efivars: Refactor sanity checking code into separate function
[linux/fpc-iii.git] / arch / powerpc / kernel / process.c
blob31d021506d210e6b7cf1fa4136b1067f8163dc05
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <linux/kprobes.h>
58 #include <linux/kdebug.h>
60 /* Transactional Memory debug */
61 #ifdef TM_DEBUG_SW
62 #define TM_DEBUG(x...) printk(KERN_INFO x)
63 #else
64 #define TM_DEBUG(x...) do { } while(0)
65 #endif
67 extern unsigned long _get_SP(void);
69 #ifndef CONFIG_SMP
70 struct task_struct *last_task_used_math = NULL;
71 struct task_struct *last_task_used_altivec = NULL;
72 struct task_struct *last_task_used_vsx = NULL;
73 struct task_struct *last_task_used_spe = NULL;
74 #endif
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
85 if (tsk == current && tsk->thread.regs &&
86 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 !test_thread_flag(TIF_RESTORE_TM)) {
88 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
89 set_thread_flag(TIF_RESTORE_TM);
92 giveup_fpu(tsk);
95 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
98 * If we are saving the current thread's registers, and the
99 * thread is in a transactional state, set the TIF_RESTORE_TM
100 * bit so that we know to restore the registers before
101 * returning to userspace.
103 if (tsk == current && tsk->thread.regs &&
104 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
105 !test_thread_flag(TIF_RESTORE_TM)) {
106 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
107 set_thread_flag(TIF_RESTORE_TM);
110 giveup_altivec(tsk);
113 #else
114 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
115 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
116 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118 #ifdef CONFIG_PPC_FPU
120 * Make sure the floating-point register state in the
121 * the thread_struct is up to date for task tsk.
123 void flush_fp_to_thread(struct task_struct *tsk)
125 if (tsk->thread.regs) {
127 * We need to disable preemption here because if we didn't,
128 * another process could get scheduled after the regs->msr
129 * test but before we have finished saving the FP registers
130 * to the thread_struct. That process could take over the
131 * FPU, and then when we get scheduled again we would store
132 * bogus values for the remaining FP registers.
134 preempt_disable();
135 if (tsk->thread.regs->msr & MSR_FP) {
136 #ifdef CONFIG_SMP
138 * This should only ever be called for current or
139 * for a stopped child process. Since we save away
140 * the FP register state on context switch on SMP,
141 * there is something wrong if a stopped child appears
142 * to still have its FP state in the CPU registers.
144 BUG_ON(tsk != current);
145 #endif
146 giveup_fpu_maybe_transactional(tsk);
148 preempt_enable();
151 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
152 #endif /* CONFIG_PPC_FPU */
154 void enable_kernel_fp(void)
156 WARN_ON(preemptible());
158 #ifdef CONFIG_SMP
159 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
160 giveup_fpu_maybe_transactional(current);
161 else
162 giveup_fpu(NULL); /* just enables FP for kernel */
163 #else
164 giveup_fpu_maybe_transactional(last_task_used_math);
165 #endif /* CONFIG_SMP */
167 EXPORT_SYMBOL(enable_kernel_fp);
169 #ifdef CONFIG_ALTIVEC
170 void enable_kernel_altivec(void)
172 WARN_ON(preemptible());
174 #ifdef CONFIG_SMP
175 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
176 giveup_altivec_maybe_transactional(current);
177 else
178 giveup_altivec_notask();
179 #else
180 giveup_altivec_maybe_transactional(last_task_used_altivec);
181 #endif /* CONFIG_SMP */
183 EXPORT_SYMBOL(enable_kernel_altivec);
186 * Make sure the VMX/Altivec register state in the
187 * the thread_struct is up to date for task tsk.
189 void flush_altivec_to_thread(struct task_struct *tsk)
191 if (tsk->thread.regs) {
192 preempt_disable();
193 if (tsk->thread.regs->msr & MSR_VEC) {
194 #ifdef CONFIG_SMP
195 BUG_ON(tsk != current);
196 #endif
197 giveup_altivec_maybe_transactional(tsk);
199 preempt_enable();
202 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
203 #endif /* CONFIG_ALTIVEC */
205 #ifdef CONFIG_VSX
206 #if 0
207 /* not currently used, but some crazy RAID module might want to later */
208 void enable_kernel_vsx(void)
210 WARN_ON(preemptible());
212 #ifdef CONFIG_SMP
213 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
214 giveup_vsx(current);
215 else
216 giveup_vsx(NULL); /* just enable vsx for kernel - force */
217 #else
218 giveup_vsx(last_task_used_vsx);
219 #endif /* CONFIG_SMP */
221 EXPORT_SYMBOL(enable_kernel_vsx);
222 #endif
224 void giveup_vsx(struct task_struct *tsk)
226 giveup_fpu_maybe_transactional(tsk);
227 giveup_altivec_maybe_transactional(tsk);
228 __giveup_vsx(tsk);
231 void flush_vsx_to_thread(struct task_struct *tsk)
233 if (tsk->thread.regs) {
234 preempt_disable();
235 if (tsk->thread.regs->msr & MSR_VSX) {
236 #ifdef CONFIG_SMP
237 BUG_ON(tsk != current);
238 #endif
239 giveup_vsx(tsk);
241 preempt_enable();
244 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
245 #endif /* CONFIG_VSX */
247 #ifdef CONFIG_SPE
249 void enable_kernel_spe(void)
251 WARN_ON(preemptible());
253 #ifdef CONFIG_SMP
254 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
255 giveup_spe(current);
256 else
257 giveup_spe(NULL); /* just enable SPE for kernel - force */
258 #else
259 giveup_spe(last_task_used_spe);
260 #endif /* __SMP __ */
262 EXPORT_SYMBOL(enable_kernel_spe);
264 void flush_spe_to_thread(struct task_struct *tsk)
266 if (tsk->thread.regs) {
267 preempt_disable();
268 if (tsk->thread.regs->msr & MSR_SPE) {
269 #ifdef CONFIG_SMP
270 BUG_ON(tsk != current);
271 #endif
272 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
273 giveup_spe(tsk);
275 preempt_enable();
278 #endif /* CONFIG_SPE */
280 #ifndef CONFIG_SMP
282 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
283 * and the current task has some state, discard it.
285 void discard_lazy_cpu_state(void)
287 preempt_disable();
288 if (last_task_used_math == current)
289 last_task_used_math = NULL;
290 #ifdef CONFIG_ALTIVEC
291 if (last_task_used_altivec == current)
292 last_task_used_altivec = NULL;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_VSX
295 if (last_task_used_vsx == current)
296 last_task_used_vsx = NULL;
297 #endif /* CONFIG_VSX */
298 #ifdef CONFIG_SPE
299 if (last_task_used_spe == current)
300 last_task_used_spe = NULL;
301 #endif
302 preempt_enable();
304 #endif /* CONFIG_SMP */
306 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
307 void do_send_trap(struct pt_regs *regs, unsigned long address,
308 unsigned long error_code, int signal_code, int breakpt)
310 siginfo_t info;
312 current->thread.trap_nr = signal_code;
313 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
314 11, SIGSEGV) == NOTIFY_STOP)
315 return;
317 /* Deliver the signal to userspace */
318 info.si_signo = SIGTRAP;
319 info.si_errno = breakpt; /* breakpoint or watchpoint id */
320 info.si_code = signal_code;
321 info.si_addr = (void __user *)address;
322 force_sig_info(SIGTRAP, &info, current);
324 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
325 void do_break (struct pt_regs *regs, unsigned long address,
326 unsigned long error_code)
328 siginfo_t info;
330 current->thread.trap_nr = TRAP_HWBKPT;
331 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
332 11, SIGSEGV) == NOTIFY_STOP)
333 return;
335 if (debugger_break_match(regs))
336 return;
338 /* Clear the breakpoint */
339 hw_breakpoint_disable();
341 /* Deliver the signal to userspace */
342 info.si_signo = SIGTRAP;
343 info.si_errno = 0;
344 info.si_code = TRAP_HWBKPT;
345 info.si_addr = (void __user *)address;
346 force_sig_info(SIGTRAP, &info, current);
348 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
350 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
352 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
354 * Set the debug registers back to their default "safe" values.
356 static void set_debug_reg_defaults(struct thread_struct *thread)
358 thread->debug.iac1 = thread->debug.iac2 = 0;
359 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
360 thread->debug.iac3 = thread->debug.iac4 = 0;
361 #endif
362 thread->debug.dac1 = thread->debug.dac2 = 0;
363 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
364 thread->debug.dvc1 = thread->debug.dvc2 = 0;
365 #endif
366 thread->debug.dbcr0 = 0;
367 #ifdef CONFIG_BOOKE
369 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
371 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
372 DBCR1_IAC3US | DBCR1_IAC4US;
374 * Force Data Address Compare User/Supervisor bits to be User-only
375 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
377 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
378 #else
379 thread->debug.dbcr1 = 0;
380 #endif
383 static void prime_debug_regs(struct debug_reg *debug)
386 * We could have inherited MSR_DE from userspace, since
387 * it doesn't get cleared on exception entry. Make sure
388 * MSR_DE is clear before we enable any debug events.
390 mtmsr(mfmsr() & ~MSR_DE);
392 mtspr(SPRN_IAC1, debug->iac1);
393 mtspr(SPRN_IAC2, debug->iac2);
394 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
395 mtspr(SPRN_IAC3, debug->iac3);
396 mtspr(SPRN_IAC4, debug->iac4);
397 #endif
398 mtspr(SPRN_DAC1, debug->dac1);
399 mtspr(SPRN_DAC2, debug->dac2);
400 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
401 mtspr(SPRN_DVC1, debug->dvc1);
402 mtspr(SPRN_DVC2, debug->dvc2);
403 #endif
404 mtspr(SPRN_DBCR0, debug->dbcr0);
405 mtspr(SPRN_DBCR1, debug->dbcr1);
406 #ifdef CONFIG_BOOKE
407 mtspr(SPRN_DBCR2, debug->dbcr2);
408 #endif
411 * Unless neither the old or new thread are making use of the
412 * debug registers, set the debug registers from the values
413 * stored in the new thread.
415 void switch_booke_debug_regs(struct debug_reg *new_debug)
417 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
418 || (new_debug->dbcr0 & DBCR0_IDM))
419 prime_debug_regs(new_debug);
421 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
422 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
423 #ifndef CONFIG_HAVE_HW_BREAKPOINT
424 static void set_debug_reg_defaults(struct thread_struct *thread)
426 thread->hw_brk.address = 0;
427 thread->hw_brk.type = 0;
428 set_breakpoint(&thread->hw_brk);
430 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
431 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
433 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
434 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
436 mtspr(SPRN_DAC1, dabr);
437 #ifdef CONFIG_PPC_47x
438 isync();
439 #endif
440 return 0;
442 #elif defined(CONFIG_PPC_BOOK3S)
443 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
445 mtspr(SPRN_DABR, dabr);
446 if (cpu_has_feature(CPU_FTR_DABRX))
447 mtspr(SPRN_DABRX, dabrx);
448 return 0;
450 #else
451 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
453 return -EINVAL;
455 #endif
457 static inline int set_dabr(struct arch_hw_breakpoint *brk)
459 unsigned long dabr, dabrx;
461 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
462 dabrx = ((brk->type >> 3) & 0x7);
464 if (ppc_md.set_dabr)
465 return ppc_md.set_dabr(dabr, dabrx);
467 return __set_dabr(dabr, dabrx);
470 static inline int set_dawr(struct arch_hw_breakpoint *brk)
472 unsigned long dawr, dawrx, mrd;
474 dawr = brk->address;
476 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
477 << (63 - 58); //* read/write bits */
478 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
479 << (63 - 59); //* translate */
480 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
481 >> 3; //* PRIM bits */
482 /* dawr length is stored in field MDR bits 48:53. Matches range in
483 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
484 0b111111=64DW.
485 brk->len is in bytes.
486 This aligns up to double word size, shifts and does the bias.
488 mrd = ((brk->len + 7) >> 3) - 1;
489 dawrx |= (mrd & 0x3f) << (63 - 53);
491 if (ppc_md.set_dawr)
492 return ppc_md.set_dawr(dawr, dawrx);
493 mtspr(SPRN_DAWR, dawr);
494 mtspr(SPRN_DAWRX, dawrx);
495 return 0;
498 int set_breakpoint(struct arch_hw_breakpoint *brk)
500 __get_cpu_var(current_brk) = *brk;
502 if (cpu_has_feature(CPU_FTR_DAWR))
503 return set_dawr(brk);
505 return set_dabr(brk);
508 #ifdef CONFIG_PPC64
509 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
510 #endif
512 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
513 struct arch_hw_breakpoint *b)
515 if (a->address != b->address)
516 return false;
517 if (a->type != b->type)
518 return false;
519 if (a->len != b->len)
520 return false;
521 return true;
524 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
525 static void tm_reclaim_thread(struct thread_struct *thr,
526 struct thread_info *ti, uint8_t cause)
528 unsigned long msr_diff = 0;
531 * If FP/VSX registers have been already saved to the
532 * thread_struct, move them to the transact_fp array.
533 * We clear the TIF_RESTORE_TM bit since after the reclaim
534 * the thread will no longer be transactional.
536 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
537 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
538 if (msr_diff & MSR_FP)
539 memcpy(&thr->transact_fp, &thr->fp_state,
540 sizeof(struct thread_fp_state));
541 if (msr_diff & MSR_VEC)
542 memcpy(&thr->transact_vr, &thr->vr_state,
543 sizeof(struct thread_vr_state));
544 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
545 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
548 tm_reclaim(thr, thr->regs->msr, cause);
550 /* Having done the reclaim, we now have the checkpointed
551 * FP/VSX values in the registers. These might be valid
552 * even if we have previously called enable_kernel_fp() or
553 * flush_fp_to_thread(), so update thr->regs->msr to
554 * indicate their current validity.
556 thr->regs->msr |= msr_diff;
559 void tm_reclaim_current(uint8_t cause)
561 tm_enable();
562 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
565 static inline void tm_reclaim_task(struct task_struct *tsk)
567 /* We have to work out if we're switching from/to a task that's in the
568 * middle of a transaction.
570 * In switching we need to maintain a 2nd register state as
571 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
572 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
573 * (current) FPRs into oldtask->thread.transact_fpr[].
575 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
577 struct thread_struct *thr = &tsk->thread;
579 if (!thr->regs)
580 return;
582 if (!MSR_TM_ACTIVE(thr->regs->msr))
583 goto out_and_saveregs;
585 /* Stash the original thread MSR, as giveup_fpu et al will
586 * modify it. We hold onto it to see whether the task used
587 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
588 * tm_orig_msr is already set.
590 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
591 thr->tm_orig_msr = thr->regs->msr;
593 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
594 "ccr=%lx, msr=%lx, trap=%lx)\n",
595 tsk->pid, thr->regs->nip,
596 thr->regs->ccr, thr->regs->msr,
597 thr->regs->trap);
599 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
601 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
602 tsk->pid);
604 out_and_saveregs:
605 /* Always save the regs here, even if a transaction's not active.
606 * This context-switches a thread's TM info SPRs. We do it here to
607 * be consistent with the restore path (in recheckpoint) which
608 * cannot happen later in _switch().
610 tm_save_sprs(thr);
613 extern void __tm_recheckpoint(struct thread_struct *thread,
614 unsigned long orig_msr);
616 void tm_recheckpoint(struct thread_struct *thread,
617 unsigned long orig_msr)
619 unsigned long flags;
621 /* We really can't be interrupted here as the TEXASR registers can't
622 * change and later in the trecheckpoint code, we have a userspace R1.
623 * So let's hard disable over this region.
625 local_irq_save(flags);
626 hard_irq_disable();
628 /* The TM SPRs are restored here, so that TEXASR.FS can be set
629 * before the trecheckpoint and no explosion occurs.
631 tm_restore_sprs(thread);
633 __tm_recheckpoint(thread, orig_msr);
635 local_irq_restore(flags);
638 static inline void tm_recheckpoint_new_task(struct task_struct *new)
640 unsigned long msr;
642 if (!cpu_has_feature(CPU_FTR_TM))
643 return;
645 /* Recheckpoint the registers of the thread we're about to switch to.
647 * If the task was using FP, we non-lazily reload both the original and
648 * the speculative FP register states. This is because the kernel
649 * doesn't see if/when a TM rollback occurs, so if we take an FP
650 * unavoidable later, we are unable to determine which set of FP regs
651 * need to be restored.
653 if (!new->thread.regs)
654 return;
656 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
657 tm_restore_sprs(&new->thread);
658 return;
660 msr = new->thread.tm_orig_msr;
661 /* Recheckpoint to restore original checkpointed register state. */
662 TM_DEBUG("*** tm_recheckpoint of pid %d "
663 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
664 new->pid, new->thread.regs->msr, msr);
666 /* This loads the checkpointed FP/VEC state, if used */
667 tm_recheckpoint(&new->thread, msr);
669 /* This loads the speculative FP/VEC state, if used */
670 if (msr & MSR_FP) {
671 do_load_up_transact_fpu(&new->thread);
672 new->thread.regs->msr |=
673 (MSR_FP | new->thread.fpexc_mode);
675 #ifdef CONFIG_ALTIVEC
676 if (msr & MSR_VEC) {
677 do_load_up_transact_altivec(&new->thread);
678 new->thread.regs->msr |= MSR_VEC;
680 #endif
681 /* We may as well turn on VSX too since all the state is restored now */
682 if (msr & MSR_VSX)
683 new->thread.regs->msr |= MSR_VSX;
685 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
686 "(kernel msr 0x%lx)\n",
687 new->pid, mfmsr());
690 static inline void __switch_to_tm(struct task_struct *prev)
692 if (cpu_has_feature(CPU_FTR_TM)) {
693 tm_enable();
694 tm_reclaim_task(prev);
699 * This is called if we are on the way out to userspace and the
700 * TIF_RESTORE_TM flag is set. It checks if we need to reload
701 * FP and/or vector state and does so if necessary.
702 * If userspace is inside a transaction (whether active or
703 * suspended) and FP/VMX/VSX instructions have ever been enabled
704 * inside that transaction, then we have to keep them enabled
705 * and keep the FP/VMX/VSX state loaded while ever the transaction
706 * continues. The reason is that if we didn't, and subsequently
707 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
708 * we don't know whether it's the same transaction, and thus we
709 * don't know which of the checkpointed state and the transactional
710 * state to use.
712 void restore_tm_state(struct pt_regs *regs)
714 unsigned long msr_diff;
716 clear_thread_flag(TIF_RESTORE_TM);
717 if (!MSR_TM_ACTIVE(regs->msr))
718 return;
720 msr_diff = current->thread.tm_orig_msr & ~regs->msr;
721 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
722 if (msr_diff & MSR_FP) {
723 fp_enable();
724 load_fp_state(&current->thread.fp_state);
725 regs->msr |= current->thread.fpexc_mode;
727 if (msr_diff & MSR_VEC) {
728 vec_enable();
729 load_vr_state(&current->thread.vr_state);
731 regs->msr |= msr_diff;
734 #else
735 #define tm_recheckpoint_new_task(new)
736 #define __switch_to_tm(prev)
737 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
739 struct task_struct *__switch_to(struct task_struct *prev,
740 struct task_struct *new)
742 struct thread_struct *new_thread, *old_thread;
743 struct task_struct *last;
744 #ifdef CONFIG_PPC_BOOK3S_64
745 struct ppc64_tlb_batch *batch;
746 #endif
748 WARN_ON(!irqs_disabled());
750 /* Back up the TAR across context switches.
751 * Note that the TAR is not available for use in the kernel. (To
752 * provide this, the TAR should be backed up/restored on exception
753 * entry/exit instead, and be in pt_regs. FIXME, this should be in
754 * pt_regs anyway (for debug).)
755 * Save the TAR here before we do treclaim/trecheckpoint as these
756 * will change the TAR.
758 save_tar(&prev->thread);
760 __switch_to_tm(prev);
762 #ifdef CONFIG_SMP
763 /* avoid complexity of lazy save/restore of fpu
764 * by just saving it every time we switch out if
765 * this task used the fpu during the last quantum.
767 * If it tries to use the fpu again, it'll trap and
768 * reload its fp regs. So we don't have to do a restore
769 * every switch, just a save.
770 * -- Cort
772 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
773 giveup_fpu(prev);
774 #ifdef CONFIG_ALTIVEC
776 * If the previous thread used altivec in the last quantum
777 * (thus changing altivec regs) then save them.
778 * We used to check the VRSAVE register but not all apps
779 * set it, so we don't rely on it now (and in fact we need
780 * to save & restore VSCR even if VRSAVE == 0). -- paulus
782 * On SMP we always save/restore altivec regs just to avoid the
783 * complexity of changing processors.
784 * -- Cort
786 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
787 giveup_altivec(prev);
788 #endif /* CONFIG_ALTIVEC */
789 #ifdef CONFIG_VSX
790 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
791 /* VMX and FPU registers are already save here */
792 __giveup_vsx(prev);
793 #endif /* CONFIG_VSX */
794 #ifdef CONFIG_SPE
796 * If the previous thread used spe in the last quantum
797 * (thus changing spe regs) then save them.
799 * On SMP we always save/restore spe regs just to avoid the
800 * complexity of changing processors.
802 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
803 giveup_spe(prev);
804 #endif /* CONFIG_SPE */
806 #else /* CONFIG_SMP */
807 #ifdef CONFIG_ALTIVEC
808 /* Avoid the trap. On smp this this never happens since
809 * we don't set last_task_used_altivec -- Cort
811 if (new->thread.regs && last_task_used_altivec == new)
812 new->thread.regs->msr |= MSR_VEC;
813 #endif /* CONFIG_ALTIVEC */
814 #ifdef CONFIG_VSX
815 if (new->thread.regs && last_task_used_vsx == new)
816 new->thread.regs->msr |= MSR_VSX;
817 #endif /* CONFIG_VSX */
818 #ifdef CONFIG_SPE
819 /* Avoid the trap. On smp this this never happens since
820 * we don't set last_task_used_spe
822 if (new->thread.regs && last_task_used_spe == new)
823 new->thread.regs->msr |= MSR_SPE;
824 #endif /* CONFIG_SPE */
826 #endif /* CONFIG_SMP */
828 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
829 switch_booke_debug_regs(&new->thread.debug);
830 #else
832 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
833 * schedule DABR
835 #ifndef CONFIG_HAVE_HW_BREAKPOINT
836 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
837 set_breakpoint(&new->thread.hw_brk);
838 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
839 #endif
842 new_thread = &new->thread;
843 old_thread = &current->thread;
845 #ifdef CONFIG_PPC64
847 * Collect processor utilization data per process
849 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
850 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
851 long unsigned start_tb, current_tb;
852 start_tb = old_thread->start_tb;
853 cu->current_tb = current_tb = mfspr(SPRN_PURR);
854 old_thread->accum_tb += (current_tb - start_tb);
855 new_thread->start_tb = current_tb;
857 #endif /* CONFIG_PPC64 */
859 #ifdef CONFIG_PPC_BOOK3S_64
860 batch = &__get_cpu_var(ppc64_tlb_batch);
861 if (batch->active) {
862 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
863 if (batch->index)
864 __flush_tlb_pending(batch);
865 batch->active = 0;
867 #endif /* CONFIG_PPC_BOOK3S_64 */
870 * We can't take a PMU exception inside _switch() since there is a
871 * window where the kernel stack SLB and the kernel stack are out
872 * of sync. Hard disable here.
874 hard_irq_disable();
876 tm_recheckpoint_new_task(new);
878 last = _switch(old_thread, new_thread);
880 #ifdef CONFIG_PPC_BOOK3S_64
881 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
882 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
883 batch = &__get_cpu_var(ppc64_tlb_batch);
884 batch->active = 1;
886 #endif /* CONFIG_PPC_BOOK3S_64 */
888 return last;
891 static int instructions_to_print = 16;
893 static void show_instructions(struct pt_regs *regs)
895 int i;
896 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
897 sizeof(int));
899 printk("Instruction dump:");
901 for (i = 0; i < instructions_to_print; i++) {
902 int instr;
904 if (!(i % 8))
905 printk("\n");
907 #if !defined(CONFIG_BOOKE)
908 /* If executing with the IMMU off, adjust pc rather
909 * than print XXXXXXXX.
911 if (!(regs->msr & MSR_IR))
912 pc = (unsigned long)phys_to_virt(pc);
913 #endif
915 /* We use __get_user here *only* to avoid an OOPS on a
916 * bad address because the pc *should* only be a
917 * kernel address.
919 if (!__kernel_text_address(pc) ||
920 __get_user(instr, (unsigned int __user *)pc)) {
921 printk(KERN_CONT "XXXXXXXX ");
922 } else {
923 if (regs->nip == pc)
924 printk(KERN_CONT "<%08x> ", instr);
925 else
926 printk(KERN_CONT "%08x ", instr);
929 pc += sizeof(int);
932 printk("\n");
935 static struct regbit {
936 unsigned long bit;
937 const char *name;
938 } msr_bits[] = {
939 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
940 {MSR_SF, "SF"},
941 {MSR_HV, "HV"},
942 #endif
943 {MSR_VEC, "VEC"},
944 {MSR_VSX, "VSX"},
945 #ifdef CONFIG_BOOKE
946 {MSR_CE, "CE"},
947 #endif
948 {MSR_EE, "EE"},
949 {MSR_PR, "PR"},
950 {MSR_FP, "FP"},
951 {MSR_ME, "ME"},
952 #ifdef CONFIG_BOOKE
953 {MSR_DE, "DE"},
954 #else
955 {MSR_SE, "SE"},
956 {MSR_BE, "BE"},
957 #endif
958 {MSR_IR, "IR"},
959 {MSR_DR, "DR"},
960 {MSR_PMM, "PMM"},
961 #ifndef CONFIG_BOOKE
962 {MSR_RI, "RI"},
963 {MSR_LE, "LE"},
964 #endif
965 {0, NULL}
968 static void printbits(unsigned long val, struct regbit *bits)
970 const char *sep = "";
972 printk("<");
973 for (; bits->bit; ++bits)
974 if (val & bits->bit) {
975 printk("%s%s", sep, bits->name);
976 sep = ",";
978 printk(">");
981 #ifdef CONFIG_PPC64
982 #define REG "%016lx"
983 #define REGS_PER_LINE 4
984 #define LAST_VOLATILE 13
985 #else
986 #define REG "%08lx"
987 #define REGS_PER_LINE 8
988 #define LAST_VOLATILE 12
989 #endif
991 void show_regs(struct pt_regs * regs)
993 int i, trap;
995 show_regs_print_info(KERN_DEFAULT);
997 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
998 regs->nip, regs->link, regs->ctr);
999 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1000 regs, regs->trap, print_tainted(), init_utsname()->release);
1001 printk("MSR: "REG" ", regs->msr);
1002 printbits(regs->msr, msr_bits);
1003 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1004 trap = TRAP(regs);
1005 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1006 printk("CFAR: "REG" ", regs->orig_gpr3);
1007 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1008 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1009 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1010 #else
1011 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1012 #endif
1013 #ifdef CONFIG_PPC64
1014 printk("SOFTE: %ld ", regs->softe);
1015 #endif
1016 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1017 if (MSR_TM_ACTIVE(regs->msr))
1018 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1019 #endif
1021 for (i = 0; i < 32; i++) {
1022 if ((i % REGS_PER_LINE) == 0)
1023 printk("\nGPR%02d: ", i);
1024 printk(REG " ", regs->gpr[i]);
1025 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1026 break;
1028 printk("\n");
1029 #ifdef CONFIG_KALLSYMS
1031 * Lookup NIP late so we have the best change of getting the
1032 * above info out without failing
1034 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1035 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1036 #endif
1037 show_stack(current, (unsigned long *) regs->gpr[1]);
1038 if (!user_mode(regs))
1039 show_instructions(regs);
1042 void exit_thread(void)
1044 discard_lazy_cpu_state();
1047 void flush_thread(void)
1049 discard_lazy_cpu_state();
1051 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1052 flush_ptrace_hw_breakpoint(current);
1053 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1054 set_debug_reg_defaults(&current->thread);
1055 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1058 void
1059 release_thread(struct task_struct *t)
1064 * this gets called so that we can store coprocessor state into memory and
1065 * copy the current task into the new thread.
1067 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1069 flush_fp_to_thread(src);
1070 flush_altivec_to_thread(src);
1071 flush_vsx_to_thread(src);
1072 flush_spe_to_thread(src);
1074 * Flush TM state out so we can copy it. __switch_to_tm() does this
1075 * flush but it removes the checkpointed state from the current CPU and
1076 * transitions the CPU out of TM mode. Hence we need to call
1077 * tm_recheckpoint_new_task() (on the same task) to restore the
1078 * checkpointed state back and the TM mode.
1080 __switch_to_tm(src);
1081 tm_recheckpoint_new_task(src);
1083 *dst = *src;
1085 clear_task_ebb(dst);
1087 return 0;
1091 * Copy a thread..
1093 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1095 int copy_thread(unsigned long clone_flags, unsigned long usp,
1096 unsigned long arg, struct task_struct *p)
1098 struct pt_regs *childregs, *kregs;
1099 extern void ret_from_fork(void);
1100 extern void ret_from_kernel_thread(void);
1101 void (*f)(void);
1102 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1104 /* Copy registers */
1105 sp -= sizeof(struct pt_regs);
1106 childregs = (struct pt_regs *) sp;
1107 if (unlikely(p->flags & PF_KTHREAD)) {
1108 struct thread_info *ti = (void *)task_stack_page(p);
1109 memset(childregs, 0, sizeof(struct pt_regs));
1110 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1111 childregs->gpr[14] = usp; /* function */
1112 #ifdef CONFIG_PPC64
1113 clear_tsk_thread_flag(p, TIF_32BIT);
1114 childregs->softe = 1;
1115 #endif
1116 childregs->gpr[15] = arg;
1117 p->thread.regs = NULL; /* no user register state */
1118 ti->flags |= _TIF_RESTOREALL;
1119 f = ret_from_kernel_thread;
1120 } else {
1121 struct pt_regs *regs = current_pt_regs();
1122 CHECK_FULL_REGS(regs);
1123 *childregs = *regs;
1124 if (usp)
1125 childregs->gpr[1] = usp;
1126 p->thread.regs = childregs;
1127 childregs->gpr[3] = 0; /* Result from fork() */
1128 if (clone_flags & CLONE_SETTLS) {
1129 #ifdef CONFIG_PPC64
1130 if (!is_32bit_task())
1131 childregs->gpr[13] = childregs->gpr[6];
1132 else
1133 #endif
1134 childregs->gpr[2] = childregs->gpr[6];
1137 f = ret_from_fork;
1139 sp -= STACK_FRAME_OVERHEAD;
1142 * The way this works is that at some point in the future
1143 * some task will call _switch to switch to the new task.
1144 * That will pop off the stack frame created below and start
1145 * the new task running at ret_from_fork. The new task will
1146 * do some house keeping and then return from the fork or clone
1147 * system call, using the stack frame created above.
1149 ((unsigned long *)sp)[0] = 0;
1150 sp -= sizeof(struct pt_regs);
1151 kregs = (struct pt_regs *) sp;
1152 sp -= STACK_FRAME_OVERHEAD;
1153 p->thread.ksp = sp;
1154 #ifdef CONFIG_PPC32
1155 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1156 _ALIGN_UP(sizeof(struct thread_info), 16);
1157 #endif
1158 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1159 p->thread.ptrace_bps[0] = NULL;
1160 #endif
1162 p->thread.fp_save_area = NULL;
1163 #ifdef CONFIG_ALTIVEC
1164 p->thread.vr_save_area = NULL;
1165 #endif
1167 #ifdef CONFIG_PPC_STD_MMU_64
1168 if (mmu_has_feature(MMU_FTR_SLB)) {
1169 unsigned long sp_vsid;
1170 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1172 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1173 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1174 << SLB_VSID_SHIFT_1T;
1175 else
1176 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1177 << SLB_VSID_SHIFT;
1178 sp_vsid |= SLB_VSID_KERNEL | llp;
1179 p->thread.ksp_vsid = sp_vsid;
1181 #endif /* CONFIG_PPC_STD_MMU_64 */
1182 #ifdef CONFIG_PPC64
1183 if (cpu_has_feature(CPU_FTR_DSCR)) {
1184 p->thread.dscr_inherit = current->thread.dscr_inherit;
1185 p->thread.dscr = current->thread.dscr;
1187 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1188 p->thread.ppr = INIT_PPR;
1189 #endif
1191 * The PPC64 ABI makes use of a TOC to contain function
1192 * pointers. The function (ret_from_except) is actually a pointer
1193 * to the TOC entry. The first entry is a pointer to the actual
1194 * function.
1196 #ifdef CONFIG_PPC64
1197 kregs->nip = *((unsigned long *)f);
1198 #else
1199 kregs->nip = (unsigned long)f;
1200 #endif
1201 return 0;
1205 * Set up a thread for executing a new program
1207 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1209 #ifdef CONFIG_PPC64
1210 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1211 #endif
1214 * If we exec out of a kernel thread then thread.regs will not be
1215 * set. Do it now.
1217 if (!current->thread.regs) {
1218 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1219 current->thread.regs = regs - 1;
1222 memset(regs->gpr, 0, sizeof(regs->gpr));
1223 regs->ctr = 0;
1224 regs->link = 0;
1225 regs->xer = 0;
1226 regs->ccr = 0;
1227 regs->gpr[1] = sp;
1230 * We have just cleared all the nonvolatile GPRs, so make
1231 * FULL_REGS(regs) return true. This is necessary to allow
1232 * ptrace to examine the thread immediately after exec.
1234 regs->trap &= ~1UL;
1236 #ifdef CONFIG_PPC32
1237 regs->mq = 0;
1238 regs->nip = start;
1239 regs->msr = MSR_USER;
1240 #else
1241 if (!is_32bit_task()) {
1242 unsigned long entry;
1244 if (is_elf2_task()) {
1245 /* Look ma, no function descriptors! */
1246 entry = start;
1249 * Ulrich says:
1250 * The latest iteration of the ABI requires that when
1251 * calling a function (at its global entry point),
1252 * the caller must ensure r12 holds the entry point
1253 * address (so that the function can quickly
1254 * establish addressability).
1256 regs->gpr[12] = start;
1257 /* Make sure that's restored on entry to userspace. */
1258 set_thread_flag(TIF_RESTOREALL);
1259 } else {
1260 unsigned long toc;
1262 /* start is a relocated pointer to the function
1263 * descriptor for the elf _start routine. The first
1264 * entry in the function descriptor is the entry
1265 * address of _start and the second entry is the TOC
1266 * value we need to use.
1268 __get_user(entry, (unsigned long __user *)start);
1269 __get_user(toc, (unsigned long __user *)start+1);
1271 /* Check whether the e_entry function descriptor entries
1272 * need to be relocated before we can use them.
1274 if (load_addr != 0) {
1275 entry += load_addr;
1276 toc += load_addr;
1278 regs->gpr[2] = toc;
1280 regs->nip = entry;
1281 regs->msr = MSR_USER64;
1282 } else {
1283 regs->nip = start;
1284 regs->gpr[2] = 0;
1285 regs->msr = MSR_USER32;
1287 #endif
1288 discard_lazy_cpu_state();
1289 #ifdef CONFIG_VSX
1290 current->thread.used_vsr = 0;
1291 #endif
1292 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1293 current->thread.fp_save_area = NULL;
1294 #ifdef CONFIG_ALTIVEC
1295 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1296 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1297 current->thread.vr_save_area = NULL;
1298 current->thread.vrsave = 0;
1299 current->thread.used_vr = 0;
1300 #endif /* CONFIG_ALTIVEC */
1301 #ifdef CONFIG_SPE
1302 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1303 current->thread.acc = 0;
1304 current->thread.spefscr = 0;
1305 current->thread.used_spe = 0;
1306 #endif /* CONFIG_SPE */
1307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1308 if (cpu_has_feature(CPU_FTR_TM))
1309 regs->msr |= MSR_TM;
1310 current->thread.tm_tfhar = 0;
1311 current->thread.tm_texasr = 0;
1312 current->thread.tm_tfiar = 0;
1313 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1316 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1317 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1319 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1321 struct pt_regs *regs = tsk->thread.regs;
1323 /* This is a bit hairy. If we are an SPE enabled processor
1324 * (have embedded fp) we store the IEEE exception enable flags in
1325 * fpexc_mode. fpexc_mode is also used for setting FP exception
1326 * mode (asyn, precise, disabled) for 'Classic' FP. */
1327 if (val & PR_FP_EXC_SW_ENABLE) {
1328 #ifdef CONFIG_SPE
1329 if (cpu_has_feature(CPU_FTR_SPE)) {
1331 * When the sticky exception bits are set
1332 * directly by userspace, it must call prctl
1333 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1334 * in the existing prctl settings) or
1335 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1336 * the bits being set). <fenv.h> functions
1337 * saving and restoring the whole
1338 * floating-point environment need to do so
1339 * anyway to restore the prctl settings from
1340 * the saved environment.
1342 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1343 tsk->thread.fpexc_mode = val &
1344 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1345 return 0;
1346 } else {
1347 return -EINVAL;
1349 #else
1350 return -EINVAL;
1351 #endif
1354 /* on a CONFIG_SPE this does not hurt us. The bits that
1355 * __pack_fe01 use do not overlap with bits used for
1356 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1357 * on CONFIG_SPE implementations are reserved so writing to
1358 * them does not change anything */
1359 if (val > PR_FP_EXC_PRECISE)
1360 return -EINVAL;
1361 tsk->thread.fpexc_mode = __pack_fe01(val);
1362 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1363 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1364 | tsk->thread.fpexc_mode;
1365 return 0;
1368 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1370 unsigned int val;
1372 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1373 #ifdef CONFIG_SPE
1374 if (cpu_has_feature(CPU_FTR_SPE)) {
1376 * When the sticky exception bits are set
1377 * directly by userspace, it must call prctl
1378 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1379 * in the existing prctl settings) or
1380 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1381 * the bits being set). <fenv.h> functions
1382 * saving and restoring the whole
1383 * floating-point environment need to do so
1384 * anyway to restore the prctl settings from
1385 * the saved environment.
1387 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1388 val = tsk->thread.fpexc_mode;
1389 } else
1390 return -EINVAL;
1391 #else
1392 return -EINVAL;
1393 #endif
1394 else
1395 val = __unpack_fe01(tsk->thread.fpexc_mode);
1396 return put_user(val, (unsigned int __user *) adr);
1399 int set_endian(struct task_struct *tsk, unsigned int val)
1401 struct pt_regs *regs = tsk->thread.regs;
1403 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1404 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1405 return -EINVAL;
1407 if (regs == NULL)
1408 return -EINVAL;
1410 if (val == PR_ENDIAN_BIG)
1411 regs->msr &= ~MSR_LE;
1412 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1413 regs->msr |= MSR_LE;
1414 else
1415 return -EINVAL;
1417 return 0;
1420 int get_endian(struct task_struct *tsk, unsigned long adr)
1422 struct pt_regs *regs = tsk->thread.regs;
1423 unsigned int val;
1425 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1426 !cpu_has_feature(CPU_FTR_REAL_LE))
1427 return -EINVAL;
1429 if (regs == NULL)
1430 return -EINVAL;
1432 if (regs->msr & MSR_LE) {
1433 if (cpu_has_feature(CPU_FTR_REAL_LE))
1434 val = PR_ENDIAN_LITTLE;
1435 else
1436 val = PR_ENDIAN_PPC_LITTLE;
1437 } else
1438 val = PR_ENDIAN_BIG;
1440 return put_user(val, (unsigned int __user *)adr);
1443 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1445 tsk->thread.align_ctl = val;
1446 return 0;
1449 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1451 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1454 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1455 unsigned long nbytes)
1457 unsigned long stack_page;
1458 unsigned long cpu = task_cpu(p);
1461 * Avoid crashing if the stack has overflowed and corrupted
1462 * task_cpu(p), which is in the thread_info struct.
1464 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1465 stack_page = (unsigned long) hardirq_ctx[cpu];
1466 if (sp >= stack_page + sizeof(struct thread_struct)
1467 && sp <= stack_page + THREAD_SIZE - nbytes)
1468 return 1;
1470 stack_page = (unsigned long) softirq_ctx[cpu];
1471 if (sp >= stack_page + sizeof(struct thread_struct)
1472 && sp <= stack_page + THREAD_SIZE - nbytes)
1473 return 1;
1475 return 0;
1478 int validate_sp(unsigned long sp, struct task_struct *p,
1479 unsigned long nbytes)
1481 unsigned long stack_page = (unsigned long)task_stack_page(p);
1483 if (sp >= stack_page + sizeof(struct thread_struct)
1484 && sp <= stack_page + THREAD_SIZE - nbytes)
1485 return 1;
1487 return valid_irq_stack(sp, p, nbytes);
1490 EXPORT_SYMBOL(validate_sp);
1492 unsigned long get_wchan(struct task_struct *p)
1494 unsigned long ip, sp;
1495 int count = 0;
1497 if (!p || p == current || p->state == TASK_RUNNING)
1498 return 0;
1500 sp = p->thread.ksp;
1501 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1502 return 0;
1504 do {
1505 sp = *(unsigned long *)sp;
1506 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1507 return 0;
1508 if (count > 0) {
1509 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1510 if (!in_sched_functions(ip))
1511 return ip;
1513 } while (count++ < 16);
1514 return 0;
1517 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1519 void show_stack(struct task_struct *tsk, unsigned long *stack)
1521 unsigned long sp, ip, lr, newsp;
1522 int count = 0;
1523 int firstframe = 1;
1524 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1525 int curr_frame = current->curr_ret_stack;
1526 extern void return_to_handler(void);
1527 unsigned long rth = (unsigned long)return_to_handler;
1528 unsigned long mrth = -1;
1529 #ifdef CONFIG_PPC64
1530 extern void mod_return_to_handler(void);
1531 rth = *(unsigned long *)rth;
1532 mrth = (unsigned long)mod_return_to_handler;
1533 mrth = *(unsigned long *)mrth;
1534 #endif
1535 #endif
1537 sp = (unsigned long) stack;
1538 if (tsk == NULL)
1539 tsk = current;
1540 if (sp == 0) {
1541 if (tsk == current)
1542 asm("mr %0,1" : "=r" (sp));
1543 else
1544 sp = tsk->thread.ksp;
1547 lr = 0;
1548 printk("Call Trace:\n");
1549 do {
1550 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1551 return;
1553 stack = (unsigned long *) sp;
1554 newsp = stack[0];
1555 ip = stack[STACK_FRAME_LR_SAVE];
1556 if (!firstframe || ip != lr) {
1557 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1558 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1559 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1560 printk(" (%pS)",
1561 (void *)current->ret_stack[curr_frame].ret);
1562 curr_frame--;
1564 #endif
1565 if (firstframe)
1566 printk(" (unreliable)");
1567 printk("\n");
1569 firstframe = 0;
1572 * See if this is an exception frame.
1573 * We look for the "regshere" marker in the current frame.
1575 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1576 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1577 struct pt_regs *regs = (struct pt_regs *)
1578 (sp + STACK_FRAME_OVERHEAD);
1579 lr = regs->link;
1580 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1581 regs->trap, (void *)regs->nip, (void *)lr);
1582 firstframe = 1;
1585 sp = newsp;
1586 } while (count++ < kstack_depth_to_print);
1589 #ifdef CONFIG_PPC64
1590 /* Called with hard IRQs off */
1591 void notrace __ppc64_runlatch_on(void)
1593 struct thread_info *ti = current_thread_info();
1594 unsigned long ctrl;
1596 ctrl = mfspr(SPRN_CTRLF);
1597 ctrl |= CTRL_RUNLATCH;
1598 mtspr(SPRN_CTRLT, ctrl);
1600 ti->local_flags |= _TLF_RUNLATCH;
1603 /* Called with hard IRQs off */
1604 void notrace __ppc64_runlatch_off(void)
1606 struct thread_info *ti = current_thread_info();
1607 unsigned long ctrl;
1609 ti->local_flags &= ~_TLF_RUNLATCH;
1611 ctrl = mfspr(SPRN_CTRLF);
1612 ctrl &= ~CTRL_RUNLATCH;
1613 mtspr(SPRN_CTRLT, ctrl);
1615 #endif /* CONFIG_PPC64 */
1617 unsigned long arch_align_stack(unsigned long sp)
1619 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1620 sp -= get_random_int() & ~PAGE_MASK;
1621 return sp & ~0xf;
1624 static inline unsigned long brk_rnd(void)
1626 unsigned long rnd = 0;
1628 /* 8MB for 32bit, 1GB for 64bit */
1629 if (is_32bit_task())
1630 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1631 else
1632 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1634 return rnd << PAGE_SHIFT;
1637 unsigned long arch_randomize_brk(struct mm_struct *mm)
1639 unsigned long base = mm->brk;
1640 unsigned long ret;
1642 #ifdef CONFIG_PPC_STD_MMU_64
1644 * If we are using 1TB segments and we are allowed to randomise
1645 * the heap, we can put it above 1TB so it is backed by a 1TB
1646 * segment. Otherwise the heap will be in the bottom 1TB
1647 * which always uses 256MB segments and this may result in a
1648 * performance penalty.
1650 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1651 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1652 #endif
1654 ret = PAGE_ALIGN(base + brk_rnd());
1656 if (ret < mm->brk)
1657 return mm->brk;
1659 return ret;
1662 unsigned long randomize_et_dyn(unsigned long base)
1664 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1666 if (ret < base)
1667 return base;
1669 return ret;