efivars: Refactor sanity checking code into separate function
[linux/fpc-iii.git] / arch / powerpc / kernel / rtasd.c
blobe736387fee6af3ee5b92ed6407b4f2e7fb38024b
1 /*
2 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Communication to userspace based on kernel/printk.c
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/vmalloc.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpu.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
25 #include <asm/uaccess.h>
26 #include <asm/io.h>
27 #include <asm/rtas.h>
28 #include <asm/prom.h>
29 #include <asm/nvram.h>
30 #include <linux/atomic.h>
31 #include <asm/machdep.h>
32 #include <asm/topology.h>
35 static DEFINE_SPINLOCK(rtasd_log_lock);
37 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
39 static char *rtas_log_buf;
40 static unsigned long rtas_log_start;
41 static unsigned long rtas_log_size;
43 static int surveillance_timeout = -1;
45 static unsigned int rtas_error_log_max;
46 static unsigned int rtas_error_log_buffer_max;
48 /* RTAS service tokens */
49 static unsigned int event_scan;
50 static unsigned int rtas_event_scan_rate;
52 static int full_rtas_msgs = 0;
54 /* Stop logging to nvram after first fatal error */
55 static int logging_enabled; /* Until we initialize everything,
56 * make sure we don't try logging
57 * anything */
58 static int error_log_cnt;
61 * Since we use 32 bit RTAS, the physical address of this must be below
62 * 4G or else bad things happen. Allocate this in the kernel data and
63 * make it big enough.
65 static unsigned char logdata[RTAS_ERROR_LOG_MAX];
67 static char *rtas_type[] = {
68 "Unknown", "Retry", "TCE Error", "Internal Device Failure",
69 "Timeout", "Data Parity", "Address Parity", "Cache Parity",
70 "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
73 static char *rtas_event_type(int type)
75 if ((type > 0) && (type < 11))
76 return rtas_type[type];
78 switch (type) {
79 case RTAS_TYPE_EPOW:
80 return "EPOW";
81 case RTAS_TYPE_PLATFORM:
82 return "Platform Error";
83 case RTAS_TYPE_IO:
84 return "I/O Event";
85 case RTAS_TYPE_INFO:
86 return "Platform Information Event";
87 case RTAS_TYPE_DEALLOC:
88 return "Resource Deallocation Event";
89 case RTAS_TYPE_DUMP:
90 return "Dump Notification Event";
91 case RTAS_TYPE_PRRN:
92 return "Platform Resource Reassignment Event";
95 return rtas_type[0];
98 /* To see this info, grep RTAS /var/log/messages and each entry
99 * will be collected together with obvious begin/end.
100 * There will be a unique identifier on the begin and end lines.
101 * This will persist across reboots.
103 * format of error logs returned from RTAS:
104 * bytes (size) : contents
105 * --------------------------------------------------------
106 * 0-7 (8) : rtas_error_log
107 * 8-47 (40) : extended info
108 * 48-51 (4) : vendor id
109 * 52-1023 (vendor specific) : location code and debug data
111 static void printk_log_rtas(char *buf, int len)
114 int i,j,n = 0;
115 int perline = 16;
116 char buffer[64];
117 char * str = "RTAS event";
119 if (full_rtas_msgs) {
120 printk(RTAS_DEBUG "%d -------- %s begin --------\n",
121 error_log_cnt, str);
124 * Print perline bytes on each line, each line will start
125 * with RTAS and a changing number, so syslogd will
126 * print lines that are otherwise the same. Separate every
127 * 4 bytes with a space.
129 for (i = 0; i < len; i++) {
130 j = i % perline;
131 if (j == 0) {
132 memset(buffer, 0, sizeof(buffer));
133 n = sprintf(buffer, "RTAS %d:", i/perline);
136 if ((i % 4) == 0)
137 n += sprintf(buffer+n, " ");
139 n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
141 if (j == (perline-1))
142 printk(KERN_DEBUG "%s\n", buffer);
144 if ((i % perline) != 0)
145 printk(KERN_DEBUG "%s\n", buffer);
147 printk(RTAS_DEBUG "%d -------- %s end ----------\n",
148 error_log_cnt, str);
149 } else {
150 struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
152 printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
153 error_log_cnt, rtas_event_type(rtas_error_type(errlog)),
154 rtas_error_severity(errlog));
158 static int log_rtas_len(char * buf)
160 int len;
161 struct rtas_error_log *err;
162 uint32_t extended_log_length;
164 /* rtas fixed header */
165 len = 8;
166 err = (struct rtas_error_log *)buf;
167 extended_log_length = rtas_error_extended_log_length(err);
168 if (rtas_error_extended(err) && extended_log_length) {
170 /* extended header */
171 len += extended_log_length;
174 if (rtas_error_log_max == 0)
175 rtas_error_log_max = rtas_get_error_log_max();
177 if (len > rtas_error_log_max)
178 len = rtas_error_log_max;
180 return len;
184 * First write to nvram, if fatal error, that is the only
185 * place we log the info. The error will be picked up
186 * on the next reboot by rtasd. If not fatal, run the
187 * method for the type of error. Currently, only RTAS
188 * errors have methods implemented, but in the future
189 * there might be a need to store data in nvram before a
190 * call to panic().
192 * XXX We write to nvram periodically, to indicate error has
193 * been written and sync'd, but there is a possibility
194 * that if we don't shutdown correctly, a duplicate error
195 * record will be created on next reboot.
197 void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
199 unsigned long offset;
200 unsigned long s;
201 int len = 0;
203 pr_debug("rtasd: logging event\n");
204 if (buf == NULL)
205 return;
207 spin_lock_irqsave(&rtasd_log_lock, s);
209 /* get length and increase count */
210 switch (err_type & ERR_TYPE_MASK) {
211 case ERR_TYPE_RTAS_LOG:
212 len = log_rtas_len(buf);
213 if (!(err_type & ERR_FLAG_BOOT))
214 error_log_cnt++;
215 break;
216 case ERR_TYPE_KERNEL_PANIC:
217 default:
218 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
219 spin_unlock_irqrestore(&rtasd_log_lock, s);
220 return;
223 #ifdef CONFIG_PPC64
224 /* Write error to NVRAM */
225 if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
226 nvram_write_error_log(buf, len, err_type, error_log_cnt);
227 #endif /* CONFIG_PPC64 */
230 * rtas errors can occur during boot, and we do want to capture
231 * those somewhere, even if nvram isn't ready (why not?), and even
232 * if rtasd isn't ready. Put them into the boot log, at least.
234 if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
235 printk_log_rtas(buf, len);
237 /* Check to see if we need to or have stopped logging */
238 if (fatal || !logging_enabled) {
239 logging_enabled = 0;
240 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
241 spin_unlock_irqrestore(&rtasd_log_lock, s);
242 return;
245 /* call type specific method for error */
246 switch (err_type & ERR_TYPE_MASK) {
247 case ERR_TYPE_RTAS_LOG:
248 offset = rtas_error_log_buffer_max *
249 ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
251 /* First copy over sequence number */
252 memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
254 /* Second copy over error log data */
255 offset += sizeof(int);
256 memcpy(&rtas_log_buf[offset], buf, len);
258 if (rtas_log_size < LOG_NUMBER)
259 rtas_log_size += 1;
260 else
261 rtas_log_start += 1;
263 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
264 spin_unlock_irqrestore(&rtasd_log_lock, s);
265 wake_up_interruptible(&rtas_log_wait);
266 break;
267 case ERR_TYPE_KERNEL_PANIC:
268 default:
269 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
270 spin_unlock_irqrestore(&rtasd_log_lock, s);
271 return;
275 #ifdef CONFIG_PPC_PSERIES
276 static s32 prrn_update_scope;
278 static void prrn_work_fn(struct work_struct *work)
281 * For PRRN, we must pass the negative of the scope value in
282 * the RTAS event.
284 pseries_devicetree_update(-prrn_update_scope);
287 static DECLARE_WORK(prrn_work, prrn_work_fn);
289 void prrn_schedule_update(u32 scope)
291 flush_work(&prrn_work);
292 prrn_update_scope = scope;
293 schedule_work(&prrn_work);
296 static void handle_rtas_event(const struct rtas_error_log *log)
298 if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled())
299 return;
301 /* For PRRN Events the extended log length is used to denote
302 * the scope for calling rtas update-nodes.
304 prrn_schedule_update(rtas_error_extended_log_length(log));
307 #else
309 static void handle_rtas_event(const struct rtas_error_log *log)
311 return;
314 #endif
316 static int rtas_log_open(struct inode * inode, struct file * file)
318 return 0;
321 static int rtas_log_release(struct inode * inode, struct file * file)
323 return 0;
326 /* This will check if all events are logged, if they are then, we
327 * know that we can safely clear the events in NVRAM.
328 * Next we'll sit and wait for something else to log.
330 static ssize_t rtas_log_read(struct file * file, char __user * buf,
331 size_t count, loff_t *ppos)
333 int error;
334 char *tmp;
335 unsigned long s;
336 unsigned long offset;
338 if (!buf || count < rtas_error_log_buffer_max)
339 return -EINVAL;
341 count = rtas_error_log_buffer_max;
343 if (!access_ok(VERIFY_WRITE, buf, count))
344 return -EFAULT;
346 tmp = kmalloc(count, GFP_KERNEL);
347 if (!tmp)
348 return -ENOMEM;
350 spin_lock_irqsave(&rtasd_log_lock, s);
352 /* if it's 0, then we know we got the last one (the one in NVRAM) */
353 while (rtas_log_size == 0) {
354 if (file->f_flags & O_NONBLOCK) {
355 spin_unlock_irqrestore(&rtasd_log_lock, s);
356 error = -EAGAIN;
357 goto out;
360 if (!logging_enabled) {
361 spin_unlock_irqrestore(&rtasd_log_lock, s);
362 error = -ENODATA;
363 goto out;
365 #ifdef CONFIG_PPC64
366 nvram_clear_error_log();
367 #endif /* CONFIG_PPC64 */
369 spin_unlock_irqrestore(&rtasd_log_lock, s);
370 error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
371 if (error)
372 goto out;
373 spin_lock_irqsave(&rtasd_log_lock, s);
376 offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
377 memcpy(tmp, &rtas_log_buf[offset], count);
379 rtas_log_start += 1;
380 rtas_log_size -= 1;
381 spin_unlock_irqrestore(&rtasd_log_lock, s);
383 error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
384 out:
385 kfree(tmp);
386 return error;
389 static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
391 poll_wait(file, &rtas_log_wait, wait);
392 if (rtas_log_size)
393 return POLLIN | POLLRDNORM;
394 return 0;
397 static const struct file_operations proc_rtas_log_operations = {
398 .read = rtas_log_read,
399 .poll = rtas_log_poll,
400 .open = rtas_log_open,
401 .release = rtas_log_release,
402 .llseek = noop_llseek,
405 static int enable_surveillance(int timeout)
407 int error;
409 error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
411 if (error == 0)
412 return 0;
414 if (error == -EINVAL) {
415 printk(KERN_DEBUG "rtasd: surveillance not supported\n");
416 return 0;
419 printk(KERN_ERR "rtasd: could not update surveillance\n");
420 return -1;
423 static void do_event_scan(void)
425 int error;
426 do {
427 memset(logdata, 0, rtas_error_log_max);
428 error = rtas_call(event_scan, 4, 1, NULL,
429 RTAS_EVENT_SCAN_ALL_EVENTS, 0,
430 __pa(logdata), rtas_error_log_max);
431 if (error == -1) {
432 printk(KERN_ERR "event-scan failed\n");
433 break;
436 if (error == 0) {
437 pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
438 handle_rtas_event((struct rtas_error_log *)logdata);
441 } while(error == 0);
444 static void rtas_event_scan(struct work_struct *w);
445 DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
448 * Delay should be at least one second since some machines have problems if
449 * we call event-scan too quickly.
451 static unsigned long event_scan_delay = 1*HZ;
452 static int first_pass = 1;
454 static void rtas_event_scan(struct work_struct *w)
456 unsigned int cpu;
458 do_event_scan();
460 get_online_cpus();
462 /* raw_ OK because just using CPU as starting point. */
463 cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
464 if (cpu >= nr_cpu_ids) {
465 cpu = cpumask_first(cpu_online_mask);
467 if (first_pass) {
468 first_pass = 0;
469 event_scan_delay = 30*HZ/rtas_event_scan_rate;
471 if (surveillance_timeout != -1) {
472 pr_debug("rtasd: enabling surveillance\n");
473 enable_surveillance(surveillance_timeout);
474 pr_debug("rtasd: surveillance enabled\n");
479 schedule_delayed_work_on(cpu, &event_scan_work,
480 __round_jiffies_relative(event_scan_delay, cpu));
482 put_online_cpus();
485 #ifdef CONFIG_PPC64
486 static void retreive_nvram_error_log(void)
488 unsigned int err_type ;
489 int rc ;
491 /* See if we have any error stored in NVRAM */
492 memset(logdata, 0, rtas_error_log_max);
493 rc = nvram_read_error_log(logdata, rtas_error_log_max,
494 &err_type, &error_log_cnt);
495 /* We can use rtas_log_buf now */
496 logging_enabled = 1;
497 if (!rc) {
498 if (err_type != ERR_FLAG_ALREADY_LOGGED) {
499 pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
503 #else /* CONFIG_PPC64 */
504 static void retreive_nvram_error_log(void)
507 #endif /* CONFIG_PPC64 */
509 static void start_event_scan(void)
511 printk(KERN_DEBUG "RTAS daemon started\n");
512 pr_debug("rtasd: will sleep for %d milliseconds\n",
513 (30000 / rtas_event_scan_rate));
515 /* Retrieve errors from nvram if any */
516 retreive_nvram_error_log();
518 schedule_delayed_work_on(cpumask_first(cpu_online_mask),
519 &event_scan_work, event_scan_delay);
522 /* Cancel the rtas event scan work */
523 void rtas_cancel_event_scan(void)
525 cancel_delayed_work_sync(&event_scan_work);
527 EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
529 static int __init rtas_init(void)
531 struct proc_dir_entry *entry;
533 if (!machine_is(pseries) && !machine_is(chrp))
534 return 0;
536 /* No RTAS */
537 event_scan = rtas_token("event-scan");
538 if (event_scan == RTAS_UNKNOWN_SERVICE) {
539 printk(KERN_INFO "rtasd: No event-scan on system\n");
540 return -ENODEV;
543 rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
544 if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
545 printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
546 return -ENODEV;
549 if (!rtas_event_scan_rate) {
550 /* Broken firmware: take a rate of zero to mean don't scan */
551 printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
552 return 0;
555 /* Make room for the sequence number */
556 rtas_error_log_max = rtas_get_error_log_max();
557 rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
559 rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
560 if (!rtas_log_buf) {
561 printk(KERN_ERR "rtasd: no memory\n");
562 return -ENOMEM;
565 entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL,
566 &proc_rtas_log_operations);
567 if (!entry)
568 printk(KERN_ERR "Failed to create error_log proc entry\n");
570 start_event_scan();
572 return 0;
574 __initcall(rtas_init);
576 static int __init surveillance_setup(char *str)
578 int i;
580 /* We only do surveillance on pseries */
581 if (!machine_is(pseries))
582 return 0;
584 if (get_option(&str,&i)) {
585 if (i >= 0 && i <= 255)
586 surveillance_timeout = i;
589 return 1;
591 __setup("surveillance=", surveillance_setup);
593 static int __init rtasmsgs_setup(char *str)
595 if (strcmp(str, "on") == 0)
596 full_rtas_msgs = 1;
597 else if (strcmp(str, "off") == 0)
598 full_rtas_msgs = 0;
600 return 1;
602 __setup("rtasmsgs=", rtasmsgs_setup);