MIPS: SNI: Fix spurious interrupts
[linux/fpc-iii.git] / block / blk-mq-sched.c
blob7620734d5542961864f3050ff2db15a4bb4a1af4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
11 #include <trace/events/block.h>
13 #include "blk.h"
14 #include "blk-mq.h"
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-mq-tag.h"
18 #include "blk-wbt.h"
20 void blk_mq_sched_free_hctx_data(struct request_queue *q,
21 void (*exit)(struct blk_mq_hw_ctx *))
23 struct blk_mq_hw_ctx *hctx;
24 int i;
26 queue_for_each_hw_ctx(q, hctx, i) {
27 if (exit && hctx->sched_data)
28 exit(hctx);
29 kfree(hctx->sched_data);
30 hctx->sched_data = NULL;
33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
35 void blk_mq_sched_assign_ioc(struct request *rq)
37 struct request_queue *q = rq->q;
38 struct io_context *ioc;
39 struct io_cq *icq;
42 * May not have an IO context if it's a passthrough request
44 ioc = current->io_context;
45 if (!ioc)
46 return;
48 spin_lock_irq(&q->queue_lock);
49 icq = ioc_lookup_icq(ioc, q);
50 spin_unlock_irq(&q->queue_lock);
52 if (!icq) {
53 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
54 if (!icq)
55 return;
57 get_io_context(icq->ioc);
58 rq->elv.icq = icq;
62 * Mark a hardware queue as needing a restart. For shared queues, maintain
63 * a count of how many hardware queues are marked for restart.
65 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
67 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 return;
70 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
72 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
74 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
76 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
77 return;
78 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
81 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
82 * in blk_mq_run_hw_queue(). Its pair is the barrier in
83 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
84 * meantime new request added to hctx->dispatch is missed to check in
85 * blk_mq_run_hw_queue().
87 smp_mb();
89 blk_mq_run_hw_queue(hctx, true);
93 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
94 * its queue by itself in its completion handler, so we don't need to
95 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
97 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
99 struct request_queue *q = hctx->queue;
100 struct elevator_queue *e = q->elevator;
101 LIST_HEAD(rq_list);
103 do {
104 struct request *rq;
106 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
107 break;
109 if (!blk_mq_get_dispatch_budget(hctx))
110 break;
112 rq = e->type->ops.dispatch_request(hctx);
113 if (!rq) {
114 blk_mq_put_dispatch_budget(hctx);
115 break;
119 * Now this rq owns the budget which has to be released
120 * if this rq won't be queued to driver via .queue_rq()
121 * in blk_mq_dispatch_rq_list().
123 list_add(&rq->queuelist, &rq_list);
124 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
127 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
128 struct blk_mq_ctx *ctx)
130 unsigned short idx = ctx->index_hw[hctx->type];
132 if (++idx == hctx->nr_ctx)
133 idx = 0;
135 return hctx->ctxs[idx];
139 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
140 * its queue by itself in its completion handler, so we don't need to
141 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
143 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
145 struct request_queue *q = hctx->queue;
146 LIST_HEAD(rq_list);
147 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
149 do {
150 struct request *rq;
152 if (!sbitmap_any_bit_set(&hctx->ctx_map))
153 break;
155 if (!blk_mq_get_dispatch_budget(hctx))
156 break;
158 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
159 if (!rq) {
160 blk_mq_put_dispatch_budget(hctx);
161 break;
165 * Now this rq owns the budget which has to be released
166 * if this rq won't be queued to driver via .queue_rq()
167 * in blk_mq_dispatch_rq_list().
169 list_add(&rq->queuelist, &rq_list);
171 /* round robin for fair dispatch */
172 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
174 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
176 WRITE_ONCE(hctx->dispatch_from, ctx);
179 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
181 struct request_queue *q = hctx->queue;
182 struct elevator_queue *e = q->elevator;
183 const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
184 LIST_HEAD(rq_list);
186 /* RCU or SRCU read lock is needed before checking quiesced flag */
187 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
188 return;
190 hctx->run++;
193 * If we have previous entries on our dispatch list, grab them first for
194 * more fair dispatch.
196 if (!list_empty_careful(&hctx->dispatch)) {
197 spin_lock(&hctx->lock);
198 if (!list_empty(&hctx->dispatch))
199 list_splice_init(&hctx->dispatch, &rq_list);
200 spin_unlock(&hctx->lock);
204 * Only ask the scheduler for requests, if we didn't have residual
205 * requests from the dispatch list. This is to avoid the case where
206 * we only ever dispatch a fraction of the requests available because
207 * of low device queue depth. Once we pull requests out of the IO
208 * scheduler, we can no longer merge or sort them. So it's best to
209 * leave them there for as long as we can. Mark the hw queue as
210 * needing a restart in that case.
212 * We want to dispatch from the scheduler if there was nothing
213 * on the dispatch list or we were able to dispatch from the
214 * dispatch list.
216 if (!list_empty(&rq_list)) {
217 blk_mq_sched_mark_restart_hctx(hctx);
218 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
219 if (has_sched_dispatch)
220 blk_mq_do_dispatch_sched(hctx);
221 else
222 blk_mq_do_dispatch_ctx(hctx);
224 } else if (has_sched_dispatch) {
225 blk_mq_do_dispatch_sched(hctx);
226 } else if (hctx->dispatch_busy) {
227 /* dequeue request one by one from sw queue if queue is busy */
228 blk_mq_do_dispatch_ctx(hctx);
229 } else {
230 blk_mq_flush_busy_ctxs(hctx, &rq_list);
231 blk_mq_dispatch_rq_list(q, &rq_list, false);
235 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
236 unsigned int nr_segs, struct request **merged_request)
238 struct request *rq;
240 switch (elv_merge(q, &rq, bio)) {
241 case ELEVATOR_BACK_MERGE:
242 if (!blk_mq_sched_allow_merge(q, rq, bio))
243 return false;
244 if (!bio_attempt_back_merge(rq, bio, nr_segs))
245 return false;
246 *merged_request = attempt_back_merge(q, rq);
247 if (!*merged_request)
248 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
249 return true;
250 case ELEVATOR_FRONT_MERGE:
251 if (!blk_mq_sched_allow_merge(q, rq, bio))
252 return false;
253 if (!bio_attempt_front_merge(rq, bio, nr_segs))
254 return false;
255 *merged_request = attempt_front_merge(q, rq);
256 if (!*merged_request)
257 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
258 return true;
259 case ELEVATOR_DISCARD_MERGE:
260 return bio_attempt_discard_merge(q, rq, bio);
261 default:
262 return false;
265 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
268 * Iterate list of requests and see if we can merge this bio with any
269 * of them.
271 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
272 struct bio *bio, unsigned int nr_segs)
274 struct request *rq;
275 int checked = 8;
277 list_for_each_entry_reverse(rq, list, queuelist) {
278 bool merged = false;
280 if (!checked--)
281 break;
283 if (!blk_rq_merge_ok(rq, bio))
284 continue;
286 switch (blk_try_merge(rq, bio)) {
287 case ELEVATOR_BACK_MERGE:
288 if (blk_mq_sched_allow_merge(q, rq, bio))
289 merged = bio_attempt_back_merge(rq, bio,
290 nr_segs);
291 break;
292 case ELEVATOR_FRONT_MERGE:
293 if (blk_mq_sched_allow_merge(q, rq, bio))
294 merged = bio_attempt_front_merge(rq, bio,
295 nr_segs);
296 break;
297 case ELEVATOR_DISCARD_MERGE:
298 merged = bio_attempt_discard_merge(q, rq, bio);
299 break;
300 default:
301 continue;
304 return merged;
307 return false;
309 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
312 * Reverse check our software queue for entries that we could potentially
313 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
314 * too much time checking for merges.
316 static bool blk_mq_attempt_merge(struct request_queue *q,
317 struct blk_mq_hw_ctx *hctx,
318 struct blk_mq_ctx *ctx, struct bio *bio,
319 unsigned int nr_segs)
321 enum hctx_type type = hctx->type;
323 lockdep_assert_held(&ctx->lock);
325 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
326 ctx->rq_merged++;
327 return true;
330 return false;
333 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
334 unsigned int nr_segs)
336 struct elevator_queue *e = q->elevator;
337 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
338 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
339 bool ret = false;
340 enum hctx_type type;
342 if (e && e->type->ops.bio_merge)
343 return e->type->ops.bio_merge(hctx, bio, nr_segs);
345 type = hctx->type;
346 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
347 !list_empty_careful(&ctx->rq_lists[type])) {
348 /* default per sw-queue merge */
349 spin_lock(&ctx->lock);
350 ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
351 spin_unlock(&ctx->lock);
354 return ret;
357 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
359 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
361 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
363 void blk_mq_sched_request_inserted(struct request *rq)
365 trace_block_rq_insert(rq->q, rq);
367 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
369 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
370 bool has_sched,
371 struct request *rq)
374 * dispatch flush and passthrough rq directly
376 * passthrough request has to be added to hctx->dispatch directly.
377 * For some reason, device may be in one situation which can't
378 * handle FS request, so STS_RESOURCE is always returned and the
379 * FS request will be added to hctx->dispatch. However passthrough
380 * request may be required at that time for fixing the problem. If
381 * passthrough request is added to scheduler queue, there isn't any
382 * chance to dispatch it given we prioritize requests in hctx->dispatch.
384 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
385 return true;
387 if (has_sched)
388 rq->rq_flags |= RQF_SORTED;
390 return false;
393 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
394 bool run_queue, bool async)
396 struct request_queue *q = rq->q;
397 struct elevator_queue *e = q->elevator;
398 struct blk_mq_ctx *ctx = rq->mq_ctx;
399 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
401 /* flush rq in flush machinery need to be dispatched directly */
402 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
403 blk_insert_flush(rq);
404 goto run;
407 WARN_ON(e && (rq->tag != -1));
409 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
411 * Firstly normal IO request is inserted to scheduler queue or
412 * sw queue, meantime we add flush request to dispatch queue(
413 * hctx->dispatch) directly and there is at most one in-flight
414 * flush request for each hw queue, so it doesn't matter to add
415 * flush request to tail or front of the dispatch queue.
417 * Secondly in case of NCQ, flush request belongs to non-NCQ
418 * command, and queueing it will fail when there is any
419 * in-flight normal IO request(NCQ command). When adding flush
420 * rq to the front of hctx->dispatch, it is easier to introduce
421 * extra time to flush rq's latency because of S_SCHED_RESTART
422 * compared with adding to the tail of dispatch queue, then
423 * chance of flush merge is increased, and less flush requests
424 * will be issued to controller. It is observed that ~10% time
425 * is saved in blktests block/004 on disk attached to AHCI/NCQ
426 * drive when adding flush rq to the front of hctx->dispatch.
428 * Simply queue flush rq to the front of hctx->dispatch so that
429 * intensive flush workloads can benefit in case of NCQ HW.
431 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
432 blk_mq_request_bypass_insert(rq, at_head, false);
433 goto run;
436 if (e && e->type->ops.insert_requests) {
437 LIST_HEAD(list);
439 list_add(&rq->queuelist, &list);
440 e->type->ops.insert_requests(hctx, &list, at_head);
441 } else {
442 spin_lock(&ctx->lock);
443 __blk_mq_insert_request(hctx, rq, at_head);
444 spin_unlock(&ctx->lock);
447 run:
448 if (run_queue)
449 blk_mq_run_hw_queue(hctx, async);
452 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
453 struct blk_mq_ctx *ctx,
454 struct list_head *list, bool run_queue_async)
456 struct elevator_queue *e;
457 struct request_queue *q = hctx->queue;
460 * blk_mq_sched_insert_requests() is called from flush plug
461 * context only, and hold one usage counter to prevent queue
462 * from being released.
464 percpu_ref_get(&q->q_usage_counter);
466 e = hctx->queue->elevator;
467 if (e && e->type->ops.insert_requests)
468 e->type->ops.insert_requests(hctx, list, false);
469 else {
471 * try to issue requests directly if the hw queue isn't
472 * busy in case of 'none' scheduler, and this way may save
473 * us one extra enqueue & dequeue to sw queue.
475 if (!hctx->dispatch_busy && !e && !run_queue_async) {
476 blk_mq_try_issue_list_directly(hctx, list);
477 if (list_empty(list))
478 goto out;
480 blk_mq_insert_requests(hctx, ctx, list);
483 blk_mq_run_hw_queue(hctx, run_queue_async);
484 out:
485 percpu_ref_put(&q->q_usage_counter);
488 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
489 struct blk_mq_hw_ctx *hctx,
490 unsigned int hctx_idx)
492 if (hctx->sched_tags) {
493 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
494 blk_mq_free_rq_map(hctx->sched_tags);
495 hctx->sched_tags = NULL;
499 static int blk_mq_sched_alloc_tags(struct request_queue *q,
500 struct blk_mq_hw_ctx *hctx,
501 unsigned int hctx_idx)
503 struct blk_mq_tag_set *set = q->tag_set;
504 int ret;
506 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
507 set->reserved_tags);
508 if (!hctx->sched_tags)
509 return -ENOMEM;
511 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
512 if (ret)
513 blk_mq_sched_free_tags(set, hctx, hctx_idx);
515 return ret;
518 /* called in queue's release handler, tagset has gone away */
519 static void blk_mq_sched_tags_teardown(struct request_queue *q)
521 struct blk_mq_hw_ctx *hctx;
522 int i;
524 queue_for_each_hw_ctx(q, hctx, i) {
525 if (hctx->sched_tags) {
526 blk_mq_free_rq_map(hctx->sched_tags);
527 hctx->sched_tags = NULL;
532 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
534 struct blk_mq_hw_ctx *hctx;
535 struct elevator_queue *eq;
536 unsigned int i;
537 int ret;
539 if (!e) {
540 q->elevator = NULL;
541 q->nr_requests = q->tag_set->queue_depth;
542 return 0;
546 * Default to double of smaller one between hw queue_depth and 128,
547 * since we don't split into sync/async like the old code did.
548 * Additionally, this is a per-hw queue depth.
550 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
551 BLKDEV_MAX_RQ);
553 queue_for_each_hw_ctx(q, hctx, i) {
554 ret = blk_mq_sched_alloc_tags(q, hctx, i);
555 if (ret)
556 goto err;
559 ret = e->ops.init_sched(q, e);
560 if (ret)
561 goto err;
563 blk_mq_debugfs_register_sched(q);
565 queue_for_each_hw_ctx(q, hctx, i) {
566 if (e->ops.init_hctx) {
567 ret = e->ops.init_hctx(hctx, i);
568 if (ret) {
569 eq = q->elevator;
570 blk_mq_sched_free_requests(q);
571 blk_mq_exit_sched(q, eq);
572 kobject_put(&eq->kobj);
573 return ret;
576 blk_mq_debugfs_register_sched_hctx(q, hctx);
579 return 0;
581 err:
582 blk_mq_sched_free_requests(q);
583 blk_mq_sched_tags_teardown(q);
584 q->elevator = NULL;
585 return ret;
589 * called in either blk_queue_cleanup or elevator_switch, tagset
590 * is required for freeing requests
592 void blk_mq_sched_free_requests(struct request_queue *q)
594 struct blk_mq_hw_ctx *hctx;
595 int i;
597 queue_for_each_hw_ctx(q, hctx, i) {
598 if (hctx->sched_tags)
599 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
603 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
605 struct blk_mq_hw_ctx *hctx;
606 unsigned int i;
608 queue_for_each_hw_ctx(q, hctx, i) {
609 blk_mq_debugfs_unregister_sched_hctx(hctx);
610 if (e->type->ops.exit_hctx && hctx->sched_data) {
611 e->type->ops.exit_hctx(hctx, i);
612 hctx->sched_data = NULL;
615 blk_mq_debugfs_unregister_sched(q);
616 if (e->type->ops.exit_sched)
617 e->type->ops.exit_sched(e);
618 blk_mq_sched_tags_teardown(q);
619 q->elevator = NULL;