efivars: Refactor sanity checking code into separate function
[linux/fpc-iii.git] / arch / powerpc / kernel / align.c
blob94908af308d80423dd3cf18455887aadb5d9b7bf
1 /* align.c - handle alignment exceptions for the Power PC.
3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4 * Copyright (c) 1998-1999 TiVo, Inc.
5 * PowerPC 403GCX modifications.
6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7 * PowerPC 403GCX/405GP modifications.
8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9 * 64-bit and Power4 support
10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11 * <benh@kernel.crashing.org>
12 * Merge ppc32 and ppc64 implementations
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <asm/processor.h>
23 #include <asm/uaccess.h>
24 #include <asm/cache.h>
25 #include <asm/cputable.h>
26 #include <asm/emulated_ops.h>
27 #include <asm/switch_to.h>
29 struct aligninfo {
30 unsigned char len;
31 unsigned char flags;
34 #define IS_XFORM(inst) (((inst) >> 26) == 31)
35 #define IS_DSFORM(inst) (((inst) >> 26) >= 56)
37 #define INVALID { 0, 0 }
39 /* Bits in the flags field */
40 #define LD 0 /* load */
41 #define ST 1 /* store */
42 #define SE 2 /* sign-extend value, or FP ld/st as word */
43 #define F 4 /* to/from fp regs */
44 #define U 8 /* update index register */
45 #define M 0x10 /* multiple load/store */
46 #define SW 0x20 /* byte swap */
47 #define S 0x40 /* single-precision fp or... */
48 #define SX 0x40 /* ... byte count in XER */
49 #define HARD 0x80 /* string, stwcx. */
50 #define E4 0x40 /* SPE endianness is word */
51 #define E8 0x80 /* SPE endianness is double word */
52 #define SPLT 0x80 /* VSX SPLAT load */
54 /* DSISR bits reported for a DCBZ instruction: */
55 #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
58 * The PowerPC stores certain bits of the instruction that caused the
59 * alignment exception in the DSISR register. This array maps those
60 * bits to information about the operand length and what the
61 * instruction would do.
63 static struct aligninfo aligninfo[128] = {
64 { 4, LD }, /* 00 0 0000: lwz / lwarx */
65 INVALID, /* 00 0 0001 */
66 { 4, ST }, /* 00 0 0010: stw */
67 INVALID, /* 00 0 0011 */
68 { 2, LD }, /* 00 0 0100: lhz */
69 { 2, LD+SE }, /* 00 0 0101: lha */
70 { 2, ST }, /* 00 0 0110: sth */
71 { 4, LD+M }, /* 00 0 0111: lmw */
72 { 4, LD+F+S }, /* 00 0 1000: lfs */
73 { 8, LD+F }, /* 00 0 1001: lfd */
74 { 4, ST+F+S }, /* 00 0 1010: stfs */
75 { 8, ST+F }, /* 00 0 1011: stfd */
76 { 16, LD }, /* 00 0 1100: lq */
77 { 8, LD }, /* 00 0 1101: ld/ldu/lwa */
78 INVALID, /* 00 0 1110 */
79 { 8, ST }, /* 00 0 1111: std/stdu */
80 { 4, LD+U }, /* 00 1 0000: lwzu */
81 INVALID, /* 00 1 0001 */
82 { 4, ST+U }, /* 00 1 0010: stwu */
83 INVALID, /* 00 1 0011 */
84 { 2, LD+U }, /* 00 1 0100: lhzu */
85 { 2, LD+SE+U }, /* 00 1 0101: lhau */
86 { 2, ST+U }, /* 00 1 0110: sthu */
87 { 4, ST+M }, /* 00 1 0111: stmw */
88 { 4, LD+F+S+U }, /* 00 1 1000: lfsu */
89 { 8, LD+F+U }, /* 00 1 1001: lfdu */
90 { 4, ST+F+S+U }, /* 00 1 1010: stfsu */
91 { 8, ST+F+U }, /* 00 1 1011: stfdu */
92 { 16, LD+F }, /* 00 1 1100: lfdp */
93 INVALID, /* 00 1 1101 */
94 { 16, ST+F }, /* 00 1 1110: stfdp */
95 INVALID, /* 00 1 1111 */
96 { 8, LD }, /* 01 0 0000: ldx */
97 INVALID, /* 01 0 0001 */
98 { 8, ST }, /* 01 0 0010: stdx */
99 INVALID, /* 01 0 0011 */
100 INVALID, /* 01 0 0100 */
101 { 4, LD+SE }, /* 01 0 0101: lwax */
102 INVALID, /* 01 0 0110 */
103 INVALID, /* 01 0 0111 */
104 { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
105 { 4, LD+M+HARD }, /* 01 0 1001: lswi */
106 { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
107 { 4, ST+M+HARD }, /* 01 0 1011: stswi */
108 INVALID, /* 01 0 1100 */
109 { 8, LD+U }, /* 01 0 1101: ldu */
110 INVALID, /* 01 0 1110 */
111 { 8, ST+U }, /* 01 0 1111: stdu */
112 { 8, LD+U }, /* 01 1 0000: ldux */
113 INVALID, /* 01 1 0001 */
114 { 8, ST+U }, /* 01 1 0010: stdux */
115 INVALID, /* 01 1 0011 */
116 INVALID, /* 01 1 0100 */
117 { 4, LD+SE+U }, /* 01 1 0101: lwaux */
118 INVALID, /* 01 1 0110 */
119 INVALID, /* 01 1 0111 */
120 INVALID, /* 01 1 1000 */
121 INVALID, /* 01 1 1001 */
122 INVALID, /* 01 1 1010 */
123 INVALID, /* 01 1 1011 */
124 INVALID, /* 01 1 1100 */
125 INVALID, /* 01 1 1101 */
126 INVALID, /* 01 1 1110 */
127 INVALID, /* 01 1 1111 */
128 INVALID, /* 10 0 0000 */
129 INVALID, /* 10 0 0001 */
130 INVALID, /* 10 0 0010: stwcx. */
131 INVALID, /* 10 0 0011 */
132 INVALID, /* 10 0 0100 */
133 INVALID, /* 10 0 0101 */
134 INVALID, /* 10 0 0110 */
135 INVALID, /* 10 0 0111 */
136 { 4, LD+SW }, /* 10 0 1000: lwbrx */
137 INVALID, /* 10 0 1001 */
138 { 4, ST+SW }, /* 10 0 1010: stwbrx */
139 INVALID, /* 10 0 1011 */
140 { 2, LD+SW }, /* 10 0 1100: lhbrx */
141 { 4, LD+SE }, /* 10 0 1101 lwa */
142 { 2, ST+SW }, /* 10 0 1110: sthbrx */
143 { 16, ST }, /* 10 0 1111: stq */
144 INVALID, /* 10 1 0000 */
145 INVALID, /* 10 1 0001 */
146 INVALID, /* 10 1 0010 */
147 INVALID, /* 10 1 0011 */
148 INVALID, /* 10 1 0100 */
149 INVALID, /* 10 1 0101 */
150 INVALID, /* 10 1 0110 */
151 INVALID, /* 10 1 0111 */
152 INVALID, /* 10 1 1000 */
153 INVALID, /* 10 1 1001 */
154 INVALID, /* 10 1 1010 */
155 INVALID, /* 10 1 1011 */
156 INVALID, /* 10 1 1100 */
157 INVALID, /* 10 1 1101 */
158 INVALID, /* 10 1 1110 */
159 { 0, ST+HARD }, /* 10 1 1111: dcbz */
160 { 4, LD }, /* 11 0 0000: lwzx */
161 INVALID, /* 11 0 0001 */
162 { 4, ST }, /* 11 0 0010: stwx */
163 INVALID, /* 11 0 0011 */
164 { 2, LD }, /* 11 0 0100: lhzx */
165 { 2, LD+SE }, /* 11 0 0101: lhax */
166 { 2, ST }, /* 11 0 0110: sthx */
167 INVALID, /* 11 0 0111 */
168 { 4, LD+F+S }, /* 11 0 1000: lfsx */
169 { 8, LD+F }, /* 11 0 1001: lfdx */
170 { 4, ST+F+S }, /* 11 0 1010: stfsx */
171 { 8, ST+F }, /* 11 0 1011: stfdx */
172 { 16, LD+F }, /* 11 0 1100: lfdpx */
173 { 4, LD+F+SE }, /* 11 0 1101: lfiwax */
174 { 16, ST+F }, /* 11 0 1110: stfdpx */
175 { 4, ST+F }, /* 11 0 1111: stfiwx */
176 { 4, LD+U }, /* 11 1 0000: lwzux */
177 INVALID, /* 11 1 0001 */
178 { 4, ST+U }, /* 11 1 0010: stwux */
179 INVALID, /* 11 1 0011 */
180 { 2, LD+U }, /* 11 1 0100: lhzux */
181 { 2, LD+SE+U }, /* 11 1 0101: lhaux */
182 { 2, ST+U }, /* 11 1 0110: sthux */
183 INVALID, /* 11 1 0111 */
184 { 4, LD+F+S+U }, /* 11 1 1000: lfsux */
185 { 8, LD+F+U }, /* 11 1 1001: lfdux */
186 { 4, ST+F+S+U }, /* 11 1 1010: stfsux */
187 { 8, ST+F+U }, /* 11 1 1011: stfdux */
188 INVALID, /* 11 1 1100 */
189 { 4, LD+F }, /* 11 1 1101: lfiwzx */
190 INVALID, /* 11 1 1110 */
191 INVALID, /* 11 1 1111 */
195 * Create a DSISR value from the instruction
197 static inline unsigned make_dsisr(unsigned instr)
199 unsigned dsisr;
202 /* bits 6:15 --> 22:31 */
203 dsisr = (instr & 0x03ff0000) >> 16;
205 if (IS_XFORM(instr)) {
206 /* bits 29:30 --> 15:16 */
207 dsisr |= (instr & 0x00000006) << 14;
208 /* bit 25 --> 17 */
209 dsisr |= (instr & 0x00000040) << 8;
210 /* bits 21:24 --> 18:21 */
211 dsisr |= (instr & 0x00000780) << 3;
212 } else {
213 /* bit 5 --> 17 */
214 dsisr |= (instr & 0x04000000) >> 12;
215 /* bits 1: 4 --> 18:21 */
216 dsisr |= (instr & 0x78000000) >> 17;
217 /* bits 30:31 --> 12:13 */
218 if (IS_DSFORM(instr))
219 dsisr |= (instr & 0x00000003) << 18;
222 return dsisr;
226 * The dcbz (data cache block zero) instruction
227 * gives an alignment fault if used on non-cacheable
228 * memory. We handle the fault mainly for the
229 * case when we are running with the cache disabled
230 * for debugging.
232 static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
234 long __user *p;
235 int i, size;
237 #ifdef __powerpc64__
238 size = ppc64_caches.dline_size;
239 #else
240 size = L1_CACHE_BYTES;
241 #endif
242 p = (long __user *) (regs->dar & -size);
243 if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
244 return -EFAULT;
245 for (i = 0; i < size / sizeof(long); ++i)
246 if (__put_user_inatomic(0, p+i))
247 return -EFAULT;
248 return 1;
252 * Emulate load & store multiple instructions
253 * On 64-bit machines, these instructions only affect/use the
254 * bottom 4 bytes of each register, and the loads clear the
255 * top 4 bytes of the affected register.
257 #ifdef __BIG_ENDIAN__
258 #ifdef CONFIG_PPC64
259 #define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
260 #else
261 #define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
262 #endif
263 #endif
265 #ifdef __LITTLE_ENDIAN__
266 #define REG_BYTE(rp, i) (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
267 #endif
269 #define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
271 static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
272 unsigned int reg, unsigned int nb,
273 unsigned int flags, unsigned int instr,
274 unsigned long swiz)
276 unsigned long *rptr;
277 unsigned int nb0, i, bswiz;
278 unsigned long p;
281 * We do not try to emulate 8 bytes multiple as they aren't really
282 * available in our operating environments and we don't try to
283 * emulate multiples operations in kernel land as they should never
284 * be used/generated there at least not on unaligned boundaries
286 if (unlikely((nb > 4) || !user_mode(regs)))
287 return 0;
289 /* lmw, stmw, lswi/x, stswi/x */
290 nb0 = 0;
291 if (flags & HARD) {
292 if (flags & SX) {
293 nb = regs->xer & 127;
294 if (nb == 0)
295 return 1;
296 } else {
297 unsigned long pc = regs->nip ^ (swiz & 4);
299 if (__get_user_inatomic(instr,
300 (unsigned int __user *)pc))
301 return -EFAULT;
302 if (swiz == 0 && (flags & SW))
303 instr = cpu_to_le32(instr);
304 nb = (instr >> 11) & 0x1f;
305 if (nb == 0)
306 nb = 32;
308 if (nb + reg * 4 > 128) {
309 nb0 = nb + reg * 4 - 128;
310 nb = 128 - reg * 4;
312 #ifdef __LITTLE_ENDIAN__
314 * String instructions are endian neutral but the code
315 * below is not. Force byte swapping on so that the
316 * effects of swizzling are undone in the load/store
317 * loops below.
319 flags ^= SW;
320 #endif
321 } else {
322 /* lwm, stmw */
323 nb = (32 - reg) * 4;
326 if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
327 return -EFAULT; /* bad address */
329 rptr = &regs->gpr[reg];
330 p = (unsigned long) addr;
331 bswiz = (flags & SW)? 3: 0;
333 if (!(flags & ST)) {
335 * This zeroes the top 4 bytes of the affected registers
336 * in 64-bit mode, and also zeroes out any remaining
337 * bytes of the last register for lsw*.
339 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
340 if (nb0 > 0)
341 memset(&regs->gpr[0], 0,
342 ((nb0 + 3) / 4) * sizeof(unsigned long));
344 for (i = 0; i < nb; ++i, ++p)
345 if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
346 SWIZ_PTR(p)))
347 return -EFAULT;
348 if (nb0 > 0) {
349 rptr = &regs->gpr[0];
350 addr += nb;
351 for (i = 0; i < nb0; ++i, ++p)
352 if (__get_user_inatomic(REG_BYTE(rptr,
353 i ^ bswiz),
354 SWIZ_PTR(p)))
355 return -EFAULT;
358 } else {
359 for (i = 0; i < nb; ++i, ++p)
360 if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
361 SWIZ_PTR(p)))
362 return -EFAULT;
363 if (nb0 > 0) {
364 rptr = &regs->gpr[0];
365 addr += nb;
366 for (i = 0; i < nb0; ++i, ++p)
367 if (__put_user_inatomic(REG_BYTE(rptr,
368 i ^ bswiz),
369 SWIZ_PTR(p)))
370 return -EFAULT;
373 return 1;
377 * Emulate floating-point pair loads and stores.
378 * Only POWER6 has these instructions, and it does true little-endian,
379 * so we don't need the address swizzling.
381 static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
382 unsigned int flags)
384 char *ptr0 = (char *) &current->thread.TS_FPR(reg);
385 char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
386 int i, ret, sw = 0;
388 if (reg & 1)
389 return 0; /* invalid form: FRS/FRT must be even */
390 if (flags & SW)
391 sw = 7;
392 ret = 0;
393 for (i = 0; i < 8; ++i) {
394 if (!(flags & ST)) {
395 ret |= __get_user(ptr0[i^sw], addr + i);
396 ret |= __get_user(ptr1[i^sw], addr + i + 8);
397 } else {
398 ret |= __put_user(ptr0[i^sw], addr + i);
399 ret |= __put_user(ptr1[i^sw], addr + i + 8);
402 if (ret)
403 return -EFAULT;
404 return 1; /* exception handled and fixed up */
407 #ifdef CONFIG_PPC64
408 static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
409 unsigned int reg, unsigned int flags)
411 char *ptr0 = (char *)&regs->gpr[reg];
412 char *ptr1 = (char *)&regs->gpr[reg+1];
413 int i, ret, sw = 0;
415 if (reg & 1)
416 return 0; /* invalid form: GPR must be even */
417 if (flags & SW)
418 sw = 7;
419 ret = 0;
420 for (i = 0; i < 8; ++i) {
421 if (!(flags & ST)) {
422 ret |= __get_user(ptr0[i^sw], addr + i);
423 ret |= __get_user(ptr1[i^sw], addr + i + 8);
424 } else {
425 ret |= __put_user(ptr0[i^sw], addr + i);
426 ret |= __put_user(ptr1[i^sw], addr + i + 8);
429 if (ret)
430 return -EFAULT;
431 return 1; /* exception handled and fixed up */
433 #endif /* CONFIG_PPC64 */
435 #ifdef CONFIG_SPE
437 static struct aligninfo spe_aligninfo[32] = {
438 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
439 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
440 { 8, LD }, /* 0 00 10: evldh[x] */
441 INVALID, /* 0 00 11 */
442 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
443 INVALID, /* 0 01 01 */
444 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
445 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
446 { 4, LD }, /* 0 10 00: evlwhe[x] */
447 INVALID, /* 0 10 01 */
448 { 4, LD }, /* 0 10 10: evlwhou[x] */
449 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
450 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
451 INVALID, /* 0 11 01 */
452 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
453 INVALID, /* 0 11 11 */
455 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
456 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
457 { 8, ST }, /* 1 00 10: evstdh[x] */
458 INVALID, /* 1 00 11 */
459 INVALID, /* 1 01 00 */
460 INVALID, /* 1 01 01 */
461 INVALID, /* 1 01 10 */
462 INVALID, /* 1 01 11 */
463 { 4, ST }, /* 1 10 00: evstwhe[x] */
464 INVALID, /* 1 10 01 */
465 { 4, ST }, /* 1 10 10: evstwho[x] */
466 INVALID, /* 1 10 11 */
467 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
468 INVALID, /* 1 11 01 */
469 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
470 INVALID, /* 1 11 11 */
473 #define EVLDD 0x00
474 #define EVLDW 0x01
475 #define EVLDH 0x02
476 #define EVLHHESPLAT 0x04
477 #define EVLHHOUSPLAT 0x06
478 #define EVLHHOSSPLAT 0x07
479 #define EVLWHE 0x08
480 #define EVLWHOU 0x0A
481 #define EVLWHOS 0x0B
482 #define EVLWWSPLAT 0x0C
483 #define EVLWHSPLAT 0x0E
484 #define EVSTDD 0x10
485 #define EVSTDW 0x11
486 #define EVSTDH 0x12
487 #define EVSTWHE 0x18
488 #define EVSTWHO 0x1A
489 #define EVSTWWE 0x1C
490 #define EVSTWWO 0x1E
493 * Emulate SPE loads and stores.
494 * Only Book-E has these instructions, and it does true little-endian,
495 * so we don't need the address swizzling.
497 static int emulate_spe(struct pt_regs *regs, unsigned int reg,
498 unsigned int instr)
500 int ret;
501 union {
502 u64 ll;
503 u32 w[2];
504 u16 h[4];
505 u8 v[8];
506 } data, temp;
507 unsigned char __user *p, *addr;
508 unsigned long *evr = &current->thread.evr[reg];
509 unsigned int nb, flags;
511 instr = (instr >> 1) & 0x1f;
513 /* DAR has the operand effective address */
514 addr = (unsigned char __user *)regs->dar;
516 nb = spe_aligninfo[instr].len;
517 flags = spe_aligninfo[instr].flags;
519 /* Verify the address of the operand */
520 if (unlikely(user_mode(regs) &&
521 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
522 addr, nb)))
523 return -EFAULT;
525 /* userland only */
526 if (unlikely(!user_mode(regs)))
527 return 0;
529 flush_spe_to_thread(current);
531 /* If we are loading, get the data from user space, else
532 * get it from register values
534 if (flags & ST) {
535 data.ll = 0;
536 switch (instr) {
537 case EVSTDD:
538 case EVSTDW:
539 case EVSTDH:
540 data.w[0] = *evr;
541 data.w[1] = regs->gpr[reg];
542 break;
543 case EVSTWHE:
544 data.h[2] = *evr >> 16;
545 data.h[3] = regs->gpr[reg] >> 16;
546 break;
547 case EVSTWHO:
548 data.h[2] = *evr & 0xffff;
549 data.h[3] = regs->gpr[reg] & 0xffff;
550 break;
551 case EVSTWWE:
552 data.w[1] = *evr;
553 break;
554 case EVSTWWO:
555 data.w[1] = regs->gpr[reg];
556 break;
557 default:
558 return -EINVAL;
560 } else {
561 temp.ll = data.ll = 0;
562 ret = 0;
563 p = addr;
565 switch (nb) {
566 case 8:
567 ret |= __get_user_inatomic(temp.v[0], p++);
568 ret |= __get_user_inatomic(temp.v[1], p++);
569 ret |= __get_user_inatomic(temp.v[2], p++);
570 ret |= __get_user_inatomic(temp.v[3], p++);
571 case 4:
572 ret |= __get_user_inatomic(temp.v[4], p++);
573 ret |= __get_user_inatomic(temp.v[5], p++);
574 case 2:
575 ret |= __get_user_inatomic(temp.v[6], p++);
576 ret |= __get_user_inatomic(temp.v[7], p++);
577 if (unlikely(ret))
578 return -EFAULT;
581 switch (instr) {
582 case EVLDD:
583 case EVLDW:
584 case EVLDH:
585 data.ll = temp.ll;
586 break;
587 case EVLHHESPLAT:
588 data.h[0] = temp.h[3];
589 data.h[2] = temp.h[3];
590 break;
591 case EVLHHOUSPLAT:
592 case EVLHHOSSPLAT:
593 data.h[1] = temp.h[3];
594 data.h[3] = temp.h[3];
595 break;
596 case EVLWHE:
597 data.h[0] = temp.h[2];
598 data.h[2] = temp.h[3];
599 break;
600 case EVLWHOU:
601 case EVLWHOS:
602 data.h[1] = temp.h[2];
603 data.h[3] = temp.h[3];
604 break;
605 case EVLWWSPLAT:
606 data.w[0] = temp.w[1];
607 data.w[1] = temp.w[1];
608 break;
609 case EVLWHSPLAT:
610 data.h[0] = temp.h[2];
611 data.h[1] = temp.h[2];
612 data.h[2] = temp.h[3];
613 data.h[3] = temp.h[3];
614 break;
615 default:
616 return -EINVAL;
620 if (flags & SW) {
621 switch (flags & 0xf0) {
622 case E8:
623 data.ll = swab64(data.ll);
624 break;
625 case E4:
626 data.w[0] = swab32(data.w[0]);
627 data.w[1] = swab32(data.w[1]);
628 break;
629 /* Its half word endian */
630 default:
631 data.h[0] = swab16(data.h[0]);
632 data.h[1] = swab16(data.h[1]);
633 data.h[2] = swab16(data.h[2]);
634 data.h[3] = swab16(data.h[3]);
635 break;
639 if (flags & SE) {
640 data.w[0] = (s16)data.h[1];
641 data.w[1] = (s16)data.h[3];
644 /* Store result to memory or update registers */
645 if (flags & ST) {
646 ret = 0;
647 p = addr;
648 switch (nb) {
649 case 8:
650 ret |= __put_user_inatomic(data.v[0], p++);
651 ret |= __put_user_inatomic(data.v[1], p++);
652 ret |= __put_user_inatomic(data.v[2], p++);
653 ret |= __put_user_inatomic(data.v[3], p++);
654 case 4:
655 ret |= __put_user_inatomic(data.v[4], p++);
656 ret |= __put_user_inatomic(data.v[5], p++);
657 case 2:
658 ret |= __put_user_inatomic(data.v[6], p++);
659 ret |= __put_user_inatomic(data.v[7], p++);
661 if (unlikely(ret))
662 return -EFAULT;
663 } else {
664 *evr = data.w[0];
665 regs->gpr[reg] = data.w[1];
668 return 1;
670 #endif /* CONFIG_SPE */
672 #ifdef CONFIG_VSX
674 * Emulate VSX instructions...
676 static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
677 unsigned int areg, struct pt_regs *regs,
678 unsigned int flags, unsigned int length,
679 unsigned int elsize)
681 char *ptr;
682 unsigned long *lptr;
683 int ret = 0;
684 int sw = 0;
685 int i, j;
687 /* userland only */
688 if (unlikely(!user_mode(regs)))
689 return 0;
691 flush_vsx_to_thread(current);
693 if (reg < 32)
694 ptr = (char *) &current->thread.fp_state.fpr[reg][0];
695 else
696 ptr = (char *) &current->thread.vr_state.vr[reg - 32];
698 lptr = (unsigned long *) ptr;
700 #ifdef __LITTLE_ENDIAN__
701 if (flags & SW) {
702 elsize = length;
703 sw = length-1;
704 } else {
706 * The elements are BE ordered, even in LE mode, so process
707 * them in reverse order.
709 addr += length - elsize;
711 /* 8 byte memory accesses go in the top 8 bytes of the VR */
712 if (length == 8)
713 ptr += 8;
715 #else
716 if (flags & SW)
717 sw = elsize-1;
718 #endif
720 for (j = 0; j < length; j += elsize) {
721 for (i = 0; i < elsize; ++i) {
722 if (flags & ST)
723 ret |= __put_user(ptr[i^sw], addr + i);
724 else
725 ret |= __get_user(ptr[i^sw], addr + i);
727 ptr += elsize;
728 #ifdef __LITTLE_ENDIAN__
729 addr -= elsize;
730 #else
731 addr += elsize;
732 #endif
735 #ifdef __BIG_ENDIAN__
736 #define VSX_HI 0
737 #define VSX_LO 1
738 #else
739 #define VSX_HI 1
740 #define VSX_LO 0
741 #endif
743 if (!ret) {
744 if (flags & U)
745 regs->gpr[areg] = regs->dar;
747 /* Splat load copies the same data to top and bottom 8 bytes */
748 if (flags & SPLT)
749 lptr[VSX_LO] = lptr[VSX_HI];
750 /* For 8 byte loads, zero the low 8 bytes */
751 else if (!(flags & ST) && (8 == length))
752 lptr[VSX_LO] = 0;
753 } else
754 return -EFAULT;
756 return 1;
758 #endif
761 * Called on alignment exception. Attempts to fixup
763 * Return 1 on success
764 * Return 0 if unable to handle the interrupt
765 * Return -EFAULT if data address is bad
768 int fix_alignment(struct pt_regs *regs)
770 unsigned int instr, nb, flags, instruction = 0;
771 unsigned int reg, areg;
772 unsigned int dsisr;
773 unsigned char __user *addr;
774 unsigned long p, swiz;
775 int ret, i;
776 union data {
777 u64 ll;
778 double dd;
779 unsigned char v[8];
780 struct {
781 #ifdef __LITTLE_ENDIAN__
782 int low32;
783 unsigned hi32;
784 #else
785 unsigned hi32;
786 int low32;
787 #endif
788 } x32;
789 struct {
790 #ifdef __LITTLE_ENDIAN__
791 short low16;
792 unsigned char hi48[6];
793 #else
794 unsigned char hi48[6];
795 short low16;
796 #endif
797 } x16;
798 } data;
801 * We require a complete register set, if not, then our assembly
802 * is broken
804 CHECK_FULL_REGS(regs);
806 dsisr = regs->dsisr;
808 /* Some processors don't provide us with a DSISR we can use here,
809 * let's make one up from the instruction
811 if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
812 unsigned long pc = regs->nip;
814 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
815 pc ^= 4;
816 if (unlikely(__get_user_inatomic(instr,
817 (unsigned int __user *)pc)))
818 return -EFAULT;
819 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
820 instr = cpu_to_le32(instr);
821 dsisr = make_dsisr(instr);
822 instruction = instr;
825 /* extract the operation and registers from the dsisr */
826 reg = (dsisr >> 5) & 0x1f; /* source/dest register */
827 areg = dsisr & 0x1f; /* register to update */
829 #ifdef CONFIG_SPE
830 if ((instr >> 26) == 0x4) {
831 PPC_WARN_ALIGNMENT(spe, regs);
832 return emulate_spe(regs, reg, instr);
834 #endif
836 instr = (dsisr >> 10) & 0x7f;
837 instr |= (dsisr >> 13) & 0x60;
839 /* Lookup the operation in our table */
840 nb = aligninfo[instr].len;
841 flags = aligninfo[instr].flags;
843 /* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
844 if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
845 nb = 8;
846 flags = LD+SW;
847 } else if (IS_XFORM(instruction) &&
848 ((instruction >> 1) & 0x3ff) == 660) {
849 nb = 8;
850 flags = ST+SW;
853 /* Byteswap little endian loads and stores */
854 swiz = 0;
855 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
856 flags ^= SW;
857 #ifdef __BIG_ENDIAN__
859 * So-called "PowerPC little endian" mode works by
860 * swizzling addresses rather than by actually doing
861 * any byte-swapping. To emulate this, we XOR each
862 * byte address with 7. We also byte-swap, because
863 * the processor's address swizzling depends on the
864 * operand size (it xors the address with 7 for bytes,
865 * 6 for halfwords, 4 for words, 0 for doublewords) but
866 * we will xor with 7 and load/store each byte separately.
868 if (cpu_has_feature(CPU_FTR_PPC_LE))
869 swiz = 7;
870 #endif
873 /* DAR has the operand effective address */
874 addr = (unsigned char __user *)regs->dar;
876 #ifdef CONFIG_VSX
877 if ((instruction & 0xfc00003e) == 0x7c000018) {
878 unsigned int elsize;
880 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
881 reg |= (instruction & 0x1) << 5;
882 /* Simple inline decoder instead of a table */
883 /* VSX has only 8 and 16 byte memory accesses */
884 nb = 8;
885 if (instruction & 0x200)
886 nb = 16;
888 /* Vector stores in little-endian mode swap individual
889 elements, so process them separately */
890 elsize = 4;
891 if (instruction & 0x80)
892 elsize = 8;
894 flags = 0;
895 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
896 flags |= SW;
897 if (instruction & 0x100)
898 flags |= ST;
899 if (instruction & 0x040)
900 flags |= U;
901 /* splat load needs a special decoder */
902 if ((instruction & 0x400) == 0){
903 flags |= SPLT;
904 nb = 8;
906 PPC_WARN_ALIGNMENT(vsx, regs);
907 return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
909 #endif
910 /* A size of 0 indicates an instruction we don't support, with
911 * the exception of DCBZ which is handled as a special case here
913 if (instr == DCBZ) {
914 PPC_WARN_ALIGNMENT(dcbz, regs);
915 return emulate_dcbz(regs, addr);
917 if (unlikely(nb == 0))
918 return 0;
920 /* Load/Store Multiple instructions are handled in their own
921 * function
923 if (flags & M) {
924 PPC_WARN_ALIGNMENT(multiple, regs);
925 return emulate_multiple(regs, addr, reg, nb,
926 flags, instr, swiz);
929 /* Verify the address of the operand */
930 if (unlikely(user_mode(regs) &&
931 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
932 addr, nb)))
933 return -EFAULT;
935 /* Force the fprs into the save area so we can reference them */
936 if (flags & F) {
937 /* userland only */
938 if (unlikely(!user_mode(regs)))
939 return 0;
940 flush_fp_to_thread(current);
943 if ((nb == 16)) {
944 if (flags & F) {
945 /* Special case for 16-byte FP loads and stores */
946 PPC_WARN_ALIGNMENT(fp_pair, regs);
947 return emulate_fp_pair(addr, reg, flags);
948 } else {
949 #ifdef CONFIG_PPC64
950 /* Special case for 16-byte loads and stores */
951 PPC_WARN_ALIGNMENT(lq_stq, regs);
952 return emulate_lq_stq(regs, addr, reg, flags);
953 #else
954 return 0;
955 #endif
959 PPC_WARN_ALIGNMENT(unaligned, regs);
961 /* If we are loading, get the data from user space, else
962 * get it from register values
964 if (!(flags & ST)) {
965 unsigned int start = 0;
967 switch (nb) {
968 case 4:
969 start = offsetof(union data, x32.low32);
970 break;
971 case 2:
972 start = offsetof(union data, x16.low16);
973 break;
976 data.ll = 0;
977 ret = 0;
978 p = (unsigned long)addr;
980 for (i = 0; i < nb; i++)
981 ret |= __get_user_inatomic(data.v[start + i],
982 SWIZ_PTR(p++));
984 if (unlikely(ret))
985 return -EFAULT;
987 } else if (flags & F) {
988 data.ll = current->thread.TS_FPR(reg);
989 if (flags & S) {
990 /* Single-precision FP store requires conversion... */
991 #ifdef CONFIG_PPC_FPU
992 preempt_disable();
993 enable_kernel_fp();
994 cvt_df(&data.dd, (float *)&data.x32.low32);
995 preempt_enable();
996 #else
997 return 0;
998 #endif
1000 } else
1001 data.ll = regs->gpr[reg];
1003 if (flags & SW) {
1004 switch (nb) {
1005 case 8:
1006 data.ll = swab64(data.ll);
1007 break;
1008 case 4:
1009 data.x32.low32 = swab32(data.x32.low32);
1010 break;
1011 case 2:
1012 data.x16.low16 = swab16(data.x16.low16);
1013 break;
1017 /* Perform other misc operations like sign extension
1018 * or floating point single precision conversion
1020 switch (flags & ~(U|SW)) {
1021 case LD+SE: /* sign extending integer loads */
1022 case LD+F+SE: /* sign extend for lfiwax */
1023 if ( nb == 2 )
1024 data.ll = data.x16.low16;
1025 else /* nb must be 4 */
1026 data.ll = data.x32.low32;
1027 break;
1029 /* Single-precision FP load requires conversion... */
1030 case LD+F+S:
1031 #ifdef CONFIG_PPC_FPU
1032 preempt_disable();
1033 enable_kernel_fp();
1034 cvt_fd((float *)&data.x32.low32, &data.dd);
1035 preempt_enable();
1036 #else
1037 return 0;
1038 #endif
1039 break;
1042 /* Store result to memory or update registers */
1043 if (flags & ST) {
1044 unsigned int start = 0;
1046 switch (nb) {
1047 case 4:
1048 start = offsetof(union data, x32.low32);
1049 break;
1050 case 2:
1051 start = offsetof(union data, x16.low16);
1052 break;
1055 ret = 0;
1056 p = (unsigned long)addr;
1058 for (i = 0; i < nb; i++)
1059 ret |= __put_user_inatomic(data.v[start + i],
1060 SWIZ_PTR(p++));
1062 if (unlikely(ret))
1063 return -EFAULT;
1064 } else if (flags & F)
1065 current->thread.TS_FPR(reg) = data.ll;
1066 else
1067 regs->gpr[reg] = data.ll;
1069 /* Update RA as needed */
1070 if (flags & U)
1071 regs->gpr[areg] = regs->dar;
1073 return 1;