2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
44 #include <asm/processor.h>
47 #include <asm/machdep.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
53 #include <asm/debug.h>
55 #include <asm/firmware.h>
57 #include <linux/kprobes.h>
58 #include <linux/kdebug.h>
60 /* Transactional Memory debug */
62 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #define TM_DEBUG(x...) do { } while(0)
67 extern unsigned long _get_SP(void);
70 struct task_struct
*last_task_used_math
= NULL
;
71 struct task_struct
*last_task_used_altivec
= NULL
;
72 struct task_struct
*last_task_used_vsx
= NULL
;
73 struct task_struct
*last_task_used_spe
= NULL
;
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 void giveup_fpu_maybe_transactional(struct task_struct
*tsk
)
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
85 if (tsk
== current
&& tsk
->thread
.regs
&&
86 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
87 !test_thread_flag(TIF_RESTORE_TM
)) {
88 tsk
->thread
.tm_orig_msr
= tsk
->thread
.regs
->msr
;
89 set_thread_flag(TIF_RESTORE_TM
);
95 void giveup_altivec_maybe_transactional(struct task_struct
*tsk
)
98 * If we are saving the current thread's registers, and the
99 * thread is in a transactional state, set the TIF_RESTORE_TM
100 * bit so that we know to restore the registers before
101 * returning to userspace.
103 if (tsk
== current
&& tsk
->thread
.regs
&&
104 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
105 !test_thread_flag(TIF_RESTORE_TM
)) {
106 tsk
->thread
.tm_orig_msr
= tsk
->thread
.regs
->msr
;
107 set_thread_flag(TIF_RESTORE_TM
);
114 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
115 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
116 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118 #ifdef CONFIG_PPC_FPU
120 * Make sure the floating-point register state in the
121 * the thread_struct is up to date for task tsk.
123 void flush_fp_to_thread(struct task_struct
*tsk
)
125 if (tsk
->thread
.regs
) {
127 * We need to disable preemption here because if we didn't,
128 * another process could get scheduled after the regs->msr
129 * test but before we have finished saving the FP registers
130 * to the thread_struct. That process could take over the
131 * FPU, and then when we get scheduled again we would store
132 * bogus values for the remaining FP registers.
135 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
138 * This should only ever be called for current or
139 * for a stopped child process. Since we save away
140 * the FP register state on context switch on SMP,
141 * there is something wrong if a stopped child appears
142 * to still have its FP state in the CPU registers.
144 BUG_ON(tsk
!= current
);
146 giveup_fpu_maybe_transactional(tsk
);
151 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
152 #endif /* CONFIG_PPC_FPU */
154 void enable_kernel_fp(void)
156 WARN_ON(preemptible());
159 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
160 giveup_fpu_maybe_transactional(current
);
162 giveup_fpu(NULL
); /* just enables FP for kernel */
164 giveup_fpu_maybe_transactional(last_task_used_math
);
165 #endif /* CONFIG_SMP */
167 EXPORT_SYMBOL(enable_kernel_fp
);
169 #ifdef CONFIG_ALTIVEC
170 void enable_kernel_altivec(void)
172 WARN_ON(preemptible());
175 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
176 giveup_altivec_maybe_transactional(current
);
178 giveup_altivec_notask();
180 giveup_altivec_maybe_transactional(last_task_used_altivec
);
181 #endif /* CONFIG_SMP */
183 EXPORT_SYMBOL(enable_kernel_altivec
);
186 * Make sure the VMX/Altivec register state in the
187 * the thread_struct is up to date for task tsk.
189 void flush_altivec_to_thread(struct task_struct
*tsk
)
191 if (tsk
->thread
.regs
) {
193 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
195 BUG_ON(tsk
!= current
);
197 giveup_altivec_maybe_transactional(tsk
);
202 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
203 #endif /* CONFIG_ALTIVEC */
207 /* not currently used, but some crazy RAID module might want to later */
208 void enable_kernel_vsx(void)
210 WARN_ON(preemptible());
213 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VSX
))
216 giveup_vsx(NULL
); /* just enable vsx for kernel - force */
218 giveup_vsx(last_task_used_vsx
);
219 #endif /* CONFIG_SMP */
221 EXPORT_SYMBOL(enable_kernel_vsx
);
224 void giveup_vsx(struct task_struct
*tsk
)
226 giveup_fpu_maybe_transactional(tsk
);
227 giveup_altivec_maybe_transactional(tsk
);
231 void flush_vsx_to_thread(struct task_struct
*tsk
)
233 if (tsk
->thread
.regs
) {
235 if (tsk
->thread
.regs
->msr
& MSR_VSX
) {
237 BUG_ON(tsk
!= current
);
244 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
245 #endif /* CONFIG_VSX */
249 void enable_kernel_spe(void)
251 WARN_ON(preemptible());
254 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
257 giveup_spe(NULL
); /* just enable SPE for kernel - force */
259 giveup_spe(last_task_used_spe
);
260 #endif /* __SMP __ */
262 EXPORT_SYMBOL(enable_kernel_spe
);
264 void flush_spe_to_thread(struct task_struct
*tsk
)
266 if (tsk
->thread
.regs
) {
268 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
270 BUG_ON(tsk
!= current
);
272 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
278 #endif /* CONFIG_SPE */
282 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
283 * and the current task has some state, discard it.
285 void discard_lazy_cpu_state(void)
288 if (last_task_used_math
== current
)
289 last_task_used_math
= NULL
;
290 #ifdef CONFIG_ALTIVEC
291 if (last_task_used_altivec
== current
)
292 last_task_used_altivec
= NULL
;
293 #endif /* CONFIG_ALTIVEC */
295 if (last_task_used_vsx
== current
)
296 last_task_used_vsx
= NULL
;
297 #endif /* CONFIG_VSX */
299 if (last_task_used_spe
== current
)
300 last_task_used_spe
= NULL
;
304 #endif /* CONFIG_SMP */
306 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
307 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
308 unsigned long error_code
, int signal_code
, int breakpt
)
312 current
->thread
.trap_nr
= signal_code
;
313 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
314 11, SIGSEGV
) == NOTIFY_STOP
)
317 /* Deliver the signal to userspace */
318 info
.si_signo
= SIGTRAP
;
319 info
.si_errno
= breakpt
; /* breakpoint or watchpoint id */
320 info
.si_code
= signal_code
;
321 info
.si_addr
= (void __user
*)address
;
322 force_sig_info(SIGTRAP
, &info
, current
);
324 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
325 void do_break (struct pt_regs
*regs
, unsigned long address
,
326 unsigned long error_code
)
330 current
->thread
.trap_nr
= TRAP_HWBKPT
;
331 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
332 11, SIGSEGV
) == NOTIFY_STOP
)
335 if (debugger_break_match(regs
))
338 /* Clear the breakpoint */
339 hw_breakpoint_disable();
341 /* Deliver the signal to userspace */
342 info
.si_signo
= SIGTRAP
;
344 info
.si_code
= TRAP_HWBKPT
;
345 info
.si_addr
= (void __user
*)address
;
346 force_sig_info(SIGTRAP
, &info
, current
);
348 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
350 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
);
352 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
354 * Set the debug registers back to their default "safe" values.
356 static void set_debug_reg_defaults(struct thread_struct
*thread
)
358 thread
->debug
.iac1
= thread
->debug
.iac2
= 0;
359 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
360 thread
->debug
.iac3
= thread
->debug
.iac4
= 0;
362 thread
->debug
.dac1
= thread
->debug
.dac2
= 0;
363 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
364 thread
->debug
.dvc1
= thread
->debug
.dvc2
= 0;
366 thread
->debug
.dbcr0
= 0;
369 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
371 thread
->debug
.dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
|
372 DBCR1_IAC3US
| DBCR1_IAC4US
;
374 * Force Data Address Compare User/Supervisor bits to be User-only
375 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
377 thread
->debug
.dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
379 thread
->debug
.dbcr1
= 0;
383 static void prime_debug_regs(struct debug_reg
*debug
)
386 * We could have inherited MSR_DE from userspace, since
387 * it doesn't get cleared on exception entry. Make sure
388 * MSR_DE is clear before we enable any debug events.
390 mtmsr(mfmsr() & ~MSR_DE
);
392 mtspr(SPRN_IAC1
, debug
->iac1
);
393 mtspr(SPRN_IAC2
, debug
->iac2
);
394 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
395 mtspr(SPRN_IAC3
, debug
->iac3
);
396 mtspr(SPRN_IAC4
, debug
->iac4
);
398 mtspr(SPRN_DAC1
, debug
->dac1
);
399 mtspr(SPRN_DAC2
, debug
->dac2
);
400 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
401 mtspr(SPRN_DVC1
, debug
->dvc1
);
402 mtspr(SPRN_DVC2
, debug
->dvc2
);
404 mtspr(SPRN_DBCR0
, debug
->dbcr0
);
405 mtspr(SPRN_DBCR1
, debug
->dbcr1
);
407 mtspr(SPRN_DBCR2
, debug
->dbcr2
);
411 * Unless neither the old or new thread are making use of the
412 * debug registers, set the debug registers from the values
413 * stored in the new thread.
415 void switch_booke_debug_regs(struct debug_reg
*new_debug
)
417 if ((current
->thread
.debug
.dbcr0
& DBCR0_IDM
)
418 || (new_debug
->dbcr0
& DBCR0_IDM
))
419 prime_debug_regs(new_debug
);
421 EXPORT_SYMBOL_GPL(switch_booke_debug_regs
);
422 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
423 #ifndef CONFIG_HAVE_HW_BREAKPOINT
424 static void set_debug_reg_defaults(struct thread_struct
*thread
)
426 thread
->hw_brk
.address
= 0;
427 thread
->hw_brk
.type
= 0;
428 set_breakpoint(&thread
->hw_brk
);
430 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
431 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
433 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
434 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
436 mtspr(SPRN_DAC1
, dabr
);
437 #ifdef CONFIG_PPC_47x
442 #elif defined(CONFIG_PPC_BOOK3S)
443 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
445 mtspr(SPRN_DABR
, dabr
);
446 if (cpu_has_feature(CPU_FTR_DABRX
))
447 mtspr(SPRN_DABRX
, dabrx
);
451 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
457 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
459 unsigned long dabr
, dabrx
;
461 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
462 dabrx
= ((brk
->type
>> 3) & 0x7);
465 return ppc_md
.set_dabr(dabr
, dabrx
);
467 return __set_dabr(dabr
, dabrx
);
470 static inline int set_dawr(struct arch_hw_breakpoint
*brk
)
472 unsigned long dawr
, dawrx
, mrd
;
476 dawrx
= (brk
->type
& (HW_BRK_TYPE_READ
| HW_BRK_TYPE_WRITE
)) \
477 << (63 - 58); //* read/write bits */
478 dawrx
|= ((brk
->type
& (HW_BRK_TYPE_TRANSLATE
)) >> 2) \
479 << (63 - 59); //* translate */
480 dawrx
|= (brk
->type
& (HW_BRK_TYPE_PRIV_ALL
)) \
481 >> 3; //* PRIM bits */
482 /* dawr length is stored in field MDR bits 48:53. Matches range in
483 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
485 brk->len is in bytes.
486 This aligns up to double word size, shifts and does the bias.
488 mrd
= ((brk
->len
+ 7) >> 3) - 1;
489 dawrx
|= (mrd
& 0x3f) << (63 - 53);
492 return ppc_md
.set_dawr(dawr
, dawrx
);
493 mtspr(SPRN_DAWR
, dawr
);
494 mtspr(SPRN_DAWRX
, dawrx
);
498 int set_breakpoint(struct arch_hw_breakpoint
*brk
)
500 __get_cpu_var(current_brk
) = *brk
;
502 if (cpu_has_feature(CPU_FTR_DAWR
))
503 return set_dawr(brk
);
505 return set_dabr(brk
);
509 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
512 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
513 struct arch_hw_breakpoint
*b
)
515 if (a
->address
!= b
->address
)
517 if (a
->type
!= b
->type
)
519 if (a
->len
!= b
->len
)
524 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
525 static void tm_reclaim_thread(struct thread_struct
*thr
,
526 struct thread_info
*ti
, uint8_t cause
)
528 unsigned long msr_diff
= 0;
531 * If FP/VSX registers have been already saved to the
532 * thread_struct, move them to the transact_fp array.
533 * We clear the TIF_RESTORE_TM bit since after the reclaim
534 * the thread will no longer be transactional.
536 if (test_ti_thread_flag(ti
, TIF_RESTORE_TM
)) {
537 msr_diff
= thr
->tm_orig_msr
& ~thr
->regs
->msr
;
538 if (msr_diff
& MSR_FP
)
539 memcpy(&thr
->transact_fp
, &thr
->fp_state
,
540 sizeof(struct thread_fp_state
));
541 if (msr_diff
& MSR_VEC
)
542 memcpy(&thr
->transact_vr
, &thr
->vr_state
,
543 sizeof(struct thread_vr_state
));
544 clear_ti_thread_flag(ti
, TIF_RESTORE_TM
);
545 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
| MSR_FE0
| MSR_FE1
;
548 tm_reclaim(thr
, thr
->regs
->msr
, cause
);
550 /* Having done the reclaim, we now have the checkpointed
551 * FP/VSX values in the registers. These might be valid
552 * even if we have previously called enable_kernel_fp() or
553 * flush_fp_to_thread(), so update thr->regs->msr to
554 * indicate their current validity.
556 thr
->regs
->msr
|= msr_diff
;
559 void tm_reclaim_current(uint8_t cause
)
562 tm_reclaim_thread(¤t
->thread
, current_thread_info(), cause
);
565 static inline void tm_reclaim_task(struct task_struct
*tsk
)
567 /* We have to work out if we're switching from/to a task that's in the
568 * middle of a transaction.
570 * In switching we need to maintain a 2nd register state as
571 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
572 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
573 * (current) FPRs into oldtask->thread.transact_fpr[].
575 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
577 struct thread_struct
*thr
= &tsk
->thread
;
582 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
583 goto out_and_saveregs
;
585 /* Stash the original thread MSR, as giveup_fpu et al will
586 * modify it. We hold onto it to see whether the task used
587 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
588 * tm_orig_msr is already set.
590 if (!test_ti_thread_flag(task_thread_info(tsk
), TIF_RESTORE_TM
))
591 thr
->tm_orig_msr
= thr
->regs
->msr
;
593 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
594 "ccr=%lx, msr=%lx, trap=%lx)\n",
595 tsk
->pid
, thr
->regs
->nip
,
596 thr
->regs
->ccr
, thr
->regs
->msr
,
599 tm_reclaim_thread(thr
, task_thread_info(tsk
), TM_CAUSE_RESCHED
);
601 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
605 /* Always save the regs here, even if a transaction's not active.
606 * This context-switches a thread's TM info SPRs. We do it here to
607 * be consistent with the restore path (in recheckpoint) which
608 * cannot happen later in _switch().
613 extern void __tm_recheckpoint(struct thread_struct
*thread
,
614 unsigned long orig_msr
);
616 void tm_recheckpoint(struct thread_struct
*thread
,
617 unsigned long orig_msr
)
621 /* We really can't be interrupted here as the TEXASR registers can't
622 * change and later in the trecheckpoint code, we have a userspace R1.
623 * So let's hard disable over this region.
625 local_irq_save(flags
);
628 /* The TM SPRs are restored here, so that TEXASR.FS can be set
629 * before the trecheckpoint and no explosion occurs.
631 tm_restore_sprs(thread
);
633 __tm_recheckpoint(thread
, orig_msr
);
635 local_irq_restore(flags
);
638 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
642 if (!cpu_has_feature(CPU_FTR_TM
))
645 /* Recheckpoint the registers of the thread we're about to switch to.
647 * If the task was using FP, we non-lazily reload both the original and
648 * the speculative FP register states. This is because the kernel
649 * doesn't see if/when a TM rollback occurs, so if we take an FP
650 * unavoidable later, we are unable to determine which set of FP regs
651 * need to be restored.
653 if (!new->thread
.regs
)
656 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
)){
657 tm_restore_sprs(&new->thread
);
660 msr
= new->thread
.tm_orig_msr
;
661 /* Recheckpoint to restore original checkpointed register state. */
662 TM_DEBUG("*** tm_recheckpoint of pid %d "
663 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
664 new->pid
, new->thread
.regs
->msr
, msr
);
666 /* This loads the checkpointed FP/VEC state, if used */
667 tm_recheckpoint(&new->thread
, msr
);
669 /* This loads the speculative FP/VEC state, if used */
671 do_load_up_transact_fpu(&new->thread
);
672 new->thread
.regs
->msr
|=
673 (MSR_FP
| new->thread
.fpexc_mode
);
675 #ifdef CONFIG_ALTIVEC
677 do_load_up_transact_altivec(&new->thread
);
678 new->thread
.regs
->msr
|= MSR_VEC
;
681 /* We may as well turn on VSX too since all the state is restored now */
683 new->thread
.regs
->msr
|= MSR_VSX
;
685 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
686 "(kernel msr 0x%lx)\n",
690 static inline void __switch_to_tm(struct task_struct
*prev
)
692 if (cpu_has_feature(CPU_FTR_TM
)) {
694 tm_reclaim_task(prev
);
699 * This is called if we are on the way out to userspace and the
700 * TIF_RESTORE_TM flag is set. It checks if we need to reload
701 * FP and/or vector state and does so if necessary.
702 * If userspace is inside a transaction (whether active or
703 * suspended) and FP/VMX/VSX instructions have ever been enabled
704 * inside that transaction, then we have to keep them enabled
705 * and keep the FP/VMX/VSX state loaded while ever the transaction
706 * continues. The reason is that if we didn't, and subsequently
707 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
708 * we don't know whether it's the same transaction, and thus we
709 * don't know which of the checkpointed state and the transactional
712 void restore_tm_state(struct pt_regs
*regs
)
714 unsigned long msr_diff
;
716 clear_thread_flag(TIF_RESTORE_TM
);
717 if (!MSR_TM_ACTIVE(regs
->msr
))
720 msr_diff
= current
->thread
.tm_orig_msr
& ~regs
->msr
;
721 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
;
722 if (msr_diff
& MSR_FP
) {
724 load_fp_state(¤t
->thread
.fp_state
);
725 regs
->msr
|= current
->thread
.fpexc_mode
;
727 if (msr_diff
& MSR_VEC
) {
729 load_vr_state(¤t
->thread
.vr_state
);
731 regs
->msr
|= msr_diff
;
735 #define tm_recheckpoint_new_task(new)
736 #define __switch_to_tm(prev)
737 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
739 struct task_struct
*__switch_to(struct task_struct
*prev
,
740 struct task_struct
*new)
742 struct thread_struct
*new_thread
, *old_thread
;
743 struct task_struct
*last
;
744 #ifdef CONFIG_PPC_BOOK3S_64
745 struct ppc64_tlb_batch
*batch
;
748 WARN_ON(!irqs_disabled());
750 /* Back up the TAR across context switches.
751 * Note that the TAR is not available for use in the kernel. (To
752 * provide this, the TAR should be backed up/restored on exception
753 * entry/exit instead, and be in pt_regs. FIXME, this should be in
754 * pt_regs anyway (for debug).)
755 * Save the TAR here before we do treclaim/trecheckpoint as these
756 * will change the TAR.
758 save_tar(&prev
->thread
);
760 __switch_to_tm(prev
);
763 /* avoid complexity of lazy save/restore of fpu
764 * by just saving it every time we switch out if
765 * this task used the fpu during the last quantum.
767 * If it tries to use the fpu again, it'll trap and
768 * reload its fp regs. So we don't have to do a restore
769 * every switch, just a save.
772 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
774 #ifdef CONFIG_ALTIVEC
776 * If the previous thread used altivec in the last quantum
777 * (thus changing altivec regs) then save them.
778 * We used to check the VRSAVE register but not all apps
779 * set it, so we don't rely on it now (and in fact we need
780 * to save & restore VSCR even if VRSAVE == 0). -- paulus
782 * On SMP we always save/restore altivec regs just to avoid the
783 * complexity of changing processors.
786 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
787 giveup_altivec(prev
);
788 #endif /* CONFIG_ALTIVEC */
790 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VSX
))
791 /* VMX and FPU registers are already save here */
793 #endif /* CONFIG_VSX */
796 * If the previous thread used spe in the last quantum
797 * (thus changing spe regs) then save them.
799 * On SMP we always save/restore spe regs just to avoid the
800 * complexity of changing processors.
802 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
804 #endif /* CONFIG_SPE */
806 #else /* CONFIG_SMP */
807 #ifdef CONFIG_ALTIVEC
808 /* Avoid the trap. On smp this this never happens since
809 * we don't set last_task_used_altivec -- Cort
811 if (new->thread
.regs
&& last_task_used_altivec
== new)
812 new->thread
.regs
->msr
|= MSR_VEC
;
813 #endif /* CONFIG_ALTIVEC */
815 if (new->thread
.regs
&& last_task_used_vsx
== new)
816 new->thread
.regs
->msr
|= MSR_VSX
;
817 #endif /* CONFIG_VSX */
819 /* Avoid the trap. On smp this this never happens since
820 * we don't set last_task_used_spe
822 if (new->thread
.regs
&& last_task_used_spe
== new)
823 new->thread
.regs
->msr
|= MSR_SPE
;
824 #endif /* CONFIG_SPE */
826 #endif /* CONFIG_SMP */
828 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
829 switch_booke_debug_regs(&new->thread
.debug
);
832 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
835 #ifndef CONFIG_HAVE_HW_BREAKPOINT
836 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk
), &new->thread
.hw_brk
)))
837 set_breakpoint(&new->thread
.hw_brk
);
838 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
842 new_thread
= &new->thread
;
843 old_thread
= ¤t
->thread
;
847 * Collect processor utilization data per process
849 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
850 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
851 long unsigned start_tb
, current_tb
;
852 start_tb
= old_thread
->start_tb
;
853 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
854 old_thread
->accum_tb
+= (current_tb
- start_tb
);
855 new_thread
->start_tb
= current_tb
;
857 #endif /* CONFIG_PPC64 */
859 #ifdef CONFIG_PPC_BOOK3S_64
860 batch
= &__get_cpu_var(ppc64_tlb_batch
);
862 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
864 __flush_tlb_pending(batch
);
867 #endif /* CONFIG_PPC_BOOK3S_64 */
870 * We can't take a PMU exception inside _switch() since there is a
871 * window where the kernel stack SLB and the kernel stack are out
872 * of sync. Hard disable here.
876 tm_recheckpoint_new_task(new);
878 last
= _switch(old_thread
, new_thread
);
880 #ifdef CONFIG_PPC_BOOK3S_64
881 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
882 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
883 batch
= &__get_cpu_var(ppc64_tlb_batch
);
886 #endif /* CONFIG_PPC_BOOK3S_64 */
891 static int instructions_to_print
= 16;
893 static void show_instructions(struct pt_regs
*regs
)
896 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
899 printk("Instruction dump:");
901 for (i
= 0; i
< instructions_to_print
; i
++) {
907 #if !defined(CONFIG_BOOKE)
908 /* If executing with the IMMU off, adjust pc rather
909 * than print XXXXXXXX.
911 if (!(regs
->msr
& MSR_IR
))
912 pc
= (unsigned long)phys_to_virt(pc
);
915 /* We use __get_user here *only* to avoid an OOPS on a
916 * bad address because the pc *should* only be a
919 if (!__kernel_text_address(pc
) ||
920 __get_user(instr
, (unsigned int __user
*)pc
)) {
921 printk(KERN_CONT
"XXXXXXXX ");
924 printk(KERN_CONT
"<%08x> ", instr
);
926 printk(KERN_CONT
"%08x ", instr
);
935 static struct regbit
{
939 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
968 static void printbits(unsigned long val
, struct regbit
*bits
)
970 const char *sep
= "";
973 for (; bits
->bit
; ++bits
)
974 if (val
& bits
->bit
) {
975 printk("%s%s", sep
, bits
->name
);
983 #define REGS_PER_LINE 4
984 #define LAST_VOLATILE 13
987 #define REGS_PER_LINE 8
988 #define LAST_VOLATILE 12
991 void show_regs(struct pt_regs
* regs
)
995 show_regs_print_info(KERN_DEFAULT
);
997 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
998 regs
->nip
, regs
->link
, regs
->ctr
);
999 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1000 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
1001 printk("MSR: "REG
" ", regs
->msr
);
1002 printbits(regs
->msr
, msr_bits
);
1003 printk(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
1005 if ((regs
->trap
!= 0xc00) && cpu_has_feature(CPU_FTR_CFAR
))
1006 printk("CFAR: "REG
" ", regs
->orig_gpr3
);
1007 if (trap
== 0x200 || trap
== 0x300 || trap
== 0x600)
1008 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1009 printk("DEAR: "REG
" ESR: "REG
" ", regs
->dar
, regs
->dsisr
);
1011 printk("DAR: "REG
" DSISR: %08lx ", regs
->dar
, regs
->dsisr
);
1014 printk("SOFTE: %ld ", regs
->softe
);
1016 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1017 if (MSR_TM_ACTIVE(regs
->msr
))
1018 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch
);
1021 for (i
= 0; i
< 32; i
++) {
1022 if ((i
% REGS_PER_LINE
) == 0)
1023 printk("\nGPR%02d: ", i
);
1024 printk(REG
" ", regs
->gpr
[i
]);
1025 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
1029 #ifdef CONFIG_KALLSYMS
1031 * Lookup NIP late so we have the best change of getting the
1032 * above info out without failing
1034 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
1035 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
1037 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
1038 if (!user_mode(regs
))
1039 show_instructions(regs
);
1042 void exit_thread(void)
1044 discard_lazy_cpu_state();
1047 void flush_thread(void)
1049 discard_lazy_cpu_state();
1051 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1052 flush_ptrace_hw_breakpoint(current
);
1053 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1054 set_debug_reg_defaults(¤t
->thread
);
1055 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1059 release_thread(struct task_struct
*t
)
1064 * this gets called so that we can store coprocessor state into memory and
1065 * copy the current task into the new thread.
1067 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
1069 flush_fp_to_thread(src
);
1070 flush_altivec_to_thread(src
);
1071 flush_vsx_to_thread(src
);
1072 flush_spe_to_thread(src
);
1074 * Flush TM state out so we can copy it. __switch_to_tm() does this
1075 * flush but it removes the checkpointed state from the current CPU and
1076 * transitions the CPU out of TM mode. Hence we need to call
1077 * tm_recheckpoint_new_task() (on the same task) to restore the
1078 * checkpointed state back and the TM mode.
1080 __switch_to_tm(src
);
1081 tm_recheckpoint_new_task(src
);
1085 clear_task_ebb(dst
);
1093 extern unsigned long dscr_default
; /* defined in arch/powerpc/kernel/sysfs.c */
1095 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
1096 unsigned long arg
, struct task_struct
*p
)
1098 struct pt_regs
*childregs
, *kregs
;
1099 extern void ret_from_fork(void);
1100 extern void ret_from_kernel_thread(void);
1102 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
1104 /* Copy registers */
1105 sp
-= sizeof(struct pt_regs
);
1106 childregs
= (struct pt_regs
*) sp
;
1107 if (unlikely(p
->flags
& PF_KTHREAD
)) {
1108 struct thread_info
*ti
= (void *)task_stack_page(p
);
1109 memset(childregs
, 0, sizeof(struct pt_regs
));
1110 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
1111 childregs
->gpr
[14] = usp
; /* function */
1113 clear_tsk_thread_flag(p
, TIF_32BIT
);
1114 childregs
->softe
= 1;
1116 childregs
->gpr
[15] = arg
;
1117 p
->thread
.regs
= NULL
; /* no user register state */
1118 ti
->flags
|= _TIF_RESTOREALL
;
1119 f
= ret_from_kernel_thread
;
1121 struct pt_regs
*regs
= current_pt_regs();
1122 CHECK_FULL_REGS(regs
);
1125 childregs
->gpr
[1] = usp
;
1126 p
->thread
.regs
= childregs
;
1127 childregs
->gpr
[3] = 0; /* Result from fork() */
1128 if (clone_flags
& CLONE_SETTLS
) {
1130 if (!is_32bit_task())
1131 childregs
->gpr
[13] = childregs
->gpr
[6];
1134 childregs
->gpr
[2] = childregs
->gpr
[6];
1139 sp
-= STACK_FRAME_OVERHEAD
;
1142 * The way this works is that at some point in the future
1143 * some task will call _switch to switch to the new task.
1144 * That will pop off the stack frame created below and start
1145 * the new task running at ret_from_fork. The new task will
1146 * do some house keeping and then return from the fork or clone
1147 * system call, using the stack frame created above.
1149 ((unsigned long *)sp
)[0] = 0;
1150 sp
-= sizeof(struct pt_regs
);
1151 kregs
= (struct pt_regs
*) sp
;
1152 sp
-= STACK_FRAME_OVERHEAD
;
1155 p
->thread
.ksp_limit
= (unsigned long)task_stack_page(p
) +
1156 _ALIGN_UP(sizeof(struct thread_info
), 16);
1158 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1159 p
->thread
.ptrace_bps
[0] = NULL
;
1162 p
->thread
.fp_save_area
= NULL
;
1163 #ifdef CONFIG_ALTIVEC
1164 p
->thread
.vr_save_area
= NULL
;
1167 #ifdef CONFIG_PPC_STD_MMU_64
1168 if (mmu_has_feature(MMU_FTR_SLB
)) {
1169 unsigned long sp_vsid
;
1170 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
1172 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
1173 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
1174 << SLB_VSID_SHIFT_1T
;
1176 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
1178 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
1179 p
->thread
.ksp_vsid
= sp_vsid
;
1181 #endif /* CONFIG_PPC_STD_MMU_64 */
1183 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1184 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1185 p
->thread
.dscr
= current
->thread
.dscr
;
1187 if (cpu_has_feature(CPU_FTR_HAS_PPR
))
1188 p
->thread
.ppr
= INIT_PPR
;
1191 * The PPC64 ABI makes use of a TOC to contain function
1192 * pointers. The function (ret_from_except) is actually a pointer
1193 * to the TOC entry. The first entry is a pointer to the actual
1197 kregs
->nip
= *((unsigned long *)f
);
1199 kregs
->nip
= (unsigned long)f
;
1205 * Set up a thread for executing a new program
1207 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1210 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1214 * If we exec out of a kernel thread then thread.regs will not be
1217 if (!current
->thread
.regs
) {
1218 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1219 current
->thread
.regs
= regs
- 1;
1222 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
1230 * We have just cleared all the nonvolatile GPRs, so make
1231 * FULL_REGS(regs) return true. This is necessary to allow
1232 * ptrace to examine the thread immediately after exec.
1239 regs
->msr
= MSR_USER
;
1241 if (!is_32bit_task()) {
1242 unsigned long entry
;
1244 if (is_elf2_task()) {
1245 /* Look ma, no function descriptors! */
1250 * The latest iteration of the ABI requires that when
1251 * calling a function (at its global entry point),
1252 * the caller must ensure r12 holds the entry point
1253 * address (so that the function can quickly
1254 * establish addressability).
1256 regs
->gpr
[12] = start
;
1257 /* Make sure that's restored on entry to userspace. */
1258 set_thread_flag(TIF_RESTOREALL
);
1262 /* start is a relocated pointer to the function
1263 * descriptor for the elf _start routine. The first
1264 * entry in the function descriptor is the entry
1265 * address of _start and the second entry is the TOC
1266 * value we need to use.
1268 __get_user(entry
, (unsigned long __user
*)start
);
1269 __get_user(toc
, (unsigned long __user
*)start
+1);
1271 /* Check whether the e_entry function descriptor entries
1272 * need to be relocated before we can use them.
1274 if (load_addr
!= 0) {
1281 regs
->msr
= MSR_USER64
;
1285 regs
->msr
= MSR_USER32
;
1288 discard_lazy_cpu_state();
1290 current
->thread
.used_vsr
= 0;
1292 memset(¤t
->thread
.fp_state
, 0, sizeof(current
->thread
.fp_state
));
1293 current
->thread
.fp_save_area
= NULL
;
1294 #ifdef CONFIG_ALTIVEC
1295 memset(¤t
->thread
.vr_state
, 0, sizeof(current
->thread
.vr_state
));
1296 current
->thread
.vr_state
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1297 current
->thread
.vr_save_area
= NULL
;
1298 current
->thread
.vrsave
= 0;
1299 current
->thread
.used_vr
= 0;
1300 #endif /* CONFIG_ALTIVEC */
1302 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
1303 current
->thread
.acc
= 0;
1304 current
->thread
.spefscr
= 0;
1305 current
->thread
.used_spe
= 0;
1306 #endif /* CONFIG_SPE */
1307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1308 if (cpu_has_feature(CPU_FTR_TM
))
1309 regs
->msr
|= MSR_TM
;
1310 current
->thread
.tm_tfhar
= 0;
1311 current
->thread
.tm_texasr
= 0;
1312 current
->thread
.tm_tfiar
= 0;
1313 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1316 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1317 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1319 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
1321 struct pt_regs
*regs
= tsk
->thread
.regs
;
1323 /* This is a bit hairy. If we are an SPE enabled processor
1324 * (have embedded fp) we store the IEEE exception enable flags in
1325 * fpexc_mode. fpexc_mode is also used for setting FP exception
1326 * mode (asyn, precise, disabled) for 'Classic' FP. */
1327 if (val
& PR_FP_EXC_SW_ENABLE
) {
1329 if (cpu_has_feature(CPU_FTR_SPE
)) {
1331 * When the sticky exception bits are set
1332 * directly by userspace, it must call prctl
1333 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1334 * in the existing prctl settings) or
1335 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1336 * the bits being set). <fenv.h> functions
1337 * saving and restoring the whole
1338 * floating-point environment need to do so
1339 * anyway to restore the prctl settings from
1340 * the saved environment.
1342 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1343 tsk
->thread
.fpexc_mode
= val
&
1344 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
1354 /* on a CONFIG_SPE this does not hurt us. The bits that
1355 * __pack_fe01 use do not overlap with bits used for
1356 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1357 * on CONFIG_SPE implementations are reserved so writing to
1358 * them does not change anything */
1359 if (val
> PR_FP_EXC_PRECISE
)
1361 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
1362 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
1363 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
1364 | tsk
->thread
.fpexc_mode
;
1368 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
1372 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
1374 if (cpu_has_feature(CPU_FTR_SPE
)) {
1376 * When the sticky exception bits are set
1377 * directly by userspace, it must call prctl
1378 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1379 * in the existing prctl settings) or
1380 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1381 * the bits being set). <fenv.h> functions
1382 * saving and restoring the whole
1383 * floating-point environment need to do so
1384 * anyway to restore the prctl settings from
1385 * the saved environment.
1387 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1388 val
= tsk
->thread
.fpexc_mode
;
1395 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
1396 return put_user(val
, (unsigned int __user
*) adr
);
1399 int set_endian(struct task_struct
*tsk
, unsigned int val
)
1401 struct pt_regs
*regs
= tsk
->thread
.regs
;
1403 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
1404 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
1410 if (val
== PR_ENDIAN_BIG
)
1411 regs
->msr
&= ~MSR_LE
;
1412 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
1413 regs
->msr
|= MSR_LE
;
1420 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
1422 struct pt_regs
*regs
= tsk
->thread
.regs
;
1425 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
1426 !cpu_has_feature(CPU_FTR_REAL_LE
))
1432 if (regs
->msr
& MSR_LE
) {
1433 if (cpu_has_feature(CPU_FTR_REAL_LE
))
1434 val
= PR_ENDIAN_LITTLE
;
1436 val
= PR_ENDIAN_PPC_LITTLE
;
1438 val
= PR_ENDIAN_BIG
;
1440 return put_user(val
, (unsigned int __user
*)adr
);
1443 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
1445 tsk
->thread
.align_ctl
= val
;
1449 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
1451 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
1454 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
1455 unsigned long nbytes
)
1457 unsigned long stack_page
;
1458 unsigned long cpu
= task_cpu(p
);
1461 * Avoid crashing if the stack has overflowed and corrupted
1462 * task_cpu(p), which is in the thread_info struct.
1464 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
1465 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
1466 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1467 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1470 stack_page
= (unsigned long) softirq_ctx
[cpu
];
1471 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1472 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1478 int validate_sp(unsigned long sp
, struct task_struct
*p
,
1479 unsigned long nbytes
)
1481 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
1483 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1484 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1487 return valid_irq_stack(sp
, p
, nbytes
);
1490 EXPORT_SYMBOL(validate_sp
);
1492 unsigned long get_wchan(struct task_struct
*p
)
1494 unsigned long ip
, sp
;
1497 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
1501 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1505 sp
= *(unsigned long *)sp
;
1506 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1509 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
1510 if (!in_sched_functions(ip
))
1513 } while (count
++ < 16);
1517 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
1519 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
1521 unsigned long sp
, ip
, lr
, newsp
;
1524 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1525 int curr_frame
= current
->curr_ret_stack
;
1526 extern void return_to_handler(void);
1527 unsigned long rth
= (unsigned long)return_to_handler
;
1528 unsigned long mrth
= -1;
1530 extern void mod_return_to_handler(void);
1531 rth
= *(unsigned long *)rth
;
1532 mrth
= (unsigned long)mod_return_to_handler
;
1533 mrth
= *(unsigned long *)mrth
;
1537 sp
= (unsigned long) stack
;
1542 asm("mr %0,1" : "=r" (sp
));
1544 sp
= tsk
->thread
.ksp
;
1548 printk("Call Trace:\n");
1550 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
1553 stack
= (unsigned long *) sp
;
1555 ip
= stack
[STACK_FRAME_LR_SAVE
];
1556 if (!firstframe
|| ip
!= lr
) {
1557 printk("["REG
"] ["REG
"] %pS", sp
, ip
, (void *)ip
);
1558 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1559 if ((ip
== rth
|| ip
== mrth
) && curr_frame
>= 0) {
1561 (void *)current
->ret_stack
[curr_frame
].ret
);
1566 printk(" (unreliable)");
1572 * See if this is an exception frame.
1573 * We look for the "regshere" marker in the current frame.
1575 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
1576 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
1577 struct pt_regs
*regs
= (struct pt_regs
*)
1578 (sp
+ STACK_FRAME_OVERHEAD
);
1580 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1581 regs
->trap
, (void *)regs
->nip
, (void *)lr
);
1586 } while (count
++ < kstack_depth_to_print
);
1590 /* Called with hard IRQs off */
1591 void notrace
__ppc64_runlatch_on(void)
1593 struct thread_info
*ti
= current_thread_info();
1596 ctrl
= mfspr(SPRN_CTRLF
);
1597 ctrl
|= CTRL_RUNLATCH
;
1598 mtspr(SPRN_CTRLT
, ctrl
);
1600 ti
->local_flags
|= _TLF_RUNLATCH
;
1603 /* Called with hard IRQs off */
1604 void notrace
__ppc64_runlatch_off(void)
1606 struct thread_info
*ti
= current_thread_info();
1609 ti
->local_flags
&= ~_TLF_RUNLATCH
;
1611 ctrl
= mfspr(SPRN_CTRLF
);
1612 ctrl
&= ~CTRL_RUNLATCH
;
1613 mtspr(SPRN_CTRLT
, ctrl
);
1615 #endif /* CONFIG_PPC64 */
1617 unsigned long arch_align_stack(unsigned long sp
)
1619 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
1620 sp
-= get_random_int() & ~PAGE_MASK
;
1624 static inline unsigned long brk_rnd(void)
1626 unsigned long rnd
= 0;
1628 /* 8MB for 32bit, 1GB for 64bit */
1629 if (is_32bit_task())
1630 rnd
= (long)(get_random_int() % (1<<(23-PAGE_SHIFT
)));
1632 rnd
= (long)(get_random_int() % (1<<(30-PAGE_SHIFT
)));
1634 return rnd
<< PAGE_SHIFT
;
1637 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
1639 unsigned long base
= mm
->brk
;
1642 #ifdef CONFIG_PPC_STD_MMU_64
1644 * If we are using 1TB segments and we are allowed to randomise
1645 * the heap, we can put it above 1TB so it is backed by a 1TB
1646 * segment. Otherwise the heap will be in the bottom 1TB
1647 * which always uses 256MB segments and this may result in a
1648 * performance penalty.
1650 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
1651 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
1654 ret
= PAGE_ALIGN(base
+ brk_rnd());
1662 unsigned long randomize_et_dyn(unsigned long base
)
1664 unsigned long ret
= PAGE_ALIGN(base
+ brk_rnd());