2 * Copyright © 2014-2017 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/debugfs.h>
27 #include "intel_guc_log.h"
30 static void guc_log_capture_logs(struct intel_guc_log
*log
);
33 * DOC: GuC firmware log
35 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
36 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
37 * i915_guc_load_status will print out firmware loading status and scratch
41 static int guc_action_flush_log_complete(struct intel_guc
*guc
)
44 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
47 return intel_guc_send(guc
, action
, ARRAY_SIZE(action
));
50 static int guc_action_flush_log(struct intel_guc
*guc
)
53 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH
,
57 return intel_guc_send(guc
, action
, ARRAY_SIZE(action
));
60 static int guc_action_control_log(struct intel_guc
*guc
, bool enable
,
61 bool default_logging
, u32 verbosity
)
64 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING
,
65 (enable
? GUC_LOG_CONTROL_LOGGING_ENABLED
: 0) |
66 (verbosity
<< GUC_LOG_CONTROL_VERBOSITY_SHIFT
) |
67 (default_logging
? GUC_LOG_CONTROL_DEFAULT_LOGGING
: 0)
70 GEM_BUG_ON(verbosity
> GUC_LOG_VERBOSITY_MAX
);
72 return intel_guc_send(guc
, action
, ARRAY_SIZE(action
));
75 static inline struct intel_guc
*log_to_guc(struct intel_guc_log
*log
)
77 return container_of(log
, struct intel_guc
, log
);
80 static void guc_log_enable_flush_events(struct intel_guc_log
*log
)
82 intel_guc_enable_msg(log_to_guc(log
),
83 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER
|
84 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED
);
87 static void guc_log_disable_flush_events(struct intel_guc_log
*log
)
89 intel_guc_disable_msg(log_to_guc(log
),
90 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER
|
91 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED
);
95 * Sub buffer switch callback. Called whenever relay has to switch to a new
96 * sub buffer, relay stays on the same sub buffer if 0 is returned.
98 static int subbuf_start_callback(struct rchan_buf
*buf
,
104 * Use no-overwrite mode by default, where relay will stop accepting
105 * new data if there are no empty sub buffers left.
106 * There is no strict synchronization enforced by relay between Consumer
107 * and Producer. In overwrite mode, there is a possibility of getting
108 * inconsistent/garbled data, the producer could be writing on to the
109 * same sub buffer from which Consumer is reading. This can't be avoided
110 * unless Consumer is fast enough and can always run in tandem with
113 if (relay_buf_full(buf
))
120 * file_create() callback. Creates relay file in debugfs.
122 static struct dentry
*create_buf_file_callback(const char *filename
,
123 struct dentry
*parent
,
125 struct rchan_buf
*buf
,
128 struct dentry
*buf_file
;
131 * This to enable the use of a single buffer for the relay channel and
132 * correspondingly have a single file exposed to User, through which
133 * it can collect the logs in order without any post-processing.
134 * Need to set 'is_global' even if parent is NULL for early logging.
141 buf_file
= debugfs_create_file(filename
, mode
,
142 parent
, buf
, &relay_file_operations
);
147 * file_remove() default callback. Removes relay file in debugfs.
149 static int remove_buf_file_callback(struct dentry
*dentry
)
151 debugfs_remove(dentry
);
155 /* relay channel callbacks */
156 static struct rchan_callbacks relay_callbacks
= {
157 .subbuf_start
= subbuf_start_callback
,
158 .create_buf_file
= create_buf_file_callback
,
159 .remove_buf_file
= remove_buf_file_callback
,
162 static void guc_move_to_next_buf(struct intel_guc_log
*log
)
165 * Make sure the updates made in the sub buffer are visible when
166 * Consumer sees the following update to offset inside the sub buffer.
170 /* All data has been written, so now move the offset of sub buffer. */
171 relay_reserve(log
->relay
.channel
, log
->vma
->obj
->base
.size
);
173 /* Switch to the next sub buffer */
174 relay_flush(log
->relay
.channel
);
177 static void *guc_get_write_buffer(struct intel_guc_log
*log
)
180 * Just get the base address of a new sub buffer and copy data into it
181 * ourselves. NULL will be returned in no-overwrite mode, if all sub
182 * buffers are full. Could have used the relay_write() to indirectly
183 * copy the data, but that would have been bit convoluted, as we need to
184 * write to only certain locations inside a sub buffer which cannot be
185 * done without using relay_reserve() along with relay_write(). So its
186 * better to use relay_reserve() alone.
188 return relay_reserve(log
->relay
.channel
, 0);
191 static bool guc_check_log_buf_overflow(struct intel_guc_log
*log
,
192 enum guc_log_buffer_type type
,
193 unsigned int full_cnt
)
195 unsigned int prev_full_cnt
= log
->stats
[type
].sampled_overflow
;
196 bool overflow
= false;
198 if (full_cnt
!= prev_full_cnt
) {
201 log
->stats
[type
].overflow
= full_cnt
;
202 log
->stats
[type
].sampled_overflow
+= full_cnt
- prev_full_cnt
;
204 if (full_cnt
< prev_full_cnt
) {
205 /* buffer_full_cnt is a 4 bit counter */
206 log
->stats
[type
].sampled_overflow
+= 16;
208 DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
214 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type
)
217 case GUC_ISR_LOG_BUFFER
:
218 return ISR_BUFFER_SIZE
;
219 case GUC_DPC_LOG_BUFFER
:
220 return DPC_BUFFER_SIZE
;
221 case GUC_CRASH_DUMP_LOG_BUFFER
:
222 return CRASH_BUFFER_SIZE
;
230 static void guc_read_update_log_buffer(struct intel_guc_log
*log
)
232 unsigned int buffer_size
, read_offset
, write_offset
, bytes_to_copy
, full_cnt
;
233 struct guc_log_buffer_state
*log_buf_state
, *log_buf_snapshot_state
;
234 struct guc_log_buffer_state log_buf_state_local
;
235 enum guc_log_buffer_type type
;
236 void *src_data
, *dst_data
;
239 mutex_lock(&log
->relay
.lock
);
241 if (WARN_ON(!intel_guc_log_relay_enabled(log
)))
244 /* Get the pointer to shared GuC log buffer */
245 log_buf_state
= src_data
= log
->relay
.buf_addr
;
247 /* Get the pointer to local buffer to store the logs */
248 log_buf_snapshot_state
= dst_data
= guc_get_write_buffer(log
);
250 if (unlikely(!log_buf_snapshot_state
)) {
252 * Used rate limited to avoid deluge of messages, logs might be
253 * getting consumed by User at a slow rate.
255 DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
256 log
->relay
.full_count
++;
261 /* Actual logs are present from the 2nd page */
262 src_data
+= PAGE_SIZE
;
263 dst_data
+= PAGE_SIZE
;
265 for (type
= GUC_ISR_LOG_BUFFER
; type
< GUC_MAX_LOG_BUFFER
; type
++) {
267 * Make a copy of the state structure, inside GuC log buffer
268 * (which is uncached mapped), on the stack to avoid reading
269 * from it multiple times.
271 memcpy(&log_buf_state_local
, log_buf_state
,
272 sizeof(struct guc_log_buffer_state
));
273 buffer_size
= guc_get_log_buffer_size(type
);
274 read_offset
= log_buf_state_local
.read_ptr
;
275 write_offset
= log_buf_state_local
.sampled_write_ptr
;
276 full_cnt
= log_buf_state_local
.buffer_full_cnt
;
278 /* Bookkeeping stuff */
279 log
->stats
[type
].flush
+= log_buf_state_local
.flush_to_file
;
280 new_overflow
= guc_check_log_buf_overflow(log
, type
, full_cnt
);
282 /* Update the state of shared log buffer */
283 log_buf_state
->read_ptr
= write_offset
;
284 log_buf_state
->flush_to_file
= 0;
287 /* First copy the state structure in snapshot buffer */
288 memcpy(log_buf_snapshot_state
, &log_buf_state_local
,
289 sizeof(struct guc_log_buffer_state
));
292 * The write pointer could have been updated by GuC firmware,
293 * after sending the flush interrupt to Host, for consistency
294 * set write pointer value to same value of sampled_write_ptr
295 * in the snapshot buffer.
297 log_buf_snapshot_state
->write_ptr
= write_offset
;
298 log_buf_snapshot_state
++;
300 /* Now copy the actual logs. */
301 if (unlikely(new_overflow
)) {
302 /* copy the whole buffer in case of overflow */
304 write_offset
= buffer_size
;
305 } else if (unlikely((read_offset
> buffer_size
) ||
306 (write_offset
> buffer_size
))) {
307 DRM_ERROR("invalid log buffer state\n");
308 /* copy whole buffer as offsets are unreliable */
310 write_offset
= buffer_size
;
313 /* Just copy the newly written data */
314 if (read_offset
> write_offset
) {
315 i915_memcpy_from_wc(dst_data
, src_data
, write_offset
);
316 bytes_to_copy
= buffer_size
- read_offset
;
318 bytes_to_copy
= write_offset
- read_offset
;
320 i915_memcpy_from_wc(dst_data
+ read_offset
,
321 src_data
+ read_offset
, bytes_to_copy
);
323 src_data
+= buffer_size
;
324 dst_data
+= buffer_size
;
327 guc_move_to_next_buf(log
);
330 mutex_unlock(&log
->relay
.lock
);
333 static void capture_logs_work(struct work_struct
*work
)
335 struct intel_guc_log
*log
=
336 container_of(work
, struct intel_guc_log
, relay
.flush_work
);
338 guc_log_capture_logs(log
);
341 static int guc_log_map(struct intel_guc_log
*log
)
343 struct intel_guc
*guc
= log_to_guc(log
);
344 struct drm_i915_private
*dev_priv
= guc_to_i915(guc
);
348 lockdep_assert_held(&log
->relay
.lock
);
353 mutex_lock(&dev_priv
->drm
.struct_mutex
);
354 ret
= i915_gem_object_set_to_wc_domain(log
->vma
->obj
, true);
355 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
360 * Create a WC (Uncached for read) vmalloc mapping of log
361 * buffer pages, so that we can directly get the data
362 * (up-to-date) from memory.
364 vaddr
= i915_gem_object_pin_map(log
->vma
->obj
, I915_MAP_WC
);
366 DRM_ERROR("Couldn't map log buffer pages %d\n", ret
);
367 return PTR_ERR(vaddr
);
370 log
->relay
.buf_addr
= vaddr
;
375 static void guc_log_unmap(struct intel_guc_log
*log
)
377 lockdep_assert_held(&log
->relay
.lock
);
379 i915_gem_object_unpin_map(log
->vma
->obj
);
380 log
->relay
.buf_addr
= NULL
;
383 void intel_guc_log_init_early(struct intel_guc_log
*log
)
385 mutex_init(&log
->relay
.lock
);
386 INIT_WORK(&log
->relay
.flush_work
, capture_logs_work
);
389 static int guc_log_relay_create(struct intel_guc_log
*log
)
391 struct intel_guc
*guc
= log_to_guc(log
);
392 struct drm_i915_private
*dev_priv
= guc_to_i915(guc
);
393 struct rchan
*guc_log_relay_chan
;
394 size_t n_subbufs
, subbuf_size
;
397 lockdep_assert_held(&log
->relay
.lock
);
399 /* Keep the size of sub buffers same as shared log buffer */
400 subbuf_size
= log
->vma
->size
;
403 * Store up to 8 snapshots, which is large enough to buffer sufficient
404 * boot time logs and provides enough leeway to User, in terms of
405 * latency, for consuming the logs from relay. Also doesn't take
406 * up too much memory.
410 guc_log_relay_chan
= relay_open("guc_log",
411 dev_priv
->drm
.primary
->debugfs_root
,
412 subbuf_size
, n_subbufs
,
413 &relay_callbacks
, dev_priv
);
414 if (!guc_log_relay_chan
) {
415 DRM_ERROR("Couldn't create relay chan for GuC logging\n");
421 GEM_BUG_ON(guc_log_relay_chan
->subbuf_size
< subbuf_size
);
422 log
->relay
.channel
= guc_log_relay_chan
;
427 static void guc_log_relay_destroy(struct intel_guc_log
*log
)
429 lockdep_assert_held(&log
->relay
.lock
);
431 relay_close(log
->relay
.channel
);
432 log
->relay
.channel
= NULL
;
435 static void guc_log_capture_logs(struct intel_guc_log
*log
)
437 struct intel_guc
*guc
= log_to_guc(log
);
438 struct drm_i915_private
*dev_priv
= guc_to_i915(guc
);
440 guc_read_update_log_buffer(log
);
443 * Generally device is expected to be active only at this
444 * time, so get/put should be really quick.
446 intel_runtime_pm_get(dev_priv
);
447 guc_action_flush_log_complete(guc
);
448 intel_runtime_pm_put(dev_priv
);
451 int intel_guc_log_create(struct intel_guc_log
*log
)
453 struct intel_guc
*guc
= log_to_guc(log
);
454 struct i915_vma
*vma
;
458 GEM_BUG_ON(log
->vma
);
461 * GuC Log buffer Layout
463 * +===============================+ 00B
464 * | Crash dump state header |
465 * +-------------------------------+ 32B
466 * | DPC state header |
467 * +-------------------------------+ 64B
468 * | ISR state header |
469 * +-------------------------------+ 96B
471 * +===============================+ PAGE_SIZE (4KB)
472 * | Crash Dump logs |
473 * +===============================+ + CRASH_SIZE
475 * +===============================+ + DPC_SIZE
477 * +===============================+ + ISR_SIZE
479 guc_log_size
= PAGE_SIZE
+ CRASH_BUFFER_SIZE
+ DPC_BUFFER_SIZE
+
482 vma
= intel_guc_allocate_vma(guc
, guc_log_size
);
490 log
->level
= i915_modparams
.guc_log_level
;
495 DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret
);
499 void intel_guc_log_destroy(struct intel_guc_log
*log
)
501 i915_vma_unpin_and_release(&log
->vma
);
504 int intel_guc_log_set_level(struct intel_guc_log
*log
, u32 level
)
506 struct intel_guc
*guc
= log_to_guc(log
);
507 struct drm_i915_private
*dev_priv
= guc_to_i915(guc
);
510 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN
!= 0);
511 GEM_BUG_ON(!log
->vma
);
514 * GuC is recognizing log levels starting from 0 to max, we're using 0
515 * as indication that logging should be disabled.
517 if (level
< GUC_LOG_LEVEL_DISABLED
|| level
> GUC_LOG_LEVEL_MAX
)
520 mutex_lock(&dev_priv
->drm
.struct_mutex
);
522 if (log
->level
== level
) {
527 intel_runtime_pm_get(dev_priv
);
528 ret
= guc_action_control_log(guc
, GUC_LOG_LEVEL_IS_VERBOSE(level
),
529 GUC_LOG_LEVEL_IS_ENABLED(level
),
530 GUC_LOG_LEVEL_TO_VERBOSITY(level
));
531 intel_runtime_pm_put(dev_priv
);
533 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret
);
540 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
545 bool intel_guc_log_relay_enabled(const struct intel_guc_log
*log
)
547 return log
->relay
.buf_addr
;
550 int intel_guc_log_relay_open(struct intel_guc_log
*log
)
554 mutex_lock(&log
->relay
.lock
);
556 if (intel_guc_log_relay_enabled(log
)) {
562 * We require SSE 4.1 for fast reads from the GuC log buffer and
563 * it should be present on the chipsets supporting GuC based
566 if (!i915_has_memcpy_from_wc()) {
571 ret
= guc_log_relay_create(log
);
575 ret
= guc_log_map(log
);
579 mutex_unlock(&log
->relay
.lock
);
581 guc_log_enable_flush_events(log
);
584 * When GuC is logging without us relaying to userspace, we're ignoring
585 * the flush notification. This means that we need to unconditionally
586 * flush on relay enabling, since GuC only notifies us once.
588 queue_work(log
->relay
.flush_wq
, &log
->relay
.flush_work
);
593 guc_log_relay_destroy(log
);
595 mutex_unlock(&log
->relay
.lock
);
600 void intel_guc_log_relay_flush(struct intel_guc_log
*log
)
602 struct intel_guc
*guc
= log_to_guc(log
);
603 struct drm_i915_private
*i915
= guc_to_i915(guc
);
606 * Before initiating the forceful flush, wait for any pending/ongoing
607 * flush to complete otherwise forceful flush may not actually happen.
609 flush_work(&log
->relay
.flush_work
);
611 intel_runtime_pm_get(i915
);
612 guc_action_flush_log(guc
);
613 intel_runtime_pm_put(i915
);
615 /* GuC would have updated log buffer by now, so capture it */
616 guc_log_capture_logs(log
);
619 void intel_guc_log_relay_close(struct intel_guc_log
*log
)
621 guc_log_disable_flush_events(log
);
622 flush_work(&log
->relay
.flush_work
);
624 mutex_lock(&log
->relay
.lock
);
625 GEM_BUG_ON(!intel_guc_log_relay_enabled(log
));
627 guc_log_relay_destroy(log
);
628 mutex_unlock(&log
->relay
.lock
);
631 void intel_guc_log_handle_flush_event(struct intel_guc_log
*log
)
633 queue_work(log
->relay
.flush_wq
, &log
->relay
.flush_work
);