vt: vt_ioctl: fix VT_DISALLOCATE freeing in-use virtual console
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_guc_log.c
blob6da61a71d28f69835c589bbdf5acc48f19b69197
1 /*
2 * Copyright © 2014-2017 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include <linux/debugfs.h>
27 #include "intel_guc_log.h"
28 #include "i915_drv.h"
30 static void guc_log_capture_logs(struct intel_guc_log *log);
32 /**
33 * DOC: GuC firmware log
35 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
36 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
37 * i915_guc_load_status will print out firmware loading status and scratch
38 * registers value.
41 static int guc_action_flush_log_complete(struct intel_guc *guc)
43 u32 action[] = {
44 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
47 return intel_guc_send(guc, action, ARRAY_SIZE(action));
50 static int guc_action_flush_log(struct intel_guc *guc)
52 u32 action[] = {
53 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
57 return intel_guc_send(guc, action, ARRAY_SIZE(action));
60 static int guc_action_control_log(struct intel_guc *guc, bool enable,
61 bool default_logging, u32 verbosity)
63 u32 action[] = {
64 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
65 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
66 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
67 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
70 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
72 return intel_guc_send(guc, action, ARRAY_SIZE(action));
75 static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
77 return container_of(log, struct intel_guc, log);
80 static void guc_log_enable_flush_events(struct intel_guc_log *log)
82 intel_guc_enable_msg(log_to_guc(log),
83 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
84 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
87 static void guc_log_disable_flush_events(struct intel_guc_log *log)
89 intel_guc_disable_msg(log_to_guc(log),
90 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
91 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
95 * Sub buffer switch callback. Called whenever relay has to switch to a new
96 * sub buffer, relay stays on the same sub buffer if 0 is returned.
98 static int subbuf_start_callback(struct rchan_buf *buf,
99 void *subbuf,
100 void *prev_subbuf,
101 size_t prev_padding)
104 * Use no-overwrite mode by default, where relay will stop accepting
105 * new data if there are no empty sub buffers left.
106 * There is no strict synchronization enforced by relay between Consumer
107 * and Producer. In overwrite mode, there is a possibility of getting
108 * inconsistent/garbled data, the producer could be writing on to the
109 * same sub buffer from which Consumer is reading. This can't be avoided
110 * unless Consumer is fast enough and can always run in tandem with
111 * Producer.
113 if (relay_buf_full(buf))
114 return 0;
116 return 1;
120 * file_create() callback. Creates relay file in debugfs.
122 static struct dentry *create_buf_file_callback(const char *filename,
123 struct dentry *parent,
124 umode_t mode,
125 struct rchan_buf *buf,
126 int *is_global)
128 struct dentry *buf_file;
131 * This to enable the use of a single buffer for the relay channel and
132 * correspondingly have a single file exposed to User, through which
133 * it can collect the logs in order without any post-processing.
134 * Need to set 'is_global' even if parent is NULL for early logging.
136 *is_global = 1;
138 if (!parent)
139 return NULL;
141 buf_file = debugfs_create_file(filename, mode,
142 parent, buf, &relay_file_operations);
143 return buf_file;
147 * file_remove() default callback. Removes relay file in debugfs.
149 static int remove_buf_file_callback(struct dentry *dentry)
151 debugfs_remove(dentry);
152 return 0;
155 /* relay channel callbacks */
156 static struct rchan_callbacks relay_callbacks = {
157 .subbuf_start = subbuf_start_callback,
158 .create_buf_file = create_buf_file_callback,
159 .remove_buf_file = remove_buf_file_callback,
162 static void guc_move_to_next_buf(struct intel_guc_log *log)
165 * Make sure the updates made in the sub buffer are visible when
166 * Consumer sees the following update to offset inside the sub buffer.
168 smp_wmb();
170 /* All data has been written, so now move the offset of sub buffer. */
171 relay_reserve(log->relay.channel, log->vma->obj->base.size);
173 /* Switch to the next sub buffer */
174 relay_flush(log->relay.channel);
177 static void *guc_get_write_buffer(struct intel_guc_log *log)
180 * Just get the base address of a new sub buffer and copy data into it
181 * ourselves. NULL will be returned in no-overwrite mode, if all sub
182 * buffers are full. Could have used the relay_write() to indirectly
183 * copy the data, but that would have been bit convoluted, as we need to
184 * write to only certain locations inside a sub buffer which cannot be
185 * done without using relay_reserve() along with relay_write(). So its
186 * better to use relay_reserve() alone.
188 return relay_reserve(log->relay.channel, 0);
191 static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
192 enum guc_log_buffer_type type,
193 unsigned int full_cnt)
195 unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
196 bool overflow = false;
198 if (full_cnt != prev_full_cnt) {
199 overflow = true;
201 log->stats[type].overflow = full_cnt;
202 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
204 if (full_cnt < prev_full_cnt) {
205 /* buffer_full_cnt is a 4 bit counter */
206 log->stats[type].sampled_overflow += 16;
208 DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
211 return overflow;
214 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
216 switch (type) {
217 case GUC_ISR_LOG_BUFFER:
218 return ISR_BUFFER_SIZE;
219 case GUC_DPC_LOG_BUFFER:
220 return DPC_BUFFER_SIZE;
221 case GUC_CRASH_DUMP_LOG_BUFFER:
222 return CRASH_BUFFER_SIZE;
223 default:
224 MISSING_CASE(type);
227 return 0;
230 static void guc_read_update_log_buffer(struct intel_guc_log *log)
232 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
233 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
234 struct guc_log_buffer_state log_buf_state_local;
235 enum guc_log_buffer_type type;
236 void *src_data, *dst_data;
237 bool new_overflow;
239 mutex_lock(&log->relay.lock);
241 if (WARN_ON(!intel_guc_log_relay_enabled(log)))
242 goto out_unlock;
244 /* Get the pointer to shared GuC log buffer */
245 log_buf_state = src_data = log->relay.buf_addr;
247 /* Get the pointer to local buffer to store the logs */
248 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
250 if (unlikely(!log_buf_snapshot_state)) {
252 * Used rate limited to avoid deluge of messages, logs might be
253 * getting consumed by User at a slow rate.
255 DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
256 log->relay.full_count++;
258 goto out_unlock;
261 /* Actual logs are present from the 2nd page */
262 src_data += PAGE_SIZE;
263 dst_data += PAGE_SIZE;
265 for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
267 * Make a copy of the state structure, inside GuC log buffer
268 * (which is uncached mapped), on the stack to avoid reading
269 * from it multiple times.
271 memcpy(&log_buf_state_local, log_buf_state,
272 sizeof(struct guc_log_buffer_state));
273 buffer_size = guc_get_log_buffer_size(type);
274 read_offset = log_buf_state_local.read_ptr;
275 write_offset = log_buf_state_local.sampled_write_ptr;
276 full_cnt = log_buf_state_local.buffer_full_cnt;
278 /* Bookkeeping stuff */
279 log->stats[type].flush += log_buf_state_local.flush_to_file;
280 new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
282 /* Update the state of shared log buffer */
283 log_buf_state->read_ptr = write_offset;
284 log_buf_state->flush_to_file = 0;
285 log_buf_state++;
287 /* First copy the state structure in snapshot buffer */
288 memcpy(log_buf_snapshot_state, &log_buf_state_local,
289 sizeof(struct guc_log_buffer_state));
292 * The write pointer could have been updated by GuC firmware,
293 * after sending the flush interrupt to Host, for consistency
294 * set write pointer value to same value of sampled_write_ptr
295 * in the snapshot buffer.
297 log_buf_snapshot_state->write_ptr = write_offset;
298 log_buf_snapshot_state++;
300 /* Now copy the actual logs. */
301 if (unlikely(new_overflow)) {
302 /* copy the whole buffer in case of overflow */
303 read_offset = 0;
304 write_offset = buffer_size;
305 } else if (unlikely((read_offset > buffer_size) ||
306 (write_offset > buffer_size))) {
307 DRM_ERROR("invalid log buffer state\n");
308 /* copy whole buffer as offsets are unreliable */
309 read_offset = 0;
310 write_offset = buffer_size;
313 /* Just copy the newly written data */
314 if (read_offset > write_offset) {
315 i915_memcpy_from_wc(dst_data, src_data, write_offset);
316 bytes_to_copy = buffer_size - read_offset;
317 } else {
318 bytes_to_copy = write_offset - read_offset;
320 i915_memcpy_from_wc(dst_data + read_offset,
321 src_data + read_offset, bytes_to_copy);
323 src_data += buffer_size;
324 dst_data += buffer_size;
327 guc_move_to_next_buf(log);
329 out_unlock:
330 mutex_unlock(&log->relay.lock);
333 static void capture_logs_work(struct work_struct *work)
335 struct intel_guc_log *log =
336 container_of(work, struct intel_guc_log, relay.flush_work);
338 guc_log_capture_logs(log);
341 static int guc_log_map(struct intel_guc_log *log)
343 struct intel_guc *guc = log_to_guc(log);
344 struct drm_i915_private *dev_priv = guc_to_i915(guc);
345 void *vaddr;
346 int ret;
348 lockdep_assert_held(&log->relay.lock);
350 if (!log->vma)
351 return -ENODEV;
353 mutex_lock(&dev_priv->drm.struct_mutex);
354 ret = i915_gem_object_set_to_wc_domain(log->vma->obj, true);
355 mutex_unlock(&dev_priv->drm.struct_mutex);
356 if (ret)
357 return ret;
360 * Create a WC (Uncached for read) vmalloc mapping of log
361 * buffer pages, so that we can directly get the data
362 * (up-to-date) from memory.
364 vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
365 if (IS_ERR(vaddr)) {
366 DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
367 return PTR_ERR(vaddr);
370 log->relay.buf_addr = vaddr;
372 return 0;
375 static void guc_log_unmap(struct intel_guc_log *log)
377 lockdep_assert_held(&log->relay.lock);
379 i915_gem_object_unpin_map(log->vma->obj);
380 log->relay.buf_addr = NULL;
383 void intel_guc_log_init_early(struct intel_guc_log *log)
385 mutex_init(&log->relay.lock);
386 INIT_WORK(&log->relay.flush_work, capture_logs_work);
389 static int guc_log_relay_create(struct intel_guc_log *log)
391 struct intel_guc *guc = log_to_guc(log);
392 struct drm_i915_private *dev_priv = guc_to_i915(guc);
393 struct rchan *guc_log_relay_chan;
394 size_t n_subbufs, subbuf_size;
395 int ret;
397 lockdep_assert_held(&log->relay.lock);
399 /* Keep the size of sub buffers same as shared log buffer */
400 subbuf_size = log->vma->size;
403 * Store up to 8 snapshots, which is large enough to buffer sufficient
404 * boot time logs and provides enough leeway to User, in terms of
405 * latency, for consuming the logs from relay. Also doesn't take
406 * up too much memory.
408 n_subbufs = 8;
410 guc_log_relay_chan = relay_open("guc_log",
411 dev_priv->drm.primary->debugfs_root,
412 subbuf_size, n_subbufs,
413 &relay_callbacks, dev_priv);
414 if (!guc_log_relay_chan) {
415 DRM_ERROR("Couldn't create relay chan for GuC logging\n");
417 ret = -ENOMEM;
418 return ret;
421 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
422 log->relay.channel = guc_log_relay_chan;
424 return 0;
427 static void guc_log_relay_destroy(struct intel_guc_log *log)
429 lockdep_assert_held(&log->relay.lock);
431 relay_close(log->relay.channel);
432 log->relay.channel = NULL;
435 static void guc_log_capture_logs(struct intel_guc_log *log)
437 struct intel_guc *guc = log_to_guc(log);
438 struct drm_i915_private *dev_priv = guc_to_i915(guc);
440 guc_read_update_log_buffer(log);
443 * Generally device is expected to be active only at this
444 * time, so get/put should be really quick.
446 intel_runtime_pm_get(dev_priv);
447 guc_action_flush_log_complete(guc);
448 intel_runtime_pm_put(dev_priv);
451 int intel_guc_log_create(struct intel_guc_log *log)
453 struct intel_guc *guc = log_to_guc(log);
454 struct i915_vma *vma;
455 u32 guc_log_size;
456 int ret;
458 GEM_BUG_ON(log->vma);
461 * GuC Log buffer Layout
463 * +===============================+ 00B
464 * | Crash dump state header |
465 * +-------------------------------+ 32B
466 * | DPC state header |
467 * +-------------------------------+ 64B
468 * | ISR state header |
469 * +-------------------------------+ 96B
470 * | |
471 * +===============================+ PAGE_SIZE (4KB)
472 * | Crash Dump logs |
473 * +===============================+ + CRASH_SIZE
474 * | DPC logs |
475 * +===============================+ + DPC_SIZE
476 * | ISR logs |
477 * +===============================+ + ISR_SIZE
479 guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
480 ISR_BUFFER_SIZE;
482 vma = intel_guc_allocate_vma(guc, guc_log_size);
483 if (IS_ERR(vma)) {
484 ret = PTR_ERR(vma);
485 goto err;
488 log->vma = vma;
490 log->level = i915_modparams.guc_log_level;
492 return 0;
494 err:
495 DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
496 return ret;
499 void intel_guc_log_destroy(struct intel_guc_log *log)
501 i915_vma_unpin_and_release(&log->vma);
504 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
506 struct intel_guc *guc = log_to_guc(log);
507 struct drm_i915_private *dev_priv = guc_to_i915(guc);
508 int ret;
510 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
511 GEM_BUG_ON(!log->vma);
514 * GuC is recognizing log levels starting from 0 to max, we're using 0
515 * as indication that logging should be disabled.
517 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
518 return -EINVAL;
520 mutex_lock(&dev_priv->drm.struct_mutex);
522 if (log->level == level) {
523 ret = 0;
524 goto out_unlock;
527 intel_runtime_pm_get(dev_priv);
528 ret = guc_action_control_log(guc, GUC_LOG_LEVEL_IS_VERBOSE(level),
529 GUC_LOG_LEVEL_IS_ENABLED(level),
530 GUC_LOG_LEVEL_TO_VERBOSITY(level));
531 intel_runtime_pm_put(dev_priv);
532 if (ret) {
533 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
534 goto out_unlock;
537 log->level = level;
539 out_unlock:
540 mutex_unlock(&dev_priv->drm.struct_mutex);
542 return ret;
545 bool intel_guc_log_relay_enabled(const struct intel_guc_log *log)
547 return log->relay.buf_addr;
550 int intel_guc_log_relay_open(struct intel_guc_log *log)
552 int ret;
554 mutex_lock(&log->relay.lock);
556 if (intel_guc_log_relay_enabled(log)) {
557 ret = -EEXIST;
558 goto out_unlock;
562 * We require SSE 4.1 for fast reads from the GuC log buffer and
563 * it should be present on the chipsets supporting GuC based
564 * submisssions.
566 if (!i915_has_memcpy_from_wc()) {
567 ret = -ENXIO;
568 goto out_unlock;
571 ret = guc_log_relay_create(log);
572 if (ret)
573 goto out_unlock;
575 ret = guc_log_map(log);
576 if (ret)
577 goto out_relay;
579 mutex_unlock(&log->relay.lock);
581 guc_log_enable_flush_events(log);
584 * When GuC is logging without us relaying to userspace, we're ignoring
585 * the flush notification. This means that we need to unconditionally
586 * flush on relay enabling, since GuC only notifies us once.
588 queue_work(log->relay.flush_wq, &log->relay.flush_work);
590 return 0;
592 out_relay:
593 guc_log_relay_destroy(log);
594 out_unlock:
595 mutex_unlock(&log->relay.lock);
597 return ret;
600 void intel_guc_log_relay_flush(struct intel_guc_log *log)
602 struct intel_guc *guc = log_to_guc(log);
603 struct drm_i915_private *i915 = guc_to_i915(guc);
606 * Before initiating the forceful flush, wait for any pending/ongoing
607 * flush to complete otherwise forceful flush may not actually happen.
609 flush_work(&log->relay.flush_work);
611 intel_runtime_pm_get(i915);
612 guc_action_flush_log(guc);
613 intel_runtime_pm_put(i915);
615 /* GuC would have updated log buffer by now, so capture it */
616 guc_log_capture_logs(log);
619 void intel_guc_log_relay_close(struct intel_guc_log *log)
621 guc_log_disable_flush_events(log);
622 flush_work(&log->relay.flush_work);
624 mutex_lock(&log->relay.lock);
625 GEM_BUG_ON(!intel_guc_log_relay_enabled(log));
626 guc_log_unmap(log);
627 guc_log_relay_destroy(log);
628 mutex_unlock(&log->relay.lock);
631 void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
633 queue_work(log->relay.flush_wq, &log->relay.flush_work);