2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/list.h>
27 #include <linux/list_sort.h>
28 #include <linux/log2.h>
30 #include <linux/msi.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_pci.h>
35 #include <linux/of_platform.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/syscore_ops.h>
40 #include <linux/irqchip.h>
41 #include <linux/irqchip/arm-gic-v3.h>
42 #include <linux/irqchip/arm-gic-v4.h>
44 #include <asm/cputype.h>
45 #include <asm/exception.h>
47 #include "irq-gic-common.h"
49 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
50 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
51 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
52 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3)
54 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
56 static u32 lpi_id_bits
;
59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60 * deal with (one configuration byte per interrupt). PENDBASE has to
61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
63 #define LPI_NRBITS lpi_id_bits
64 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
67 #define LPI_PROP_DEFAULT_PRIO 0xa0
70 * Collection structure - just an ID, and a redistributor address to
71 * ping. We use one per CPU as a bag of interrupts assigned to this
74 struct its_collection
{
80 * The ITS_BASER structure - contains memory information, cached
81 * value of BASER register configuration and ITS page size.
93 * The ITS structure - contains most of the infrastructure, with the
94 * top-level MSI domain, the command queue, the collections, and the
95 * list of devices writing to it.
97 * dev_alloc_lock has to be taken for device allocations, while the
98 * spinlock must be taken to parse data structures such as the device
103 struct mutex dev_alloc_lock
;
104 struct list_head entry
;
106 phys_addr_t phys_base
;
107 struct its_cmd_block
*cmd_base
;
108 struct its_cmd_block
*cmd_write
;
109 struct its_baser tables
[GITS_BASER_NR_REGS
];
110 struct its_collection
*collections
;
111 struct fwnode_handle
*fwnode_handle
;
112 u64 (*get_msi_base
)(struct its_device
*its_dev
);
115 struct list_head its_device_list
;
117 unsigned long list_nr
;
121 unsigned int msi_domain_flags
;
122 u32 pre_its_base
; /* for Socionext Synquacer */
124 int vlpi_redist_offset
;
127 #define ITS_ITT_ALIGN SZ_256
129 /* The maximum number of VPEID bits supported by VLPI commands */
130 #define ITS_MAX_VPEID_BITS (16)
131 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
133 /* Convert page order to size in bytes */
134 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
136 struct event_lpi_map
{
137 unsigned long *lpi_map
;
139 irq_hw_number_t lpi_base
;
141 struct mutex vlpi_lock
;
143 struct its_vlpi_map
*vlpi_maps
;
148 * The ITS view of a device - belongs to an ITS, owns an interrupt
149 * translation table, and a list of interrupts. If it some of its
150 * LPIs are injected into a guest (GICv4), the event_map.vm field
151 * indicates which one.
154 struct list_head entry
;
155 struct its_node
*its
;
156 struct event_lpi_map event_map
;
165 struct its_device
*dev
;
166 struct its_vpe
**vpes
;
170 static LIST_HEAD(its_nodes
);
171 static DEFINE_RAW_SPINLOCK(its_lock
);
172 static struct rdists
*gic_rdists
;
173 static struct irq_domain
*its_parent
;
175 static unsigned long its_list_map
;
176 static u16 vmovp_seq_num
;
177 static DEFINE_RAW_SPINLOCK(vmovp_lock
);
179 static DEFINE_IDA(its_vpeid_ida
);
181 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
182 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
183 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
185 static u16
get_its_list(struct its_vm
*vm
)
187 struct its_node
*its
;
188 unsigned long its_list
= 0;
190 list_for_each_entry(its
, &its_nodes
, entry
) {
194 if (vm
->vlpi_count
[its
->list_nr
])
195 __set_bit(its
->list_nr
, &its_list
);
198 return (u16
)its_list
;
201 static struct its_collection
*dev_event_to_col(struct its_device
*its_dev
,
204 struct its_node
*its
= its_dev
->its
;
206 return its
->collections
+ its_dev
->event_map
.col_map
[event
];
209 static struct its_collection
*valid_col(struct its_collection
*col
)
211 if (WARN_ON_ONCE(col
->target_address
& GENMASK_ULL(15, 0)))
217 static struct its_vpe
*valid_vpe(struct its_node
*its
, struct its_vpe
*vpe
)
219 if (valid_col(its
->collections
+ vpe
->col_idx
))
226 * ITS command descriptors - parameters to be encoded in a command
229 struct its_cmd_desc
{
232 struct its_device
*dev
;
237 struct its_device
*dev
;
242 struct its_device
*dev
;
247 struct its_device
*dev
;
252 struct its_collection
*col
;
257 struct its_device
*dev
;
263 struct its_device
*dev
;
264 struct its_collection
*col
;
269 struct its_device
*dev
;
274 struct its_collection
*col
;
283 struct its_collection
*col
;
289 struct its_device
*dev
;
297 struct its_device
*dev
;
304 struct its_collection
*col
;
312 * The ITS command block, which is what the ITS actually parses.
314 struct its_cmd_block
{
318 #define ITS_CMD_QUEUE_SZ SZ_64K
319 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
321 typedef struct its_collection
*(*its_cmd_builder_t
)(struct its_node
*,
322 struct its_cmd_block
*,
323 struct its_cmd_desc
*);
325 typedef struct its_vpe
*(*its_cmd_vbuilder_t
)(struct its_node
*,
326 struct its_cmd_block
*,
327 struct its_cmd_desc
*);
329 static void its_mask_encode(u64
*raw_cmd
, u64 val
, int h
, int l
)
331 u64 mask
= GENMASK_ULL(h
, l
);
333 *raw_cmd
|= (val
<< l
) & mask
;
336 static void its_encode_cmd(struct its_cmd_block
*cmd
, u8 cmd_nr
)
338 its_mask_encode(&cmd
->raw_cmd
[0], cmd_nr
, 7, 0);
341 static void its_encode_devid(struct its_cmd_block
*cmd
, u32 devid
)
343 its_mask_encode(&cmd
->raw_cmd
[0], devid
, 63, 32);
346 static void its_encode_event_id(struct its_cmd_block
*cmd
, u32 id
)
348 its_mask_encode(&cmd
->raw_cmd
[1], id
, 31, 0);
351 static void its_encode_phys_id(struct its_cmd_block
*cmd
, u32 phys_id
)
353 its_mask_encode(&cmd
->raw_cmd
[1], phys_id
, 63, 32);
356 static void its_encode_size(struct its_cmd_block
*cmd
, u8 size
)
358 its_mask_encode(&cmd
->raw_cmd
[1], size
, 4, 0);
361 static void its_encode_itt(struct its_cmd_block
*cmd
, u64 itt_addr
)
363 its_mask_encode(&cmd
->raw_cmd
[2], itt_addr
>> 8, 51, 8);
366 static void its_encode_valid(struct its_cmd_block
*cmd
, int valid
)
368 its_mask_encode(&cmd
->raw_cmd
[2], !!valid
, 63, 63);
371 static void its_encode_target(struct its_cmd_block
*cmd
, u64 target_addr
)
373 its_mask_encode(&cmd
->raw_cmd
[2], target_addr
>> 16, 51, 16);
376 static void its_encode_collection(struct its_cmd_block
*cmd
, u16 col
)
378 its_mask_encode(&cmd
->raw_cmd
[2], col
, 15, 0);
381 static void its_encode_vpeid(struct its_cmd_block
*cmd
, u16 vpeid
)
383 its_mask_encode(&cmd
->raw_cmd
[1], vpeid
, 47, 32);
386 static void its_encode_virt_id(struct its_cmd_block
*cmd
, u32 virt_id
)
388 its_mask_encode(&cmd
->raw_cmd
[2], virt_id
, 31, 0);
391 static void its_encode_db_phys_id(struct its_cmd_block
*cmd
, u32 db_phys_id
)
393 its_mask_encode(&cmd
->raw_cmd
[2], db_phys_id
, 63, 32);
396 static void its_encode_db_valid(struct its_cmd_block
*cmd
, bool db_valid
)
398 its_mask_encode(&cmd
->raw_cmd
[2], db_valid
, 0, 0);
401 static void its_encode_seq_num(struct its_cmd_block
*cmd
, u16 seq_num
)
403 its_mask_encode(&cmd
->raw_cmd
[0], seq_num
, 47, 32);
406 static void its_encode_its_list(struct its_cmd_block
*cmd
, u16 its_list
)
408 its_mask_encode(&cmd
->raw_cmd
[1], its_list
, 15, 0);
411 static void its_encode_vpt_addr(struct its_cmd_block
*cmd
, u64 vpt_pa
)
413 its_mask_encode(&cmd
->raw_cmd
[3], vpt_pa
>> 16, 51, 16);
416 static void its_encode_vpt_size(struct its_cmd_block
*cmd
, u8 vpt_size
)
418 its_mask_encode(&cmd
->raw_cmd
[3], vpt_size
, 4, 0);
421 static inline void its_fixup_cmd(struct its_cmd_block
*cmd
)
423 /* Let's fixup BE commands */
424 cmd
->raw_cmd
[0] = cpu_to_le64(cmd
->raw_cmd
[0]);
425 cmd
->raw_cmd
[1] = cpu_to_le64(cmd
->raw_cmd
[1]);
426 cmd
->raw_cmd
[2] = cpu_to_le64(cmd
->raw_cmd
[2]);
427 cmd
->raw_cmd
[3] = cpu_to_le64(cmd
->raw_cmd
[3]);
430 static struct its_collection
*its_build_mapd_cmd(struct its_node
*its
,
431 struct its_cmd_block
*cmd
,
432 struct its_cmd_desc
*desc
)
434 unsigned long itt_addr
;
435 u8 size
= ilog2(desc
->its_mapd_cmd
.dev
->nr_ites
);
437 itt_addr
= virt_to_phys(desc
->its_mapd_cmd
.dev
->itt
);
438 itt_addr
= ALIGN(itt_addr
, ITS_ITT_ALIGN
);
440 its_encode_cmd(cmd
, GITS_CMD_MAPD
);
441 its_encode_devid(cmd
, desc
->its_mapd_cmd
.dev
->device_id
);
442 its_encode_size(cmd
, size
- 1);
443 its_encode_itt(cmd
, itt_addr
);
444 its_encode_valid(cmd
, desc
->its_mapd_cmd
.valid
);
451 static struct its_collection
*its_build_mapc_cmd(struct its_node
*its
,
452 struct its_cmd_block
*cmd
,
453 struct its_cmd_desc
*desc
)
455 its_encode_cmd(cmd
, GITS_CMD_MAPC
);
456 its_encode_collection(cmd
, desc
->its_mapc_cmd
.col
->col_id
);
457 its_encode_target(cmd
, desc
->its_mapc_cmd
.col
->target_address
);
458 its_encode_valid(cmd
, desc
->its_mapc_cmd
.valid
);
462 return desc
->its_mapc_cmd
.col
;
465 static struct its_collection
*its_build_mapti_cmd(struct its_node
*its
,
466 struct its_cmd_block
*cmd
,
467 struct its_cmd_desc
*desc
)
469 struct its_collection
*col
;
471 col
= dev_event_to_col(desc
->its_mapti_cmd
.dev
,
472 desc
->its_mapti_cmd
.event_id
);
474 its_encode_cmd(cmd
, GITS_CMD_MAPTI
);
475 its_encode_devid(cmd
, desc
->its_mapti_cmd
.dev
->device_id
);
476 its_encode_event_id(cmd
, desc
->its_mapti_cmd
.event_id
);
477 its_encode_phys_id(cmd
, desc
->its_mapti_cmd
.phys_id
);
478 its_encode_collection(cmd
, col
->col_id
);
482 return valid_col(col
);
485 static struct its_collection
*its_build_movi_cmd(struct its_node
*its
,
486 struct its_cmd_block
*cmd
,
487 struct its_cmd_desc
*desc
)
489 struct its_collection
*col
;
491 col
= dev_event_to_col(desc
->its_movi_cmd
.dev
,
492 desc
->its_movi_cmd
.event_id
);
494 its_encode_cmd(cmd
, GITS_CMD_MOVI
);
495 its_encode_devid(cmd
, desc
->its_movi_cmd
.dev
->device_id
);
496 its_encode_event_id(cmd
, desc
->its_movi_cmd
.event_id
);
497 its_encode_collection(cmd
, desc
->its_movi_cmd
.col
->col_id
);
501 return valid_col(col
);
504 static struct its_collection
*its_build_discard_cmd(struct its_node
*its
,
505 struct its_cmd_block
*cmd
,
506 struct its_cmd_desc
*desc
)
508 struct its_collection
*col
;
510 col
= dev_event_to_col(desc
->its_discard_cmd
.dev
,
511 desc
->its_discard_cmd
.event_id
);
513 its_encode_cmd(cmd
, GITS_CMD_DISCARD
);
514 its_encode_devid(cmd
, desc
->its_discard_cmd
.dev
->device_id
);
515 its_encode_event_id(cmd
, desc
->its_discard_cmd
.event_id
);
519 return valid_col(col
);
522 static struct its_collection
*its_build_inv_cmd(struct its_node
*its
,
523 struct its_cmd_block
*cmd
,
524 struct its_cmd_desc
*desc
)
526 struct its_collection
*col
;
528 col
= dev_event_to_col(desc
->its_inv_cmd
.dev
,
529 desc
->its_inv_cmd
.event_id
);
531 its_encode_cmd(cmd
, GITS_CMD_INV
);
532 its_encode_devid(cmd
, desc
->its_inv_cmd
.dev
->device_id
);
533 its_encode_event_id(cmd
, desc
->its_inv_cmd
.event_id
);
537 return valid_col(col
);
540 static struct its_collection
*its_build_int_cmd(struct its_node
*its
,
541 struct its_cmd_block
*cmd
,
542 struct its_cmd_desc
*desc
)
544 struct its_collection
*col
;
546 col
= dev_event_to_col(desc
->its_int_cmd
.dev
,
547 desc
->its_int_cmd
.event_id
);
549 its_encode_cmd(cmd
, GITS_CMD_INT
);
550 its_encode_devid(cmd
, desc
->its_int_cmd
.dev
->device_id
);
551 its_encode_event_id(cmd
, desc
->its_int_cmd
.event_id
);
555 return valid_col(col
);
558 static struct its_collection
*its_build_clear_cmd(struct its_node
*its
,
559 struct its_cmd_block
*cmd
,
560 struct its_cmd_desc
*desc
)
562 struct its_collection
*col
;
564 col
= dev_event_to_col(desc
->its_clear_cmd
.dev
,
565 desc
->its_clear_cmd
.event_id
);
567 its_encode_cmd(cmd
, GITS_CMD_CLEAR
);
568 its_encode_devid(cmd
, desc
->its_clear_cmd
.dev
->device_id
);
569 its_encode_event_id(cmd
, desc
->its_clear_cmd
.event_id
);
573 return valid_col(col
);
576 static struct its_collection
*its_build_invall_cmd(struct its_node
*its
,
577 struct its_cmd_block
*cmd
,
578 struct its_cmd_desc
*desc
)
580 its_encode_cmd(cmd
, GITS_CMD_INVALL
);
581 its_encode_collection(cmd
, desc
->its_invall_cmd
.col
->col_id
);
588 static struct its_vpe
*its_build_vinvall_cmd(struct its_node
*its
,
589 struct its_cmd_block
*cmd
,
590 struct its_cmd_desc
*desc
)
592 its_encode_cmd(cmd
, GITS_CMD_VINVALL
);
593 its_encode_vpeid(cmd
, desc
->its_vinvall_cmd
.vpe
->vpe_id
);
597 return valid_vpe(its
, desc
->its_vinvall_cmd
.vpe
);
600 static struct its_vpe
*its_build_vmapp_cmd(struct its_node
*its
,
601 struct its_cmd_block
*cmd
,
602 struct its_cmd_desc
*desc
)
604 unsigned long vpt_addr
;
607 vpt_addr
= virt_to_phys(page_address(desc
->its_vmapp_cmd
.vpe
->vpt_page
));
608 target
= desc
->its_vmapp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
610 its_encode_cmd(cmd
, GITS_CMD_VMAPP
);
611 its_encode_vpeid(cmd
, desc
->its_vmapp_cmd
.vpe
->vpe_id
);
612 its_encode_valid(cmd
, desc
->its_vmapp_cmd
.valid
);
613 its_encode_target(cmd
, target
);
614 its_encode_vpt_addr(cmd
, vpt_addr
);
615 its_encode_vpt_size(cmd
, LPI_NRBITS
- 1);
619 return valid_vpe(its
, desc
->its_vmapp_cmd
.vpe
);
622 static struct its_vpe
*its_build_vmapti_cmd(struct its_node
*its
,
623 struct its_cmd_block
*cmd
,
624 struct its_cmd_desc
*desc
)
628 if (desc
->its_vmapti_cmd
.db_enabled
)
629 db
= desc
->its_vmapti_cmd
.vpe
->vpe_db_lpi
;
633 its_encode_cmd(cmd
, GITS_CMD_VMAPTI
);
634 its_encode_devid(cmd
, desc
->its_vmapti_cmd
.dev
->device_id
);
635 its_encode_vpeid(cmd
, desc
->its_vmapti_cmd
.vpe
->vpe_id
);
636 its_encode_event_id(cmd
, desc
->its_vmapti_cmd
.event_id
);
637 its_encode_db_phys_id(cmd
, db
);
638 its_encode_virt_id(cmd
, desc
->its_vmapti_cmd
.virt_id
);
642 return valid_vpe(its
, desc
->its_vmapti_cmd
.vpe
);
645 static struct its_vpe
*its_build_vmovi_cmd(struct its_node
*its
,
646 struct its_cmd_block
*cmd
,
647 struct its_cmd_desc
*desc
)
651 if (desc
->its_vmovi_cmd
.db_enabled
)
652 db
= desc
->its_vmovi_cmd
.vpe
->vpe_db_lpi
;
656 its_encode_cmd(cmd
, GITS_CMD_VMOVI
);
657 its_encode_devid(cmd
, desc
->its_vmovi_cmd
.dev
->device_id
);
658 its_encode_vpeid(cmd
, desc
->its_vmovi_cmd
.vpe
->vpe_id
);
659 its_encode_event_id(cmd
, desc
->its_vmovi_cmd
.event_id
);
660 its_encode_db_phys_id(cmd
, db
);
661 its_encode_db_valid(cmd
, true);
665 return valid_vpe(its
, desc
->its_vmovi_cmd
.vpe
);
668 static struct its_vpe
*its_build_vmovp_cmd(struct its_node
*its
,
669 struct its_cmd_block
*cmd
,
670 struct its_cmd_desc
*desc
)
674 target
= desc
->its_vmovp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
675 its_encode_cmd(cmd
, GITS_CMD_VMOVP
);
676 its_encode_seq_num(cmd
, desc
->its_vmovp_cmd
.seq_num
);
677 its_encode_its_list(cmd
, desc
->its_vmovp_cmd
.its_list
);
678 its_encode_vpeid(cmd
, desc
->its_vmovp_cmd
.vpe
->vpe_id
);
679 its_encode_target(cmd
, target
);
683 return valid_vpe(its
, desc
->its_vmovp_cmd
.vpe
);
686 static u64
its_cmd_ptr_to_offset(struct its_node
*its
,
687 struct its_cmd_block
*ptr
)
689 return (ptr
- its
->cmd_base
) * sizeof(*ptr
);
692 static int its_queue_full(struct its_node
*its
)
697 widx
= its
->cmd_write
- its
->cmd_base
;
698 ridx
= readl_relaxed(its
->base
+ GITS_CREADR
) / sizeof(struct its_cmd_block
);
700 /* This is incredibly unlikely to happen, unless the ITS locks up. */
701 if (((widx
+ 1) % ITS_CMD_QUEUE_NR_ENTRIES
) == ridx
)
707 static struct its_cmd_block
*its_allocate_entry(struct its_node
*its
)
709 struct its_cmd_block
*cmd
;
710 u32 count
= 1000000; /* 1s! */
712 while (its_queue_full(its
)) {
715 pr_err_ratelimited("ITS queue not draining\n");
722 cmd
= its
->cmd_write
++;
724 /* Handle queue wrapping */
725 if (its
->cmd_write
== (its
->cmd_base
+ ITS_CMD_QUEUE_NR_ENTRIES
))
726 its
->cmd_write
= its
->cmd_base
;
737 static struct its_cmd_block
*its_post_commands(struct its_node
*its
)
739 u64 wr
= its_cmd_ptr_to_offset(its
, its
->cmd_write
);
741 writel_relaxed(wr
, its
->base
+ GITS_CWRITER
);
743 return its
->cmd_write
;
746 static void its_flush_cmd(struct its_node
*its
, struct its_cmd_block
*cmd
)
749 * Make sure the commands written to memory are observable by
752 if (its
->flags
& ITS_FLAGS_CMDQ_NEEDS_FLUSHING
)
753 gic_flush_dcache_to_poc(cmd
, sizeof(*cmd
));
758 static int its_wait_for_range_completion(struct its_node
*its
,
760 struct its_cmd_block
*to
)
762 u64 rd_idx
, to_idx
, linear_idx
;
763 u32 count
= 1000000; /* 1s! */
765 /* Linearize to_idx if the command set has wrapped around */
766 to_idx
= its_cmd_ptr_to_offset(its
, to
);
767 if (to_idx
< prev_idx
)
768 to_idx
+= ITS_CMD_QUEUE_SZ
;
770 linear_idx
= prev_idx
;
775 rd_idx
= readl_relaxed(its
->base
+ GITS_CREADR
);
778 * Compute the read pointer progress, taking the
779 * potential wrap-around into account.
781 delta
= rd_idx
- prev_idx
;
782 if (rd_idx
< prev_idx
)
783 delta
+= ITS_CMD_QUEUE_SZ
;
786 if (linear_idx
>= to_idx
)
791 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
803 /* Warning, macro hell follows */
804 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
805 void name(struct its_node *its, \
807 struct its_cmd_desc *desc) \
809 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
810 synctype *sync_obj; \
811 unsigned long flags; \
814 raw_spin_lock_irqsave(&its->lock, flags); \
816 cmd = its_allocate_entry(its); \
817 if (!cmd) { /* We're soooooo screewed... */ \
818 raw_spin_unlock_irqrestore(&its->lock, flags); \
821 sync_obj = builder(its, cmd, desc); \
822 its_flush_cmd(its, cmd); \
825 sync_cmd = its_allocate_entry(its); \
829 buildfn(its, sync_cmd, sync_obj); \
830 its_flush_cmd(its, sync_cmd); \
834 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
835 next_cmd = its_post_commands(its); \
836 raw_spin_unlock_irqrestore(&its->lock, flags); \
838 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
839 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
842 static void its_build_sync_cmd(struct its_node
*its
,
843 struct its_cmd_block
*sync_cmd
,
844 struct its_collection
*sync_col
)
846 its_encode_cmd(sync_cmd
, GITS_CMD_SYNC
);
847 its_encode_target(sync_cmd
, sync_col
->target_address
);
849 its_fixup_cmd(sync_cmd
);
852 static BUILD_SINGLE_CMD_FUNC(its_send_single_command
, its_cmd_builder_t
,
853 struct its_collection
, its_build_sync_cmd
)
855 static void its_build_vsync_cmd(struct its_node
*its
,
856 struct its_cmd_block
*sync_cmd
,
857 struct its_vpe
*sync_vpe
)
859 its_encode_cmd(sync_cmd
, GITS_CMD_VSYNC
);
860 its_encode_vpeid(sync_cmd
, sync_vpe
->vpe_id
);
862 its_fixup_cmd(sync_cmd
);
865 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand
, its_cmd_vbuilder_t
,
866 struct its_vpe
, its_build_vsync_cmd
)
868 static void its_send_int(struct its_device
*dev
, u32 event_id
)
870 struct its_cmd_desc desc
;
872 desc
.its_int_cmd
.dev
= dev
;
873 desc
.its_int_cmd
.event_id
= event_id
;
875 its_send_single_command(dev
->its
, its_build_int_cmd
, &desc
);
878 static void its_send_clear(struct its_device
*dev
, u32 event_id
)
880 struct its_cmd_desc desc
;
882 desc
.its_clear_cmd
.dev
= dev
;
883 desc
.its_clear_cmd
.event_id
= event_id
;
885 its_send_single_command(dev
->its
, its_build_clear_cmd
, &desc
);
888 static void its_send_inv(struct its_device
*dev
, u32 event_id
)
890 struct its_cmd_desc desc
;
892 desc
.its_inv_cmd
.dev
= dev
;
893 desc
.its_inv_cmd
.event_id
= event_id
;
895 its_send_single_command(dev
->its
, its_build_inv_cmd
, &desc
);
898 static void its_send_mapd(struct its_device
*dev
, int valid
)
900 struct its_cmd_desc desc
;
902 desc
.its_mapd_cmd
.dev
= dev
;
903 desc
.its_mapd_cmd
.valid
= !!valid
;
905 its_send_single_command(dev
->its
, its_build_mapd_cmd
, &desc
);
908 static void its_send_mapc(struct its_node
*its
, struct its_collection
*col
,
911 struct its_cmd_desc desc
;
913 desc
.its_mapc_cmd
.col
= col
;
914 desc
.its_mapc_cmd
.valid
= !!valid
;
916 its_send_single_command(its
, its_build_mapc_cmd
, &desc
);
919 static void its_send_mapti(struct its_device
*dev
, u32 irq_id
, u32 id
)
921 struct its_cmd_desc desc
;
923 desc
.its_mapti_cmd
.dev
= dev
;
924 desc
.its_mapti_cmd
.phys_id
= irq_id
;
925 desc
.its_mapti_cmd
.event_id
= id
;
927 its_send_single_command(dev
->its
, its_build_mapti_cmd
, &desc
);
930 static void its_send_movi(struct its_device
*dev
,
931 struct its_collection
*col
, u32 id
)
933 struct its_cmd_desc desc
;
935 desc
.its_movi_cmd
.dev
= dev
;
936 desc
.its_movi_cmd
.col
= col
;
937 desc
.its_movi_cmd
.event_id
= id
;
939 its_send_single_command(dev
->its
, its_build_movi_cmd
, &desc
);
942 static void its_send_discard(struct its_device
*dev
, u32 id
)
944 struct its_cmd_desc desc
;
946 desc
.its_discard_cmd
.dev
= dev
;
947 desc
.its_discard_cmd
.event_id
= id
;
949 its_send_single_command(dev
->its
, its_build_discard_cmd
, &desc
);
952 static void its_send_invall(struct its_node
*its
, struct its_collection
*col
)
954 struct its_cmd_desc desc
;
956 desc
.its_invall_cmd
.col
= col
;
958 its_send_single_command(its
, its_build_invall_cmd
, &desc
);
961 static void its_send_vmapti(struct its_device
*dev
, u32 id
)
963 struct its_vlpi_map
*map
= &dev
->event_map
.vlpi_maps
[id
];
964 struct its_cmd_desc desc
;
966 desc
.its_vmapti_cmd
.vpe
= map
->vpe
;
967 desc
.its_vmapti_cmd
.dev
= dev
;
968 desc
.its_vmapti_cmd
.virt_id
= map
->vintid
;
969 desc
.its_vmapti_cmd
.event_id
= id
;
970 desc
.its_vmapti_cmd
.db_enabled
= map
->db_enabled
;
972 its_send_single_vcommand(dev
->its
, its_build_vmapti_cmd
, &desc
);
975 static void its_send_vmovi(struct its_device
*dev
, u32 id
)
977 struct its_vlpi_map
*map
= &dev
->event_map
.vlpi_maps
[id
];
978 struct its_cmd_desc desc
;
980 desc
.its_vmovi_cmd
.vpe
= map
->vpe
;
981 desc
.its_vmovi_cmd
.dev
= dev
;
982 desc
.its_vmovi_cmd
.event_id
= id
;
983 desc
.its_vmovi_cmd
.db_enabled
= map
->db_enabled
;
985 its_send_single_vcommand(dev
->its
, its_build_vmovi_cmd
, &desc
);
988 static void its_send_vmapp(struct its_node
*its
,
989 struct its_vpe
*vpe
, bool valid
)
991 struct its_cmd_desc desc
;
993 desc
.its_vmapp_cmd
.vpe
= vpe
;
994 desc
.its_vmapp_cmd
.valid
= valid
;
995 desc
.its_vmapp_cmd
.col
= &its
->collections
[vpe
->col_idx
];
997 its_send_single_vcommand(its
, its_build_vmapp_cmd
, &desc
);
1000 static void its_send_vmovp(struct its_vpe
*vpe
)
1002 struct its_cmd_desc desc
= {};
1003 struct its_node
*its
;
1004 unsigned long flags
;
1005 int col_id
= vpe
->col_idx
;
1007 desc
.its_vmovp_cmd
.vpe
= vpe
;
1009 if (!its_list_map
) {
1010 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
1011 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
1012 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
1017 * Yet another marvel of the architecture. If using the
1018 * its_list "feature", we need to make sure that all ITSs
1019 * receive all VMOVP commands in the same order. The only way
1020 * to guarantee this is to make vmovp a serialization point.
1024 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1026 desc
.its_vmovp_cmd
.seq_num
= vmovp_seq_num
++;
1027 desc
.its_vmovp_cmd
.its_list
= get_its_list(vpe
->its_vm
);
1030 list_for_each_entry(its
, &its_nodes
, entry
) {
1034 if (!vpe
->its_vm
->vlpi_count
[its
->list_nr
])
1037 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
1038 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
1041 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1044 static void its_send_vinvall(struct its_node
*its
, struct its_vpe
*vpe
)
1046 struct its_cmd_desc desc
;
1048 desc
.its_vinvall_cmd
.vpe
= vpe
;
1049 its_send_single_vcommand(its
, its_build_vinvall_cmd
, &desc
);
1053 * irqchip functions - assumes MSI, mostly.
1056 static inline u32
its_get_event_id(struct irq_data
*d
)
1058 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1059 return d
->hwirq
- its_dev
->event_map
.lpi_base
;
1062 static void lpi_write_config(struct irq_data
*d
, u8 clr
, u8 set
)
1064 irq_hw_number_t hwirq
;
1065 struct page
*prop_page
;
1068 if (irqd_is_forwarded_to_vcpu(d
)) {
1069 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1070 u32 event
= its_get_event_id(d
);
1071 struct its_vlpi_map
*map
;
1073 prop_page
= its_dev
->event_map
.vm
->vprop_page
;
1074 map
= &its_dev
->event_map
.vlpi_maps
[event
];
1075 hwirq
= map
->vintid
;
1077 /* Remember the updated property */
1078 map
->properties
&= ~clr
;
1079 map
->properties
|= set
| LPI_PROP_GROUP1
;
1081 prop_page
= gic_rdists
->prop_page
;
1085 cfg
= page_address(prop_page
) + hwirq
- 8192;
1087 *cfg
|= set
| LPI_PROP_GROUP1
;
1090 * Make the above write visible to the redistributors.
1091 * And yes, we're flushing exactly: One. Single. Byte.
1094 if (gic_rdists
->flags
& RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
)
1095 gic_flush_dcache_to_poc(cfg
, sizeof(*cfg
));
1100 static void lpi_update_config(struct irq_data
*d
, u8 clr
, u8 set
)
1102 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1104 lpi_write_config(d
, clr
, set
);
1105 its_send_inv(its_dev
, its_get_event_id(d
));
1108 static void its_vlpi_set_doorbell(struct irq_data
*d
, bool enable
)
1110 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1111 u32 event
= its_get_event_id(d
);
1113 if (its_dev
->event_map
.vlpi_maps
[event
].db_enabled
== enable
)
1116 its_dev
->event_map
.vlpi_maps
[event
].db_enabled
= enable
;
1119 * More fun with the architecture:
1121 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1122 * value or to 1023, depending on the enable bit. But that
1123 * would be issueing a mapping for an /existing/ DevID+EventID
1124 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1125 * to the /same/ vPE, using this opportunity to adjust the
1126 * doorbell. Mouahahahaha. We loves it, Precious.
1128 its_send_vmovi(its_dev
, event
);
1131 static void its_mask_irq(struct irq_data
*d
)
1133 if (irqd_is_forwarded_to_vcpu(d
))
1134 its_vlpi_set_doorbell(d
, false);
1136 lpi_update_config(d
, LPI_PROP_ENABLED
, 0);
1139 static void its_unmask_irq(struct irq_data
*d
)
1141 if (irqd_is_forwarded_to_vcpu(d
))
1142 its_vlpi_set_doorbell(d
, true);
1144 lpi_update_config(d
, 0, LPI_PROP_ENABLED
);
1147 static int its_set_affinity(struct irq_data
*d
, const struct cpumask
*mask_val
,
1151 const struct cpumask
*cpu_mask
= cpu_online_mask
;
1152 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1153 struct its_collection
*target_col
;
1154 u32 id
= its_get_event_id(d
);
1156 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1157 if (irqd_is_forwarded_to_vcpu(d
))
1160 /* lpi cannot be routed to a redistributor that is on a foreign node */
1161 if (its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
1162 if (its_dev
->its
->numa_node
>= 0) {
1163 cpu_mask
= cpumask_of_node(its_dev
->its
->numa_node
);
1164 if (!cpumask_intersects(mask_val
, cpu_mask
))
1169 cpu
= cpumask_any_and(mask_val
, cpu_mask
);
1171 if (cpu
>= nr_cpu_ids
)
1174 /* don't set the affinity when the target cpu is same as current one */
1175 if (cpu
!= its_dev
->event_map
.col_map
[id
]) {
1176 target_col
= &its_dev
->its
->collections
[cpu
];
1177 its_send_movi(its_dev
, target_col
, id
);
1178 its_dev
->event_map
.col_map
[id
] = cpu
;
1179 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
1182 return IRQ_SET_MASK_OK_DONE
;
1185 static u64
its_irq_get_msi_base(struct its_device
*its_dev
)
1187 struct its_node
*its
= its_dev
->its
;
1189 return its
->phys_base
+ GITS_TRANSLATER
;
1192 static void its_irq_compose_msi_msg(struct irq_data
*d
, struct msi_msg
*msg
)
1194 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1195 struct its_node
*its
;
1199 addr
= its
->get_msi_base(its_dev
);
1201 msg
->address_lo
= lower_32_bits(addr
);
1202 msg
->address_hi
= upper_32_bits(addr
);
1203 msg
->data
= its_get_event_id(d
);
1205 iommu_dma_map_msi_msg(d
->irq
, msg
);
1208 static int its_irq_set_irqchip_state(struct irq_data
*d
,
1209 enum irqchip_irq_state which
,
1212 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1213 u32 event
= its_get_event_id(d
);
1215 if (which
!= IRQCHIP_STATE_PENDING
)
1219 its_send_int(its_dev
, event
);
1221 its_send_clear(its_dev
, event
);
1226 static void its_map_vm(struct its_node
*its
, struct its_vm
*vm
)
1228 unsigned long flags
;
1230 /* Not using the ITS list? Everything is always mapped. */
1234 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1237 * If the VM wasn't mapped yet, iterate over the vpes and get
1240 vm
->vlpi_count
[its
->list_nr
]++;
1242 if (vm
->vlpi_count
[its
->list_nr
] == 1) {
1245 for (i
= 0; i
< vm
->nr_vpes
; i
++) {
1246 struct its_vpe
*vpe
= vm
->vpes
[i
];
1247 struct irq_data
*d
= irq_get_irq_data(vpe
->irq
);
1249 /* Map the VPE to the first possible CPU */
1250 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
1251 its_send_vmapp(its
, vpe
, true);
1252 its_send_vinvall(its
, vpe
);
1253 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
1257 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1260 static void its_unmap_vm(struct its_node
*its
, struct its_vm
*vm
)
1262 unsigned long flags
;
1264 /* Not using the ITS list? Everything is always mapped. */
1268 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1270 if (!--vm
->vlpi_count
[its
->list_nr
]) {
1273 for (i
= 0; i
< vm
->nr_vpes
; i
++)
1274 its_send_vmapp(its
, vm
->vpes
[i
], false);
1277 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1280 static int its_vlpi_map(struct irq_data
*d
, struct its_cmd_info
*info
)
1282 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1283 u32 event
= its_get_event_id(d
);
1289 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1291 if (!its_dev
->event_map
.vm
) {
1292 struct its_vlpi_map
*maps
;
1294 maps
= kcalloc(its_dev
->event_map
.nr_lpis
, sizeof(*maps
),
1301 its_dev
->event_map
.vm
= info
->map
->vm
;
1302 its_dev
->event_map
.vlpi_maps
= maps
;
1303 } else if (its_dev
->event_map
.vm
!= info
->map
->vm
) {
1308 /* Get our private copy of the mapping information */
1309 its_dev
->event_map
.vlpi_maps
[event
] = *info
->map
;
1311 if (irqd_is_forwarded_to_vcpu(d
)) {
1312 /* Already mapped, move it around */
1313 its_send_vmovi(its_dev
, event
);
1315 /* Ensure all the VPEs are mapped on this ITS */
1316 its_map_vm(its_dev
->its
, info
->map
->vm
);
1319 * Flag the interrupt as forwarded so that we can
1320 * start poking the virtual property table.
1322 irqd_set_forwarded_to_vcpu(d
);
1324 /* Write out the property to the prop table */
1325 lpi_write_config(d
, 0xff, info
->map
->properties
);
1327 /* Drop the physical mapping */
1328 its_send_discard(its_dev
, event
);
1330 /* and install the virtual one */
1331 its_send_vmapti(its_dev
, event
);
1333 /* Increment the number of VLPIs */
1334 its_dev
->event_map
.nr_vlpis
++;
1338 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1342 static int its_vlpi_get(struct irq_data
*d
, struct its_cmd_info
*info
)
1344 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1345 u32 event
= its_get_event_id(d
);
1348 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1350 if (!its_dev
->event_map
.vm
||
1351 !its_dev
->event_map
.vlpi_maps
[event
].vm
) {
1356 /* Copy our mapping information to the incoming request */
1357 *info
->map
= its_dev
->event_map
.vlpi_maps
[event
];
1360 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1364 static int its_vlpi_unmap(struct irq_data
*d
)
1366 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1367 u32 event
= its_get_event_id(d
);
1370 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1372 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
)) {
1377 /* Drop the virtual mapping */
1378 its_send_discard(its_dev
, event
);
1380 /* and restore the physical one */
1381 irqd_clr_forwarded_to_vcpu(d
);
1382 its_send_mapti(its_dev
, d
->hwirq
, event
);
1383 lpi_update_config(d
, 0xff, (LPI_PROP_DEFAULT_PRIO
|
1387 /* Potentially unmap the VM from this ITS */
1388 its_unmap_vm(its_dev
->its
, its_dev
->event_map
.vm
);
1391 * Drop the refcount and make the device available again if
1392 * this was the last VLPI.
1394 if (!--its_dev
->event_map
.nr_vlpis
) {
1395 its_dev
->event_map
.vm
= NULL
;
1396 kfree(its_dev
->event_map
.vlpi_maps
);
1400 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1404 static int its_vlpi_prop_update(struct irq_data
*d
, struct its_cmd_info
*info
)
1406 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1408 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
))
1411 if (info
->cmd_type
== PROP_UPDATE_AND_INV_VLPI
)
1412 lpi_update_config(d
, 0xff, info
->config
);
1414 lpi_write_config(d
, 0xff, info
->config
);
1415 its_vlpi_set_doorbell(d
, !!(info
->config
& LPI_PROP_ENABLED
));
1420 static int its_irq_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
1422 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1423 struct its_cmd_info
*info
= vcpu_info
;
1426 if (!its_dev
->its
->is_v4
)
1429 /* Unmap request? */
1431 return its_vlpi_unmap(d
);
1433 switch (info
->cmd_type
) {
1435 return its_vlpi_map(d
, info
);
1438 return its_vlpi_get(d
, info
);
1440 case PROP_UPDATE_VLPI
:
1441 case PROP_UPDATE_AND_INV_VLPI
:
1442 return its_vlpi_prop_update(d
, info
);
1449 static struct irq_chip its_irq_chip
= {
1451 .irq_mask
= its_mask_irq
,
1452 .irq_unmask
= its_unmask_irq
,
1453 .irq_eoi
= irq_chip_eoi_parent
,
1454 .irq_set_affinity
= its_set_affinity
,
1455 .irq_compose_msi_msg
= its_irq_compose_msi_msg
,
1456 .irq_set_irqchip_state
= its_irq_set_irqchip_state
,
1457 .irq_set_vcpu_affinity
= its_irq_set_vcpu_affinity
,
1462 * How we allocate LPIs:
1464 * lpi_range_list contains ranges of LPIs that are to available to
1465 * allocate from. To allocate LPIs, just pick the first range that
1466 * fits the required allocation, and reduce it by the required
1467 * amount. Once empty, remove the range from the list.
1469 * To free a range of LPIs, add a free range to the list, sort it and
1470 * merge the result if the new range happens to be adjacent to an
1471 * already free block.
1473 * The consequence of the above is that allocation is cost is low, but
1474 * freeing is expensive. We assumes that freeing rarely occurs.
1476 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1478 static DEFINE_MUTEX(lpi_range_lock
);
1479 static LIST_HEAD(lpi_range_list
);
1482 struct list_head entry
;
1487 static struct lpi_range
*mk_lpi_range(u32 base
, u32 span
)
1489 struct lpi_range
*range
;
1491 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
1493 INIT_LIST_HEAD(&range
->entry
);
1494 range
->base_id
= base
;
1501 static int lpi_range_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1503 struct lpi_range
*ra
, *rb
;
1505 ra
= container_of(a
, struct lpi_range
, entry
);
1506 rb
= container_of(b
, struct lpi_range
, entry
);
1508 return ra
->base_id
- rb
->base_id
;
1511 static void merge_lpi_ranges(void)
1513 struct lpi_range
*range
, *tmp
;
1515 list_for_each_entry_safe(range
, tmp
, &lpi_range_list
, entry
) {
1516 if (!list_is_last(&range
->entry
, &lpi_range_list
) &&
1517 (tmp
->base_id
== (range
->base_id
+ range
->span
))) {
1518 tmp
->base_id
= range
->base_id
;
1519 tmp
->span
+= range
->span
;
1520 list_del(&range
->entry
);
1526 static int alloc_lpi_range(u32 nr_lpis
, u32
*base
)
1528 struct lpi_range
*range
, *tmp
;
1531 mutex_lock(&lpi_range_lock
);
1533 list_for_each_entry_safe(range
, tmp
, &lpi_range_list
, entry
) {
1534 if (range
->span
>= nr_lpis
) {
1535 *base
= range
->base_id
;
1536 range
->base_id
+= nr_lpis
;
1537 range
->span
-= nr_lpis
;
1539 if (range
->span
== 0) {
1540 list_del(&range
->entry
);
1549 mutex_unlock(&lpi_range_lock
);
1551 pr_debug("ITS: alloc %u:%u\n", *base
, nr_lpis
);
1555 static int free_lpi_range(u32 base
, u32 nr_lpis
)
1557 struct lpi_range
*new;
1560 mutex_lock(&lpi_range_lock
);
1562 new = mk_lpi_range(base
, nr_lpis
);
1568 list_add(&new->entry
, &lpi_range_list
);
1569 list_sort(NULL
, &lpi_range_list
, lpi_range_cmp
);
1572 mutex_unlock(&lpi_range_lock
);
1576 static int __init
its_lpi_init(u32 id_bits
)
1578 u32 lpis
= (1UL << id_bits
) - 8192;
1582 numlpis
= 1UL << GICD_TYPER_NUM_LPIS(gic_rdists
->gicd_typer
);
1584 if (numlpis
> 2 && !WARN_ON(numlpis
> lpis
)) {
1586 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1591 * Initializing the allocator is just the same as freeing the
1592 * full range of LPIs.
1594 err
= free_lpi_range(8192, lpis
);
1595 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis
);
1599 static unsigned long *its_lpi_alloc(int nr_irqs
, u32
*base
, int *nr_ids
)
1601 unsigned long *bitmap
= NULL
;
1605 err
= alloc_lpi_range(nr_irqs
, base
);
1610 } while (nr_irqs
> 0);
1618 bitmap
= kcalloc(BITS_TO_LONGS(nr_irqs
), sizeof (long), GFP_ATOMIC
);
1626 *base
= *nr_ids
= 0;
1631 static void its_lpi_free(unsigned long *bitmap
, u32 base
, u32 nr_ids
)
1633 WARN_ON(free_lpi_range(base
, nr_ids
));
1637 static struct page
*its_allocate_prop_table(gfp_t gfp_flags
)
1639 struct page
*prop_page
;
1641 prop_page
= alloc_pages(gfp_flags
, get_order(LPI_PROPBASE_SZ
));
1645 /* Priority 0xa0, Group-1, disabled */
1646 memset(page_address(prop_page
),
1647 LPI_PROP_DEFAULT_PRIO
| LPI_PROP_GROUP1
,
1650 /* Make sure the GIC will observe the written configuration */
1651 gic_flush_dcache_to_poc(page_address(prop_page
), LPI_PROPBASE_SZ
);
1656 static void its_free_prop_table(struct page
*prop_page
)
1658 free_pages((unsigned long)page_address(prop_page
),
1659 get_order(LPI_PROPBASE_SZ
));
1662 static int __init
its_alloc_lpi_tables(void)
1666 lpi_id_bits
= min_t(u32
, GICD_TYPER_ID_BITS(gic_rdists
->gicd_typer
),
1667 ITS_MAX_LPI_NRBITS
);
1668 gic_rdists
->prop_page
= its_allocate_prop_table(GFP_NOWAIT
);
1669 if (!gic_rdists
->prop_page
) {
1670 pr_err("Failed to allocate PROPBASE\n");
1674 paddr
= page_to_phys(gic_rdists
->prop_page
);
1675 pr_info("GIC: using LPI property table @%pa\n", &paddr
);
1677 return its_lpi_init(lpi_id_bits
);
1680 static const char *its_base_type_string
[] = {
1681 [GITS_BASER_TYPE_DEVICE
] = "Devices",
1682 [GITS_BASER_TYPE_VCPU
] = "Virtual CPUs",
1683 [GITS_BASER_TYPE_RESERVED3
] = "Reserved (3)",
1684 [GITS_BASER_TYPE_COLLECTION
] = "Interrupt Collections",
1685 [GITS_BASER_TYPE_RESERVED5
] = "Reserved (5)",
1686 [GITS_BASER_TYPE_RESERVED6
] = "Reserved (6)",
1687 [GITS_BASER_TYPE_RESERVED7
] = "Reserved (7)",
1690 static u64
its_read_baser(struct its_node
*its
, struct its_baser
*baser
)
1692 u32 idx
= baser
- its
->tables
;
1694 return gits_read_baser(its
->base
+ GITS_BASER
+ (idx
<< 3));
1697 static void its_write_baser(struct its_node
*its
, struct its_baser
*baser
,
1700 u32 idx
= baser
- its
->tables
;
1702 gits_write_baser(val
, its
->base
+ GITS_BASER
+ (idx
<< 3));
1703 baser
->val
= its_read_baser(its
, baser
);
1706 static int its_setup_baser(struct its_node
*its
, struct its_baser
*baser
,
1707 u64 cache
, u64 shr
, u32 psz
, u32 order
,
1710 u64 val
= its_read_baser(its
, baser
);
1711 u64 esz
= GITS_BASER_ENTRY_SIZE(val
);
1712 u64 type
= GITS_BASER_TYPE(val
);
1713 u64 baser_phys
, tmp
;
1718 alloc_pages
= (PAGE_ORDER_TO_SIZE(order
) / psz
);
1719 if (alloc_pages
> GITS_BASER_PAGES_MAX
) {
1720 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1721 &its
->phys_base
, its_base_type_string
[type
],
1722 alloc_pages
, GITS_BASER_PAGES_MAX
);
1723 alloc_pages
= GITS_BASER_PAGES_MAX
;
1724 order
= get_order(GITS_BASER_PAGES_MAX
* psz
);
1727 base
= (void *)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, order
);
1731 baser_phys
= virt_to_phys(base
);
1733 /* Check if the physical address of the memory is above 48bits */
1734 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES
) && (baser_phys
>> 48)) {
1736 /* 52bit PA is supported only when PageSize=64K */
1737 if (psz
!= SZ_64K
) {
1738 pr_err("ITS: no 52bit PA support when psz=%d\n", psz
);
1739 free_pages((unsigned long)base
, order
);
1743 /* Convert 52bit PA to 48bit field */
1744 baser_phys
= GITS_BASER_PHYS_52_to_48(baser_phys
);
1749 (type
<< GITS_BASER_TYPE_SHIFT
) |
1750 ((esz
- 1) << GITS_BASER_ENTRY_SIZE_SHIFT
) |
1751 ((alloc_pages
- 1) << GITS_BASER_PAGES_SHIFT
) |
1756 val
|= indirect
? GITS_BASER_INDIRECT
: 0x0;
1760 val
|= GITS_BASER_PAGE_SIZE_4K
;
1763 val
|= GITS_BASER_PAGE_SIZE_16K
;
1766 val
|= GITS_BASER_PAGE_SIZE_64K
;
1770 its_write_baser(its
, baser
, val
);
1773 if ((val
^ tmp
) & GITS_BASER_SHAREABILITY_MASK
) {
1775 * Shareability didn't stick. Just use
1776 * whatever the read reported, which is likely
1777 * to be the only thing this redistributor
1778 * supports. If that's zero, make it
1779 * non-cacheable as well.
1781 shr
= tmp
& GITS_BASER_SHAREABILITY_MASK
;
1783 cache
= GITS_BASER_nC
;
1784 gic_flush_dcache_to_poc(base
, PAGE_ORDER_TO_SIZE(order
));
1789 if ((val
^ tmp
) & GITS_BASER_PAGE_SIZE_MASK
) {
1791 * Page size didn't stick. Let's try a smaller
1792 * size and retry. If we reach 4K, then
1793 * something is horribly wrong...
1795 free_pages((unsigned long)base
, order
);
1801 goto retry_alloc_baser
;
1804 goto retry_alloc_baser
;
1809 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1810 &its
->phys_base
, its_base_type_string
[type
],
1812 free_pages((unsigned long)base
, order
);
1816 baser
->order
= order
;
1819 tmp
= indirect
? GITS_LVL1_ENTRY_SIZE
: esz
;
1821 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1822 &its
->phys_base
, (int)(PAGE_ORDER_TO_SIZE(order
) / (int)tmp
),
1823 its_base_type_string
[type
],
1824 (unsigned long)virt_to_phys(base
),
1825 indirect
? "indirect" : "flat", (int)esz
,
1826 psz
/ SZ_1K
, (int)shr
>> GITS_BASER_SHAREABILITY_SHIFT
);
1831 static bool its_parse_indirect_baser(struct its_node
*its
,
1832 struct its_baser
*baser
,
1833 u32 psz
, u32
*order
, u32 ids
)
1835 u64 tmp
= its_read_baser(its
, baser
);
1836 u64 type
= GITS_BASER_TYPE(tmp
);
1837 u64 esz
= GITS_BASER_ENTRY_SIZE(tmp
);
1838 u64 val
= GITS_BASER_InnerShareable
| GITS_BASER_RaWaWb
;
1839 u32 new_order
= *order
;
1840 bool indirect
= false;
1842 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1843 if ((esz
<< ids
) > (psz
* 2)) {
1845 * Find out whether hw supports a single or two-level table by
1846 * table by reading bit at offset '62' after writing '1' to it.
1848 its_write_baser(its
, baser
, val
| GITS_BASER_INDIRECT
);
1849 indirect
= !!(baser
->val
& GITS_BASER_INDIRECT
);
1853 * The size of the lvl2 table is equal to ITS page size
1854 * which is 'psz'. For computing lvl1 table size,
1855 * subtract ID bits that sparse lvl2 table from 'ids'
1856 * which is reported by ITS hardware times lvl1 table
1859 ids
-= ilog2(psz
/ (int)esz
);
1860 esz
= GITS_LVL1_ENTRY_SIZE
;
1865 * Allocate as many entries as required to fit the
1866 * range of device IDs that the ITS can grok... The ID
1867 * space being incredibly sparse, this results in a
1868 * massive waste of memory if two-level device table
1869 * feature is not supported by hardware.
1871 new_order
= max_t(u32
, get_order(esz
<< ids
), new_order
);
1872 if (new_order
>= MAX_ORDER
) {
1873 new_order
= MAX_ORDER
- 1;
1874 ids
= ilog2(PAGE_ORDER_TO_SIZE(new_order
) / (int)esz
);
1875 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1876 &its
->phys_base
, its_base_type_string
[type
],
1877 its
->device_ids
, ids
);
1885 static void its_free_tables(struct its_node
*its
)
1889 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
1890 if (its
->tables
[i
].base
) {
1891 free_pages((unsigned long)its
->tables
[i
].base
,
1892 its
->tables
[i
].order
);
1893 its
->tables
[i
].base
= NULL
;
1898 static int its_alloc_tables(struct its_node
*its
)
1900 u64 shr
= GITS_BASER_InnerShareable
;
1901 u64 cache
= GITS_BASER_RaWaWb
;
1905 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_22375
)
1906 /* erratum 24313: ignore memory access type */
1907 cache
= GITS_BASER_nCnB
;
1909 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
1910 struct its_baser
*baser
= its
->tables
+ i
;
1911 u64 val
= its_read_baser(its
, baser
);
1912 u64 type
= GITS_BASER_TYPE(val
);
1913 u32 order
= get_order(psz
);
1914 bool indirect
= false;
1917 case GITS_BASER_TYPE_NONE
:
1920 case GITS_BASER_TYPE_DEVICE
:
1921 indirect
= its_parse_indirect_baser(its
, baser
,
1926 case GITS_BASER_TYPE_VCPU
:
1927 indirect
= its_parse_indirect_baser(its
, baser
,
1929 ITS_MAX_VPEID_BITS
);
1933 err
= its_setup_baser(its
, baser
, cache
, shr
, psz
, order
, indirect
);
1935 its_free_tables(its
);
1939 /* Update settings which will be used for next BASERn */
1941 cache
= baser
->val
& GITS_BASER_CACHEABILITY_MASK
;
1942 shr
= baser
->val
& GITS_BASER_SHAREABILITY_MASK
;
1948 static int its_alloc_collections(struct its_node
*its
)
1952 its
->collections
= kcalloc(nr_cpu_ids
, sizeof(*its
->collections
),
1954 if (!its
->collections
)
1957 for (i
= 0; i
< nr_cpu_ids
; i
++)
1958 its
->collections
[i
].target_address
= ~0ULL;
1963 static struct page
*its_allocate_pending_table(gfp_t gfp_flags
)
1965 struct page
*pend_page
;
1967 * The pending pages have to be at least 64kB aligned,
1968 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1970 pend_page
= alloc_pages(gfp_flags
| __GFP_ZERO
,
1971 get_order(max_t(u32
, LPI_PENDBASE_SZ
, SZ_64K
)));
1975 /* Make sure the GIC will observe the zero-ed page */
1976 gic_flush_dcache_to_poc(page_address(pend_page
), LPI_PENDBASE_SZ
);
1981 static void its_free_pending_table(struct page
*pt
)
1983 free_pages((unsigned long)page_address(pt
),
1984 get_order(max_t(u32
, LPI_PENDBASE_SZ
, SZ_64K
)));
1987 static u64
its_clear_vpend_valid(void __iomem
*vlpi_base
)
1989 u32 count
= 1000000; /* 1s! */
1993 val
= gits_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
1994 val
&= ~GICR_VPENDBASER_Valid
;
1995 gits_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
1998 val
= gits_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
1999 clean
= !(val
& GICR_VPENDBASER_Dirty
);
2005 } while (!clean
&& count
);
2010 static void its_cpu_init_lpis(void)
2012 void __iomem
*rbase
= gic_data_rdist_rd_base();
2013 struct page
*pend_page
;
2016 /* If we didn't allocate the pending table yet, do it now */
2017 pend_page
= gic_data_rdist()->pend_page
;
2021 pend_page
= its_allocate_pending_table(GFP_NOWAIT
);
2023 pr_err("Failed to allocate PENDBASE for CPU%d\n",
2024 smp_processor_id());
2028 paddr
= page_to_phys(pend_page
);
2029 pr_info("CPU%d: using LPI pending table @%pa\n",
2030 smp_processor_id(), &paddr
);
2031 gic_data_rdist()->pend_page
= pend_page
;
2035 val
= (page_to_phys(gic_rdists
->prop_page
) |
2036 GICR_PROPBASER_InnerShareable
|
2037 GICR_PROPBASER_RaWaWb
|
2038 ((LPI_NRBITS
- 1) & GICR_PROPBASER_IDBITS_MASK
));
2040 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
2041 tmp
= gicr_read_propbaser(rbase
+ GICR_PROPBASER
);
2043 if ((tmp
^ val
) & GICR_PROPBASER_SHAREABILITY_MASK
) {
2044 if (!(tmp
& GICR_PROPBASER_SHAREABILITY_MASK
)) {
2046 * The HW reports non-shareable, we must
2047 * remove the cacheability attributes as
2050 val
&= ~(GICR_PROPBASER_SHAREABILITY_MASK
|
2051 GICR_PROPBASER_CACHEABILITY_MASK
);
2052 val
|= GICR_PROPBASER_nC
;
2053 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
2055 pr_info_once("GIC: using cache flushing for LPI property table\n");
2056 gic_rdists
->flags
|= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
;
2060 val
= (page_to_phys(pend_page
) |
2061 GICR_PENDBASER_InnerShareable
|
2062 GICR_PENDBASER_RaWaWb
);
2064 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
2065 tmp
= gicr_read_pendbaser(rbase
+ GICR_PENDBASER
);
2067 if (!(tmp
& GICR_PENDBASER_SHAREABILITY_MASK
)) {
2069 * The HW reports non-shareable, we must remove the
2070 * cacheability attributes as well.
2072 val
&= ~(GICR_PENDBASER_SHAREABILITY_MASK
|
2073 GICR_PENDBASER_CACHEABILITY_MASK
);
2074 val
|= GICR_PENDBASER_nC
;
2075 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
2079 val
= readl_relaxed(rbase
+ GICR_CTLR
);
2080 val
|= GICR_CTLR_ENABLE_LPIS
;
2081 writel_relaxed(val
, rbase
+ GICR_CTLR
);
2083 if (gic_rdists
->has_vlpis
) {
2084 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
2087 * It's possible for CPU to receive VLPIs before it is
2088 * sheduled as a vPE, especially for the first CPU, and the
2089 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2090 * as out of range and dropped by GIC.
2091 * So we initialize IDbits to known value to avoid VLPI drop.
2093 val
= (LPI_NRBITS
- 1) & GICR_VPROPBASER_IDBITS_MASK
;
2094 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2095 smp_processor_id(), val
);
2096 gits_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
2099 * Also clear Valid bit of GICR_VPENDBASER, in case some
2100 * ancient programming gets left in and has possibility of
2101 * corrupting memory.
2103 val
= its_clear_vpend_valid(vlpi_base
);
2104 WARN_ON(val
& GICR_VPENDBASER_Dirty
);
2107 /* Make sure the GIC has seen the above */
2111 static void its_cpu_init_collection(struct its_node
*its
)
2113 int cpu
= smp_processor_id();
2116 /* avoid cross node collections and its mapping */
2117 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
2118 struct device_node
*cpu_node
;
2120 cpu_node
= of_get_cpu_node(cpu
, NULL
);
2121 if (its
->numa_node
!= NUMA_NO_NODE
&&
2122 its
->numa_node
!= of_node_to_nid(cpu_node
))
2127 * We now have to bind each collection to its target
2130 if (gic_read_typer(its
->base
+ GITS_TYPER
) & GITS_TYPER_PTA
) {
2132 * This ITS wants the physical address of the
2135 target
= gic_data_rdist()->phys_base
;
2137 /* This ITS wants a linear CPU number. */
2138 target
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
2139 target
= GICR_TYPER_CPU_NUMBER(target
) << 16;
2142 /* Perform collection mapping */
2143 its
->collections
[cpu
].target_address
= target
;
2144 its
->collections
[cpu
].col_id
= cpu
;
2146 its_send_mapc(its
, &its
->collections
[cpu
], 1);
2147 its_send_invall(its
, &its
->collections
[cpu
]);
2150 static void its_cpu_init_collections(void)
2152 struct its_node
*its
;
2154 raw_spin_lock(&its_lock
);
2156 list_for_each_entry(its
, &its_nodes
, entry
)
2157 its_cpu_init_collection(its
);
2159 raw_spin_unlock(&its_lock
);
2162 static struct its_device
*its_find_device(struct its_node
*its
, u32 dev_id
)
2164 struct its_device
*its_dev
= NULL
, *tmp
;
2165 unsigned long flags
;
2167 raw_spin_lock_irqsave(&its
->lock
, flags
);
2169 list_for_each_entry(tmp
, &its
->its_device_list
, entry
) {
2170 if (tmp
->device_id
== dev_id
) {
2176 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
2181 static struct its_baser
*its_get_baser(struct its_node
*its
, u32 type
)
2185 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
2186 if (GITS_BASER_TYPE(its
->tables
[i
].val
) == type
)
2187 return &its
->tables
[i
];
2193 static bool its_alloc_table_entry(struct its_baser
*baser
, u32 id
)
2199 /* Don't allow device id that exceeds single, flat table limit */
2200 esz
= GITS_BASER_ENTRY_SIZE(baser
->val
);
2201 if (!(baser
->val
& GITS_BASER_INDIRECT
))
2202 return (id
< (PAGE_ORDER_TO_SIZE(baser
->order
) / esz
));
2204 /* Compute 1st level table index & check if that exceeds table limit */
2205 idx
= id
>> ilog2(baser
->psz
/ esz
);
2206 if (idx
>= (PAGE_ORDER_TO_SIZE(baser
->order
) / GITS_LVL1_ENTRY_SIZE
))
2209 table
= baser
->base
;
2211 /* Allocate memory for 2nd level table */
2213 page
= alloc_pages(GFP_KERNEL
| __GFP_ZERO
, get_order(baser
->psz
));
2217 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2218 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
2219 gic_flush_dcache_to_poc(page_address(page
), baser
->psz
);
2221 table
[idx
] = cpu_to_le64(page_to_phys(page
) | GITS_BASER_VALID
);
2223 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2224 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
2225 gic_flush_dcache_to_poc(table
+ idx
, GITS_LVL1_ENTRY_SIZE
);
2227 /* Ensure updated table contents are visible to ITS hardware */
2234 static bool its_alloc_device_table(struct its_node
*its
, u32 dev_id
)
2236 struct its_baser
*baser
;
2238 baser
= its_get_baser(its
, GITS_BASER_TYPE_DEVICE
);
2240 /* Don't allow device id that exceeds ITS hardware limit */
2242 return (ilog2(dev_id
) < its
->device_ids
);
2244 return its_alloc_table_entry(baser
, dev_id
);
2247 static bool its_alloc_vpe_table(u32 vpe_id
)
2249 struct its_node
*its
;
2252 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2253 * could try and only do it on ITSs corresponding to devices
2254 * that have interrupts targeted at this VPE, but the
2255 * complexity becomes crazy (and you have tons of memory
2258 list_for_each_entry(its
, &its_nodes
, entry
) {
2259 struct its_baser
*baser
;
2264 baser
= its_get_baser(its
, GITS_BASER_TYPE_VCPU
);
2268 if (!its_alloc_table_entry(baser
, vpe_id
))
2275 static struct its_device
*its_create_device(struct its_node
*its
, u32 dev_id
,
2276 int nvecs
, bool alloc_lpis
)
2278 struct its_device
*dev
;
2279 unsigned long *lpi_map
= NULL
;
2280 unsigned long flags
;
2281 u16
*col_map
= NULL
;
2288 if (!its_alloc_device_table(its
, dev_id
))
2291 if (WARN_ON(!is_power_of_2(nvecs
)))
2292 nvecs
= roundup_pow_of_two(nvecs
);
2294 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2296 * Even if the device wants a single LPI, the ITT must be
2297 * sized as a power of two (and you need at least one bit...).
2299 nr_ites
= max(2, nvecs
);
2300 sz
= nr_ites
* its
->ite_size
;
2301 sz
= max(sz
, ITS_ITT_ALIGN
) + ITS_ITT_ALIGN
- 1;
2302 itt
= kzalloc(sz
, GFP_KERNEL
);
2304 lpi_map
= its_lpi_alloc(nvecs
, &lpi_base
, &nr_lpis
);
2306 col_map
= kcalloc(nr_lpis
, sizeof(*col_map
),
2309 col_map
= kcalloc(nr_ites
, sizeof(*col_map
), GFP_KERNEL
);
2314 if (!dev
|| !itt
|| !col_map
|| (!lpi_map
&& alloc_lpis
)) {
2322 gic_flush_dcache_to_poc(itt
, sz
);
2326 dev
->nr_ites
= nr_ites
;
2327 dev
->event_map
.lpi_map
= lpi_map
;
2328 dev
->event_map
.col_map
= col_map
;
2329 dev
->event_map
.lpi_base
= lpi_base
;
2330 dev
->event_map
.nr_lpis
= nr_lpis
;
2331 mutex_init(&dev
->event_map
.vlpi_lock
);
2332 dev
->device_id
= dev_id
;
2333 INIT_LIST_HEAD(&dev
->entry
);
2335 raw_spin_lock_irqsave(&its
->lock
, flags
);
2336 list_add(&dev
->entry
, &its
->its_device_list
);
2337 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
2339 /* Map device to its ITT */
2340 its_send_mapd(dev
, 1);
2345 static void its_free_device(struct its_device
*its_dev
)
2347 unsigned long flags
;
2349 raw_spin_lock_irqsave(&its_dev
->its
->lock
, flags
);
2350 list_del(&its_dev
->entry
);
2351 raw_spin_unlock_irqrestore(&its_dev
->its
->lock
, flags
);
2352 kfree(its_dev
->itt
);
2356 static int its_alloc_device_irq(struct its_device
*dev
, int nvecs
, irq_hw_number_t
*hwirq
)
2360 idx
= bitmap_find_free_region(dev
->event_map
.lpi_map
,
2361 dev
->event_map
.nr_lpis
,
2362 get_count_order(nvecs
));
2366 *hwirq
= dev
->event_map
.lpi_base
+ idx
;
2367 set_bit(idx
, dev
->event_map
.lpi_map
);
2372 static int its_msi_prepare(struct irq_domain
*domain
, struct device
*dev
,
2373 int nvec
, msi_alloc_info_t
*info
)
2375 struct its_node
*its
;
2376 struct its_device
*its_dev
;
2377 struct msi_domain_info
*msi_info
;
2382 * We ignore "dev" entierely, and rely on the dev_id that has
2383 * been passed via the scratchpad. This limits this domain's
2384 * usefulness to upper layers that definitely know that they
2385 * are built on top of the ITS.
2387 dev_id
= info
->scratchpad
[0].ul
;
2389 msi_info
= msi_get_domain_info(domain
);
2390 its
= msi_info
->data
;
2392 if (!gic_rdists
->has_direct_lpi
&&
2394 vpe_proxy
.dev
->its
== its
&&
2395 dev_id
== vpe_proxy
.dev
->device_id
) {
2396 /* Bad luck. Get yourself a better implementation */
2397 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2402 mutex_lock(&its
->dev_alloc_lock
);
2403 its_dev
= its_find_device(its
, dev_id
);
2406 * We already have seen this ID, probably through
2407 * another alias (PCI bridge of some sort). No need to
2408 * create the device.
2410 its_dev
->shared
= true;
2411 pr_debug("Reusing ITT for devID %x\n", dev_id
);
2415 its_dev
= its_create_device(its
, dev_id
, nvec
, true);
2421 pr_debug("ITT %d entries, %d bits\n", nvec
, ilog2(nvec
));
2423 mutex_unlock(&its
->dev_alloc_lock
);
2424 info
->scratchpad
[0].ptr
= its_dev
;
2428 static struct msi_domain_ops its_msi_domain_ops
= {
2429 .msi_prepare
= its_msi_prepare
,
2432 static int its_irq_gic_domain_alloc(struct irq_domain
*domain
,
2434 irq_hw_number_t hwirq
)
2436 struct irq_fwspec fwspec
;
2438 if (irq_domain_get_of_node(domain
->parent
)) {
2439 fwspec
.fwnode
= domain
->parent
->fwnode
;
2440 fwspec
.param_count
= 3;
2441 fwspec
.param
[0] = GIC_IRQ_TYPE_LPI
;
2442 fwspec
.param
[1] = hwirq
;
2443 fwspec
.param
[2] = IRQ_TYPE_EDGE_RISING
;
2444 } else if (is_fwnode_irqchip(domain
->parent
->fwnode
)) {
2445 fwspec
.fwnode
= domain
->parent
->fwnode
;
2446 fwspec
.param_count
= 2;
2447 fwspec
.param
[0] = hwirq
;
2448 fwspec
.param
[1] = IRQ_TYPE_EDGE_RISING
;
2453 return irq_domain_alloc_irqs_parent(domain
, virq
, 1, &fwspec
);
2456 static int its_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
2457 unsigned int nr_irqs
, void *args
)
2459 msi_alloc_info_t
*info
= args
;
2460 struct its_device
*its_dev
= info
->scratchpad
[0].ptr
;
2461 irq_hw_number_t hwirq
;
2465 err
= its_alloc_device_irq(its_dev
, nr_irqs
, &hwirq
);
2469 for (i
= 0; i
< nr_irqs
; i
++) {
2470 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
, hwirq
+ i
);
2474 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
,
2475 hwirq
+ i
, &its_irq_chip
, its_dev
);
2476 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq
+ i
)));
2477 pr_debug("ID:%d pID:%d vID:%d\n",
2478 (int)(hwirq
+ i
- its_dev
->event_map
.lpi_base
),
2479 (int)(hwirq
+ i
), virq
+ i
);
2485 static int its_irq_domain_activate(struct irq_domain
*domain
,
2486 struct irq_data
*d
, bool reserve
)
2488 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2489 u32 event
= its_get_event_id(d
);
2490 const struct cpumask
*cpu_mask
= cpu_online_mask
;
2493 /* get the cpu_mask of local node */
2494 if (its_dev
->its
->numa_node
>= 0)
2495 cpu_mask
= cpumask_of_node(its_dev
->its
->numa_node
);
2497 /* Bind the LPI to the first possible CPU */
2498 cpu
= cpumask_first_and(cpu_mask
, cpu_online_mask
);
2499 if (cpu
>= nr_cpu_ids
) {
2500 if (its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
)
2503 cpu
= cpumask_first(cpu_online_mask
);
2506 its_dev
->event_map
.col_map
[event
] = cpu
;
2507 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
2509 /* Map the GIC IRQ and event to the device */
2510 its_send_mapti(its_dev
, d
->hwirq
, event
);
2514 static void its_irq_domain_deactivate(struct irq_domain
*domain
,
2517 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2518 u32 event
= its_get_event_id(d
);
2520 /* Stop the delivery of interrupts */
2521 its_send_discard(its_dev
, event
);
2524 static void its_irq_domain_free(struct irq_domain
*domain
, unsigned int virq
,
2525 unsigned int nr_irqs
)
2527 struct irq_data
*d
= irq_domain_get_irq_data(domain
, virq
);
2528 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2529 struct its_node
*its
= its_dev
->its
;
2532 bitmap_release_region(its_dev
->event_map
.lpi_map
,
2533 its_get_event_id(irq_domain_get_irq_data(domain
, virq
)),
2534 get_count_order(nr_irqs
));
2536 for (i
= 0; i
< nr_irqs
; i
++) {
2537 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
2539 /* Nuke the entry in the domain */
2540 irq_domain_reset_irq_data(data
);
2543 mutex_lock(&its
->dev_alloc_lock
);
2546 * If all interrupts have been freed, start mopping the
2547 * floor. This is conditionned on the device not being shared.
2549 if (!its_dev
->shared
&&
2550 bitmap_empty(its_dev
->event_map
.lpi_map
,
2551 its_dev
->event_map
.nr_lpis
)) {
2552 its_lpi_free(its_dev
->event_map
.lpi_map
,
2553 its_dev
->event_map
.lpi_base
,
2554 its_dev
->event_map
.nr_lpis
);
2555 kfree(its_dev
->event_map
.col_map
);
2557 /* Unmap device/itt */
2558 its_send_mapd(its_dev
, 0);
2559 its_free_device(its_dev
);
2562 mutex_unlock(&its
->dev_alloc_lock
);
2564 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
2567 static const struct irq_domain_ops its_domain_ops
= {
2568 .alloc
= its_irq_domain_alloc
,
2569 .free
= its_irq_domain_free
,
2570 .activate
= its_irq_domain_activate
,
2571 .deactivate
= its_irq_domain_deactivate
,
2577 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2578 * likely), the only way to perform an invalidate is to use a fake
2579 * device to issue an INV command, implying that the LPI has first
2580 * been mapped to some event on that device. Since this is not exactly
2581 * cheap, we try to keep that mapping around as long as possible, and
2582 * only issue an UNMAP if we're short on available slots.
2584 * Broken by design(tm).
2586 static void its_vpe_db_proxy_unmap_locked(struct its_vpe
*vpe
)
2588 /* Already unmapped? */
2589 if (vpe
->vpe_proxy_event
== -1)
2592 its_send_discard(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
2593 vpe_proxy
.vpes
[vpe
->vpe_proxy_event
] = NULL
;
2596 * We don't track empty slots at all, so let's move the
2597 * next_victim pointer if we can quickly reuse that slot
2598 * instead of nuking an existing entry. Not clear that this is
2599 * always a win though, and this might just generate a ripple
2600 * effect... Let's just hope VPEs don't migrate too often.
2602 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
2603 vpe_proxy
.next_victim
= vpe
->vpe_proxy_event
;
2605 vpe
->vpe_proxy_event
= -1;
2608 static void its_vpe_db_proxy_unmap(struct its_vpe
*vpe
)
2610 if (!gic_rdists
->has_direct_lpi
) {
2611 unsigned long flags
;
2613 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2614 its_vpe_db_proxy_unmap_locked(vpe
);
2615 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2619 static void its_vpe_db_proxy_map_locked(struct its_vpe
*vpe
)
2621 /* Already mapped? */
2622 if (vpe
->vpe_proxy_event
!= -1)
2625 /* This slot was already allocated. Kick the other VPE out. */
2626 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
2627 its_vpe_db_proxy_unmap_locked(vpe_proxy
.vpes
[vpe_proxy
.next_victim
]);
2629 /* Map the new VPE instead */
2630 vpe_proxy
.vpes
[vpe_proxy
.next_victim
] = vpe
;
2631 vpe
->vpe_proxy_event
= vpe_proxy
.next_victim
;
2632 vpe_proxy
.next_victim
= (vpe_proxy
.next_victim
+ 1) % vpe_proxy
.dev
->nr_ites
;
2634 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = vpe
->col_idx
;
2635 its_send_mapti(vpe_proxy
.dev
, vpe
->vpe_db_lpi
, vpe
->vpe_proxy_event
);
2638 static void its_vpe_db_proxy_move(struct its_vpe
*vpe
, int from
, int to
)
2640 unsigned long flags
;
2641 struct its_collection
*target_col
;
2643 if (gic_rdists
->has_direct_lpi
) {
2644 void __iomem
*rdbase
;
2646 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, from
)->rd_base
;
2647 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
2648 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2654 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2656 its_vpe_db_proxy_map_locked(vpe
);
2658 target_col
= &vpe_proxy
.dev
->its
->collections
[to
];
2659 its_send_movi(vpe_proxy
.dev
, target_col
, vpe
->vpe_proxy_event
);
2660 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = to
;
2662 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2665 static int its_vpe_set_affinity(struct irq_data
*d
,
2666 const struct cpumask
*mask_val
,
2669 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2670 int cpu
= cpumask_first(mask_val
);
2673 * Changing affinity is mega expensive, so let's be as lazy as
2674 * we can and only do it if we really have to. Also, if mapped
2675 * into the proxy device, we need to move the doorbell
2676 * interrupt to its new location.
2678 if (vpe
->col_idx
!= cpu
) {
2679 int from
= vpe
->col_idx
;
2682 its_send_vmovp(vpe
);
2683 its_vpe_db_proxy_move(vpe
, from
, cpu
);
2686 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
2688 return IRQ_SET_MASK_OK_DONE
;
2691 static void its_vpe_schedule(struct its_vpe
*vpe
)
2693 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
2696 /* Schedule the VPE */
2697 val
= virt_to_phys(page_address(vpe
->its_vm
->vprop_page
)) &
2698 GENMASK_ULL(51, 12);
2699 val
|= (LPI_NRBITS
- 1) & GICR_VPROPBASER_IDBITS_MASK
;
2700 val
|= GICR_VPROPBASER_RaWb
;
2701 val
|= GICR_VPROPBASER_InnerShareable
;
2702 gits_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
2704 val
= virt_to_phys(page_address(vpe
->vpt_page
)) &
2705 GENMASK_ULL(51, 16);
2706 val
|= GICR_VPENDBASER_RaWaWb
;
2707 val
|= GICR_VPENDBASER_NonShareable
;
2709 * There is no good way of finding out if the pending table is
2710 * empty as we can race against the doorbell interrupt very
2711 * easily. So in the end, vpe->pending_last is only an
2712 * indication that the vcpu has something pending, not one
2713 * that the pending table is empty. A good implementation
2714 * would be able to read its coarse map pretty quickly anyway,
2715 * making this a tolerable issue.
2717 val
|= GICR_VPENDBASER_PendingLast
;
2718 val
|= vpe
->idai
? GICR_VPENDBASER_IDAI
: 0;
2719 val
|= GICR_VPENDBASER_Valid
;
2720 gits_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
2723 static void its_vpe_deschedule(struct its_vpe
*vpe
)
2725 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
2728 val
= its_clear_vpend_valid(vlpi_base
);
2730 if (unlikely(val
& GICR_VPENDBASER_Dirty
)) {
2731 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2733 vpe
->pending_last
= true;
2735 vpe
->idai
= !!(val
& GICR_VPENDBASER_IDAI
);
2736 vpe
->pending_last
= !!(val
& GICR_VPENDBASER_PendingLast
);
2740 static void its_vpe_invall(struct its_vpe
*vpe
)
2742 struct its_node
*its
;
2744 list_for_each_entry(its
, &its_nodes
, entry
) {
2748 if (its_list_map
&& !vpe
->its_vm
->vlpi_count
[its
->list_nr
])
2752 * Sending a VINVALL to a single ITS is enough, as all
2753 * we need is to reach the redistributors.
2755 its_send_vinvall(its
, vpe
);
2760 static int its_vpe_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
2762 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2763 struct its_cmd_info
*info
= vcpu_info
;
2765 switch (info
->cmd_type
) {
2767 its_vpe_schedule(vpe
);
2770 case DESCHEDULE_VPE
:
2771 its_vpe_deschedule(vpe
);
2775 its_vpe_invall(vpe
);
2783 static void its_vpe_send_cmd(struct its_vpe
*vpe
,
2784 void (*cmd
)(struct its_device
*, u32
))
2786 unsigned long flags
;
2788 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2790 its_vpe_db_proxy_map_locked(vpe
);
2791 cmd(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
2793 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2796 static void its_vpe_send_inv(struct irq_data
*d
)
2798 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2800 if (gic_rdists
->has_direct_lpi
) {
2801 void __iomem
*rdbase
;
2803 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
2804 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_INVLPIR
);
2805 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2808 its_vpe_send_cmd(vpe
, its_send_inv
);
2812 static void its_vpe_mask_irq(struct irq_data
*d
)
2815 * We need to unmask the LPI, which is described by the parent
2816 * irq_data. Instead of calling into the parent (which won't
2817 * exactly do the right thing, let's simply use the
2818 * parent_data pointer. Yes, I'm naughty.
2820 lpi_write_config(d
->parent_data
, LPI_PROP_ENABLED
, 0);
2821 its_vpe_send_inv(d
);
2824 static void its_vpe_unmask_irq(struct irq_data
*d
)
2826 /* Same hack as above... */
2827 lpi_write_config(d
->parent_data
, 0, LPI_PROP_ENABLED
);
2828 its_vpe_send_inv(d
);
2831 static int its_vpe_set_irqchip_state(struct irq_data
*d
,
2832 enum irqchip_irq_state which
,
2835 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2837 if (which
!= IRQCHIP_STATE_PENDING
)
2840 if (gic_rdists
->has_direct_lpi
) {
2841 void __iomem
*rdbase
;
2843 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
2845 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_SETLPIR
);
2847 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
2848 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2853 its_vpe_send_cmd(vpe
, its_send_int
);
2855 its_vpe_send_cmd(vpe
, its_send_clear
);
2861 static struct irq_chip its_vpe_irq_chip
= {
2862 .name
= "GICv4-vpe",
2863 .irq_mask
= its_vpe_mask_irq
,
2864 .irq_unmask
= its_vpe_unmask_irq
,
2865 .irq_eoi
= irq_chip_eoi_parent
,
2866 .irq_set_affinity
= its_vpe_set_affinity
,
2867 .irq_set_irqchip_state
= its_vpe_set_irqchip_state
,
2868 .irq_set_vcpu_affinity
= its_vpe_set_vcpu_affinity
,
2871 static int its_vpe_id_alloc(void)
2873 return ida_simple_get(&its_vpeid_ida
, 0, ITS_MAX_VPEID
, GFP_KERNEL
);
2876 static void its_vpe_id_free(u16 id
)
2878 ida_simple_remove(&its_vpeid_ida
, id
);
2881 static int its_vpe_init(struct its_vpe
*vpe
)
2883 struct page
*vpt_page
;
2886 /* Allocate vpe_id */
2887 vpe_id
= its_vpe_id_alloc();
2892 vpt_page
= its_allocate_pending_table(GFP_KERNEL
);
2894 its_vpe_id_free(vpe_id
);
2898 if (!its_alloc_vpe_table(vpe_id
)) {
2899 its_vpe_id_free(vpe_id
);
2900 its_free_pending_table(vpt_page
);
2904 vpe
->vpe_id
= vpe_id
;
2905 vpe
->vpt_page
= vpt_page
;
2906 vpe
->vpe_proxy_event
= -1;
2911 static void its_vpe_teardown(struct its_vpe
*vpe
)
2913 its_vpe_db_proxy_unmap(vpe
);
2914 its_vpe_id_free(vpe
->vpe_id
);
2915 its_free_pending_table(vpe
->vpt_page
);
2918 static void its_vpe_irq_domain_free(struct irq_domain
*domain
,
2920 unsigned int nr_irqs
)
2922 struct its_vm
*vm
= domain
->host_data
;
2925 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
2927 for (i
= 0; i
< nr_irqs
; i
++) {
2928 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
2930 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(data
);
2932 BUG_ON(vm
!= vpe
->its_vm
);
2934 clear_bit(data
->hwirq
, vm
->db_bitmap
);
2935 its_vpe_teardown(vpe
);
2936 irq_domain_reset_irq_data(data
);
2939 if (bitmap_empty(vm
->db_bitmap
, vm
->nr_db_lpis
)) {
2940 its_lpi_free(vm
->db_bitmap
, vm
->db_lpi_base
, vm
->nr_db_lpis
);
2941 its_free_prop_table(vm
->vprop_page
);
2945 static int its_vpe_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
2946 unsigned int nr_irqs
, void *args
)
2948 struct its_vm
*vm
= args
;
2949 unsigned long *bitmap
;
2950 struct page
*vprop_page
;
2951 int base
, nr_ids
, i
, err
= 0;
2955 bitmap
= its_lpi_alloc(roundup_pow_of_two(nr_irqs
), &base
, &nr_ids
);
2959 if (nr_ids
< nr_irqs
) {
2960 its_lpi_free(bitmap
, base
, nr_ids
);
2964 vprop_page
= its_allocate_prop_table(GFP_KERNEL
);
2966 its_lpi_free(bitmap
, base
, nr_ids
);
2970 vm
->db_bitmap
= bitmap
;
2971 vm
->db_lpi_base
= base
;
2972 vm
->nr_db_lpis
= nr_ids
;
2973 vm
->vprop_page
= vprop_page
;
2975 for (i
= 0; i
< nr_irqs
; i
++) {
2976 vm
->vpes
[i
]->vpe_db_lpi
= base
+ i
;
2977 err
= its_vpe_init(vm
->vpes
[i
]);
2980 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
,
2981 vm
->vpes
[i
]->vpe_db_lpi
);
2984 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
, i
,
2985 &its_vpe_irq_chip
, vm
->vpes
[i
]);
2991 its_vpe_irq_domain_free(domain
, virq
, i
- 1);
2993 its_lpi_free(bitmap
, base
, nr_ids
);
2994 its_free_prop_table(vprop_page
);
3000 static int its_vpe_irq_domain_activate(struct irq_domain
*domain
,
3001 struct irq_data
*d
, bool reserve
)
3003 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3004 struct its_node
*its
;
3006 /* If we use the list map, we issue VMAPP on demand... */
3010 /* Map the VPE to the first possible CPU */
3011 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
3013 list_for_each_entry(its
, &its_nodes
, entry
) {
3017 its_send_vmapp(its
, vpe
, true);
3018 its_send_vinvall(its
, vpe
);
3021 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
3026 static void its_vpe_irq_domain_deactivate(struct irq_domain
*domain
,
3029 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3030 struct its_node
*its
;
3033 * If we use the list map, we unmap the VPE once no VLPIs are
3034 * associated with the VM.
3039 list_for_each_entry(its
, &its_nodes
, entry
) {
3043 its_send_vmapp(its
, vpe
, false);
3047 static const struct irq_domain_ops its_vpe_domain_ops
= {
3048 .alloc
= its_vpe_irq_domain_alloc
,
3049 .free
= its_vpe_irq_domain_free
,
3050 .activate
= its_vpe_irq_domain_activate
,
3051 .deactivate
= its_vpe_irq_domain_deactivate
,
3054 static int its_force_quiescent(void __iomem
*base
)
3056 u32 count
= 1000000; /* 1s */
3059 val
= readl_relaxed(base
+ GITS_CTLR
);
3061 * GIC architecture specification requires the ITS to be both
3062 * disabled and quiescent for writes to GITS_BASER<n> or
3063 * GITS_CBASER to not have UNPREDICTABLE results.
3065 if ((val
& GITS_CTLR_QUIESCENT
) && !(val
& GITS_CTLR_ENABLE
))
3068 /* Disable the generation of all interrupts to this ITS */
3069 val
&= ~(GITS_CTLR_ENABLE
| GITS_CTLR_ImDe
);
3070 writel_relaxed(val
, base
+ GITS_CTLR
);
3072 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
3074 val
= readl_relaxed(base
+ GITS_CTLR
);
3075 if (val
& GITS_CTLR_QUIESCENT
)
3087 static bool __maybe_unused
its_enable_quirk_cavium_22375(void *data
)
3089 struct its_node
*its
= data
;
3091 /* erratum 22375: only alloc 8MB table size */
3092 its
->device_ids
= 0x14; /* 20 bits, 8MB */
3093 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_22375
;
3098 static bool __maybe_unused
its_enable_quirk_cavium_23144(void *data
)
3100 struct its_node
*its
= data
;
3102 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_23144
;
3107 static bool __maybe_unused
its_enable_quirk_qdf2400_e0065(void *data
)
3109 struct its_node
*its
= data
;
3111 /* On QDF2400, the size of the ITE is 16Bytes */
3117 static u64
its_irq_get_msi_base_pre_its(struct its_device
*its_dev
)
3119 struct its_node
*its
= its_dev
->its
;
3122 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3123 * which maps 32-bit writes targeted at a separate window of
3124 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3125 * with device ID taken from bits [device_id_bits + 1:2] of
3126 * the window offset.
3128 return its
->pre_its_base
+ (its_dev
->device_id
<< 2);
3131 static bool __maybe_unused
its_enable_quirk_socionext_synquacer(void *data
)
3133 struct its_node
*its
= data
;
3134 u32 pre_its_window
[2];
3137 if (!fwnode_property_read_u32_array(its
->fwnode_handle
,
3138 "socionext,synquacer-pre-its",
3140 ARRAY_SIZE(pre_its_window
))) {
3142 its
->pre_its_base
= pre_its_window
[0];
3143 its
->get_msi_base
= its_irq_get_msi_base_pre_its
;
3145 ids
= ilog2(pre_its_window
[1]) - 2;
3146 if (its
->device_ids
> ids
)
3147 its
->device_ids
= ids
;
3149 /* the pre-ITS breaks isolation, so disable MSI remapping */
3150 its
->msi_domain_flags
&= ~IRQ_DOMAIN_FLAG_MSI_REMAP
;
3156 static bool __maybe_unused
its_enable_quirk_hip07_161600802(void *data
)
3158 struct its_node
*its
= data
;
3161 * Hip07 insists on using the wrong address for the VLPI
3162 * page. Trick it into doing the right thing...
3164 its
->vlpi_redist_offset
= SZ_128K
;
3168 static const struct gic_quirk its_quirks
[] = {
3169 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3171 .desc
= "ITS: Cavium errata 22375, 24313",
3172 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
3174 .init
= its_enable_quirk_cavium_22375
,
3177 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3179 .desc
= "ITS: Cavium erratum 23144",
3180 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
3182 .init
= its_enable_quirk_cavium_23144
,
3185 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3187 .desc
= "ITS: QDF2400 erratum 0065",
3188 .iidr
= 0x00001070, /* QDF2400 ITS rev 1.x */
3190 .init
= its_enable_quirk_qdf2400_e0065
,
3193 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3196 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3197 * implementation, but with a 'pre-ITS' added that requires
3198 * special handling in software.
3200 .desc
= "ITS: Socionext Synquacer pre-ITS",
3203 .init
= its_enable_quirk_socionext_synquacer
,
3206 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3208 .desc
= "ITS: Hip07 erratum 161600802",
3211 .init
= its_enable_quirk_hip07_161600802
,
3218 static void its_enable_quirks(struct its_node
*its
)
3220 u32 iidr
= readl_relaxed(its
->base
+ GITS_IIDR
);
3222 gic_enable_quirks(iidr
, its_quirks
, its
);
3225 static int its_save_disable(void)
3227 struct its_node
*its
;
3230 raw_spin_lock(&its_lock
);
3231 list_for_each_entry(its
, &its_nodes
, entry
) {
3234 if (!(its
->flags
& ITS_FLAGS_SAVE_SUSPEND_STATE
))
3238 its
->ctlr_save
= readl_relaxed(base
+ GITS_CTLR
);
3239 err
= its_force_quiescent(base
);
3241 pr_err("ITS@%pa: failed to quiesce: %d\n",
3242 &its
->phys_base
, err
);
3243 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
3247 its
->cbaser_save
= gits_read_cbaser(base
+ GITS_CBASER
);
3252 list_for_each_entry_continue_reverse(its
, &its_nodes
, entry
) {
3255 if (!(its
->flags
& ITS_FLAGS_SAVE_SUSPEND_STATE
))
3259 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
3262 raw_spin_unlock(&its_lock
);
3267 static void its_restore_enable(void)
3269 struct its_node
*its
;
3272 raw_spin_lock(&its_lock
);
3273 list_for_each_entry(its
, &its_nodes
, entry
) {
3277 if (!(its
->flags
& ITS_FLAGS_SAVE_SUSPEND_STATE
))
3283 * Make sure that the ITS is disabled. If it fails to quiesce,
3284 * don't restore it since writing to CBASER or BASER<n>
3285 * registers is undefined according to the GIC v3 ITS
3288 ret
= its_force_quiescent(base
);
3290 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3291 &its
->phys_base
, ret
);
3295 gits_write_cbaser(its
->cbaser_save
, base
+ GITS_CBASER
);
3298 * Writing CBASER resets CREADR to 0, so make CWRITER and
3299 * cmd_write line up with it.
3301 its
->cmd_write
= its
->cmd_base
;
3302 gits_write_cwriter(0, base
+ GITS_CWRITER
);
3304 /* Restore GITS_BASER from the value cache. */
3305 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
3306 struct its_baser
*baser
= &its
->tables
[i
];
3308 if (!(baser
->val
& GITS_BASER_VALID
))
3311 its_write_baser(its
, baser
, baser
->val
);
3313 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
3316 * Reinit the collection if it's stored in the ITS. This is
3317 * indicated by the col_id being less than the HCC field.
3318 * CID < HCC as specified in the GIC v3 Documentation.
3320 if (its
->collections
[smp_processor_id()].col_id
<
3321 GITS_TYPER_HCC(gic_read_typer(base
+ GITS_TYPER
)))
3322 its_cpu_init_collection(its
);
3324 raw_spin_unlock(&its_lock
);
3327 static struct syscore_ops its_syscore_ops
= {
3328 .suspend
= its_save_disable
,
3329 .resume
= its_restore_enable
,
3332 static int its_init_domain(struct fwnode_handle
*handle
, struct its_node
*its
)
3334 struct irq_domain
*inner_domain
;
3335 struct msi_domain_info
*info
;
3337 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
3341 inner_domain
= irq_domain_create_tree(handle
, &its_domain_ops
, its
);
3342 if (!inner_domain
) {
3347 inner_domain
->parent
= its_parent
;
3348 irq_domain_update_bus_token(inner_domain
, DOMAIN_BUS_NEXUS
);
3349 inner_domain
->flags
|= its
->msi_domain_flags
;
3350 info
->ops
= &its_msi_domain_ops
;
3352 inner_domain
->host_data
= info
;
3357 static int its_init_vpe_domain(void)
3359 struct its_node
*its
;
3363 if (gic_rdists
->has_direct_lpi
) {
3364 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3368 /* Any ITS will do, even if not v4 */
3369 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
3371 entries
= roundup_pow_of_two(nr_cpu_ids
);
3372 vpe_proxy
.vpes
= kcalloc(entries
, sizeof(*vpe_proxy
.vpes
),
3374 if (!vpe_proxy
.vpes
) {
3375 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3379 /* Use the last possible DevID */
3380 devid
= GENMASK(its
->device_ids
- 1, 0);
3381 vpe_proxy
.dev
= its_create_device(its
, devid
, entries
, false);
3382 if (!vpe_proxy
.dev
) {
3383 kfree(vpe_proxy
.vpes
);
3384 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3388 BUG_ON(entries
> vpe_proxy
.dev
->nr_ites
);
3390 raw_spin_lock_init(&vpe_proxy
.lock
);
3391 vpe_proxy
.next_victim
= 0;
3392 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3393 devid
, vpe_proxy
.dev
->nr_ites
);
3398 static int __init
its_compute_its_list_map(struct resource
*res
,
3399 void __iomem
*its_base
)
3405 * This is assumed to be done early enough that we're
3406 * guaranteed to be single-threaded, hence no
3407 * locking. Should this change, we should address
3410 its_number
= find_first_zero_bit(&its_list_map
, GICv4_ITS_LIST_MAX
);
3411 if (its_number
>= GICv4_ITS_LIST_MAX
) {
3412 pr_err("ITS@%pa: No ITSList entry available!\n",
3417 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
3418 ctlr
&= ~GITS_CTLR_ITS_NUMBER
;
3419 ctlr
|= its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
;
3420 writel_relaxed(ctlr
, its_base
+ GITS_CTLR
);
3421 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
3422 if ((ctlr
& GITS_CTLR_ITS_NUMBER
) != (its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
)) {
3423 its_number
= ctlr
& GITS_CTLR_ITS_NUMBER
;
3424 its_number
>>= GITS_CTLR_ITS_NUMBER_SHIFT
;
3427 if (test_and_set_bit(its_number
, &its_list_map
)) {
3428 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3429 &res
->start
, its_number
);
3436 static int __init
its_probe_one(struct resource
*res
,
3437 struct fwnode_handle
*handle
, int numa_node
)
3439 struct its_node
*its
;
3440 void __iomem
*its_base
;
3442 u64 baser
, tmp
, typer
;
3445 its_base
= ioremap(res
->start
, resource_size(res
));
3447 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res
->start
);
3451 val
= readl_relaxed(its_base
+ GITS_PIDR2
) & GIC_PIDR2_ARCH_MASK
;
3452 if (val
!= 0x30 && val
!= 0x40) {
3453 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res
->start
);
3458 err
= its_force_quiescent(its_base
);
3460 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res
->start
);
3464 pr_info("ITS %pR\n", res
);
3466 its
= kzalloc(sizeof(*its
), GFP_KERNEL
);
3472 raw_spin_lock_init(&its
->lock
);
3473 mutex_init(&its
->dev_alloc_lock
);
3474 INIT_LIST_HEAD(&its
->entry
);
3475 INIT_LIST_HEAD(&its
->its_device_list
);
3476 typer
= gic_read_typer(its_base
+ GITS_TYPER
);
3477 its
->base
= its_base
;
3478 its
->phys_base
= res
->start
;
3479 its
->ite_size
= GITS_TYPER_ITT_ENTRY_SIZE(typer
);
3480 its
->device_ids
= GITS_TYPER_DEVBITS(typer
);
3481 its
->is_v4
= !!(typer
& GITS_TYPER_VLPIS
);
3483 if (!(typer
& GITS_TYPER_VMOVP
)) {
3484 err
= its_compute_its_list_map(res
, its_base
);
3490 pr_info("ITS@%pa: Using ITS number %d\n",
3493 pr_info("ITS@%pa: Single VMOVP capable\n", &res
->start
);
3497 its
->numa_node
= numa_node
;
3499 its
->cmd_base
= (void *)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
,
3500 get_order(ITS_CMD_QUEUE_SZ
));
3501 if (!its
->cmd_base
) {
3505 its
->cmd_write
= its
->cmd_base
;
3506 its
->fwnode_handle
= handle
;
3507 its
->get_msi_base
= its_irq_get_msi_base
;
3508 its
->msi_domain_flags
= IRQ_DOMAIN_FLAG_MSI_REMAP
;
3510 its_enable_quirks(its
);
3512 err
= its_alloc_tables(its
);
3516 err
= its_alloc_collections(its
);
3518 goto out_free_tables
;
3520 baser
= (virt_to_phys(its
->cmd_base
) |
3521 GITS_CBASER_RaWaWb
|
3522 GITS_CBASER_InnerShareable
|
3523 (ITS_CMD_QUEUE_SZ
/ SZ_4K
- 1) |
3526 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
3527 tmp
= gits_read_cbaser(its
->base
+ GITS_CBASER
);
3529 if ((tmp
^ baser
) & GITS_CBASER_SHAREABILITY_MASK
) {
3530 if (!(tmp
& GITS_CBASER_SHAREABILITY_MASK
)) {
3532 * The HW reports non-shareable, we must
3533 * remove the cacheability attributes as
3536 baser
&= ~(GITS_CBASER_SHAREABILITY_MASK
|
3537 GITS_CBASER_CACHEABILITY_MASK
);
3538 baser
|= GITS_CBASER_nC
;
3539 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
3541 pr_info("ITS: using cache flushing for cmd queue\n");
3542 its
->flags
|= ITS_FLAGS_CMDQ_NEEDS_FLUSHING
;
3545 gits_write_cwriter(0, its
->base
+ GITS_CWRITER
);
3546 ctlr
= readl_relaxed(its
->base
+ GITS_CTLR
);
3547 ctlr
|= GITS_CTLR_ENABLE
;
3549 ctlr
|= GITS_CTLR_ImDe
;
3550 writel_relaxed(ctlr
, its
->base
+ GITS_CTLR
);
3552 if (GITS_TYPER_HCC(typer
))
3553 its
->flags
|= ITS_FLAGS_SAVE_SUSPEND_STATE
;
3555 err
= its_init_domain(handle
, its
);
3557 goto out_free_tables
;
3559 raw_spin_lock(&its_lock
);
3560 list_add(&its
->entry
, &its_nodes
);
3561 raw_spin_unlock(&its_lock
);
3566 its_free_tables(its
);
3568 free_pages((unsigned long)its
->cmd_base
, get_order(ITS_CMD_QUEUE_SZ
));
3573 pr_err("ITS@%pa: failed probing (%d)\n", &res
->start
, err
);
3577 static bool gic_rdists_supports_plpis(void)
3579 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
) & GICR_TYPER_PLPIS
);
3582 static int redist_disable_lpis(void)
3584 void __iomem
*rbase
= gic_data_rdist_rd_base();
3585 u64 timeout
= USEC_PER_SEC
;
3589 * If coming via a CPU hotplug event, we don't need to disable
3590 * LPIs before trying to re-enable them. They are already
3591 * configured and all is well in the world. Detect this case
3592 * by checking the allocation of the pending table for the
3595 if (gic_data_rdist()->pend_page
)
3598 if (!gic_rdists_supports_plpis()) {
3599 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3603 val
= readl_relaxed(rbase
+ GICR_CTLR
);
3604 if (!(val
& GICR_CTLR_ENABLE_LPIS
))
3607 pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3608 smp_processor_id());
3609 add_taint(TAINT_CRAP
, LOCKDEP_STILL_OK
);
3612 val
&= ~GICR_CTLR_ENABLE_LPIS
;
3613 writel_relaxed(val
, rbase
+ GICR_CTLR
);
3615 /* Make sure any change to GICR_CTLR is observable by the GIC */
3619 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3620 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3621 * Error out if we time out waiting for RWP to clear.
3623 while (readl_relaxed(rbase
+ GICR_CTLR
) & GICR_CTLR_RWP
) {
3625 pr_err("CPU%d: Timeout while disabling LPIs\n",
3626 smp_processor_id());
3634 * After it has been written to 1, it is IMPLEMENTATION
3635 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3636 * cleared to 0. Error out if clearing the bit failed.
3638 if (readl_relaxed(rbase
+ GICR_CTLR
) & GICR_CTLR_ENABLE_LPIS
) {
3639 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3646 int its_cpu_init(void)
3648 if (!list_empty(&its_nodes
)) {
3651 ret
= redist_disable_lpis();
3655 its_cpu_init_lpis();
3656 its_cpu_init_collections();
3662 static const struct of_device_id its_device_id
[] = {
3663 { .compatible
= "arm,gic-v3-its", },
3667 static int __init
its_of_probe(struct device_node
*node
)
3669 struct device_node
*np
;
3670 struct resource res
;
3672 for (np
= of_find_matching_node(node
, its_device_id
); np
;
3673 np
= of_find_matching_node(np
, its_device_id
)) {
3674 if (!of_device_is_available(np
))
3676 if (!of_property_read_bool(np
, "msi-controller")) {
3677 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3682 if (of_address_to_resource(np
, 0, &res
)) {
3683 pr_warn("%pOF: no regs?\n", np
);
3687 its_probe_one(&res
, &np
->fwnode
, of_node_to_nid(np
));
3694 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3696 #ifdef CONFIG_ACPI_NUMA
3697 struct its_srat_map
{
3704 static struct its_srat_map
*its_srat_maps __initdata
;
3705 static int its_in_srat __initdata
;
3707 static int __init
acpi_get_its_numa_node(u32 its_id
)
3711 for (i
= 0; i
< its_in_srat
; i
++) {
3712 if (its_id
== its_srat_maps
[i
].its_id
)
3713 return its_srat_maps
[i
].numa_node
;
3715 return NUMA_NO_NODE
;
3718 static int __init
gic_acpi_match_srat_its(struct acpi_subtable_header
*header
,
3719 const unsigned long end
)
3724 static int __init
gic_acpi_parse_srat_its(struct acpi_subtable_header
*header
,
3725 const unsigned long end
)
3728 struct acpi_srat_gic_its_affinity
*its_affinity
;
3730 its_affinity
= (struct acpi_srat_gic_its_affinity
*)header
;
3734 if (its_affinity
->header
.length
< sizeof(*its_affinity
)) {
3735 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3736 its_affinity
->header
.length
);
3740 node
= acpi_map_pxm_to_node(its_affinity
->proximity_domain
);
3742 if (node
== NUMA_NO_NODE
|| node
>= MAX_NUMNODES
) {
3743 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node
);
3747 its_srat_maps
[its_in_srat
].numa_node
= node
;
3748 its_srat_maps
[its_in_srat
].its_id
= its_affinity
->its_id
;
3750 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3751 its_affinity
->proximity_domain
, its_affinity
->its_id
, node
);
3756 static void __init
acpi_table_parse_srat_its(void)
3760 count
= acpi_table_parse_entries(ACPI_SIG_SRAT
,
3761 sizeof(struct acpi_table_srat
),
3762 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
3763 gic_acpi_match_srat_its
, 0);
3767 its_srat_maps
= kmalloc_array(count
, sizeof(struct its_srat_map
),
3769 if (!its_srat_maps
) {
3770 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3774 acpi_table_parse_entries(ACPI_SIG_SRAT
,
3775 sizeof(struct acpi_table_srat
),
3776 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
3777 gic_acpi_parse_srat_its
, 0);
3780 /* free the its_srat_maps after ITS probing */
3781 static void __init
acpi_its_srat_maps_free(void)
3783 kfree(its_srat_maps
);
3786 static void __init
acpi_table_parse_srat_its(void) { }
3787 static int __init
acpi_get_its_numa_node(u32 its_id
) { return NUMA_NO_NODE
; }
3788 static void __init
acpi_its_srat_maps_free(void) { }
3791 static int __init
gic_acpi_parse_madt_its(struct acpi_subtable_header
*header
,
3792 const unsigned long end
)
3794 struct acpi_madt_generic_translator
*its_entry
;
3795 struct fwnode_handle
*dom_handle
;
3796 struct resource res
;
3799 its_entry
= (struct acpi_madt_generic_translator
*)header
;
3800 memset(&res
, 0, sizeof(res
));
3801 res
.start
= its_entry
->base_address
;
3802 res
.end
= its_entry
->base_address
+ ACPI_GICV3_ITS_MEM_SIZE
- 1;
3803 res
.flags
= IORESOURCE_MEM
;
3805 dom_handle
= irq_domain_alloc_fwnode((void *)its_entry
->base_address
);
3807 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3812 err
= iort_register_domain_token(its_entry
->translation_id
, res
.start
,
3815 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3816 &res
.start
, its_entry
->translation_id
);
3820 err
= its_probe_one(&res
, dom_handle
,
3821 acpi_get_its_numa_node(its_entry
->translation_id
));
3825 iort_deregister_domain_token(its_entry
->translation_id
);
3827 irq_domain_free_fwnode(dom_handle
);
3831 static void __init
its_acpi_probe(void)
3833 acpi_table_parse_srat_its();
3834 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR
,
3835 gic_acpi_parse_madt_its
, 0);
3836 acpi_its_srat_maps_free();
3839 static void __init
its_acpi_probe(void) { }
3842 int __init
its_init(struct fwnode_handle
*handle
, struct rdists
*rdists
,
3843 struct irq_domain
*parent_domain
)
3845 struct device_node
*of_node
;
3846 struct its_node
*its
;
3847 bool has_v4
= false;
3850 its_parent
= parent_domain
;
3851 of_node
= to_of_node(handle
);
3853 its_of_probe(of_node
);
3857 if (list_empty(&its_nodes
)) {
3858 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3862 gic_rdists
= rdists
;
3863 err
= its_alloc_lpi_tables();
3867 list_for_each_entry(its
, &its_nodes
, entry
)
3868 has_v4
|= its
->is_v4
;
3870 if (has_v4
& rdists
->has_vlpis
) {
3871 if (its_init_vpe_domain() ||
3872 its_init_v4(parent_domain
, &its_vpe_domain_ops
)) {
3873 rdists
->has_vlpis
= false;
3874 pr_err("ITS: Disabling GICv4 support\n");
3878 register_syscore_ops(&its_syscore_ops
);