2 * Copyright © 2012-2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include <drm/i915_drm.h>
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34 #include <linux/sched/mm.h>
36 struct i915_mm_struct
{
38 struct drm_i915_private
*i915
;
39 struct i915_mmu_notifier
*mn
;
40 struct hlist_node node
;
42 struct work_struct work
;
45 #if defined(CONFIG_MMU_NOTIFIER)
46 #include <linux/interval_tree.h>
48 struct i915_mmu_notifier
{
50 struct hlist_node node
;
51 struct mmu_notifier mn
;
52 struct rb_root_cached objects
;
53 struct workqueue_struct
*wq
;
56 struct i915_mmu_object
{
57 struct i915_mmu_notifier
*mn
;
58 struct drm_i915_gem_object
*obj
;
59 struct interval_tree_node it
;
60 struct list_head link
;
61 struct work_struct work
;
65 static void cancel_userptr(struct work_struct
*work
)
67 struct i915_mmu_object
*mo
= container_of(work
, typeof(*mo
), work
);
68 struct drm_i915_gem_object
*obj
= mo
->obj
;
69 struct work_struct
*active
;
71 /* Cancel any active worker and force us to re-evaluate gup */
72 mutex_lock(&obj
->mm
.lock
);
73 active
= fetch_and_zero(&obj
->userptr
.work
);
74 mutex_unlock(&obj
->mm
.lock
);
78 i915_gem_object_wait(obj
, I915_WAIT_ALL
, MAX_SCHEDULE_TIMEOUT
, NULL
);
80 mutex_lock(&obj
->base
.dev
->struct_mutex
);
82 /* We are inside a kthread context and can't be interrupted */
83 if (i915_gem_object_unbind(obj
) == 0)
84 __i915_gem_object_put_pages(obj
, I915_MM_NORMAL
);
85 WARN_ONCE(i915_gem_object_has_pages(obj
),
86 "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_global=%d\n",
88 atomic_read(&obj
->mm
.pages_pin_count
),
91 mutex_unlock(&obj
->base
.dev
->struct_mutex
);
94 i915_gem_object_put(obj
);
97 static void add_object(struct i915_mmu_object
*mo
)
102 interval_tree_insert(&mo
->it
, &mo
->mn
->objects
);
106 static void del_object(struct i915_mmu_object
*mo
)
111 interval_tree_remove(&mo
->it
, &mo
->mn
->objects
);
112 mo
->attached
= false;
115 static int i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier
*_mn
,
116 struct mm_struct
*mm
,
121 struct i915_mmu_notifier
*mn
=
122 container_of(_mn
, struct i915_mmu_notifier
, mn
);
123 struct i915_mmu_object
*mo
;
124 struct interval_tree_node
*it
;
125 LIST_HEAD(cancelled
);
127 if (RB_EMPTY_ROOT(&mn
->objects
.rb_root
))
130 /* interval ranges are inclusive, but invalidate range is exclusive */
133 spin_lock(&mn
->lock
);
134 it
= interval_tree_iter_first(&mn
->objects
, start
, end
);
137 spin_unlock(&mn
->lock
);
140 /* The mmu_object is released late when destroying the
141 * GEM object so it is entirely possible to gain a
142 * reference on an object in the process of being freed
143 * since our serialisation is via the spinlock and not
144 * the struct_mutex - and consequently use it after it
145 * is freed and then double free it. To prevent that
146 * use-after-free we only acquire a reference on the
147 * object if it is not in the process of being destroyed.
149 mo
= container_of(it
, struct i915_mmu_object
, it
);
150 if (kref_get_unless_zero(&mo
->obj
->base
.refcount
))
151 queue_work(mn
->wq
, &mo
->work
);
153 list_add(&mo
->link
, &cancelled
);
154 it
= interval_tree_iter_next(it
, start
, end
);
156 list_for_each_entry(mo
, &cancelled
, link
)
158 spin_unlock(&mn
->lock
);
160 if (!list_empty(&cancelled
))
161 flush_workqueue(mn
->wq
);
166 static const struct mmu_notifier_ops i915_gem_userptr_notifier
= {
167 .invalidate_range_start
= i915_gem_userptr_mn_invalidate_range_start
,
170 static struct i915_mmu_notifier
*
171 i915_mmu_notifier_create(struct mm_struct
*mm
)
173 struct i915_mmu_notifier
*mn
;
175 mn
= kmalloc(sizeof(*mn
), GFP_KERNEL
);
177 return ERR_PTR(-ENOMEM
);
179 spin_lock_init(&mn
->lock
);
180 mn
->mn
.ops
= &i915_gem_userptr_notifier
;
181 mn
->objects
= RB_ROOT_CACHED
;
182 mn
->wq
= alloc_workqueue("i915-userptr-release",
183 WQ_UNBOUND
| WQ_MEM_RECLAIM
,
185 if (mn
->wq
== NULL
) {
187 return ERR_PTR(-ENOMEM
);
194 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
196 struct i915_mmu_object
*mo
;
198 mo
= obj
->userptr
.mmu_object
;
202 spin_lock(&mo
->mn
->lock
);
204 spin_unlock(&mo
->mn
->lock
);
207 obj
->userptr
.mmu_object
= NULL
;
210 static struct i915_mmu_notifier
*
211 i915_mmu_notifier_find(struct i915_mm_struct
*mm
)
213 struct i915_mmu_notifier
*mn
;
220 mn
= i915_mmu_notifier_create(mm
->mm
);
224 down_write(&mm
->mm
->mmap_sem
);
225 mutex_lock(&mm
->i915
->mm_lock
);
226 if (mm
->mn
== NULL
&& !err
) {
227 /* Protected by mmap_sem (write-lock) */
228 err
= __mmu_notifier_register(&mn
->mn
, mm
->mm
);
230 /* Protected by mm_lock */
231 mm
->mn
= fetch_and_zero(&mn
);
235 * Someone else raced and successfully installed the mmu
236 * notifier, we can cancel our own errors.
240 mutex_unlock(&mm
->i915
->mm_lock
);
241 up_write(&mm
->mm
->mmap_sem
);
243 if (mn
&& !IS_ERR(mn
)) {
244 destroy_workqueue(mn
->wq
);
248 return err
? ERR_PTR(err
) : mm
->mn
;
252 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
255 struct i915_mmu_notifier
*mn
;
256 struct i915_mmu_object
*mo
;
258 if (flags
& I915_USERPTR_UNSYNCHRONIZED
)
259 return capable(CAP_SYS_ADMIN
) ? 0 : -EPERM
;
261 if (WARN_ON(obj
->userptr
.mm
== NULL
))
264 mn
= i915_mmu_notifier_find(obj
->userptr
.mm
);
268 mo
= kzalloc(sizeof(*mo
), GFP_KERNEL
);
274 mo
->it
.start
= obj
->userptr
.ptr
;
275 mo
->it
.last
= obj
->userptr
.ptr
+ obj
->base
.size
- 1;
276 INIT_WORK(&mo
->work
, cancel_userptr
);
278 obj
->userptr
.mmu_object
= mo
;
283 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
284 struct mm_struct
*mm
)
289 mmu_notifier_unregister(&mn
->mn
, mm
);
290 destroy_workqueue(mn
->wq
);
297 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
302 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
305 if ((flags
& I915_USERPTR_UNSYNCHRONIZED
) == 0)
308 if (!capable(CAP_SYS_ADMIN
))
315 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
316 struct mm_struct
*mm
)
322 static struct i915_mm_struct
*
323 __i915_mm_struct_find(struct drm_i915_private
*dev_priv
, struct mm_struct
*real
)
325 struct i915_mm_struct
*mm
;
327 /* Protected by dev_priv->mm_lock */
328 hash_for_each_possible(dev_priv
->mm_structs
, mm
, node
, (unsigned long)real
)
336 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object
*obj
)
338 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
339 struct i915_mm_struct
*mm
;
342 /* During release of the GEM object we hold the struct_mutex. This
343 * precludes us from calling mmput() at that time as that may be
344 * the last reference and so call exit_mmap(). exit_mmap() will
345 * attempt to reap the vma, and if we were holding a GTT mmap
346 * would then call drm_gem_vm_close() and attempt to reacquire
347 * the struct mutex. So in order to avoid that recursion, we have
348 * to defer releasing the mm reference until after we drop the
349 * struct_mutex, i.e. we need to schedule a worker to do the clean
352 mutex_lock(&dev_priv
->mm_lock
);
353 mm
= __i915_mm_struct_find(dev_priv
, current
->mm
);
355 mm
= kmalloc(sizeof(*mm
), GFP_KERNEL
);
361 kref_init(&mm
->kref
);
362 mm
->i915
= to_i915(obj
->base
.dev
);
364 mm
->mm
= current
->mm
;
369 /* Protected by dev_priv->mm_lock */
370 hash_add(dev_priv
->mm_structs
,
371 &mm
->node
, (unsigned long)mm
->mm
);
375 obj
->userptr
.mm
= mm
;
377 mutex_unlock(&dev_priv
->mm_lock
);
382 __i915_mm_struct_free__worker(struct work_struct
*work
)
384 struct i915_mm_struct
*mm
= container_of(work
, typeof(*mm
), work
);
385 i915_mmu_notifier_free(mm
->mn
, mm
->mm
);
391 __i915_mm_struct_free(struct kref
*kref
)
393 struct i915_mm_struct
*mm
= container_of(kref
, typeof(*mm
), kref
);
395 /* Protected by dev_priv->mm_lock */
397 mutex_unlock(&mm
->i915
->mm_lock
);
399 INIT_WORK(&mm
->work
, __i915_mm_struct_free__worker
);
400 queue_work(mm
->i915
->mm
.userptr_wq
, &mm
->work
);
404 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object
*obj
)
406 if (obj
->userptr
.mm
== NULL
)
409 kref_put_mutex(&obj
->userptr
.mm
->kref
,
410 __i915_mm_struct_free
,
411 &to_i915(obj
->base
.dev
)->mm_lock
);
412 obj
->userptr
.mm
= NULL
;
415 struct get_pages_work
{
416 struct work_struct work
;
417 struct drm_i915_gem_object
*obj
;
418 struct task_struct
*task
;
421 static struct sg_table
*
422 __i915_gem_userptr_alloc_pages(struct drm_i915_gem_object
*obj
,
423 struct page
**pvec
, int num_pages
)
425 unsigned int max_segment
= i915_sg_segment_size();
427 unsigned int sg_page_sizes
;
430 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
432 return ERR_PTR(-ENOMEM
);
435 ret
= __sg_alloc_table_from_pages(st
, pvec
, num_pages
,
436 0, num_pages
<< PAGE_SHIFT
,
444 ret
= i915_gem_gtt_prepare_pages(obj
, st
);
448 if (max_segment
> PAGE_SIZE
) {
449 max_segment
= PAGE_SIZE
;
457 sg_page_sizes
= i915_sg_page_sizes(st
->sgl
);
459 __i915_gem_object_set_pages(obj
, st
, sg_page_sizes
);
465 __i915_gem_userptr_set_active(struct drm_i915_gem_object
*obj
,
470 /* During mm_invalidate_range we need to cancel any userptr that
471 * overlaps the range being invalidated. Doing so requires the
472 * struct_mutex, and that risks recursion. In order to cause
473 * recursion, the user must alias the userptr address space with
474 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
475 * to invalidate that mmaping, mm_invalidate_range is called with
476 * the userptr address *and* the struct_mutex held. To prevent that
477 * we set a flag under the i915_mmu_notifier spinlock to indicate
478 * whether this object is valid.
480 #if defined(CONFIG_MMU_NOTIFIER)
481 if (obj
->userptr
.mmu_object
== NULL
)
484 spin_lock(&obj
->userptr
.mmu_object
->mn
->lock
);
485 /* In order to serialise get_pages with an outstanding
486 * cancel_userptr, we must drop the struct_mutex and try again.
489 del_object(obj
->userptr
.mmu_object
);
490 else if (!work_pending(&obj
->userptr
.mmu_object
->work
))
491 add_object(obj
->userptr
.mmu_object
);
494 spin_unlock(&obj
->userptr
.mmu_object
->mn
->lock
);
501 __i915_gem_userptr_get_pages_worker(struct work_struct
*_work
)
503 struct get_pages_work
*work
= container_of(_work
, typeof(*work
), work
);
504 struct drm_i915_gem_object
*obj
= work
->obj
;
505 const int npages
= obj
->base
.size
>> PAGE_SHIFT
;
512 pvec
= kvmalloc_array(npages
, sizeof(struct page
*), GFP_KERNEL
);
514 struct mm_struct
*mm
= obj
->userptr
.mm
->mm
;
515 unsigned int flags
= 0;
517 if (!i915_gem_object_is_readonly(obj
))
521 if (mmget_not_zero(mm
)) {
522 down_read(&mm
->mmap_sem
);
523 while (pinned
< npages
) {
524 ret
= get_user_pages_remote
526 obj
->userptr
.ptr
+ pinned
* PAGE_SIZE
,
529 pvec
+ pinned
, NULL
, NULL
);
535 up_read(&mm
->mmap_sem
);
540 mutex_lock(&obj
->mm
.lock
);
541 if (obj
->userptr
.work
== &work
->work
) {
542 struct sg_table
*pages
= ERR_PTR(ret
);
544 if (pinned
== npages
) {
545 pages
= __i915_gem_userptr_alloc_pages(obj
, pvec
,
547 if (!IS_ERR(pages
)) {
553 obj
->userptr
.work
= ERR_CAST(pages
);
555 __i915_gem_userptr_set_active(obj
, false);
557 mutex_unlock(&obj
->mm
.lock
);
559 release_pages(pvec
, pinned
);
562 i915_gem_object_put(obj
);
563 put_task_struct(work
->task
);
567 static struct sg_table
*
568 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object
*obj
)
570 struct get_pages_work
*work
;
572 /* Spawn a worker so that we can acquire the
573 * user pages without holding our mutex. Access
574 * to the user pages requires mmap_sem, and we have
575 * a strict lock ordering of mmap_sem, struct_mutex -
576 * we already hold struct_mutex here and so cannot
577 * call gup without encountering a lock inversion.
579 * Userspace will keep on repeating the operation
580 * (thanks to EAGAIN) until either we hit the fast
581 * path or the worker completes. If the worker is
582 * cancelled or superseded, the task is still run
583 * but the results ignored. (This leads to
584 * complications that we may have a stray object
585 * refcount that we need to be wary of when
586 * checking for existing objects during creation.)
587 * If the worker encounters an error, it reports
588 * that error back to this function through
589 * obj->userptr.work = ERR_PTR.
591 work
= kmalloc(sizeof(*work
), GFP_KERNEL
);
593 return ERR_PTR(-ENOMEM
);
595 obj
->userptr
.work
= &work
->work
;
597 work
->obj
= i915_gem_object_get(obj
);
599 work
->task
= current
;
600 get_task_struct(work
->task
);
602 INIT_WORK(&work
->work
, __i915_gem_userptr_get_pages_worker
);
603 queue_work(to_i915(obj
->base
.dev
)->mm
.userptr_wq
, &work
->work
);
605 return ERR_PTR(-EAGAIN
);
608 static int i915_gem_userptr_get_pages(struct drm_i915_gem_object
*obj
)
610 const int num_pages
= obj
->base
.size
>> PAGE_SHIFT
;
611 struct mm_struct
*mm
= obj
->userptr
.mm
->mm
;
613 struct sg_table
*pages
;
617 /* If userspace should engineer that these pages are replaced in
618 * the vma between us binding this page into the GTT and completion
619 * of rendering... Their loss. If they change the mapping of their
620 * pages they need to create a new bo to point to the new vma.
622 * However, that still leaves open the possibility of the vma
623 * being copied upon fork. Which falls under the same userspace
624 * synchronisation issue as a regular bo, except that this time
625 * the process may not be expecting that a particular piece of
626 * memory is tied to the GPU.
628 * Fortunately, we can hook into the mmu_notifier in order to
629 * discard the page references prior to anything nasty happening
630 * to the vma (discard or cloning) which should prevent the more
631 * egregious cases from causing harm.
634 if (obj
->userptr
.work
) {
635 /* active flag should still be held for the pending work */
636 if (IS_ERR(obj
->userptr
.work
))
637 return PTR_ERR(obj
->userptr
.work
);
645 if (mm
== current
->mm
) {
646 pvec
= kvmalloc_array(num_pages
, sizeof(struct page
*),
650 if (pvec
) /* defer to worker if malloc fails */
651 pinned
= __get_user_pages_fast(obj
->userptr
.ptr
,
653 !i915_gem_object_is_readonly(obj
),
659 pages
= ERR_PTR(pinned
);
661 } else if (pinned
< num_pages
) {
662 pages
= __i915_gem_userptr_get_pages_schedule(obj
);
663 active
= pages
== ERR_PTR(-EAGAIN
);
665 pages
= __i915_gem_userptr_alloc_pages(obj
, pvec
, num_pages
);
666 active
= !IS_ERR(pages
);
669 __i915_gem_userptr_set_active(obj
, true);
672 release_pages(pvec
, pinned
);
675 return PTR_ERR_OR_ZERO(pages
);
679 i915_gem_userptr_put_pages(struct drm_i915_gem_object
*obj
,
680 struct sg_table
*pages
)
682 struct sgt_iter sgt_iter
;
685 BUG_ON(obj
->userptr
.work
!= NULL
);
686 __i915_gem_userptr_set_active(obj
, false);
688 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
)
689 obj
->mm
.dirty
= false;
691 i915_gem_gtt_finish_pages(obj
, pages
);
693 for_each_sgt_page(page
, sgt_iter
, pages
) {
694 if (obj
->mm
.dirty
&& trylock_page(page
)) {
696 * As this may not be anonymous memory (e.g. shmem)
697 * but exist on a real mapping, we have to lock
698 * the page in order to dirty it -- holding
699 * the page reference is not sufficient to
700 * prevent the inode from being truncated.
701 * Play safe and take the lock.
705 * The mmu-notifier can be invalidated for a
706 * migrate_page, that is alreadying holding the lock
707 * on the page. Such a try_to_unmap() will result
708 * in us calling put_pages() and so recursively try
709 * to lock the page. We avoid that deadlock with
710 * a trylock_page() and in exchange we risk missing
711 * some page dirtying.
713 set_page_dirty(page
);
717 mark_page_accessed(page
);
720 obj
->mm
.dirty
= false;
722 sg_free_table(pages
);
727 i915_gem_userptr_release(struct drm_i915_gem_object
*obj
)
729 i915_gem_userptr_release__mmu_notifier(obj
);
730 i915_gem_userptr_release__mm_struct(obj
);
734 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object
*obj
)
736 if (obj
->userptr
.mmu_object
)
739 return i915_gem_userptr_init__mmu_notifier(obj
, 0);
742 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops
= {
743 .flags
= I915_GEM_OBJECT_HAS_STRUCT_PAGE
|
744 I915_GEM_OBJECT_IS_SHRINKABLE
,
745 .get_pages
= i915_gem_userptr_get_pages
,
746 .put_pages
= i915_gem_userptr_put_pages
,
747 .dmabuf_export
= i915_gem_userptr_dmabuf_export
,
748 .release
= i915_gem_userptr_release
,
752 * Creates a new mm object that wraps some normal memory from the process
753 * context - user memory.
755 * We impose several restrictions upon the memory being mapped
757 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
758 * 2. It must be normal system memory, not a pointer into another map of IO
759 * space (e.g. it must not be a GTT mmapping of another object).
760 * 3. We only allow a bo as large as we could in theory map into the GTT,
761 * that is we limit the size to the total size of the GTT.
762 * 4. The bo is marked as being snoopable. The backing pages are left
763 * accessible directly by the CPU, but reads and writes by the GPU may
764 * incur the cost of a snoop (unless you have an LLC architecture).
766 * Synchronisation between multiple users and the GPU is left to userspace
767 * through the normal set-domain-ioctl. The kernel will enforce that the
768 * GPU relinquishes the VMA before it is returned back to the system
769 * i.e. upon free(), munmap() or process termination. However, the userspace
770 * malloc() library may not immediately relinquish the VMA after free() and
771 * instead reuse it whilst the GPU is still reading and writing to the VMA.
774 * Also note, that the object created here is not currently a "first class"
775 * object, in that several ioctls are banned. These are the CPU access
776 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
777 * direct access via your pointer rather than use those ioctls. Another
778 * restriction is that we do not allow userptr surfaces to be pinned to the
779 * hardware and so we reject any attempt to create a framebuffer out of a
782 * If you think this is a good interface to use to pass GPU memory between
783 * drivers, please use dma-buf instead. In fact, wherever possible use
787 i915_gem_userptr_ioctl(struct drm_device
*dev
,
789 struct drm_file
*file
)
791 struct drm_i915_private
*dev_priv
= to_i915(dev
);
792 struct drm_i915_gem_userptr
*args
= data
;
793 struct drm_i915_gem_object
*obj
;
797 if (!HAS_LLC(dev_priv
) && !HAS_SNOOP(dev_priv
)) {
798 /* We cannot support coherent userptr objects on hw without
799 * LLC and broken snooping.
804 if (args
->flags
& ~(I915_USERPTR_READ_ONLY
|
805 I915_USERPTR_UNSYNCHRONIZED
))
808 if (!args
->user_size
)
811 if (offset_in_page(args
->user_ptr
| args
->user_size
))
814 if (!access_ok(args
->flags
& I915_USERPTR_READ_ONLY
? VERIFY_READ
: VERIFY_WRITE
,
815 (char __user
*)(unsigned long)args
->user_ptr
, args
->user_size
))
818 if (args
->flags
& I915_USERPTR_READ_ONLY
) {
819 struct i915_hw_ppgtt
*ppgtt
;
822 * On almost all of the older hw, we cannot tell the GPU that
823 * a page is readonly.
825 ppgtt
= dev_priv
->kernel_context
->ppgtt
;
826 if (!ppgtt
|| !ppgtt
->vm
.has_read_only
)
830 obj
= i915_gem_object_alloc(dev_priv
);
834 drm_gem_private_object_init(dev
, &obj
->base
, args
->user_size
);
835 i915_gem_object_init(obj
, &i915_gem_userptr_ops
);
836 obj
->read_domains
= I915_GEM_DOMAIN_CPU
;
837 obj
->write_domain
= I915_GEM_DOMAIN_CPU
;
838 i915_gem_object_set_cache_coherency(obj
, I915_CACHE_LLC
);
840 obj
->userptr
.ptr
= args
->user_ptr
;
841 if (args
->flags
& I915_USERPTR_READ_ONLY
)
842 i915_gem_object_set_readonly(obj
);
844 /* And keep a pointer to the current->mm for resolving the user pages
845 * at binding. This means that we need to hook into the mmu_notifier
846 * in order to detect if the mmu is destroyed.
848 ret
= i915_gem_userptr_init__mm_struct(obj
);
850 ret
= i915_gem_userptr_init__mmu_notifier(obj
, args
->flags
);
852 ret
= drm_gem_handle_create(file
, &obj
->base
, &handle
);
854 /* drop reference from allocate - handle holds it now */
855 i915_gem_object_put(obj
);
859 args
->handle
= handle
;
863 int i915_gem_init_userptr(struct drm_i915_private
*dev_priv
)
865 mutex_init(&dev_priv
->mm_lock
);
866 hash_init(dev_priv
->mm_structs
);
868 dev_priv
->mm
.userptr_wq
=
869 alloc_workqueue("i915-userptr-acquire",
870 WQ_HIGHPRI
| WQ_UNBOUND
,
872 if (!dev_priv
->mm
.userptr_wq
)
878 void i915_gem_cleanup_userptr(struct drm_i915_private
*dev_priv
)
880 destroy_workqueue(dev_priv
->mm
.userptr_wq
);