 if (!(*flags
& __EXEC_OBJECT_HAS_PIN
))
443 __eb_unreserve_vma(vma
, *flags
);
444 *flags
&= ~__EXEC_OBJECT_RESERVED
;
448 eb_validate_vma(struct i915_execbuffer
*eb
,
449 struct drm_i915_gem_exec_object2
*entry
,
450 struct i915_vma
*vma
)
452 if (unlikely(entry
->flags
& eb
->invalid_flags
))
455 if (unlikely(entry
->alignment
&& !is_power_of_2(entry
->alignment
)))
459 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
460 * any non-page-aligned or non-canonical addresses.
462 if (unlikely(entry
->flags
& EXEC_OBJECT_PINNED
&&
463 entry
->offset
!= gen8_canonical_addr(entry
->offset
& I915_GTT_PAGE_MASK
)))
466 /* pad_to_size was once a reserved field, so sanitize it */
467 if (entry
->flags
& EXEC_OBJECT_PAD_TO_SIZE
) {
468 if (unlikely(offset_in_page(entry
->pad_to_size
)))
471 entry
->pad_to_size
= 0;
474 if (unlikely(vma
->exec_flags
)) {
475 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
476 entry
->handle
, (int)(entry
- eb
->exec
));
481 * From drm_mm perspective address space is continuous,
482 * so from this point we're always using non-canonical
485 entry
->offset
= gen8_noncanonical_addr(entry
->offset
);
487 if (!eb
->reloc_cache
.has_fence
) {
488 entry
->flags
&= ~EXEC_OBJECT_NEEDS_FENCE
;
490 if ((entry
->flags
& EXEC_OBJECT_NEEDS_FENCE
||
491 eb
->reloc_cache
.needs_unfenced
) &&
492 i915_gem_object_is_tiled(vma
->obj
))
493 entry
->flags
|= EXEC_OBJECT_NEEDS_GTT
| __EXEC_OBJECT_NEEDS_MAP
;
496 if (!(entry
->flags
& EXEC_OBJECT_PINNED
))
497 entry
->flags
|= eb
->context_flags
;
503 eb_add_vma(struct i915_execbuffer
*eb
,
504 unsigned int i
, unsigned batch_idx
,
505 struct i915_vma
*vma
)
507 struct drm_i915_gem_exec_object2
*entry
= &eb
->exec
[i
];
510 GEM_BUG_ON(i915_vma_is_closed(vma
));
512 if (!(eb
->args
->flags
& __EXEC_VALIDATED
)) {
513 err
= eb_validate_vma(eb
, entry
, vma
);
518 if (eb
->lut_size
> 0) {
519 vma
->exec_handle
= entry
->handle
;
520 hlist_add_head(&vma
->exec_node
,
521 &eb
->buckets
[hash_32(entry
->handle
,
525 if (entry
->relocation_count
)
526 list_add_tail(&vma
->reloc_link
, &eb
->relocs
);
529 * Stash a pointer from the vma to execobj, so we can query its flags,
530 * size, alignment etc as provided by the user. Also we stash a pointer
531 * to the vma inside the execobj so that we can use a direct lookup
532 * to find the right target VMA when doing relocations.
535 eb
->flags
[i
] = entry
->flags
;
536 vma
->exec_flags
= &eb
->flags
[i
];
539 * SNA is doing fancy tricks with compressing batch buffers, which leads
540 * to negative relocation deltas. Usually that works out ok since the
541 * relocate address is still positive, except when the batch is placed
542 * very low in the GTT. Ensure this doesn't happen.
544 * Note that actual hangs have only been observed on gen7, but for
545 * paranoia do it everywhere.
547 if (i
== batch_idx
) {
548 if (entry
->relocation_count
&&
549 !(eb
->flags
[i
] & EXEC_OBJECT_PINNED
))
550 eb
->flags
[i
] |= __EXEC_OBJECT_NEEDS_BIAS
;
551 if (eb
->reloc_cache
.has_fence
)
552 eb
->flags
[i
] |= EXEC_OBJECT_NEEDS_FENCE
;
558 if (eb_pin_vma(eb
, entry
, vma
)) {
559 if (entry
->offset
!= vma
->node
.start
) {
560 entry
->offset
= vma
->node
.start
| UPDATE
;
561 eb
->args
->flags
|= __EXEC_HAS_RELOC
;
564 eb_unreserve_vma(vma
, vma
->exec_flags
);
566 list_add_tail(&vma
->exec_link
, &eb
->unbound
);
567 if (drm_mm_node_allocated(&vma
->node
))
568 err
= i915_vma_unbind(vma
);
570 vma
->exec_flags
= NULL
;
575 static inline int use_cpu_reloc(const struct reloc_cache
*cache
,
576 const struct drm_i915_gem_object
*obj
)
578 if (!i915_gem_object_has_struct_page(obj
))
581 if (DBG_FORCE_RELOC
== FORCE_CPU_RELOC
)
584 if (DBG_FORCE_RELOC
== FORCE_GTT_RELOC
)
587 return (cache
->has_llc
||
589 obj
->cache_level
!= I915_CACHE_NONE
);
592 static int eb_reserve_vma(const struct i915_execbuffer
*eb
,
593 struct i915_vma
*vma
)
595 struct drm_i915_gem_exec_object2
*entry
= exec_entry(eb
, vma
);
596 unsigned int exec_flags
= *vma
->exec_flags
;
600 pin_flags
= PIN_USER
| PIN_NONBLOCK
;
601 if (exec_flags
& EXEC_OBJECT_NEEDS_GTT
)
602 pin_flags
|= PIN_GLOBAL
;
605 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
606 * limit address to the first 4GBs for unflagged objects.
608 if (!(exec_flags
& EXEC_OBJECT_SUPPORTS_48B_ADDRESS
))
609 pin_flags
|= PIN_ZONE_4G
;
611 if (exec_flags
& __EXEC_OBJECT_NEEDS_MAP
)
612 pin_flags
|= PIN_MAPPABLE
;
614 if (exec_flags
& EXEC_OBJECT_PINNED
) {
615 pin_flags
|= entry
->offset
| PIN_OFFSET_FIXED
;
616 pin_flags
&= ~PIN_NONBLOCK
; /* force overlapping checks */
617 } else if (exec_flags
& __EXEC_OBJECT_NEEDS_BIAS
) {
618 pin_flags
|= BATCH_OFFSET_BIAS
| PIN_OFFSET_BIAS
;
621 err
= i915_vma_pin(vma
,
622 entry
->pad_to_size
, entry
->alignment
,
627 if (entry
->offset
!= vma
->node
.start
) {
628 entry
->offset
= vma
->node
.start
| UPDATE
;
629 eb
->args
->flags
|= __EXEC_HAS_RELOC
;
632 if (unlikely(exec_flags
& EXEC_OBJECT_NEEDS_FENCE
)) {
633 err
= i915_vma_pin_fence(vma
);
640 exec_flags
|= __EXEC_OBJECT_HAS_FENCE
;
643 *vma
->exec_flags
= exec_flags
| __EXEC_OBJECT_HAS_PIN
;
644 GEM_BUG_ON(eb_vma_misplaced(entry
, vma
, exec_flags
));
649 static int eb_reserve(struct i915_execbuffer
*eb
)
651 const unsigned int count
= eb
->buffer_count
;
652 struct list_head last
;
653 struct i915_vma
*vma
;
654 unsigned int i
, pass
;
658 * Attempt to pin all of the buffers into the GTT.
659 * This is done in 3 phases:
661 * 1a. Unbind all objects that do not match the GTT constraints for
662 * the execbuffer (fenceable, mappable, alignment etc).
663 * 1b. Increment pin count for already bound objects.
664 * 2. Bind new objects.
665 * 3. Decrement pin count.
667 * This avoid unnecessary unbinding of later objects in order to make
668 * room for the earlier objects *unless* we need to defragment.
674 list_for_each_entry(vma
, &eb
->unbound
, exec_link
) {
675 err
= eb_reserve_vma(eb
, vma
);
682 /* Resort *all* the objects into priority order */
683 INIT_LIST_HEAD(&eb
->unbound
);
684 INIT_LIST_HEAD(&last
);
685 for (i
= 0; i
< count
; i
++) {
686 unsigned int flags
= eb
->flags
[i
];
687 struct i915_vma
*vma
= eb
->vma
[i
];
689 if (flags
& EXEC_OBJECT_PINNED
&&
690 flags
& __EXEC_OBJECT_HAS_PIN
)
693 eb_unreserve_vma(vma
, &eb
->flags
[i
]);
695 if (flags
& EXEC_OBJECT_PINNED
)
696 list_add(&vma
->exec_link
, &eb
->unbound
);
697 else if (flags
& __EXEC_OBJECT_NEEDS_MAP
)
698 list_add_tail(&vma
->exec_link
, &eb
->unbound
);
700 list_add_tail(&vma
->exec_link
, &last
);
702 list_splice_tail(&last
, &eb
->unbound
);
709 /* Too fragmented, unbind everything and retry */
710 err
= i915_gem_evict_vm(eb
->vm
);
721 static unsigned int eb_batch_index(const struct i915_execbuffer
*eb
)
723 if (eb
->args
->flags
& I915_EXEC_BATCH_FIRST
)
726 return eb
->buffer_count
- 1;
729 static int eb_select_context(struct i915_execbuffer
*eb
)
731 struct i915_gem_context
*ctx
;
733 ctx
= i915_gem_context_lookup(eb
->file
->driver_priv
, eb
->args
->rsvd1
);
738 eb
->vm
= ctx
->ppgtt
? &ctx
->ppgtt
->vm
: &eb
->i915
->ggtt
.vm
;
740 eb
->context_flags
= 0;
741 if (ctx
->flags
& CONTEXT_NO_ZEROMAP
)
742 eb
->context_flags
|= __EXEC_OBJECT_NEEDS_BIAS
;
747 static int eb_lookup_vmas(struct i915_execbuffer
*eb
)
749 struct radix_tree_root
*handles_vma
= &eb
->ctx
->handles_vma
;
750 struct drm_i915_gem_object
*obj
;
751 unsigned int i
, batch
;
754 if (unlikely(i915_gem_context_is_closed(eb
->ctx
)))
757 if (unlikely(i915_gem_context_is_banned(eb
->ctx
)))
760 INIT_LIST_HEAD(&eb
->relocs
);
761 INIT_LIST_HEAD(&eb
->unbound
);
763 batch
= eb_batch_index(eb
);
765 for (i
= 0; i
< eb
->buffer_count
; i
++) {
766 u32 handle
= eb
->exec
[i
].handle
;
767 struct i915_lut_handle
*lut
;
768 struct i915_vma
*vma
;
770 vma
= radix_tree_lookup(handles_vma
, handle
);
774 obj
= i915_gem_object_lookup(eb
->file
, handle
);
775 if (unlikely(!obj
)) {
780 vma
= i915_vma_instance(obj
, eb
->vm
, NULL
);
781 if (unlikely(IS_ERR(vma
))) {
786 lut
= kmem_cache_alloc(eb
->i915
->luts
, GFP_KERNEL
);
787 if (unlikely(!lut
)) {
792 err
= radix_tree_insert(handles_vma
, handle
, vma
);
794 kmem_cache_free(eb
->i915
->luts
, lut
);
798 /* transfer ref to ctx */
799 if (!vma
->open_count
++)
800 i915_vma_reopen(vma
);
801 list_add(&lut
->obj_link
, &obj
->lut_list
);
802 list_add(&lut
->ctx_link
, &eb
->ctx
->handles_list
);
804 lut
->handle
= handle
;
807 err
= eb_add_vma(eb
, i
, batch
, vma
);
811 GEM_BUG_ON(vma
!= eb
->vma
[i
]);
812 GEM_BUG_ON(vma
->exec_flags
!= &eb
->flags
[i
]);
813 GEM_BUG_ON(drm_mm_node_allocated(&vma
->node
) &&
814 eb_vma_misplaced(&eb
->exec
[i
], vma
, eb
->flags
[i
]));
817 eb
->args
->flags
|= __EXEC_VALIDATED
;
818 return eb_reserve(eb
);
821 i915_gem_object_put(obj
);
827 static struct i915_vma
*
828 eb_get_vma(const struct i915_execbuffer
*eb
, unsigned long handle
)
830 if (eb
->lut_size
< 0) {
831 if (handle
>= -eb
->lut_size
)
833 return eb
->vma
[handle
];
835 struct hlist_head
*head
;
836 struct i915_vma
*vma
;
838 head
= &eb
->buckets
[hash_32(handle
, eb
->lut_size
)];
839 hlist_for_each_entry(vma
, head
, exec_node
) {
840 if (vma
->exec_handle
== handle
)
847 static void eb_release_vmas(const struct i915_execbuffer
*eb
)
849 const unsigned int count
= eb
->buffer_count
;
852 for (i
= 0; i
< count
; i
++) {
853 struct i915_vma
*vma
= eb
->vma
[i
];
854 unsigned int flags
= eb
->flags
[i
];
859 GEM_BUG_ON(vma
->exec_flags
!= &eb
->flags
[i
]);
860 vma
->exec_flags
= NULL
;
863 if (flags
& __EXEC_OBJECT_HAS_PIN
)
864 __eb_unreserve_vma(vma
, flags
);
866 if (flags
& __EXEC_OBJECT_HAS_REF
)
871 static void eb_reset_vmas(const struct i915_execbuffer
*eb
)
874 if (eb
->lut_size
> 0)
875 memset(eb
->buckets
, 0,
876 sizeof(struct hlist_head
) << eb
->lut_size
);
879 static void eb_destroy(const struct i915_execbuffer
*eb
)
881 GEM_BUG_ON(eb
->reloc_cache
.rq
);
883 if (eb
->lut_size
> 0)
888 relocation_target(const struct drm_i915_gem_relocation_entry
*reloc
,
889 const struct i915_vma
*target
)
891 return gen8_canonical_addr((int)reloc
->delta
+ target
->node
.start
);
894 static void reloc_cache_init(struct reloc_cache
*cache
,
895 struct drm_i915_private
*i915
)
899 /* Must be a variable in the struct to allow GCC to unroll. */
900 cache
->gen
= INTEL_GEN(i915
);
901 cache
->has_llc
= HAS_LLC(i915
);
902 cache
->use_64bit_reloc
= HAS_64BIT_RELOC(i915
);
903 cache
->has_fence
= cache
->gen
< 4;
904 cache
->needs_unfenced
= INTEL_INFO(i915
)->unfenced_needs_alignment
;
905 cache
->node
.allocated
= false;
910 static inline void *unmask_page(unsigned long p
)
912 return (void *)(uintptr_t)(p
& PAGE_MASK
);
915 static inline unsigned int unmask_flags(unsigned long p
)
917 return p
& ~PAGE_MASK
;
920 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
922 static inline struct i915_ggtt
*cache_to_ggtt(struct reloc_cache
*cache
)
924 struct drm_i915_private
*i915
=
925 container_of(cache
, struct i915_execbuffer
, reloc_cache
)->i915
;
929 static void reloc_gpu_flush(struct reloc_cache
*cache
)
931 GEM_BUG_ON(cache
->rq_size
>= cache
->rq
->batch
->obj
->base
.size
/ sizeof(u32
));
932 cache
->rq_cmd
[cache
->rq_size
] = MI_BATCH_BUFFER_END
;
933 i915_gem_object_unpin_map(cache
->rq
->batch
->obj
);
934 i915_gem_chipset_flush(cache
->rq
->i915
);
936 i915_request_add(cache
->rq
);
940 static void reloc_cache_reset(struct reloc_cache
*cache
)
945 reloc_gpu_flush(cache
);
950 vaddr
= unmask_page(cache
->vaddr
);
951 if (cache
->vaddr
& KMAP
) {
952 if (cache
->vaddr
& CLFLUSH_AFTER
)
955 kunmap_atomic(vaddr
);
956 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object
*)cache
->node
.mm
);
959 io_mapping_unmap_atomic((void __iomem
*)vaddr
);
960 if (cache
->node
.allocated
) {
961 struct i915_ggtt
*ggtt
= cache_to_ggtt(cache
);
963 ggtt
->vm
.clear_range(&ggtt
->vm
,
966 drm_mm_remove_node(&cache
->node
);
968 i915_vma_unpin((struct i915_vma
*)cache
->node
.mm
);
976 static void *reloc_kmap(struct drm_i915_gem_object
*obj
,
977 struct reloc_cache
*cache
,
983 kunmap_atomic(unmask_page(cache
->vaddr
));
985 unsigned int flushes
;
988 err
= i915_gem_obj_prepare_shmem_write(obj
, &flushes
);
992 BUILD_BUG_ON(KMAP
& CLFLUSH_FLAGS
);
993 BUILD_BUG_ON((KMAP
| CLFLUSH_FLAGS
) & PAGE_MASK
);
995 cache
->vaddr
= flushes
| KMAP
;
996 cache
->node
.mm
= (void *)obj
;
1001 vaddr
= kmap_atomic(i915_gem_object_get_dirty_page(obj
, page
));
1002 cache
->vaddr
= unmask_flags(cache
->vaddr
) | (unsigned long)vaddr
;
1008 static void *reloc_iomap(struct drm_i915_gem_object
*obj
,
1009 struct reloc_cache
*cache
,
1012 struct i915_ggtt
*ggtt
= cache_to_ggtt(cache
);
1013 unsigned long offset
;
1017 io_mapping_unmap_atomic((void __force __iomem
*) unmask_page(cache
->vaddr
));
1019 struct i915_vma
*vma
;
1022 if (use_cpu_reloc(cache
, obj
))
1025 err
= i915_gem_object_set_to_gtt_domain(obj
, true);
1027 return ERR_PTR(err
);
1029 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0,
1034 memset(&cache
->node
, 0, sizeof(cache
->node
));
1035 err
= drm_mm_insert_node_in_range
1036 (&ggtt
->vm
.mm
, &cache
->node
,
1037 PAGE_SIZE
, 0, I915_COLOR_UNEVICTABLE
,
1038 0, ggtt
->mappable_end
,
1040 if (err
) /* no inactive aperture space, use cpu reloc */
1043 err
= i915_vma_put_fence(vma
);
1045 i915_vma_unpin(vma
);
1046 return ERR_PTR(err
);
1049 cache
->node
.start
= vma
->node
.start
;
1050 cache
->node
.mm
= (void *)vma
;
1054 offset
= cache
->node
.start
;
1055 if (cache
->node
.allocated
) {
1057 ggtt
->vm
.insert_page(&ggtt
->vm
,
1058 i915_gem_object_get_dma_address(obj
, page
),
1059 offset
, I915_CACHE_NONE
, 0);
1061 offset
+= page
<< PAGE_SHIFT
;
1064 vaddr
= (void __force
*)io_mapping_map_atomic_wc(&ggtt
->iomap
,
1067 cache
->vaddr
= (unsigned long)vaddr
;
1072 static void *reloc_vaddr(struct drm_i915_gem_object
*obj
,
1073 struct reloc_cache
*cache
,
1078 if (cache
->page
== page
) {
1079 vaddr
= unmask_page(cache
->vaddr
);
1082 if ((cache
->vaddr
& KMAP
) == 0)
1083 vaddr
= reloc_iomap(obj
, cache
, page
);
1085 vaddr
= reloc_kmap(obj
, cache
, page
);
1091 static void clflush_write32(u32
*addr
, u32 value
, unsigned int flushes
)
1093 if (unlikely(flushes
& (CLFLUSH_BEFORE
| CLFLUSH_AFTER
))) {
1094 if (flushes
& CLFLUSH_BEFORE
) {
1102 * Writes to the same cacheline are serialised by the CPU
1103 * (including clflush). On the write path, we only require
1104 * that it hits memory in an orderly fashion and place
1105 * mb barriers at the start and end of the relocation phase
1106 * to ensure ordering of clflush wrt to the system.
1108 if (flushes
& CLFLUSH_AFTER
)
1114 static int __reloc_gpu_alloc(struct i915_execbuffer
*eb
,
1115 struct i915_vma
*vma
,
1118 struct reloc_cache
*cache
= &eb
->reloc_cache
;
1119 struct drm_i915_gem_object
*obj
;
1120 struct i915_request
*rq
;
1121 struct i915_vma
*batch
;
1125 GEM_BUG_ON(vma
->obj
->write_domain
& I915_GEM_DOMAIN_CPU
);
1127 obj
= i915_gem_batch_pool_get(&eb
->engine
->batch_pool
, PAGE_SIZE
);
1129 return PTR_ERR(obj
);
1131 cmd
= i915_gem_object_pin_map(obj
,
1135 i915_gem_object_unpin_pages(obj
);
1137 return PTR_ERR(cmd
);
1139 err
= i915_gem_object_set_to_wc_domain(obj
, false);
1143 batch
= i915_vma_instance(obj
, vma
->vm
, NULL
);
1144 if (IS_ERR(batch
)) {
1145 err
= PTR_ERR(batch
);
1149 err
= i915_vma_pin(batch
, 0, 0, PIN_USER
| PIN_NONBLOCK
);
1153 rq
= i915_request_alloc(eb
->engine
, eb
->ctx
);
1159 err
= i915_request_await_object(rq
, vma
->obj
, true);
1163 err
= eb
->engine
->emit_bb_start(rq
,
1164 batch
->node
.start
, PAGE_SIZE
,
1165 cache
->gen
> 5 ? 0 : I915_DISPATCH_SECURE
);
1169 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch
->resv
, true));
1170 err
= i915_vma_move_to_active(batch
, rq
, 0);
1174 err
= i915_vma_move_to_active(vma
, rq
, EXEC_OBJECT_WRITE
);
1179 i915_vma_unpin(batch
);
1182 cache
->rq_cmd
= cmd
;
1185 /* Return with batch mapping (cmd) still pinned */
1189 i915_request_skip(rq
, err
);
1191 i915_request_add(rq
);
1193 i915_vma_unpin(batch
);
1195 i915_gem_object_unpin_map(obj
);
1199 static u32
*reloc_gpu(struct i915_execbuffer
*eb
,
1200 struct i915_vma
*vma
,
1203 struct reloc_cache
*cache
= &eb
->reloc_cache
;
1206 if (cache
->rq_size
> PAGE_SIZE
/sizeof(u32
) - (len
+ 1))
1207 reloc_gpu_flush(cache
);
1209 if (unlikely(!cache
->rq
)) {
1212 /* If we need to copy for the cmdparser, we will stall anyway */
1213 if (eb_use_cmdparser(eb
))
1214 return ERR_PTR(-EWOULDBLOCK
);
1216 if (!intel_engine_can_store_dword(eb
->engine
))
1217 return ERR_PTR(-ENODEV
);
1219 err
= __reloc_gpu_alloc(eb
, vma
, len
);
1221 return ERR_PTR(err
);
1224 cmd
= cache
->rq_cmd
+ cache
->rq_size
;
1225 cache
->rq_size
+= len
;
1231 relocate_entry(struct i915_vma
*vma
,
1232 const struct drm_i915_gem_relocation_entry
*reloc
,
1233 struct i915_execbuffer
*eb
,
1234 const struct i915_vma
*target
)
1236 u64 offset
= reloc
->offset
;
1237 u64 target_offset
= relocation_target(reloc
, target
);
1238 bool wide
= eb
->reloc_cache
.use_64bit_reloc
;
1241 if (!eb
->reloc_cache
.vaddr
&&
1242 (DBG_FORCE_RELOC
== FORCE_GPU_RELOC
||
1243 !reservation_object_test_signaled_rcu(vma
->resv
, true))) {
1244 const unsigned int gen
= eb
->reloc_cache
.gen
;
1250 len
= offset
& 7 ? 8 : 5;
1256 batch
= reloc_gpu(eb
, vma
, len
);
1260 addr
= gen8_canonical_addr(vma
->node
.start
+ offset
);
1263 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1264 *batch
++ = lower_32_bits(addr
);
1265 *batch
++ = upper_32_bits(addr
);
1266 *batch
++ = lower_32_bits(target_offset
);
1268 addr
= gen8_canonical_addr(addr
+ 4);
1270 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1271 *batch
++ = lower_32_bits(addr
);
1272 *batch
++ = upper_32_bits(addr
);
1273 *batch
++ = upper_32_bits(target_offset
);
1275 *batch
++ = (MI_STORE_DWORD_IMM_GEN4
| (1 << 21)) + 1;
1276 *batch
++ = lower_32_bits(addr
);
1277 *batch
++ = upper_32_bits(addr
);
1278 *batch
++ = lower_32_bits(target_offset
);
1279 *batch
++ = upper_32_bits(target_offset
);
1281 } else if (gen
>= 6) {
1282 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1285 *batch
++ = target_offset
;
1286 } else if (gen
>= 4) {
1287 *batch
++ = MI_STORE_DWORD_IMM_GEN4
| MI_USE_GGTT
;
1290 *batch
++ = target_offset
;
1292 *batch
++ = MI_STORE_DWORD_IMM
| MI_MEM_VIRTUAL
;
1294 *batch
++ = target_offset
;
1301 vaddr
= reloc_vaddr(vma
->obj
, &eb
->reloc_cache
, offset
>> PAGE_SHIFT
);
1303 return PTR_ERR(vaddr
);
1305 clflush_write32(vaddr
+ offset_in_page(offset
),
1306 lower_32_bits(target_offset
),
1307 eb
->reloc_cache
.vaddr
);
1310 offset
+= sizeof(u32
);
1311 target_offset
>>= 32;
1317 return target
->node
.start
| UPDATE
;
1321 eb_relocate_entry(struct i915_execbuffer
*eb
,
1322 struct i915_vma
*vma
,
1323 const struct drm_i915_gem_relocation_entry
*reloc
)
1325 struct i915_vma
*target
;
1328 /* we've already hold a reference to all valid objects */
1329 target
= eb_get_vma(eb
, reloc
->target_handle
);
1330 if (unlikely(!target
))
1333 /* Validate that the target is in a valid r/w GPU domain */
1334 if (unlikely(reloc
->write_domain
& (reloc
->write_domain
- 1))) {
1335 DRM_DEBUG("reloc with multiple write domains: "
1336 "target %d offset %d "
1337 "read %08x write %08x",
1338 reloc
->target_handle
,
1339 (int) reloc
->offset
,
1340 reloc
->read_domains
,
1341 reloc
->write_domain
);
1344 if (unlikely((reloc
->write_domain
| reloc
->read_domains
)
1345 & ~I915_GEM_GPU_DOMAINS
)) {
1346 DRM_DEBUG("reloc with read/write non-GPU domains: "
1347 "target %d offset %d "
1348 "read %08x write %08x",
1349 reloc
->target_handle
,
1350 (int) reloc
->offset
,
1351 reloc
->read_domains
,
1352 reloc
->write_domain
);
1356 if (reloc
->write_domain
) {
1357 *target
->exec_flags
|= EXEC_OBJECT_WRITE
;
1360 * Sandybridge PPGTT errata: We need a global gtt mapping
1361 * for MI and pipe_control writes because the gpu doesn't
1362 * properly redirect them through the ppgtt for non_secure
1365 if (reloc
->write_domain
== I915_GEM_DOMAIN_INSTRUCTION
&&
1366 IS_GEN6(eb
->i915
)) {
1367 err
= i915_vma_bind(target
, target
->obj
->cache_level
,
1370 "Unexpected failure to bind target VMA!"))
1376 * If the relocation already has the right value in it, no
1377 * more work needs to be done.
1379 if (!DBG_FORCE_RELOC
&&
1380 gen8_canonical_addr(target
->node
.start
) == reloc
->presumed_offset
)
1383 /* Check that the relocation address is valid... */
1384 if (unlikely(reloc
->offset
>
1385 vma
->size
- (eb
->reloc_cache
.use_64bit_reloc
? 8 : 4))) {
1386 DRM_DEBUG("Relocation beyond object bounds: "
1387 "target %d offset %d size %d.\n",
1388 reloc
->target_handle
,
1393 if (unlikely(reloc
->offset
& 3)) {
1394 DRM_DEBUG("Relocation not 4-byte aligned: "
1395 "target %d offset %d.\n",
1396 reloc
->target_handle
,
1397 (int)reloc
->offset
);
1402 * If we write into the object, we need to force the synchronisation
1403 * barrier, either with an asynchronous clflush or if we executed the
1404 * patching using the GPU (though that should be serialised by the
1405 * timeline). To be completely sure, and since we are required to
1406 * do relocations we are already stalling, disable the user's opt
1407 * out of our synchronisation.
1409 *vma
->exec_flags
&= ~EXEC_OBJECT_ASYNC
;
1411 /* and update the user's relocation entry */
1412 return relocate_entry(vma
, reloc
, eb
, target
);
1415 static int eb_relocate_vma(struct i915_execbuffer
*eb
, struct i915_vma
*vma
)
1417 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1418 struct drm_i915_gem_relocation_entry stack
[N_RELOC(512)];
1419 struct drm_i915_gem_relocation_entry __user
*urelocs
;
1420 const struct drm_i915_gem_exec_object2
*entry
= exec_entry(eb
, vma
);
1421 unsigned int remain
;
1423 urelocs
= u64_to_user_ptr(entry
->relocs_ptr
);
1424 remain
= entry
->relocation_count
;
1425 if (unlikely(remain
> N_RELOC(ULONG_MAX
)))
1429 * We must check that the entire relocation array is safe
1430 * to read. However, if the array is not writable the user loses
1431 * the updated relocation values.
1433 if (unlikely(!access_ok(VERIFY_READ
, urelocs
, remain
*sizeof(*urelocs
))))
1437 struct drm_i915_gem_relocation_entry
*r
= stack
;
1438 unsigned int count
=
1439 min_t(unsigned int, remain
, ARRAY_SIZE(stack
));
1440 unsigned int copied
;
1443 * This is the fast path and we cannot handle a pagefault
1444 * whilst holding the struct mutex lest the user pass in the
1445 * relocations contained within a mmaped bo. For in such a case
1446 * we, the page fault handler would call i915_gem_fault() and
1447 * we would try to acquire the struct mutex again. Obviously
1448 * this is bad and so lockdep complains vehemently.
1450 pagefault_disable();
1451 copied
= __copy_from_user_inatomic(r
, urelocs
, count
* sizeof(r
[0]));
1453 if (unlikely(copied
)) {
1460 u64 offset
= eb_relocate_entry(eb
, vma
, r
);
1462 if (likely(offset
== 0)) {
1463 } else if ((s64
)offset
< 0) {
1464 remain
= (int)offset
;
1468 * Note that reporting an error now
1469 * leaves everything in an inconsistent
1470 * state as we have *already* changed
1471 * the relocation value inside the
1472 * object. As we have not changed the
1473 * reloc.presumed_offset or will not
1474 * change the execobject.offset, on the
1475 * call we may not rewrite the value
1476 * inside the object, leaving it
1477 * dangling and causing a GPU hang. Unless
1478 * userspace dynamically rebuilds the
1479 * relocations on each execbuf rather than
1480 * presume a static tree.
1482 * We did previously check if the relocations
1483 * were writable (access_ok), an error now
1484 * would be a strange race with mprotect,
1485 * having already demonstrated that we
1486 * can read from this userspace address.
1488 offset
= gen8_canonical_addr(offset
& ~UPDATE
);
1490 &urelocs
[r
-stack
].presumed_offset
);
1492 } while (r
++, --count
);
1493 urelocs
+= ARRAY_SIZE(stack
);
1496 reloc_cache_reset(&eb
->reloc_cache
);
1501 eb_relocate_vma_slow(struct i915_execbuffer
*eb
, struct i915_vma
*vma
)
1503 const struct drm_i915_gem_exec_object2
*entry
= exec_entry(eb
, vma
);
1504 struct drm_i915_gem_relocation_entry
*relocs
=
1505 u64_to_ptr(typeof(*relocs
), entry
->relocs_ptr
);
1509 for (i
= 0; i
< entry
->relocation_count
; i
++) {
1510 u64 offset
= eb_relocate_entry(eb
, vma
, &relocs
[i
]);
1512 if ((s64
)offset
< 0) {
1519 reloc_cache_reset(&eb
->reloc_cache
);
1523 static int check_relocations(const struct drm_i915_gem_exec_object2
*entry
)
1525 const char __user
*addr
, *end
;
1527 char __maybe_unused c
;
1529 size
= entry
->relocation_count
;
1533 if (size
> N_RELOC(ULONG_MAX
))
1536 addr
= u64_to_user_ptr(entry
->relocs_ptr
);
1537 size
*= sizeof(struct drm_i915_gem_relocation_entry
);
1538 if (!access_ok(VERIFY_READ
, addr
, size
))
1542 for (; addr
< end
; addr
+= PAGE_SIZE
) {
1543 int err
= __get_user(c
, addr
);
1547 return __get_user(c
, end
- 1);
1550 static int eb_copy_relocations(const struct i915_execbuffer
*eb
)
1552 const unsigned int count
= eb
->buffer_count
;
1556 for (i
= 0; i
< count
; i
++) {
1557 const unsigned int nreloc
= eb
->exec
[i
].relocation_count
;
1558 struct drm_i915_gem_relocation_entry __user
*urelocs
;
1559 struct drm_i915_gem_relocation_entry
*relocs
;
1561 unsigned long copied
;
1566 err
= check_relocations(&eb
->exec
[i
]);
1570 urelocs
= u64_to_user_ptr(eb
->exec
[i
].relocs_ptr
);
1571 size
= nreloc
* sizeof(*relocs
);
1573 relocs
= kvmalloc_array(size
, 1, GFP_KERNEL
);
1580 /* copy_from_user is limited to < 4GiB */
1584 min_t(u64
, BIT_ULL(31), size
- copied
);
1586 if (__copy_from_user((char *)relocs
+ copied
,
1587 (char __user
*)urelocs
+ copied
,
1595 } while (copied
< size
);
1598 * As we do not update the known relocation offsets after
1599 * relocating (due to the complexities in lock handling),
1600 * we need to mark them as invalid now so that we force the
1601 * relocation processing next time. Just in case the target
1602 * object is evicted and then rebound into its old
1603 * presumed_offset before the next execbuffer - if that
1604 * happened we would make the mistake of assuming that the
1605 * relocations were valid.
1607 user_access_begin();
1608 for (copied
= 0; copied
< nreloc
; copied
++)
1610 &urelocs
[copied
].presumed_offset
,
1615 eb
->exec
[i
].relocs_ptr
= (uintptr_t)relocs
;
1622 struct drm_i915_gem_relocation_entry
*relocs
=
1623 u64_to_ptr(typeof(*relocs
), eb
->exec
[i
].relocs_ptr
);
1624 if (eb
->exec
[i
].relocation_count
)
1630 static int eb_prefault_relocations(const struct i915_execbuffer
*eb
)
1632 const unsigned int count
= eb
->buffer_count
;
1635 if (unlikely(i915_modparams
.prefault_disable
))
1638 for (i
= 0; i
< count
; i
++) {
1641 err
= check_relocations(&eb
->exec
[i
]);
1649 static noinline
int eb_relocate_slow(struct i915_execbuffer
*eb
)
1651 struct drm_device
*dev
= &eb
->i915
->drm
;
1652 bool have_copy
= false;
1653 struct i915_vma
*vma
;
1657 if (signal_pending(current
)) {
1662 /* We may process another execbuffer during the unlock... */
1664 mutex_unlock(&dev
->struct_mutex
);
1667 * We take 3 passes through the slowpatch.
1669 * 1 - we try to just prefault all the user relocation entries and
1670 * then attempt to reuse the atomic pagefault disabled fast path again.
1672 * 2 - we copy the user entries to a local buffer here outside of the
1673 * local and allow ourselves to wait upon any rendering before
1676 * 3 - we already have a local copy of the relocation entries, but
1677 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1680 err
= eb_prefault_relocations(eb
);
1681 } else if (!have_copy
) {
1682 err
= eb_copy_relocations(eb
);
1683 have_copy
= err
== 0;
1689 mutex_lock(&dev
->struct_mutex
);
1693 /* A frequent cause for EAGAIN are currently unavailable client pages */
1694 flush_workqueue(eb
->i915
->mm
.userptr_wq
);
1696 err
= i915_mutex_lock_interruptible(dev
);
1698 mutex_lock(&dev
->struct_mutex
);
1702 /* reacquire the objects */
1703 err
= eb_lookup_vmas(eb
);
1707 GEM_BUG_ON(!eb
->batch
);
1709 list_for_each_entry(vma
, &eb
->relocs
, reloc_link
) {
1711 pagefault_disable();
1712 err
= eb_relocate_vma(eb
, vma
);
1717 err
= eb_relocate_vma_slow(eb
, vma
);
1724 * Leave the user relocations as are, this is the painfully slow path,
1725 * and we want to avoid the complication of dropping the lock whilst
1726 * having buffers reserved in the aperture and so causing spurious
1727 * ENOSPC for random operations.
1736 const unsigned int count
= eb
->buffer_count
;
1739 for (i
= 0; i
< count
; i
++) {
1740 const struct drm_i915_gem_exec_object2
*entry
=
1742 struct drm_i915_gem_relocation_entry
*relocs
;
1744 if (!entry
->relocation_count
)
1747 relocs
= u64_to_ptr(typeof(*relocs
), entry
->relocs_ptr
);
1755 static int eb_relocate(struct i915_execbuffer
*eb
)
1757 if (eb_lookup_vmas(eb
))
1760 /* The objects are in their final locations, apply the relocations. */
1761 if (eb
->args
->flags
& __EXEC_HAS_RELOC
) {
1762 struct i915_vma
*vma
;
1764 list_for_each_entry(vma
, &eb
->relocs
, reloc_link
) {
1765 if (eb_relocate_vma(eb
, vma
))
1773 return eb_relocate_slow(eb
);
1776 static int eb_move_to_gpu(struct i915_execbuffer
*eb
)
1778 const unsigned int count
= eb
->buffer_count
;
1782 for (i
= 0; i
< count
; i
++) {
1783 unsigned int flags
= eb
->flags
[i
];
1784 struct i915_vma
*vma
= eb
->vma
[i
];
1785 struct drm_i915_gem_object
*obj
= vma
->obj
;
1787 if (flags
& EXEC_OBJECT_CAPTURE
) {
1788 struct i915_capture_list
*capture
;
1790 capture
= kmalloc(sizeof(*capture
), GFP_KERNEL
);
1791 if (unlikely(!capture
))
1794 capture
->next
= eb
->request
->capture_list
;
1795 capture
->vma
= eb
->vma
[i
];
1796 eb
->request
->capture_list
= capture
;
1800 * If the GPU is not _reading_ through the CPU cache, we need
1801 * to make sure that any writes (both previous GPU writes from
1802 * before a change in snooping levels and normal CPU writes)
1803 * caught in that cache are flushed to main memory.
1806 * obj->cache_dirty &&
1807 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1808 * but gcc's optimiser doesn't handle that as well and emits
1809 * two jumps instead of one. Maybe one day...
1811 if (unlikely(obj
->cache_dirty
& ~obj
->cache_coherent
)) {
1812 if (i915_gem_clflush_object(obj
, 0))
1813 flags
&= ~EXEC_OBJECT_ASYNC
;
1816 if (flags
& EXEC_OBJECT_ASYNC
)
1819 err
= i915_request_await_object
1820 (eb
->request
, obj
, flags
& EXEC_OBJECT_WRITE
);
1825 for (i
= 0; i
< count
; i
++) {
1826 unsigned int flags
= eb
->flags
[i
];
1827 struct i915_vma
*vma
= eb
->vma
[i
];
1829 err
= i915_vma_move_to_active(vma
, eb
->request
, flags
);
1830 if (unlikely(err
)) {
1831 i915_request_skip(eb
->request
, err
);
1835 __eb_unreserve_vma(vma
, flags
);
1836 vma
->exec_flags
= NULL
;
1838 if (unlikely(flags
& __EXEC_OBJECT_HAS_REF
))
1843 /* Unconditionally flush any chipset caches (for streaming writes). */
1844 i915_gem_chipset_flush(eb
->i915
);
1849 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2
*exec
)
1851 if (exec
->flags
& __I915_EXEC_ILLEGAL_FLAGS
)
1854 /* Kernel clipping was a DRI1 misfeature */
1855 if (!(exec
->flags
& I915_EXEC_FENCE_ARRAY
)) {
1856 if (exec
->num_cliprects
|| exec
->cliprects_ptr
)
1860 if (exec
->DR4
== 0xffffffff) {
1861 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1864 if (exec
->DR1
|| exec
->DR4
)
1867 if ((exec
->batch_start_offset
| exec
->batch_len
) & 0x7)
1873 static int i915_reset_gen7_sol_offsets(struct i915_request
*rq
)
1878 if (!IS_GEN7(rq
->i915
) || rq
->engine
->id
!= RCS
) {
1879 DRM_DEBUG("sol reset is gen7/rcs only\n");
1883 cs
= intel_ring_begin(rq
, 4 * 2 + 2);
1887 *cs
++ = MI_LOAD_REGISTER_IMM(4);
1888 for (i
= 0; i
< 4; i
++) {
1889 *cs
++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i
));
1893 intel_ring_advance(rq
, cs
);
1898 static struct i915_vma
*
1899 shadow_batch_pin(struct i915_execbuffer
*eb
, struct drm_i915_gem_object
*obj
)
1901 struct drm_i915_private
*dev_priv
= eb
->i915
;
1902 struct i915_address_space
*vm
;
1906 * PPGTT backed shadow buffers must be mapped RO, to prevent
1907 * post-scan tampering
1909 if (CMDPARSER_USES_GGTT(dev_priv
)) {
1911 vm
= &dev_priv
->ggtt
.vm
;
1912 } else if (eb
->vm
->has_read_only
) {
1915 i915_gem_object_set_readonly(obj
);
1917 DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
1918 return ERR_PTR(-EINVAL
);
1921 return i915_gem_object_pin(obj
, vm
, NULL
, 0, 0, flags
);
1924 static struct i915_vma
*eb_parse(struct i915_execbuffer
*eb
)
1926 struct drm_i915_gem_object
*shadow_batch_obj
;
1927 struct i915_vma
*vma
;
1929 u64 shadow_batch_start
;
1932 shadow_batch_obj
= i915_gem_batch_pool_get(&eb
->engine
->batch_pool
,
1933 PAGE_ALIGN(eb
->batch_len
));
1934 if (IS_ERR(shadow_batch_obj
))
1935 return ERR_CAST(shadow_batch_obj
);
1937 vma
= shadow_batch_pin(eb
, shadow_batch_obj
);
1941 batch_start
= gen8_canonical_addr(eb
->batch
->node
.start
) +
1942 eb
->batch_start_offset
;
1944 shadow_batch_start
= gen8_canonical_addr(vma
->node
.start
);
1946 err
= intel_engine_cmd_parser(eb
->ctx
,
1950 eb
->batch_start_offset
,
1953 shadow_batch_start
);
1956 i915_vma_unpin(vma
);
1959 * Unsafe GGTT-backed buffers can still be submitted safely
1961 * For PPGTT backing however, we have no choice but to forcibly
1962 * reject unsafe buffers
1964 if (CMDPARSER_USES_GGTT(eb
->i915
) && (err
== -EACCES
))
1965 /* Execute original buffer non-secure */
1973 eb
->vma
[eb
->buffer_count
] = i915_vma_get(vma
);
1974 eb
->flags
[eb
->buffer_count
] =
1975 __EXEC_OBJECT_HAS_PIN
| __EXEC_OBJECT_HAS_REF
;
1976 vma
->exec_flags
= &eb
->flags
[eb
->buffer_count
];
1978 eb
->batch_start_offset
= 0;
1981 /* eb->batch_len unchanged */
1983 if (CMDPARSER_USES_GGTT(eb
->i915
))
1984 eb
->batch_flags
|= I915_DISPATCH_SECURE
;
1987 i915_gem_object_unpin_pages(shadow_batch_obj
);
1992 add_to_client(struct i915_request
*rq
, struct drm_file
*file
)
1994 rq
->file_priv
= file
->driver_priv
;
1995 list_add_tail(&rq
->client_link
, &rq
->file_priv
->mm
.request_list
);
1998 static int eb_submit(struct i915_execbuffer
*eb
)
2002 err
= eb_move_to_gpu(eb
);
2006 if (eb
->args
->flags
& I915_EXEC_GEN7_SOL_RESET
) {
2007 err
= i915_reset_gen7_sol_offsets(eb
->request
);
2012 err
= eb
->engine
->emit_bb_start(eb
->request
,
2013 eb
->batch
->node
.start
+
2014 eb
->batch_start_offset
,
2024 * Find one BSD ring to dispatch the corresponding BSD command.
2025 * The engine index is returned.
2028 gen8_dispatch_bsd_engine(struct drm_i915_private
*dev_priv
,
2029 struct drm_file
*file
)
2031 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
2033 /* Check whether the file_priv has already selected one ring. */
2034 if ((int)file_priv
->bsd_engine
< 0)
2035 file_priv
->bsd_engine
= atomic_fetch_xor(1,
2036 &dev_priv
->mm
.bsd_engine_dispatch_index
);
2038 return file_priv
->bsd_engine
;
2041 #define I915_USER_RINGS (4)
2043 static const enum intel_engine_id user_ring_map
[I915_USER_RINGS
+ 1] = {
2044 [I915_EXEC_DEFAULT
] = RCS
,
2045 [I915_EXEC_RENDER
] = RCS
,
2046 [I915_EXEC_BLT
] = BCS
,
2047 [I915_EXEC_BSD
] = VCS
,
2048 [I915_EXEC_VEBOX
] = VECS
2051 static struct intel_engine_cs
*
2052 eb_select_engine(struct drm_i915_private
*dev_priv
,
2053 struct drm_file
*file
,
2054 struct drm_i915_gem_execbuffer2
*args
)
2056 unsigned int user_ring_id
= args
->flags
& I915_EXEC_RING_MASK
;
2057 struct intel_engine_cs
*engine
;
2059 if (user_ring_id
> I915_USER_RINGS
) {
2060 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id
);
2064 if ((user_ring_id
!= I915_EXEC_BSD
) &&
2065 ((args
->flags
& I915_EXEC_BSD_MASK
) != 0)) {
2066 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2067 "bsd dispatch flags: %d\n", (int)(args
->flags
));
2071 if (user_ring_id
== I915_EXEC_BSD
&& HAS_BSD2(dev_priv
)) {
2072 unsigned int bsd_idx
= args
->flags
& I915_EXEC_BSD_MASK
;
2074 if (bsd_idx
== I915_EXEC_BSD_DEFAULT
) {
2075 bsd_idx
= gen8_dispatch_bsd_engine(dev_priv
, file
);
2076 } else if (bsd_idx
>= I915_EXEC_BSD_RING1
&&
2077 bsd_idx
<= I915_EXEC_BSD_RING2
) {
2078 bsd_idx
>>= I915_EXEC_BSD_SHIFT
;
2081 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2086 engine
= dev_priv
->engine
[_VCS(bsd_idx
)];
2088 engine
= dev_priv
->engine
[user_ring_map
[user_ring_id
]];
2092 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id
);
2100 __free_fence_array(struct drm_syncobj
**fences
, unsigned int n
)
2103 drm_syncobj_put(ptr_mask_bits(fences
[n
], 2));
2107 static struct drm_syncobj
**
2108 get_fence_array(struct drm_i915_gem_execbuffer2
*args
,
2109 struct drm_file
*file
)
2111 const unsigned long nfences
= args
->num_cliprects
;
2112 struct drm_i915_gem_exec_fence __user
*user
;
2113 struct drm_syncobj
**fences
;
2117 if (!(args
->flags
& I915_EXEC_FENCE_ARRAY
))
2120 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2121 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2122 if (nfences
> min_t(unsigned long,
2123 ULONG_MAX
/ sizeof(*user
),
2124 SIZE_MAX
/ sizeof(*fences
)))
2125 return ERR_PTR(-EINVAL
);
2127 user
= u64_to_user_ptr(args
->cliprects_ptr
);
2128 if (!access_ok(VERIFY_READ
, user
, nfences
* sizeof(*user
)))
2129 return ERR_PTR(-EFAULT
);
2131 fences
= kvmalloc_array(nfences
, sizeof(*fences
),
2132 __GFP_NOWARN
| GFP_KERNEL
);
2134 return ERR_PTR(-ENOMEM
);
2136 for (n
= 0; n
< nfences
; n
++) {
2137 struct drm_i915_gem_exec_fence fence
;
2138 struct drm_syncobj
*syncobj
;
2140 if (__copy_from_user(&fence
, user
++, sizeof(fence
))) {
2145 if (fence
.flags
& __I915_EXEC_FENCE_UNKNOWN_FLAGS
) {
2150 syncobj
= drm_syncobj_find(file
, fence
.handle
);
2152 DRM_DEBUG("Invalid syncobj handle provided\n");
2157 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN
- 1) &
2158 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS
);
2160 fences
[n
] = ptr_pack_bits(syncobj
, fence
.flags
, 2);
2166 __free_fence_array(fences
, n
);
2167 return ERR_PTR(err
);
2171 put_fence_array(struct drm_i915_gem_execbuffer2
*args
,
2172 struct drm_syncobj
**fences
)
2175 __free_fence_array(fences
, args
->num_cliprects
);
2179 await_fence_array(struct i915_execbuffer
*eb
,
2180 struct drm_syncobj
**fences
)
2182 const unsigned int nfences
= eb
->args
->num_cliprects
;
2186 for (n
= 0; n
< nfences
; n
++) {
2187 struct drm_syncobj
*syncobj
;
2188 struct dma_fence
*fence
;
2191 syncobj
= ptr_unpack_bits(fences
[n
], &flags
, 2);
2192 if (!(flags
& I915_EXEC_FENCE_WAIT
))
2195 fence
= drm_syncobj_fence_get(syncobj
);
2199 err
= i915_request_await_dma_fence(eb
->request
, fence
);
2200 dma_fence_put(fence
);
2209 signal_fence_array(struct i915_execbuffer
*eb
,
2210 struct drm_syncobj
**fences
)
2212 const unsigned int nfences
= eb
->args
->num_cliprects
;
2213 struct dma_fence
* const fence
= &eb
->request
->fence
;
2216 for (n
= 0; n
< nfences
; n
++) {
2217 struct drm_syncobj
*syncobj
;
2220 syncobj
= ptr_unpack_bits(fences
[n
], &flags
, 2);
2221 if (!(flags
& I915_EXEC_FENCE_SIGNAL
))
2224 drm_syncobj_replace_fence(syncobj
, fence
);
2229 i915_gem_do_execbuffer(struct drm_device
*dev
,
2230 struct drm_file
*file
,
2231 struct drm_i915_gem_execbuffer2
*args
,
2232 struct drm_i915_gem_exec_object2
*exec
,
2233 struct drm_syncobj
**fences
)
2235 struct drm_i915_private
*i915
= to_i915(dev
);
2236 struct i915_execbuffer eb
;
2237 struct dma_fence
*in_fence
= NULL
;
2238 struct sync_file
*out_fence
= NULL
;
2239 int out_fence_fd
= -1;
2242 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS
& ~__I915_EXEC_ILLEGAL_FLAGS
);
2243 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS
&
2244 ~__EXEC_OBJECT_UNKNOWN_FLAGS
);
2249 if (DBG_FORCE_RELOC
|| !(args
->flags
& I915_EXEC_NO_RELOC
))
2250 args
->flags
|= __EXEC_HAS_RELOC
;
2253 eb
.vma
= (struct i915_vma
**)(exec
+ args
->buffer_count
+ 1);
2255 eb
.flags
= (unsigned int *)(eb
.vma
+ args
->buffer_count
+ 1);
2257 eb
.invalid_flags
= __EXEC_OBJECT_UNKNOWN_FLAGS
;
2258 if (USES_FULL_PPGTT(eb
.i915
))
2259 eb
.invalid_flags
|= EXEC_OBJECT_NEEDS_GTT
;
2260 reloc_cache_init(&eb
.reloc_cache
, eb
.i915
);
2262 eb
.buffer_count
= args
->buffer_count
;
2263 eb
.batch_start_offset
= args
->batch_start_offset
;
2264 eb
.batch_len
= args
->batch_len
;
2267 if (args
->flags
& I915_EXEC_SECURE
) {
2268 if (INTEL_GEN(i915
) >= 11)
2271 /* Return -EPERM to trigger fallback code on old binaries. */
2272 if (!HAS_SECURE_BATCHES(i915
))
2275 if (!drm_is_current_master(file
) || !capable(CAP_SYS_ADMIN
))
2278 eb
.batch_flags
|= I915_DISPATCH_SECURE
;
2280 if (args
->flags
& I915_EXEC_IS_PINNED
)
2281 eb
.batch_flags
|= I915_DISPATCH_PINNED
;
2283 eb
.engine
= eb_select_engine(eb
.i915
, file
, args
);
2287 if (args
->flags
& I915_EXEC_RESOURCE_STREAMER
) {
2288 if (!HAS_RESOURCE_STREAMER(eb
.i915
)) {
2289 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
2292 if (eb
.engine
->id
!= RCS
) {
2293 DRM_DEBUG("RS is not available on %s\n",
2298 eb
.batch_flags
|= I915_DISPATCH_RS
;
2301 if (args
->flags
& I915_EXEC_FENCE_IN
) {
2302 in_fence
= sync_file_get_fence(lower_32_bits(args
->rsvd2
));
2307 if (args
->flags
& I915_EXEC_FENCE_OUT
) {
2308 out_fence_fd
= get_unused_fd_flags(O_CLOEXEC
);
2309 if (out_fence_fd
< 0) {
2315 err
= eb_create(&eb
);
2319 GEM_BUG_ON(!eb
.lut_size
);
2321 err
= eb_select_context(&eb
);
2326 * Take a local wakeref for preparing to dispatch the execbuf as
2327 * we expect to access the hardware fairly frequently in the
2328 * process. Upon first dispatch, we acquire another prolonged
2329 * wakeref that we hold until the GPU has been idle for at least
2332 intel_runtime_pm_get(eb
.i915
);
2334 err
= i915_mutex_lock_interruptible(dev
);
2338 err
= eb_relocate(&eb
);
2341 * If the user expects the execobject.offset and
2342 * reloc.presumed_offset to be an exact match,
2343 * as for using NO_RELOC, then we cannot update
2344 * the execobject.offset until we have completed
2347 args
->flags
&= ~__EXEC_HAS_RELOC
;
2351 if (unlikely(*eb
.batch
->exec_flags
& EXEC_OBJECT_WRITE
)) {
2352 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2356 if (eb
.batch_start_offset
> eb
.batch
->size
||
2357 eb
.batch_len
> eb
.batch
->size
- eb
.batch_start_offset
) {
2358 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2363 if (eb
.batch_len
== 0)
2364 eb
.batch_len
= eb
.batch
->size
- eb
.batch_start_offset
;
2366 if (eb_use_cmdparser(&eb
)) {
2367 struct i915_vma
*vma
;
2369 vma
= eb_parse(&eb
);
2377 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2378 * batch" bit. Hence we need to pin secure batches into the global gtt.
2379 * hsw should have this fixed, but bdw mucks it up again. */
2380 if (eb
.batch_flags
& I915_DISPATCH_SECURE
) {
2381 struct i915_vma
*vma
;
2384 * So on first glance it looks freaky that we pin the batch here
2385 * outside of the reservation loop. But:
2386 * - The batch is already pinned into the relevant ppgtt, so we
2387 * already have the backing storage fully allocated.
2388 * - No other BO uses the global gtt (well contexts, but meh),
2389 * so we don't really have issues with multiple objects not
2390 * fitting due to fragmentation.
2391 * So this is actually safe.
2393 vma
= i915_gem_object_ggtt_pin(eb
.batch
->obj
, NULL
, 0, 0, 0);
2402 /* All GPU relocation batches must be submitted prior to the user rq */
2403 GEM_BUG_ON(eb
.reloc_cache
.rq
);
2405 /* Allocate a request for this batch buffer nice and early. */
2406 eb
.request
= i915_request_alloc(eb
.engine
, eb
.ctx
);
2407 if (IS_ERR(eb
.request
)) {
2408 err
= PTR_ERR(eb
.request
);
2409 goto err_batch_unpin
;
2413 err
= i915_request_await_dma_fence(eb
.request
, in_fence
);
2419 err
= await_fence_array(&eb
, fences
);
2424 if (out_fence_fd
!= -1) {
2425 out_fence
= sync_file_create(&eb
.request
->fence
);
2433 * Whilst this request exists, batch_obj will be on the
2434 * active_list, and so will hold the active reference. Only when this
2435 * request is retired will the the batch_obj be moved onto the
2436 * inactive_list and lose its active reference. Hence we do not need
2437 * to explicitly hold another reference here.
2439 eb
.request
->batch
= eb
.batch
;
2441 trace_i915_request_queue(eb
.request
, eb
.batch_flags
);
2442 err
= eb_submit(&eb
);
2444 i915_request_add(eb
.request
);
2445 add_to_client(eb
.request
, file
);
2448 signal_fence_array(&eb
, fences
);
2452 fd_install(out_fence_fd
, out_fence
->file
);
2453 args
->rsvd2
&= GENMASK_ULL(31, 0); /* keep in-fence */
2454 args
->rsvd2
|= (u64
)out_fence_fd
<< 32;
2457 fput(out_fence
->file
);
2462 if (eb
.batch_flags
& I915_DISPATCH_SECURE
)
2463 i915_vma_unpin(eb
.batch
);
2466 eb_release_vmas(&eb
);
2467 mutex_unlock(&dev
->struct_mutex
);
2469 intel_runtime_pm_put(eb
.i915
);
2470 i915_gem_context_put(eb
.ctx
);
2474 if (out_fence_fd
!= -1)
2475 put_unused_fd(out_fence_fd
);
2477 dma_fence_put(in_fence
);
2481 static size_t eb_element_size(void)
2483 return (sizeof(struct drm_i915_gem_exec_object2
) +
2484 sizeof(struct i915_vma
*) +
2485 sizeof(unsigned int));
2488 static bool check_buffer_count(size_t count
)
2490 const size_t sz
= eb_element_size();
2493 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2494 * array size (see eb_create()). Otherwise, we can accept an array as
2495 * large as can be addressed (though use large arrays at your peril)!
2498 return !(count
< 1 || count
> INT_MAX
|| count
> SIZE_MAX
/ sz
- 1);
2502 * Legacy execbuffer just creates an exec2 list from the original exec object
2503 * list array and passes it to the real function.
2506 i915_gem_execbuffer_ioctl(struct drm_device
*dev
, void *data
,
2507 struct drm_file
*file
)
2509 struct drm_i915_gem_execbuffer
*args
= data
;
2510 struct drm_i915_gem_execbuffer2 exec2
;
2511 struct drm_i915_gem_exec_object
*exec_list
= NULL
;
2512 struct drm_i915_gem_exec_object2
*exec2_list
= NULL
;
2513 const size_t count
= args
->buffer_count
;
2517 if (!check_buffer_count(count
)) {
2518 DRM_DEBUG("execbuf2 with %zd buffers\n", count
);
2522 exec2
.buffers_ptr
= args
->buffers_ptr
;
2523 exec2
.buffer_count
= args
->buffer_count
;
2524 exec2
.batch_start_offset
= args
->batch_start_offset
;
2525 exec2
.batch_len
= args
->batch_len
;
2526 exec2
.DR1
= args
->DR1
;
2527 exec2
.DR4
= args
->DR4
;
2528 exec2
.num_cliprects
= args
->num_cliprects
;
2529 exec2
.cliprects_ptr
= args
->cliprects_ptr
;
2530 exec2
.flags
= I915_EXEC_RENDER
;
2531 i915_execbuffer2_set_context_id(exec2
, 0);
2533 if (!i915_gem_check_execbuffer(&exec2
))
2536 /* Copy in the exec list from userland */
2537 exec_list
= kvmalloc_array(count
, sizeof(*exec_list
),
2538 __GFP_NOWARN
| GFP_KERNEL
);
2539 exec2_list
= kvmalloc_array(count
+ 1, eb_element_size(),
2540 __GFP_NOWARN
| GFP_KERNEL
);
2541 if (exec_list
== NULL
|| exec2_list
== NULL
) {
2542 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2543 args
->buffer_count
);
2548 err
= copy_from_user(exec_list
,
2549 u64_to_user_ptr(args
->buffers_ptr
),
2550 sizeof(*exec_list
) * count
);
2552 DRM_DEBUG("copy %d exec entries failed %d\n",
2553 args
->buffer_count
, err
);
2559 for (i
= 0; i
< args
->buffer_count
; i
++) {
2560 exec2_list
[i
].handle
= exec_list
[i
].handle
;
2561 exec2_list
[i
].relocation_count
= exec_list
[i
].relocation_count
;
2562 exec2_list
[i
].relocs_ptr
= exec_list
[i
].relocs_ptr
;
2563 exec2_list
[i
].alignment
= exec_list
[i
].alignment
;
2564 exec2_list
[i
].offset
= exec_list
[i
].offset
;
2565 if (INTEL_GEN(to_i915(dev
)) < 4)
2566 exec2_list
[i
].flags
= EXEC_OBJECT_NEEDS_FENCE
;
2568 exec2_list
[i
].flags
= 0;
2571 err
= i915_gem_do_execbuffer(dev
, file
, &exec2
, exec2_list
, NULL
);
2572 if (exec2
.flags
& __EXEC_HAS_RELOC
) {
2573 struct drm_i915_gem_exec_object __user
*user_exec_list
=
2574 u64_to_user_ptr(args
->buffers_ptr
);
2576 /* Copy the new buffer offsets back to the user's exec list. */
2577 for (i
= 0; i
< args
->buffer_count
; i
++) {
2578 if (!(exec2_list
[i
].offset
& UPDATE
))
2581 exec2_list
[i
].offset
=
2582 gen8_canonical_addr(exec2_list
[i
].offset
& PIN_OFFSET_MASK
);
2583 exec2_list
[i
].offset
&= PIN_OFFSET_MASK
;
2584 if (__copy_to_user(&user_exec_list
[i
].offset
,
2585 &exec2_list
[i
].offset
,
2586 sizeof(user_exec_list
[i
].offset
)))
2597 i915_gem_execbuffer2_ioctl(struct drm_device
*dev
, void *data
,
2598 struct drm_file
*file
)
2600 struct drm_i915_gem_execbuffer2
*args
= data
;
2601 struct drm_i915_gem_exec_object2
*exec2_list
;
2602 struct drm_syncobj
**fences
= NULL
;
2603 const size_t count
= args
->buffer_count
;
2606 if (!check_buffer_count(count
)) {
2607 DRM_DEBUG("execbuf2 with %zd buffers\n", count
);
2611 if (!i915_gem_check_execbuffer(args
))
2614 /* Allocate an extra slot for use by the command parser */
2615 exec2_list
= kvmalloc_array(count
+ 1, eb_element_size(),
2616 __GFP_NOWARN
| GFP_KERNEL
);
2617 if (exec2_list
== NULL
) {
2618 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2622 if (copy_from_user(exec2_list
,
2623 u64_to_user_ptr(args
->buffers_ptr
),
2624 sizeof(*exec2_list
) * count
)) {
2625 DRM_DEBUG("copy %zd exec entries failed\n", count
);
2630 if (args
->flags
& I915_EXEC_FENCE_ARRAY
) {
2631 fences
= get_fence_array(args
, file
);
2632 if (IS_ERR(fences
)) {
2634 return PTR_ERR(fences
);
2638 err
= i915_gem_do_execbuffer(dev
, file
, args
, exec2_list
, fences
);
2641 * Now that we have begun execution of the batchbuffer, we ignore
2642 * any new error after this point. Also given that we have already
2643 * updated the associated relocations, we try to write out the current
2644 * object locations irrespective of any error.
2646 if (args
->flags
& __EXEC_HAS_RELOC
) {
2647 struct drm_i915_gem_exec_object2 __user
*user_exec_list
=
2648 u64_to_user_ptr(args
->buffers_ptr
);
2651 /* Copy the new buffer offsets back to the user's exec list. */
2652 user_access_begin();
2653 for (i
= 0; i
< args
->buffer_count
; i
++) {
2654 if (!(exec2_list
[i
].offset
& UPDATE
))
2657 exec2_list
[i
].offset
=
2658 gen8_canonical_addr(exec2_list
[i
].offset
& PIN_OFFSET_MASK
);
2659 unsafe_put_user(exec2_list
[i
].offset
,
2660 &user_exec_list
[i
].offset
,
2667 args
->flags
&= ~__I915_EXEC_UNKNOWN_FLAGS
;
2668 put_fence_array(args
, fences
);