1 // SPDX-License-Identifier: GPL-2.0
3 * blk-mq scheduling framework
5 * Copyright (C) 2016 Jens Axboe
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
11 #include <trace/events/block.h>
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-mq-tag.h"
20 void blk_mq_sched_free_hctx_data(struct request_queue
*q
,
21 void (*exit
)(struct blk_mq_hw_ctx
*))
23 struct blk_mq_hw_ctx
*hctx
;
26 queue_for_each_hw_ctx(q
, hctx
, i
) {
27 if (exit
&& hctx
->sched_data
)
29 kfree(hctx
->sched_data
);
30 hctx
->sched_data
= NULL
;
33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data
);
35 void blk_mq_sched_assign_ioc(struct request
*rq
)
37 struct request_queue
*q
= rq
->q
;
38 struct io_context
*ioc
;
42 * May not have an IO context if it's a passthrough request
44 ioc
= current
->io_context
;
48 spin_lock_irq(&q
->queue_lock
);
49 icq
= ioc_lookup_icq(ioc
, q
);
50 spin_unlock_irq(&q
->queue_lock
);
53 icq
= ioc_create_icq(ioc
, q
, GFP_ATOMIC
);
57 get_io_context(icq
->ioc
);
62 * Mark a hardware queue as needing a restart. For shared queues, maintain
63 * a count of how many hardware queues are marked for restart.
65 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx
*hctx
)
67 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
70 set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
72 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx
);
74 void blk_mq_sched_restart(struct blk_mq_hw_ctx
*hctx
)
76 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
78 clear_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
81 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
82 * in blk_mq_run_hw_queue(). Its pair is the barrier in
83 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
84 * meantime new request added to hctx->dispatch is missed to check in
85 * blk_mq_run_hw_queue().
89 blk_mq_run_hw_queue(hctx
, true);
93 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
94 * its queue by itself in its completion handler, so we don't need to
95 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
97 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx
*hctx
)
99 struct request_queue
*q
= hctx
->queue
;
100 struct elevator_queue
*e
= q
->elevator
;
106 if (e
->type
->ops
.has_work
&& !e
->type
->ops
.has_work(hctx
))
109 if (!blk_mq_get_dispatch_budget(hctx
))
112 rq
= e
->type
->ops
.dispatch_request(hctx
);
114 blk_mq_put_dispatch_budget(hctx
);
119 * Now this rq owns the budget which has to be released
120 * if this rq won't be queued to driver via .queue_rq()
121 * in blk_mq_dispatch_rq_list().
123 list_add(&rq
->queuelist
, &rq_list
);
124 } while (blk_mq_dispatch_rq_list(q
, &rq_list
, true));
127 static struct blk_mq_ctx
*blk_mq_next_ctx(struct blk_mq_hw_ctx
*hctx
,
128 struct blk_mq_ctx
*ctx
)
130 unsigned short idx
= ctx
->index_hw
[hctx
->type
];
132 if (++idx
== hctx
->nr_ctx
)
135 return hctx
->ctxs
[idx
];
139 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
140 * its queue by itself in its completion handler, so we don't need to
141 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
143 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx
*hctx
)
145 struct request_queue
*q
= hctx
->queue
;
147 struct blk_mq_ctx
*ctx
= READ_ONCE(hctx
->dispatch_from
);
152 if (!sbitmap_any_bit_set(&hctx
->ctx_map
))
155 if (!blk_mq_get_dispatch_budget(hctx
))
158 rq
= blk_mq_dequeue_from_ctx(hctx
, ctx
);
160 blk_mq_put_dispatch_budget(hctx
);
165 * Now this rq owns the budget which has to be released
166 * if this rq won't be queued to driver via .queue_rq()
167 * in blk_mq_dispatch_rq_list().
169 list_add(&rq
->queuelist
, &rq_list
);
171 /* round robin for fair dispatch */
172 ctx
= blk_mq_next_ctx(hctx
, rq
->mq_ctx
);
174 } while (blk_mq_dispatch_rq_list(q
, &rq_list
, true));
176 WRITE_ONCE(hctx
->dispatch_from
, ctx
);
179 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx
*hctx
)
181 struct request_queue
*q
= hctx
->queue
;
182 struct elevator_queue
*e
= q
->elevator
;
183 const bool has_sched_dispatch
= e
&& e
->type
->ops
.dispatch_request
;
186 /* RCU or SRCU read lock is needed before checking quiesced flag */
187 if (unlikely(blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)))
193 * If we have previous entries on our dispatch list, grab them first for
194 * more fair dispatch.
196 if (!list_empty_careful(&hctx
->dispatch
)) {
197 spin_lock(&hctx
->lock
);
198 if (!list_empty(&hctx
->dispatch
))
199 list_splice_init(&hctx
->dispatch
, &rq_list
);
200 spin_unlock(&hctx
->lock
);
204 * Only ask the scheduler for requests, if we didn't have residual
205 * requests from the dispatch list. This is to avoid the case where
206 * we only ever dispatch a fraction of the requests available because
207 * of low device queue depth. Once we pull requests out of the IO
208 * scheduler, we can no longer merge or sort them. So it's best to
209 * leave them there for as long as we can. Mark the hw queue as
210 * needing a restart in that case.
212 * We want to dispatch from the scheduler if there was nothing
213 * on the dispatch list or we were able to dispatch from the
216 if (!list_empty(&rq_list
)) {
217 blk_mq_sched_mark_restart_hctx(hctx
);
218 if (blk_mq_dispatch_rq_list(q
, &rq_list
, false)) {
219 if (has_sched_dispatch
)
220 blk_mq_do_dispatch_sched(hctx
);
222 blk_mq_do_dispatch_ctx(hctx
);
224 } else if (has_sched_dispatch
) {
225 blk_mq_do_dispatch_sched(hctx
);
226 } else if (hctx
->dispatch_busy
) {
227 /* dequeue request one by one from sw queue if queue is busy */
228 blk_mq_do_dispatch_ctx(hctx
);
230 blk_mq_flush_busy_ctxs(hctx
, &rq_list
);
231 blk_mq_dispatch_rq_list(q
, &rq_list
, false);
235 bool blk_mq_sched_try_merge(struct request_queue
*q
, struct bio
*bio
,
236 unsigned int nr_segs
, struct request
**merged_request
)
240 switch (elv_merge(q
, &rq
, bio
)) {
241 case ELEVATOR_BACK_MERGE
:
242 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
244 if (!bio_attempt_back_merge(rq
, bio
, nr_segs
))
246 *merged_request
= attempt_back_merge(q
, rq
);
247 if (!*merged_request
)
248 elv_merged_request(q
, rq
, ELEVATOR_BACK_MERGE
);
250 case ELEVATOR_FRONT_MERGE
:
251 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
253 if (!bio_attempt_front_merge(rq
, bio
, nr_segs
))
255 *merged_request
= attempt_front_merge(q
, rq
);
256 if (!*merged_request
)
257 elv_merged_request(q
, rq
, ELEVATOR_FRONT_MERGE
);
259 case ELEVATOR_DISCARD_MERGE
:
260 return bio_attempt_discard_merge(q
, rq
, bio
);
265 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge
);
268 * Iterate list of requests and see if we can merge this bio with any
271 bool blk_mq_bio_list_merge(struct request_queue
*q
, struct list_head
*list
,
272 struct bio
*bio
, unsigned int nr_segs
)
277 list_for_each_entry_reverse(rq
, list
, queuelist
) {
283 if (!blk_rq_merge_ok(rq
, bio
))
286 switch (blk_try_merge(rq
, bio
)) {
287 case ELEVATOR_BACK_MERGE
:
288 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
289 merged
= bio_attempt_back_merge(rq
, bio
,
292 case ELEVATOR_FRONT_MERGE
:
293 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
294 merged
= bio_attempt_front_merge(rq
, bio
,
297 case ELEVATOR_DISCARD_MERGE
:
298 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
309 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge
);
312 * Reverse check our software queue for entries that we could potentially
313 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
314 * too much time checking for merges.
316 static bool blk_mq_attempt_merge(struct request_queue
*q
,
317 struct blk_mq_hw_ctx
*hctx
,
318 struct blk_mq_ctx
*ctx
, struct bio
*bio
,
319 unsigned int nr_segs
)
321 enum hctx_type type
= hctx
->type
;
323 lockdep_assert_held(&ctx
->lock
);
325 if (blk_mq_bio_list_merge(q
, &ctx
->rq_lists
[type
], bio
, nr_segs
)) {
333 bool __blk_mq_sched_bio_merge(struct request_queue
*q
, struct bio
*bio
,
334 unsigned int nr_segs
)
336 struct elevator_queue
*e
= q
->elevator
;
337 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
338 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, bio
->bi_opf
, ctx
);
342 if (e
&& e
->type
->ops
.bio_merge
)
343 return e
->type
->ops
.bio_merge(hctx
, bio
, nr_segs
);
346 if ((hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
347 !list_empty_careful(&ctx
->rq_lists
[type
])) {
348 /* default per sw-queue merge */
349 spin_lock(&ctx
->lock
);
350 ret
= blk_mq_attempt_merge(q
, hctx
, ctx
, bio
, nr_segs
);
351 spin_unlock(&ctx
->lock
);
357 bool blk_mq_sched_try_insert_merge(struct request_queue
*q
, struct request
*rq
)
359 return rq_mergeable(rq
) && elv_attempt_insert_merge(q
, rq
);
361 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge
);
363 void blk_mq_sched_request_inserted(struct request
*rq
)
365 trace_block_rq_insert(rq
->q
, rq
);
367 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted
);
369 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx
*hctx
,
374 * dispatch flush and passthrough rq directly
376 * passthrough request has to be added to hctx->dispatch directly.
377 * For some reason, device may be in one situation which can't
378 * handle FS request, so STS_RESOURCE is always returned and the
379 * FS request will be added to hctx->dispatch. However passthrough
380 * request may be required at that time for fixing the problem. If
381 * passthrough request is added to scheduler queue, there isn't any
382 * chance to dispatch it given we prioritize requests in hctx->dispatch.
384 if ((rq
->rq_flags
& RQF_FLUSH_SEQ
) || blk_rq_is_passthrough(rq
))
388 rq
->rq_flags
|= RQF_SORTED
;
393 void blk_mq_sched_insert_request(struct request
*rq
, bool at_head
,
394 bool run_queue
, bool async
)
396 struct request_queue
*q
= rq
->q
;
397 struct elevator_queue
*e
= q
->elevator
;
398 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
399 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
401 /* flush rq in flush machinery need to be dispatched directly */
402 if (!(rq
->rq_flags
& RQF_FLUSH_SEQ
) && op_is_flush(rq
->cmd_flags
)) {
403 blk_insert_flush(rq
);
407 WARN_ON(e
&& (rq
->tag
!= -1));
409 if (blk_mq_sched_bypass_insert(hctx
, !!e
, rq
)) {
411 * Firstly normal IO request is inserted to scheduler queue or
412 * sw queue, meantime we add flush request to dispatch queue(
413 * hctx->dispatch) directly and there is at most one in-flight
414 * flush request for each hw queue, so it doesn't matter to add
415 * flush request to tail or front of the dispatch queue.
417 * Secondly in case of NCQ, flush request belongs to non-NCQ
418 * command, and queueing it will fail when there is any
419 * in-flight normal IO request(NCQ command). When adding flush
420 * rq to the front of hctx->dispatch, it is easier to introduce
421 * extra time to flush rq's latency because of S_SCHED_RESTART
422 * compared with adding to the tail of dispatch queue, then
423 * chance of flush merge is increased, and less flush requests
424 * will be issued to controller. It is observed that ~10% time
425 * is saved in blktests block/004 on disk attached to AHCI/NCQ
426 * drive when adding flush rq to the front of hctx->dispatch.
428 * Simply queue flush rq to the front of hctx->dispatch so that
429 * intensive flush workloads can benefit in case of NCQ HW.
431 at_head
= (rq
->rq_flags
& RQF_FLUSH_SEQ
) ? true : at_head
;
432 blk_mq_request_bypass_insert(rq
, at_head
, false);
436 if (e
&& e
->type
->ops
.insert_requests
) {
439 list_add(&rq
->queuelist
, &list
);
440 e
->type
->ops
.insert_requests(hctx
, &list
, at_head
);
442 spin_lock(&ctx
->lock
);
443 __blk_mq_insert_request(hctx
, rq
, at_head
);
444 spin_unlock(&ctx
->lock
);
449 blk_mq_run_hw_queue(hctx
, async
);
452 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx
*hctx
,
453 struct blk_mq_ctx
*ctx
,
454 struct list_head
*list
, bool run_queue_async
)
456 struct elevator_queue
*e
;
457 struct request_queue
*q
= hctx
->queue
;
460 * blk_mq_sched_insert_requests() is called from flush plug
461 * context only, and hold one usage counter to prevent queue
462 * from being released.
464 percpu_ref_get(&q
->q_usage_counter
);
466 e
= hctx
->queue
->elevator
;
467 if (e
&& e
->type
->ops
.insert_requests
)
468 e
->type
->ops
.insert_requests(hctx
, list
, false);
471 * try to issue requests directly if the hw queue isn't
472 * busy in case of 'none' scheduler, and this way may save
473 * us one extra enqueue & dequeue to sw queue.
475 if (!hctx
->dispatch_busy
&& !e
&& !run_queue_async
) {
476 blk_mq_try_issue_list_directly(hctx
, list
);
477 if (list_empty(list
))
480 blk_mq_insert_requests(hctx
, ctx
, list
);
483 blk_mq_run_hw_queue(hctx
, run_queue_async
);
485 percpu_ref_put(&q
->q_usage_counter
);
488 static void blk_mq_sched_free_tags(struct blk_mq_tag_set
*set
,
489 struct blk_mq_hw_ctx
*hctx
,
490 unsigned int hctx_idx
)
492 if (hctx
->sched_tags
) {
493 blk_mq_free_rqs(set
, hctx
->sched_tags
, hctx_idx
);
494 blk_mq_free_rq_map(hctx
->sched_tags
);
495 hctx
->sched_tags
= NULL
;
499 static int blk_mq_sched_alloc_tags(struct request_queue
*q
,
500 struct blk_mq_hw_ctx
*hctx
,
501 unsigned int hctx_idx
)
503 struct blk_mq_tag_set
*set
= q
->tag_set
;
506 hctx
->sched_tags
= blk_mq_alloc_rq_map(set
, hctx_idx
, q
->nr_requests
,
508 if (!hctx
->sched_tags
)
511 ret
= blk_mq_alloc_rqs(set
, hctx
->sched_tags
, hctx_idx
, q
->nr_requests
);
513 blk_mq_sched_free_tags(set
, hctx
, hctx_idx
);
518 /* called in queue's release handler, tagset has gone away */
519 static void blk_mq_sched_tags_teardown(struct request_queue
*q
)
521 struct blk_mq_hw_ctx
*hctx
;
524 queue_for_each_hw_ctx(q
, hctx
, i
) {
525 if (hctx
->sched_tags
) {
526 blk_mq_free_rq_map(hctx
->sched_tags
);
527 hctx
->sched_tags
= NULL
;
532 int blk_mq_init_sched(struct request_queue
*q
, struct elevator_type
*e
)
534 struct blk_mq_hw_ctx
*hctx
;
535 struct elevator_queue
*eq
;
541 q
->nr_requests
= q
->tag_set
->queue_depth
;
546 * Default to double of smaller one between hw queue_depth and 128,
547 * since we don't split into sync/async like the old code did.
548 * Additionally, this is a per-hw queue depth.
550 q
->nr_requests
= 2 * min_t(unsigned int, q
->tag_set
->queue_depth
,
553 queue_for_each_hw_ctx(q
, hctx
, i
) {
554 ret
= blk_mq_sched_alloc_tags(q
, hctx
, i
);
559 ret
= e
->ops
.init_sched(q
, e
);
563 blk_mq_debugfs_register_sched(q
);
565 queue_for_each_hw_ctx(q
, hctx
, i
) {
566 if (e
->ops
.init_hctx
) {
567 ret
= e
->ops
.init_hctx(hctx
, i
);
570 blk_mq_sched_free_requests(q
);
571 blk_mq_exit_sched(q
, eq
);
572 kobject_put(&eq
->kobj
);
576 blk_mq_debugfs_register_sched_hctx(q
, hctx
);
582 blk_mq_sched_free_requests(q
);
583 blk_mq_sched_tags_teardown(q
);
589 * called in either blk_queue_cleanup or elevator_switch, tagset
590 * is required for freeing requests
592 void blk_mq_sched_free_requests(struct request_queue
*q
)
594 struct blk_mq_hw_ctx
*hctx
;
597 queue_for_each_hw_ctx(q
, hctx
, i
) {
598 if (hctx
->sched_tags
)
599 blk_mq_free_rqs(q
->tag_set
, hctx
->sched_tags
, i
);
603 void blk_mq_exit_sched(struct request_queue
*q
, struct elevator_queue
*e
)
605 struct blk_mq_hw_ctx
*hctx
;
608 queue_for_each_hw_ctx(q
, hctx
, i
) {
609 blk_mq_debugfs_unregister_sched_hctx(hctx
);
610 if (e
->type
->ops
.exit_hctx
&& hctx
->sched_data
) {
611 e
->type
->ops
.exit_hctx(hctx
, i
);
612 hctx
->sched_data
= NULL
;
615 blk_mq_debugfs_unregister_sched(q
);
616 if (e
->type
->ops
.exit_sched
)
617 e
->type
->ops
.exit_sched(e
);
618 blk_mq_sched_tags_teardown(q
);