vt: vt_ioctl: fix VT_DISALLOCATE freeing in-use virtual console
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_vma.c
blob98358b4b36dea7e13177bdf38554ffaad4f994e9
1 /*
2 * Copyright © 2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include "i915_vma.h"
27 #include "i915_drv.h"
28 #include "intel_ringbuffer.h"
29 #include "intel_frontbuffer.h"
31 #include <drm/drm_gem.h>
33 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
35 #include <linux/stackdepot.h>
37 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
39 unsigned long entries[12];
40 struct stack_trace trace = {
41 .entries = entries,
42 .max_entries = ARRAY_SIZE(entries),
44 char buf[512];
46 if (!vma->node.stack) {
47 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
48 vma->node.start, vma->node.size, reason);
49 return;
52 depot_fetch_stack(vma->node.stack, &trace);
53 snprint_stack_trace(buf, sizeof(buf), &trace, 0);
54 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
55 vma->node.start, vma->node.size, reason, buf);
58 #else
60 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
64 #endif
66 struct i915_vma_active {
67 struct i915_gem_active base;
68 struct i915_vma *vma;
69 struct rb_node node;
70 u64 timeline;
73 static void
74 __i915_vma_retire(struct i915_vma *vma, struct i915_request *rq)
76 struct drm_i915_gem_object *obj = vma->obj;
78 GEM_BUG_ON(!i915_vma_is_active(vma));
79 if (--vma->active_count)
80 return;
82 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
83 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
85 GEM_BUG_ON(!i915_gem_object_is_active(obj));
86 if (--obj->active_count)
87 return;
89 /* Prune the shared fence arrays iff completely idle (inc. external) */
90 if (reservation_object_trylock(obj->resv)) {
91 if (reservation_object_test_signaled_rcu(obj->resv, true))
92 reservation_object_add_excl_fence(obj->resv, NULL);
93 reservation_object_unlock(obj->resv);
96 /* Bump our place on the bound list to keep it roughly in LRU order
97 * so that we don't steal from recently used but inactive objects
98 * (unless we are forced to ofc!)
100 spin_lock(&rq->i915->mm.obj_lock);
101 if (obj->bind_count)
102 list_move_tail(&obj->mm.link, &rq->i915->mm.bound_list);
103 spin_unlock(&rq->i915->mm.obj_lock);
105 obj->mm.dirty = true; /* be paranoid */
107 if (i915_gem_object_has_active_reference(obj)) {
108 i915_gem_object_clear_active_reference(obj);
109 i915_gem_object_put(obj);
113 static void
114 i915_vma_retire(struct i915_gem_active *base, struct i915_request *rq)
116 struct i915_vma_active *active =
117 container_of(base, typeof(*active), base);
119 __i915_vma_retire(active->vma, rq);
122 static void
123 i915_vma_last_retire(struct i915_gem_active *base, struct i915_request *rq)
125 __i915_vma_retire(container_of(base, struct i915_vma, last_active), rq);
128 static struct i915_vma *
129 vma_create(struct drm_i915_gem_object *obj,
130 struct i915_address_space *vm,
131 const struct i915_ggtt_view *view)
133 struct i915_vma *vma;
134 struct rb_node *rb, **p;
136 /* The aliasing_ppgtt should never be used directly! */
137 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
139 vma = kmem_cache_zalloc(vm->i915->vmas, GFP_KERNEL);
140 if (vma == NULL)
141 return ERR_PTR(-ENOMEM);
143 vma->active = RB_ROOT;
145 init_request_active(&vma->last_active, i915_vma_last_retire);
146 init_request_active(&vma->last_fence, NULL);
147 vma->vm = vm;
148 vma->ops = &vm->vma_ops;
149 vma->obj = obj;
150 vma->resv = obj->resv;
151 vma->size = obj->base.size;
152 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
154 if (view && view->type != I915_GGTT_VIEW_NORMAL) {
155 vma->ggtt_view = *view;
156 if (view->type == I915_GGTT_VIEW_PARTIAL) {
157 GEM_BUG_ON(range_overflows_t(u64,
158 view->partial.offset,
159 view->partial.size,
160 obj->base.size >> PAGE_SHIFT));
161 vma->size = view->partial.size;
162 vma->size <<= PAGE_SHIFT;
163 GEM_BUG_ON(vma->size > obj->base.size);
164 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
165 vma->size = intel_rotation_info_size(&view->rotated);
166 vma->size <<= PAGE_SHIFT;
170 if (unlikely(vma->size > vm->total))
171 goto err_vma;
173 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
175 if (i915_is_ggtt(vm)) {
176 if (unlikely(overflows_type(vma->size, u32)))
177 goto err_vma;
179 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
180 i915_gem_object_get_tiling(obj),
181 i915_gem_object_get_stride(obj));
182 if (unlikely(vma->fence_size < vma->size || /* overflow */
183 vma->fence_size > vm->total))
184 goto err_vma;
186 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
188 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
189 i915_gem_object_get_tiling(obj),
190 i915_gem_object_get_stride(obj));
191 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
194 * We put the GGTT vma at the start of the vma-list, followed
195 * by the ppGGTT vma. This allows us to break early when
196 * iterating over only the GGTT vma for an object, see
197 * for_each_ggtt_vma()
199 vma->flags |= I915_VMA_GGTT;
200 list_add(&vma->obj_link, &obj->vma_list);
201 } else {
202 list_add_tail(&vma->obj_link, &obj->vma_list);
205 rb = NULL;
206 p = &obj->vma_tree.rb_node;
207 while (*p) {
208 struct i915_vma *pos;
210 rb = *p;
211 pos = rb_entry(rb, struct i915_vma, obj_node);
212 if (i915_vma_compare(pos, vm, view) < 0)
213 p = &rb->rb_right;
214 else
215 p = &rb->rb_left;
217 rb_link_node(&vma->obj_node, rb, p);
218 rb_insert_color(&vma->obj_node, &obj->vma_tree);
219 list_add(&vma->vm_link, &vm->unbound_list);
221 return vma;
223 err_vma:
224 kmem_cache_free(vm->i915->vmas, vma);
225 return ERR_PTR(-E2BIG);
228 static struct i915_vma *
229 vma_lookup(struct drm_i915_gem_object *obj,
230 struct i915_address_space *vm,
231 const struct i915_ggtt_view *view)
233 struct rb_node *rb;
235 rb = obj->vma_tree.rb_node;
236 while (rb) {
237 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
238 long cmp;
240 cmp = i915_vma_compare(vma, vm, view);
241 if (cmp == 0)
242 return vma;
244 if (cmp < 0)
245 rb = rb->rb_right;
246 else
247 rb = rb->rb_left;
250 return NULL;
254 * i915_vma_instance - return the singleton instance of the VMA
255 * @obj: parent &struct drm_i915_gem_object to be mapped
256 * @vm: address space in which the mapping is located
257 * @view: additional mapping requirements
259 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
260 * the same @view characteristics. If a match is not found, one is created.
261 * Once created, the VMA is kept until either the object is freed, or the
262 * address space is closed.
264 * Must be called with struct_mutex held.
266 * Returns the vma, or an error pointer.
268 struct i915_vma *
269 i915_vma_instance(struct drm_i915_gem_object *obj,
270 struct i915_address_space *vm,
271 const struct i915_ggtt_view *view)
273 struct i915_vma *vma;
275 lockdep_assert_held(&obj->base.dev->struct_mutex);
276 GEM_BUG_ON(view && !i915_is_ggtt(vm));
277 GEM_BUG_ON(vm->closed);
279 vma = vma_lookup(obj, vm, view);
280 if (!vma)
281 vma = vma_create(obj, vm, view);
283 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
284 GEM_BUG_ON(!IS_ERR(vma) && vma_lookup(obj, vm, view) != vma);
285 return vma;
289 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
290 * @vma: VMA to map
291 * @cache_level: mapping cache level
292 * @flags: flags like global or local mapping
294 * DMA addresses are taken from the scatter-gather table of this object (or of
295 * this VMA in case of non-default GGTT views) and PTE entries set up.
296 * Note that DMA addresses are also the only part of the SG table we care about.
298 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
299 u32 flags)
301 u32 bind_flags;
302 u32 vma_flags;
303 int ret;
305 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
306 GEM_BUG_ON(vma->size > vma->node.size);
308 if (GEM_WARN_ON(range_overflows(vma->node.start,
309 vma->node.size,
310 vma->vm->total)))
311 return -ENODEV;
313 if (GEM_WARN_ON(!flags))
314 return -EINVAL;
316 bind_flags = 0;
317 if (flags & PIN_GLOBAL)
318 bind_flags |= I915_VMA_GLOBAL_BIND;
319 if (flags & PIN_USER)
320 bind_flags |= I915_VMA_LOCAL_BIND;
322 vma_flags = vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
323 if (flags & PIN_UPDATE)
324 bind_flags |= vma_flags;
325 else
326 bind_flags &= ~vma_flags;
327 if (bind_flags == 0)
328 return 0;
330 GEM_BUG_ON(!vma->pages);
332 trace_i915_vma_bind(vma, bind_flags);
333 ret = vma->ops->bind_vma(vma, cache_level, bind_flags);
334 if (ret)
335 return ret;
337 vma->flags |= bind_flags;
338 return 0;
341 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
343 void __iomem *ptr;
344 int err;
346 /* Access through the GTT requires the device to be awake. */
347 assert_rpm_wakelock_held(vma->vm->i915);
349 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
350 if (WARN_ON(!i915_vma_is_map_and_fenceable(vma))) {
351 err = -ENODEV;
352 goto err;
355 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
356 GEM_BUG_ON((vma->flags & I915_VMA_GLOBAL_BIND) == 0);
358 ptr = vma->iomap;
359 if (ptr == NULL) {
360 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
361 vma->node.start,
362 vma->node.size);
363 if (ptr == NULL) {
364 err = -ENOMEM;
365 goto err;
368 vma->iomap = ptr;
371 __i915_vma_pin(vma);
373 err = i915_vma_pin_fence(vma);
374 if (err)
375 goto err_unpin;
377 i915_vma_set_ggtt_write(vma);
378 return ptr;
380 err_unpin:
381 __i915_vma_unpin(vma);
382 err:
383 return IO_ERR_PTR(err);
386 void i915_vma_flush_writes(struct i915_vma *vma)
388 if (!i915_vma_has_ggtt_write(vma))
389 return;
391 i915_gem_flush_ggtt_writes(vma->vm->i915);
393 i915_vma_unset_ggtt_write(vma);
396 void i915_vma_unpin_iomap(struct i915_vma *vma)
398 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
400 GEM_BUG_ON(vma->iomap == NULL);
402 i915_vma_flush_writes(vma);
404 i915_vma_unpin_fence(vma);
405 i915_vma_unpin(vma);
408 void i915_vma_unpin_and_release(struct i915_vma **p_vma)
410 struct i915_vma *vma;
411 struct drm_i915_gem_object *obj;
413 vma = fetch_and_zero(p_vma);
414 if (!vma)
415 return;
417 obj = vma->obj;
418 GEM_BUG_ON(!obj);
420 i915_vma_unpin(vma);
421 i915_vma_close(vma);
423 __i915_gem_object_release_unless_active(obj);
426 bool i915_vma_misplaced(const struct i915_vma *vma,
427 u64 size, u64 alignment, u64 flags)
429 if (!drm_mm_node_allocated(&vma->node))
430 return false;
432 if (vma->node.size < size)
433 return true;
435 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
436 if (alignment && !IS_ALIGNED(vma->node.start, alignment))
437 return true;
439 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
440 return true;
442 if (flags & PIN_OFFSET_BIAS &&
443 vma->node.start < (flags & PIN_OFFSET_MASK))
444 return true;
446 if (flags & PIN_OFFSET_FIXED &&
447 vma->node.start != (flags & PIN_OFFSET_MASK))
448 return true;
450 return false;
453 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
455 bool mappable, fenceable;
457 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
458 GEM_BUG_ON(!vma->fence_size);
461 * Explicitly disable for rotated VMA since the display does not
462 * need the fence and the VMA is not accessible to other users.
464 if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
465 return;
467 fenceable = (vma->node.size >= vma->fence_size &&
468 IS_ALIGNED(vma->node.start, vma->fence_alignment));
470 mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
472 if (mappable && fenceable)
473 vma->flags |= I915_VMA_CAN_FENCE;
474 else
475 vma->flags &= ~I915_VMA_CAN_FENCE;
478 static bool color_differs(struct drm_mm_node *node, unsigned long color)
480 return node->allocated && node->color != color;
483 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long cache_level)
485 struct drm_mm_node *node = &vma->node;
486 struct drm_mm_node *other;
489 * On some machines we have to be careful when putting differing types
490 * of snoopable memory together to avoid the prefetcher crossing memory
491 * domains and dying. During vm initialisation, we decide whether or not
492 * these constraints apply and set the drm_mm.color_adjust
493 * appropriately.
495 if (vma->vm->mm.color_adjust == NULL)
496 return true;
498 /* Only valid to be called on an already inserted vma */
499 GEM_BUG_ON(!drm_mm_node_allocated(node));
500 GEM_BUG_ON(list_empty(&node->node_list));
502 other = list_prev_entry(node, node_list);
503 if (color_differs(other, cache_level) && !drm_mm_hole_follows(other))
504 return false;
506 other = list_next_entry(node, node_list);
507 if (color_differs(other, cache_level) && !drm_mm_hole_follows(node))
508 return false;
510 return true;
513 static void assert_bind_count(const struct drm_i915_gem_object *obj)
516 * Combine the assertion that the object is bound and that we have
517 * pinned its pages. But we should never have bound the object
518 * more than we have pinned its pages. (For complete accuracy, we
519 * assume that no else is pinning the pages, but as a rough assertion
520 * that we will not run into problems later, this will do!)
522 GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count) < obj->bind_count);
526 * i915_vma_insert - finds a slot for the vma in its address space
527 * @vma: the vma
528 * @size: requested size in bytes (can be larger than the VMA)
529 * @alignment: required alignment
530 * @flags: mask of PIN_* flags to use
532 * First we try to allocate some free space that meets the requirements for
533 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
534 * preferrably the oldest idle entry to make room for the new VMA.
536 * Returns:
537 * 0 on success, negative error code otherwise.
539 static int
540 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
542 struct drm_i915_private *dev_priv = vma->vm->i915;
543 unsigned int cache_level;
544 u64 start, end;
545 int ret;
547 GEM_BUG_ON(i915_vma_is_closed(vma));
548 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
549 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
551 size = max(size, vma->size);
552 alignment = max(alignment, vma->display_alignment);
553 if (flags & PIN_MAPPABLE) {
554 size = max_t(typeof(size), size, vma->fence_size);
555 alignment = max_t(typeof(alignment),
556 alignment, vma->fence_alignment);
559 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
560 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
561 GEM_BUG_ON(!is_power_of_2(alignment));
563 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
564 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
566 end = vma->vm->total;
567 if (flags & PIN_MAPPABLE)
568 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
569 if (flags & PIN_ZONE_4G)
570 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
571 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
573 /* If binding the object/GGTT view requires more space than the entire
574 * aperture has, reject it early before evicting everything in a vain
575 * attempt to find space.
577 if (size > end) {
578 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
579 size, flags & PIN_MAPPABLE ? "mappable" : "total",
580 end);
581 return -ENOSPC;
584 if (vma->obj) {
585 ret = i915_gem_object_pin_pages(vma->obj);
586 if (ret)
587 return ret;
589 cache_level = vma->obj->cache_level;
590 } else {
591 cache_level = 0;
594 GEM_BUG_ON(vma->pages);
596 ret = vma->ops->set_pages(vma);
597 if (ret)
598 goto err_unpin;
600 if (flags & PIN_OFFSET_FIXED) {
601 u64 offset = flags & PIN_OFFSET_MASK;
602 if (!IS_ALIGNED(offset, alignment) ||
603 range_overflows(offset, size, end)) {
604 ret = -EINVAL;
605 goto err_clear;
608 ret = i915_gem_gtt_reserve(vma->vm, &vma->node,
609 size, offset, cache_level,
610 flags);
611 if (ret)
612 goto err_clear;
613 } else {
615 * We only support huge gtt pages through the 48b PPGTT,
616 * however we also don't want to force any alignment for
617 * objects which need to be tightly packed into the low 32bits.
619 * Note that we assume that GGTT are limited to 4GiB for the
620 * forseeable future. See also i915_ggtt_offset().
622 if (upper_32_bits(end - 1) &&
623 vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
625 * We can't mix 64K and 4K PTEs in the same page-table
626 * (2M block), and so to avoid the ugliness and
627 * complexity of coloring we opt for just aligning 64K
628 * objects to 2M.
630 u64 page_alignment =
631 rounddown_pow_of_two(vma->page_sizes.sg |
632 I915_GTT_PAGE_SIZE_2M);
635 * Check we don't expand for the limited Global GTT
636 * (mappable aperture is even more precious!). This
637 * also checks that we exclude the aliasing-ppgtt.
639 GEM_BUG_ON(i915_vma_is_ggtt(vma));
641 alignment = max(alignment, page_alignment);
643 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
644 size = round_up(size, I915_GTT_PAGE_SIZE_2M);
647 ret = i915_gem_gtt_insert(vma->vm, &vma->node,
648 size, alignment, cache_level,
649 start, end, flags);
650 if (ret)
651 goto err_clear;
653 GEM_BUG_ON(vma->node.start < start);
654 GEM_BUG_ON(vma->node.start + vma->node.size > end);
656 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
657 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, cache_level));
659 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
661 if (vma->obj) {
662 struct drm_i915_gem_object *obj = vma->obj;
664 spin_lock(&dev_priv->mm.obj_lock);
665 list_move_tail(&obj->mm.link, &dev_priv->mm.bound_list);
666 obj->bind_count++;
667 spin_unlock(&dev_priv->mm.obj_lock);
669 assert_bind_count(obj);
672 return 0;
674 err_clear:
675 vma->ops->clear_pages(vma);
676 err_unpin:
677 if (vma->obj)
678 i915_gem_object_unpin_pages(vma->obj);
679 return ret;
682 static void
683 i915_vma_remove(struct i915_vma *vma)
685 struct drm_i915_private *i915 = vma->vm->i915;
687 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
688 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
690 vma->ops->clear_pages(vma);
692 drm_mm_remove_node(&vma->node);
693 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
696 * Since the unbound list is global, only move to that list if
697 * no more VMAs exist.
699 if (vma->obj) {
700 struct drm_i915_gem_object *obj = vma->obj;
702 spin_lock(&i915->mm.obj_lock);
703 if (--obj->bind_count == 0)
704 list_move_tail(&obj->mm.link, &i915->mm.unbound_list);
705 spin_unlock(&i915->mm.obj_lock);
708 * And finally now the object is completely decoupled from this
709 * vma, we can drop its hold on the backing storage and allow
710 * it to be reaped by the shrinker.
712 i915_gem_object_unpin_pages(obj);
713 assert_bind_count(obj);
717 int __i915_vma_do_pin(struct i915_vma *vma,
718 u64 size, u64 alignment, u64 flags)
720 const unsigned int bound = vma->flags;
721 int ret;
723 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
724 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
725 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
727 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
728 ret = -EBUSY;
729 goto err_unpin;
732 if ((bound & I915_VMA_BIND_MASK) == 0) {
733 ret = i915_vma_insert(vma, size, alignment, flags);
734 if (ret)
735 goto err_unpin;
737 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
739 ret = i915_vma_bind(vma, vma->obj ? vma->obj->cache_level : 0, flags);
740 if (ret)
741 goto err_remove;
743 GEM_BUG_ON((vma->flags & I915_VMA_BIND_MASK) == 0);
745 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
746 __i915_vma_set_map_and_fenceable(vma);
748 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
749 return 0;
751 err_remove:
752 if ((bound & I915_VMA_BIND_MASK) == 0) {
753 i915_vma_remove(vma);
754 GEM_BUG_ON(vma->pages);
755 GEM_BUG_ON(vma->flags & I915_VMA_BIND_MASK);
757 err_unpin:
758 __i915_vma_unpin(vma);
759 return ret;
762 void i915_vma_close(struct i915_vma *vma)
764 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
766 GEM_BUG_ON(i915_vma_is_closed(vma));
767 vma->flags |= I915_VMA_CLOSED;
770 * We defer actually closing, unbinding and destroying the VMA until
771 * the next idle point, or if the object is freed in the meantime. By
772 * postponing the unbind, we allow for it to be resurrected by the
773 * client, avoiding the work required to rebind the VMA. This is
774 * advantageous for DRI, where the client/server pass objects
775 * between themselves, temporarily opening a local VMA to the
776 * object, and then closing it again. The same object is then reused
777 * on the next frame (or two, depending on the depth of the swap queue)
778 * causing us to rebind the VMA once more. This ends up being a lot
779 * of wasted work for the steady state.
781 list_add_tail(&vma->closed_link, &vma->vm->i915->gt.closed_vma);
784 void i915_vma_reopen(struct i915_vma *vma)
786 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
788 if (vma->flags & I915_VMA_CLOSED) {
789 vma->flags &= ~I915_VMA_CLOSED;
790 list_del(&vma->closed_link);
794 static void __i915_vma_destroy(struct i915_vma *vma)
796 struct drm_i915_private *i915 = vma->vm->i915;
797 struct i915_vma_active *iter, *n;
799 GEM_BUG_ON(vma->node.allocated);
800 GEM_BUG_ON(vma->fence);
802 GEM_BUG_ON(i915_gem_active_isset(&vma->last_fence));
804 list_del(&vma->obj_link);
805 list_del(&vma->vm_link);
806 if (vma->obj)
807 rb_erase(&vma->obj_node, &vma->obj->vma_tree);
809 rbtree_postorder_for_each_entry_safe(iter, n, &vma->active, node) {
810 GEM_BUG_ON(i915_gem_active_isset(&iter->base));
811 kfree(iter);
814 kmem_cache_free(i915->vmas, vma);
817 void i915_vma_destroy(struct i915_vma *vma)
819 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
821 GEM_BUG_ON(i915_vma_is_active(vma));
822 GEM_BUG_ON(i915_vma_is_pinned(vma));
824 if (i915_vma_is_closed(vma))
825 list_del(&vma->closed_link);
827 WARN_ON(i915_vma_unbind(vma));
828 __i915_vma_destroy(vma);
831 void i915_vma_parked(struct drm_i915_private *i915)
833 struct i915_vma *vma, *next;
835 list_for_each_entry_safe(vma, next, &i915->gt.closed_vma, closed_link) {
836 GEM_BUG_ON(!i915_vma_is_closed(vma));
837 i915_vma_destroy(vma);
840 GEM_BUG_ON(!list_empty(&i915->gt.closed_vma));
843 static void __i915_vma_iounmap(struct i915_vma *vma)
845 GEM_BUG_ON(i915_vma_is_pinned(vma));
847 if (vma->iomap == NULL)
848 return;
850 io_mapping_unmap(vma->iomap);
851 vma->iomap = NULL;
854 void i915_vma_revoke_mmap(struct i915_vma *vma)
856 struct drm_vma_offset_node *node = &vma->obj->base.vma_node;
857 u64 vma_offset;
859 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
861 if (!i915_vma_has_userfault(vma))
862 return;
864 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
865 GEM_BUG_ON(!vma->obj->userfault_count);
867 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
868 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
869 drm_vma_node_offset_addr(node) + vma_offset,
870 vma->size,
873 i915_vma_unset_userfault(vma);
874 if (!--vma->obj->userfault_count)
875 list_del(&vma->obj->userfault_link);
878 static void export_fence(struct i915_vma *vma,
879 struct i915_request *rq,
880 unsigned int flags)
882 struct reservation_object *resv = vma->resv;
885 * Ignore errors from failing to allocate the new fence, we can't
886 * handle an error right now. Worst case should be missed
887 * synchronisation leading to rendering corruption.
889 reservation_object_lock(resv, NULL);
890 if (flags & EXEC_OBJECT_WRITE)
891 reservation_object_add_excl_fence(resv, &rq->fence);
892 else if (reservation_object_reserve_shared(resv) == 0)
893 reservation_object_add_shared_fence(resv, &rq->fence);
894 reservation_object_unlock(resv);
897 static struct i915_gem_active *active_instance(struct i915_vma *vma, u64 idx)
899 struct i915_vma_active *active;
900 struct rb_node **p, *parent;
901 struct i915_request *old;
904 * We track the most recently used timeline to skip a rbtree search
905 * for the common case, under typical loads we never need the rbtree
906 * at all. We can reuse the last_active slot if it is empty, that is
907 * after the previous activity has been retired, or if the active
908 * matches the current timeline.
910 * Note that we allow the timeline to be active simultaneously in
911 * the rbtree and the last_active cache. We do this to avoid having
912 * to search and replace the rbtree element for a new timeline, with
913 * the cost being that we must be aware that the vma may be retired
914 * twice for the same timeline (as the older rbtree element will be
915 * retired before the new request added to last_active).
917 old = i915_gem_active_raw(&vma->last_active,
918 &vma->vm->i915->drm.struct_mutex);
919 if (!old || old->fence.context == idx)
920 goto out;
922 /* Move the currently active fence into the rbtree */
923 idx = old->fence.context;
925 parent = NULL;
926 p = &vma->active.rb_node;
927 while (*p) {
928 parent = *p;
930 active = rb_entry(parent, struct i915_vma_active, node);
931 if (active->timeline == idx)
932 goto replace;
934 if (active->timeline < idx)
935 p = &parent->rb_right;
936 else
937 p = &parent->rb_left;
940 active = kmalloc(sizeof(*active), GFP_KERNEL);
942 /* kmalloc may retire the vma->last_active request (thanks shrinker)! */
943 if (unlikely(!i915_gem_active_raw(&vma->last_active,
944 &vma->vm->i915->drm.struct_mutex))) {
945 kfree(active);
946 goto out;
949 if (unlikely(!active))
950 return ERR_PTR(-ENOMEM);
952 init_request_active(&active->base, i915_vma_retire);
953 active->vma = vma;
954 active->timeline = idx;
956 rb_link_node(&active->node, parent, p);
957 rb_insert_color(&active->node, &vma->active);
959 replace:
961 * Overwrite the previous active slot in the rbtree with last_active,
962 * leaving last_active zeroed. If the previous slot is still active,
963 * we must be careful as we now only expect to receive one retire
964 * callback not two, and so much undo the active counting for the
965 * overwritten slot.
967 if (i915_gem_active_isset(&active->base)) {
968 /* Retire ourselves from the old rq->active_list */
969 __list_del_entry(&active->base.link);
970 vma->active_count--;
971 GEM_BUG_ON(!vma->active_count);
973 GEM_BUG_ON(list_empty(&vma->last_active.link));
974 list_replace_init(&vma->last_active.link, &active->base.link);
975 active->base.request = fetch_and_zero(&vma->last_active.request);
977 out:
978 return &vma->last_active;
981 int i915_vma_move_to_active(struct i915_vma *vma,
982 struct i915_request *rq,
983 unsigned int flags)
985 struct drm_i915_gem_object *obj = vma->obj;
986 struct i915_gem_active *active;
988 lockdep_assert_held(&rq->i915->drm.struct_mutex);
989 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
991 active = active_instance(vma, rq->fence.context);
992 if (IS_ERR(active))
993 return PTR_ERR(active);
996 * Add a reference if we're newly entering the active list.
997 * The order in which we add operations to the retirement queue is
998 * vital here: mark_active adds to the start of the callback list,
999 * such that subsequent callbacks are called first. Therefore we
1000 * add the active reference first and queue for it to be dropped
1001 * *last*.
1003 if (!i915_gem_active_isset(active) && !vma->active_count++) {
1004 list_move_tail(&vma->vm_link, &vma->vm->active_list);
1005 obj->active_count++;
1007 i915_gem_active_set(active, rq);
1008 GEM_BUG_ON(!i915_vma_is_active(vma));
1009 GEM_BUG_ON(!obj->active_count);
1011 obj->write_domain = 0;
1012 if (flags & EXEC_OBJECT_WRITE) {
1013 obj->write_domain = I915_GEM_DOMAIN_RENDER;
1015 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1016 i915_gem_active_set(&obj->frontbuffer_write, rq);
1018 obj->read_domains = 0;
1020 obj->read_domains |= I915_GEM_GPU_DOMAINS;
1022 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1023 i915_gem_active_set(&vma->last_fence, rq);
1025 export_fence(vma, rq, flags);
1026 return 0;
1029 int i915_vma_unbind(struct i915_vma *vma)
1031 int ret;
1033 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
1036 * First wait upon any activity as retiring the request may
1037 * have side-effects such as unpinning or even unbinding this vma.
1039 might_sleep();
1040 if (i915_vma_is_active(vma)) {
1041 struct i915_vma_active *active, *n;
1044 * When a closed VMA is retired, it is unbound - eek.
1045 * In order to prevent it from being recursively closed,
1046 * take a pin on the vma so that the second unbind is
1047 * aborted.
1049 * Even more scary is that the retire callback may free
1050 * the object (last active vma). To prevent the explosion
1051 * we defer the actual object free to a worker that can
1052 * only proceed once it acquires the struct_mutex (which
1053 * we currently hold, therefore it cannot free this object
1054 * before we are finished).
1056 __i915_vma_pin(vma);
1058 ret = i915_gem_active_retire(&vma->last_active,
1059 &vma->vm->i915->drm.struct_mutex);
1060 if (ret)
1061 goto unpin;
1063 rbtree_postorder_for_each_entry_safe(active, n,
1064 &vma->active, node) {
1065 ret = i915_gem_active_retire(&active->base,
1066 &vma->vm->i915->drm.struct_mutex);
1067 if (ret)
1068 goto unpin;
1071 ret = i915_gem_active_retire(&vma->last_fence,
1072 &vma->vm->i915->drm.struct_mutex);
1073 unpin:
1074 __i915_vma_unpin(vma);
1075 if (ret)
1076 return ret;
1078 GEM_BUG_ON(i915_vma_is_active(vma));
1080 if (i915_vma_is_pinned(vma)) {
1081 vma_print_allocator(vma, "is pinned");
1082 return -EBUSY;
1085 if (!drm_mm_node_allocated(&vma->node))
1086 return 0;
1088 if (i915_vma_is_map_and_fenceable(vma)) {
1090 * Check that we have flushed all writes through the GGTT
1091 * before the unbind, other due to non-strict nature of those
1092 * indirect writes they may end up referencing the GGTT PTE
1093 * after the unbind.
1095 i915_vma_flush_writes(vma);
1096 GEM_BUG_ON(i915_vma_has_ggtt_write(vma));
1098 /* release the fence reg _after_ flushing */
1099 ret = i915_vma_put_fence(vma);
1100 if (ret)
1101 return ret;
1103 /* Force a pagefault for domain tracking on next user access */
1104 i915_vma_revoke_mmap(vma);
1106 __i915_vma_iounmap(vma);
1107 vma->flags &= ~I915_VMA_CAN_FENCE;
1109 GEM_BUG_ON(vma->fence);
1110 GEM_BUG_ON(i915_vma_has_userfault(vma));
1112 if (likely(!vma->vm->closed)) {
1113 trace_i915_vma_unbind(vma);
1114 vma->ops->unbind_vma(vma);
1116 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
1118 i915_vma_remove(vma);
1120 return 0;
1123 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1124 #include "selftests/i915_vma.c"
1125 #endif