usb: Prevent dead ports when xhci is not enabled
[linux/fpc-iii.git] / kernel / power / swap.c
blob64f8f973674b0b12112bab1559cb1d7c5723fc4d
1 /*
2 * linux/kernel/power/swap.c
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11 * This file is released under the GPLv2.
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/buffer_head.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/pm.h>
27 #include <linux/slab.h>
28 #include <linux/lzo.h>
29 #include <linux/vmalloc.h>
30 #include <linux/cpumask.h>
31 #include <linux/atomic.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
35 #include "power.h"
37 #define HIBERNATE_SIG "S1SUSPEND"
40 * The swap map is a data structure used for keeping track of each page
41 * written to a swap partition. It consists of many swap_map_page
42 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43 * These structures are stored on the swap and linked together with the
44 * help of the .next_swap member.
46 * The swap map is created during suspend. The swap map pages are
47 * allocated and populated one at a time, so we only need one memory
48 * page to set up the entire structure.
50 * During resume we pick up all swap_map_page structures into a list.
53 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
56 * Number of free pages that are not high.
58 static inline unsigned long low_free_pages(void)
60 return nr_free_pages() - nr_free_highpages();
64 * Number of pages required to be kept free while writing the image. Always
65 * half of all available low pages before the writing starts.
67 static inline unsigned long reqd_free_pages(void)
69 return low_free_pages() / 2;
72 struct swap_map_page {
73 sector_t entries[MAP_PAGE_ENTRIES];
74 sector_t next_swap;
77 struct swap_map_page_list {
78 struct swap_map_page *map;
79 struct swap_map_page_list *next;
82 /**
83 * The swap_map_handle structure is used for handling swap in
84 * a file-alike way
87 struct swap_map_handle {
88 struct swap_map_page *cur;
89 struct swap_map_page_list *maps;
90 sector_t cur_swap;
91 sector_t first_sector;
92 unsigned int k;
93 unsigned long reqd_free_pages;
94 u32 crc32;
97 struct swsusp_header {
98 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
99 sizeof(u32)];
100 u32 crc32;
101 sector_t image;
102 unsigned int flags; /* Flags to pass to the "boot" kernel */
103 char orig_sig[10];
104 char sig[10];
105 } __attribute__((packed));
107 static struct swsusp_header *swsusp_header;
110 * The following functions are used for tracing the allocated
111 * swap pages, so that they can be freed in case of an error.
114 struct swsusp_extent {
115 struct rb_node node;
116 unsigned long start;
117 unsigned long end;
120 static struct rb_root swsusp_extents = RB_ROOT;
122 static int swsusp_extents_insert(unsigned long swap_offset)
124 struct rb_node **new = &(swsusp_extents.rb_node);
125 struct rb_node *parent = NULL;
126 struct swsusp_extent *ext;
128 /* Figure out where to put the new node */
129 while (*new) {
130 ext = container_of(*new, struct swsusp_extent, node);
131 parent = *new;
132 if (swap_offset < ext->start) {
133 /* Try to merge */
134 if (swap_offset == ext->start - 1) {
135 ext->start--;
136 return 0;
138 new = &((*new)->rb_left);
139 } else if (swap_offset > ext->end) {
140 /* Try to merge */
141 if (swap_offset == ext->end + 1) {
142 ext->end++;
143 return 0;
145 new = &((*new)->rb_right);
146 } else {
147 /* It already is in the tree */
148 return -EINVAL;
151 /* Add the new node and rebalance the tree. */
152 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
153 if (!ext)
154 return -ENOMEM;
156 ext->start = swap_offset;
157 ext->end = swap_offset;
158 rb_link_node(&ext->node, parent, new);
159 rb_insert_color(&ext->node, &swsusp_extents);
160 return 0;
164 * alloc_swapdev_block - allocate a swap page and register that it has
165 * been allocated, so that it can be freed in case of an error.
168 sector_t alloc_swapdev_block(int swap)
170 unsigned long offset;
172 offset = swp_offset(get_swap_page_of_type(swap));
173 if (offset) {
174 if (swsusp_extents_insert(offset))
175 swap_free(swp_entry(swap, offset));
176 else
177 return swapdev_block(swap, offset);
179 return 0;
183 * free_all_swap_pages - free swap pages allocated for saving image data.
184 * It also frees the extents used to register which swap entries had been
185 * allocated.
188 void free_all_swap_pages(int swap)
190 struct rb_node *node;
192 while ((node = swsusp_extents.rb_node)) {
193 struct swsusp_extent *ext;
194 unsigned long offset;
196 ext = container_of(node, struct swsusp_extent, node);
197 rb_erase(node, &swsusp_extents);
198 for (offset = ext->start; offset <= ext->end; offset++)
199 swap_free(swp_entry(swap, offset));
201 kfree(ext);
205 int swsusp_swap_in_use(void)
207 return (swsusp_extents.rb_node != NULL);
211 * General things
214 static unsigned short root_swap = 0xffff;
215 struct block_device *hib_resume_bdev;
218 * Saving part
221 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
223 int error;
225 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
226 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
227 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
228 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
229 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
230 swsusp_header->image = handle->first_sector;
231 swsusp_header->flags = flags;
232 if (flags & SF_CRC32_MODE)
233 swsusp_header->crc32 = handle->crc32;
234 error = hib_bio_write_page(swsusp_resume_block,
235 swsusp_header, NULL);
236 } else {
237 printk(KERN_ERR "PM: Swap header not found!\n");
238 error = -ENODEV;
240 return error;
244 * swsusp_swap_check - check if the resume device is a swap device
245 * and get its index (if so)
247 * This is called before saving image
249 static int swsusp_swap_check(void)
251 int res;
253 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
254 &hib_resume_bdev);
255 if (res < 0)
256 return res;
258 root_swap = res;
259 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
260 if (res)
261 return res;
263 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
264 if (res < 0)
265 blkdev_put(hib_resume_bdev, FMODE_WRITE);
267 return res;
271 * write_page - Write one page to given swap location.
272 * @buf: Address we're writing.
273 * @offset: Offset of the swap page we're writing to.
274 * @bio_chain: Link the next write BIO here
277 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
279 void *src;
280 int ret;
282 if (!offset)
283 return -ENOSPC;
285 if (bio_chain) {
286 src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
287 __GFP_NORETRY);
288 if (src) {
289 copy_page(src, buf);
290 } else {
291 ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
292 if (ret)
293 return ret;
294 src = (void *)__get_free_page(__GFP_WAIT |
295 __GFP_NOWARN |
296 __GFP_NORETRY);
297 if (src) {
298 copy_page(src, buf);
299 } else {
300 WARN_ON_ONCE(1);
301 bio_chain = NULL; /* Go synchronous */
302 src = buf;
305 } else {
306 src = buf;
308 return hib_bio_write_page(offset, src, bio_chain);
311 static void release_swap_writer(struct swap_map_handle *handle)
313 if (handle->cur)
314 free_page((unsigned long)handle->cur);
315 handle->cur = NULL;
318 static int get_swap_writer(struct swap_map_handle *handle)
320 int ret;
322 ret = swsusp_swap_check();
323 if (ret) {
324 if (ret != -ENOSPC)
325 printk(KERN_ERR "PM: Cannot find swap device, try "
326 "swapon -a.\n");
327 return ret;
329 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
330 if (!handle->cur) {
331 ret = -ENOMEM;
332 goto err_close;
334 handle->cur_swap = alloc_swapdev_block(root_swap);
335 if (!handle->cur_swap) {
336 ret = -ENOSPC;
337 goto err_rel;
339 handle->k = 0;
340 handle->reqd_free_pages = reqd_free_pages();
341 handle->first_sector = handle->cur_swap;
342 return 0;
343 err_rel:
344 release_swap_writer(handle);
345 err_close:
346 swsusp_close(FMODE_WRITE);
347 return ret;
350 static int swap_write_page(struct swap_map_handle *handle, void *buf,
351 struct bio **bio_chain)
353 int error = 0;
354 sector_t offset;
356 if (!handle->cur)
357 return -EINVAL;
358 offset = alloc_swapdev_block(root_swap);
359 error = write_page(buf, offset, bio_chain);
360 if (error)
361 return error;
362 handle->cur->entries[handle->k++] = offset;
363 if (handle->k >= MAP_PAGE_ENTRIES) {
364 offset = alloc_swapdev_block(root_swap);
365 if (!offset)
366 return -ENOSPC;
367 handle->cur->next_swap = offset;
368 error = write_page(handle->cur, handle->cur_swap, bio_chain);
369 if (error)
370 goto out;
371 clear_page(handle->cur);
372 handle->cur_swap = offset;
373 handle->k = 0;
375 if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
376 error = hib_wait_on_bio_chain(bio_chain);
377 if (error)
378 goto out;
380 * Recalculate the number of required free pages, to
381 * make sure we never take more than half.
383 handle->reqd_free_pages = reqd_free_pages();
386 out:
387 return error;
390 static int flush_swap_writer(struct swap_map_handle *handle)
392 if (handle->cur && handle->cur_swap)
393 return write_page(handle->cur, handle->cur_swap, NULL);
394 else
395 return -EINVAL;
398 static int swap_writer_finish(struct swap_map_handle *handle,
399 unsigned int flags, int error)
401 if (!error) {
402 flush_swap_writer(handle);
403 printk(KERN_INFO "PM: S");
404 error = mark_swapfiles(handle, flags);
405 printk("|\n");
408 if (error)
409 free_all_swap_pages(root_swap);
410 release_swap_writer(handle);
411 swsusp_close(FMODE_WRITE);
413 return error;
416 /* We need to remember how much compressed data we need to read. */
417 #define LZO_HEADER sizeof(size_t)
419 /* Number of pages/bytes we'll compress at one time. */
420 #define LZO_UNC_PAGES 32
421 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
423 /* Number of pages/bytes we need for compressed data (worst case). */
424 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
425 LZO_HEADER, PAGE_SIZE)
426 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
428 /* Maximum number of threads for compression/decompression. */
429 #define LZO_THREADS 3
431 /* Minimum/maximum number of pages for read buffering. */
432 #define LZO_MIN_RD_PAGES 1024
433 #define LZO_MAX_RD_PAGES 8192
437 * save_image - save the suspend image data
440 static int save_image(struct swap_map_handle *handle,
441 struct snapshot_handle *snapshot,
442 unsigned int nr_to_write)
444 unsigned int m;
445 int ret;
446 int nr_pages;
447 int err2;
448 struct bio *bio;
449 struct timeval start;
450 struct timeval stop;
452 printk(KERN_INFO "PM: Saving image data pages (%u pages) ... ",
453 nr_to_write);
454 m = nr_to_write / 100;
455 if (!m)
456 m = 1;
457 nr_pages = 0;
458 bio = NULL;
459 do_gettimeofday(&start);
460 while (1) {
461 ret = snapshot_read_next(snapshot);
462 if (ret <= 0)
463 break;
464 ret = swap_write_page(handle, data_of(*snapshot), &bio);
465 if (ret)
466 break;
467 if (!(nr_pages % m))
468 printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
469 nr_pages++;
471 err2 = hib_wait_on_bio_chain(&bio);
472 do_gettimeofday(&stop);
473 if (!ret)
474 ret = err2;
475 if (!ret)
476 printk(KERN_CONT "\b\b\b\bdone\n");
477 else
478 printk(KERN_CONT "\n");
479 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
480 return ret;
484 * Structure used for CRC32.
486 struct crc_data {
487 struct task_struct *thr; /* thread */
488 atomic_t ready; /* ready to start flag */
489 atomic_t stop; /* ready to stop flag */
490 unsigned run_threads; /* nr current threads */
491 wait_queue_head_t go; /* start crc update */
492 wait_queue_head_t done; /* crc update done */
493 u32 *crc32; /* points to handle's crc32 */
494 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
495 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
499 * CRC32 update function that runs in its own thread.
501 static int crc32_threadfn(void *data)
503 struct crc_data *d = data;
504 unsigned i;
506 while (1) {
507 wait_event(d->go, atomic_read(&d->ready) ||
508 kthread_should_stop());
509 if (kthread_should_stop()) {
510 d->thr = NULL;
511 atomic_set(&d->stop, 1);
512 wake_up(&d->done);
513 break;
515 atomic_set(&d->ready, 0);
517 for (i = 0; i < d->run_threads; i++)
518 *d->crc32 = crc32_le(*d->crc32,
519 d->unc[i], *d->unc_len[i]);
520 atomic_set(&d->stop, 1);
521 wake_up(&d->done);
523 return 0;
526 * Structure used for LZO data compression.
528 struct cmp_data {
529 struct task_struct *thr; /* thread */
530 atomic_t ready; /* ready to start flag */
531 atomic_t stop; /* ready to stop flag */
532 int ret; /* return code */
533 wait_queue_head_t go; /* start compression */
534 wait_queue_head_t done; /* compression done */
535 size_t unc_len; /* uncompressed length */
536 size_t cmp_len; /* compressed length */
537 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
538 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
539 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
543 * Compression function that runs in its own thread.
545 static int lzo_compress_threadfn(void *data)
547 struct cmp_data *d = data;
549 while (1) {
550 wait_event(d->go, atomic_read(&d->ready) ||
551 kthread_should_stop());
552 if (kthread_should_stop()) {
553 d->thr = NULL;
554 d->ret = -1;
555 atomic_set(&d->stop, 1);
556 wake_up(&d->done);
557 break;
559 atomic_set(&d->ready, 0);
561 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
562 d->cmp + LZO_HEADER, &d->cmp_len,
563 d->wrk);
564 atomic_set(&d->stop, 1);
565 wake_up(&d->done);
567 return 0;
571 * save_image_lzo - Save the suspend image data compressed with LZO.
572 * @handle: Swap mam handle to use for saving the image.
573 * @snapshot: Image to read data from.
574 * @nr_to_write: Number of pages to save.
576 static int save_image_lzo(struct swap_map_handle *handle,
577 struct snapshot_handle *snapshot,
578 unsigned int nr_to_write)
580 unsigned int m;
581 int ret = 0;
582 int nr_pages;
583 int err2;
584 struct bio *bio;
585 struct timeval start;
586 struct timeval stop;
587 size_t off;
588 unsigned thr, run_threads, nr_threads;
589 unsigned char *page = NULL;
590 struct cmp_data *data = NULL;
591 struct crc_data *crc = NULL;
594 * We'll limit the number of threads for compression to limit memory
595 * footprint.
597 nr_threads = num_online_cpus() - 1;
598 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
600 page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
601 if (!page) {
602 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
603 ret = -ENOMEM;
604 goto out_clean;
607 data = vmalloc(sizeof(*data) * nr_threads);
608 if (!data) {
609 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
610 ret = -ENOMEM;
611 goto out_clean;
613 for (thr = 0; thr < nr_threads; thr++)
614 memset(&data[thr], 0, offsetof(struct cmp_data, go));
616 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
617 if (!crc) {
618 printk(KERN_ERR "PM: Failed to allocate crc\n");
619 ret = -ENOMEM;
620 goto out_clean;
622 memset(crc, 0, offsetof(struct crc_data, go));
625 * Start the compression threads.
627 for (thr = 0; thr < nr_threads; thr++) {
628 init_waitqueue_head(&data[thr].go);
629 init_waitqueue_head(&data[thr].done);
631 data[thr].thr = kthread_run(lzo_compress_threadfn,
632 &data[thr],
633 "image_compress/%u", thr);
634 if (IS_ERR(data[thr].thr)) {
635 data[thr].thr = NULL;
636 printk(KERN_ERR
637 "PM: Cannot start compression threads\n");
638 ret = -ENOMEM;
639 goto out_clean;
644 * Start the CRC32 thread.
646 init_waitqueue_head(&crc->go);
647 init_waitqueue_head(&crc->done);
649 handle->crc32 = 0;
650 crc->crc32 = &handle->crc32;
651 for (thr = 0; thr < nr_threads; thr++) {
652 crc->unc[thr] = data[thr].unc;
653 crc->unc_len[thr] = &data[thr].unc_len;
656 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
657 if (IS_ERR(crc->thr)) {
658 crc->thr = NULL;
659 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
660 ret = -ENOMEM;
661 goto out_clean;
665 * Adjust the number of required free pages after all allocations have
666 * been done. We don't want to run out of pages when writing.
668 handle->reqd_free_pages = reqd_free_pages();
670 printk(KERN_INFO
671 "PM: Using %u thread(s) for compression.\n"
672 "PM: Compressing and saving image data (%u pages) ... ",
673 nr_threads, nr_to_write);
674 m = nr_to_write / 100;
675 if (!m)
676 m = 1;
677 nr_pages = 0;
678 bio = NULL;
679 do_gettimeofday(&start);
680 for (;;) {
681 for (thr = 0; thr < nr_threads; thr++) {
682 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
683 ret = snapshot_read_next(snapshot);
684 if (ret < 0)
685 goto out_finish;
687 if (!ret)
688 break;
690 memcpy(data[thr].unc + off,
691 data_of(*snapshot), PAGE_SIZE);
693 if (!(nr_pages % m))
694 printk(KERN_CONT "\b\b\b\b%3d%%",
695 nr_pages / m);
696 nr_pages++;
698 if (!off)
699 break;
701 data[thr].unc_len = off;
703 atomic_set(&data[thr].ready, 1);
704 wake_up(&data[thr].go);
707 if (!thr)
708 break;
710 crc->run_threads = thr;
711 atomic_set(&crc->ready, 1);
712 wake_up(&crc->go);
714 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
715 wait_event(data[thr].done,
716 atomic_read(&data[thr].stop));
717 atomic_set(&data[thr].stop, 0);
719 ret = data[thr].ret;
721 if (ret < 0) {
722 printk(KERN_ERR "PM: LZO compression failed\n");
723 goto out_finish;
726 if (unlikely(!data[thr].cmp_len ||
727 data[thr].cmp_len >
728 lzo1x_worst_compress(data[thr].unc_len))) {
729 printk(KERN_ERR
730 "PM: Invalid LZO compressed length\n");
731 ret = -1;
732 goto out_finish;
735 *(size_t *)data[thr].cmp = data[thr].cmp_len;
738 * Given we are writing one page at a time to disk, we
739 * copy that much from the buffer, although the last
740 * bit will likely be smaller than full page. This is
741 * OK - we saved the length of the compressed data, so
742 * any garbage at the end will be discarded when we
743 * read it.
745 for (off = 0;
746 off < LZO_HEADER + data[thr].cmp_len;
747 off += PAGE_SIZE) {
748 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
750 ret = swap_write_page(handle, page, &bio);
751 if (ret)
752 goto out_finish;
756 wait_event(crc->done, atomic_read(&crc->stop));
757 atomic_set(&crc->stop, 0);
760 out_finish:
761 err2 = hib_wait_on_bio_chain(&bio);
762 do_gettimeofday(&stop);
763 if (!ret)
764 ret = err2;
765 if (!ret) {
766 printk(KERN_CONT "\b\b\b\bdone\n");
767 } else {
768 printk(KERN_CONT "\n");
770 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
771 out_clean:
772 if (crc) {
773 if (crc->thr)
774 kthread_stop(crc->thr);
775 kfree(crc);
777 if (data) {
778 for (thr = 0; thr < nr_threads; thr++)
779 if (data[thr].thr)
780 kthread_stop(data[thr].thr);
781 vfree(data);
783 if (page) free_page((unsigned long)page);
785 return ret;
789 * enough_swap - Make sure we have enough swap to save the image.
791 * Returns TRUE or FALSE after checking the total amount of swap
792 * space avaiable from the resume partition.
795 static int enough_swap(unsigned int nr_pages, unsigned int flags)
797 unsigned int free_swap = count_swap_pages(root_swap, 1);
798 unsigned int required;
800 pr_debug("PM: Free swap pages: %u\n", free_swap);
802 required = PAGES_FOR_IO + ((flags & SF_NOCOMPRESS_MODE) ?
803 nr_pages : (nr_pages * LZO_CMP_PAGES) / LZO_UNC_PAGES + 1);
804 return free_swap > required;
808 * swsusp_write - Write entire image and metadata.
809 * @flags: flags to pass to the "boot" kernel in the image header
811 * It is important _NOT_ to umount filesystems at this point. We want
812 * them synced (in case something goes wrong) but we DO not want to mark
813 * filesystem clean: it is not. (And it does not matter, if we resume
814 * correctly, we'll mark system clean, anyway.)
817 int swsusp_write(unsigned int flags)
819 struct swap_map_handle handle;
820 struct snapshot_handle snapshot;
821 struct swsusp_info *header;
822 unsigned long pages;
823 int error;
825 pages = snapshot_get_image_size();
826 error = get_swap_writer(&handle);
827 if (error) {
828 printk(KERN_ERR "PM: Cannot get swap writer\n");
829 return error;
831 if (!enough_swap(pages, flags)) {
832 printk(KERN_ERR "PM: Not enough free swap\n");
833 error = -ENOSPC;
834 goto out_finish;
836 memset(&snapshot, 0, sizeof(struct snapshot_handle));
837 error = snapshot_read_next(&snapshot);
838 if (error < PAGE_SIZE) {
839 if (error >= 0)
840 error = -EFAULT;
842 goto out_finish;
844 header = (struct swsusp_info *)data_of(snapshot);
845 error = swap_write_page(&handle, header, NULL);
846 if (!error) {
847 error = (flags & SF_NOCOMPRESS_MODE) ?
848 save_image(&handle, &snapshot, pages - 1) :
849 save_image_lzo(&handle, &snapshot, pages - 1);
851 out_finish:
852 error = swap_writer_finish(&handle, flags, error);
853 return error;
857 * The following functions allow us to read data using a swap map
858 * in a file-alike way
861 static void release_swap_reader(struct swap_map_handle *handle)
863 struct swap_map_page_list *tmp;
865 while (handle->maps) {
866 if (handle->maps->map)
867 free_page((unsigned long)handle->maps->map);
868 tmp = handle->maps;
869 handle->maps = handle->maps->next;
870 kfree(tmp);
872 handle->cur = NULL;
875 static int get_swap_reader(struct swap_map_handle *handle,
876 unsigned int *flags_p)
878 int error;
879 struct swap_map_page_list *tmp, *last;
880 sector_t offset;
882 *flags_p = swsusp_header->flags;
884 if (!swsusp_header->image) /* how can this happen? */
885 return -EINVAL;
887 handle->cur = NULL;
888 last = handle->maps = NULL;
889 offset = swsusp_header->image;
890 while (offset) {
891 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
892 if (!tmp) {
893 release_swap_reader(handle);
894 return -ENOMEM;
896 memset(tmp, 0, sizeof(*tmp));
897 if (!handle->maps)
898 handle->maps = tmp;
899 if (last)
900 last->next = tmp;
901 last = tmp;
903 tmp->map = (struct swap_map_page *)
904 __get_free_page(__GFP_WAIT | __GFP_HIGH);
905 if (!tmp->map) {
906 release_swap_reader(handle);
907 return -ENOMEM;
910 error = hib_bio_read_page(offset, tmp->map, NULL);
911 if (error) {
912 release_swap_reader(handle);
913 return error;
915 offset = tmp->map->next_swap;
917 handle->k = 0;
918 handle->cur = handle->maps->map;
919 return 0;
922 static int swap_read_page(struct swap_map_handle *handle, void *buf,
923 struct bio **bio_chain)
925 sector_t offset;
926 int error;
927 struct swap_map_page_list *tmp;
929 if (!handle->cur)
930 return -EINVAL;
931 offset = handle->cur->entries[handle->k];
932 if (!offset)
933 return -EFAULT;
934 error = hib_bio_read_page(offset, buf, bio_chain);
935 if (error)
936 return error;
937 if (++handle->k >= MAP_PAGE_ENTRIES) {
938 handle->k = 0;
939 free_page((unsigned long)handle->maps->map);
940 tmp = handle->maps;
941 handle->maps = handle->maps->next;
942 kfree(tmp);
943 if (!handle->maps)
944 release_swap_reader(handle);
945 else
946 handle->cur = handle->maps->map;
948 return error;
951 static int swap_reader_finish(struct swap_map_handle *handle)
953 release_swap_reader(handle);
955 return 0;
959 * load_image - load the image using the swap map handle
960 * @handle and the snapshot handle @snapshot
961 * (assume there are @nr_pages pages to load)
964 static int load_image(struct swap_map_handle *handle,
965 struct snapshot_handle *snapshot,
966 unsigned int nr_to_read)
968 unsigned int m;
969 int ret = 0;
970 struct timeval start;
971 struct timeval stop;
972 struct bio *bio;
973 int err2;
974 unsigned nr_pages;
976 printk(KERN_INFO "PM: Loading image data pages (%u pages) ... ",
977 nr_to_read);
978 m = nr_to_read / 100;
979 if (!m)
980 m = 1;
981 nr_pages = 0;
982 bio = NULL;
983 do_gettimeofday(&start);
984 for ( ; ; ) {
985 ret = snapshot_write_next(snapshot);
986 if (ret <= 0)
987 break;
988 ret = swap_read_page(handle, data_of(*snapshot), &bio);
989 if (ret)
990 break;
991 if (snapshot->sync_read)
992 ret = hib_wait_on_bio_chain(&bio);
993 if (ret)
994 break;
995 if (!(nr_pages % m))
996 printk("\b\b\b\b%3d%%", nr_pages / m);
997 nr_pages++;
999 err2 = hib_wait_on_bio_chain(&bio);
1000 do_gettimeofday(&stop);
1001 if (!ret)
1002 ret = err2;
1003 if (!ret) {
1004 printk("\b\b\b\bdone\n");
1005 snapshot_write_finalize(snapshot);
1006 if (!snapshot_image_loaded(snapshot))
1007 ret = -ENODATA;
1008 } else
1009 printk("\n");
1010 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1011 return ret;
1015 * Structure used for LZO data decompression.
1017 struct dec_data {
1018 struct task_struct *thr; /* thread */
1019 atomic_t ready; /* ready to start flag */
1020 atomic_t stop; /* ready to stop flag */
1021 int ret; /* return code */
1022 wait_queue_head_t go; /* start decompression */
1023 wait_queue_head_t done; /* decompression done */
1024 size_t unc_len; /* uncompressed length */
1025 size_t cmp_len; /* compressed length */
1026 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1027 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1031 * Deompression function that runs in its own thread.
1033 static int lzo_decompress_threadfn(void *data)
1035 struct dec_data *d = data;
1037 while (1) {
1038 wait_event(d->go, atomic_read(&d->ready) ||
1039 kthread_should_stop());
1040 if (kthread_should_stop()) {
1041 d->thr = NULL;
1042 d->ret = -1;
1043 atomic_set(&d->stop, 1);
1044 wake_up(&d->done);
1045 break;
1047 atomic_set(&d->ready, 0);
1049 d->unc_len = LZO_UNC_SIZE;
1050 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1051 d->unc, &d->unc_len);
1052 atomic_set(&d->stop, 1);
1053 wake_up(&d->done);
1055 return 0;
1059 * load_image_lzo - Load compressed image data and decompress them with LZO.
1060 * @handle: Swap map handle to use for loading data.
1061 * @snapshot: Image to copy uncompressed data into.
1062 * @nr_to_read: Number of pages to load.
1064 static int load_image_lzo(struct swap_map_handle *handle,
1065 struct snapshot_handle *snapshot,
1066 unsigned int nr_to_read)
1068 unsigned int m;
1069 int ret = 0;
1070 int eof = 0;
1071 struct bio *bio;
1072 struct timeval start;
1073 struct timeval stop;
1074 unsigned nr_pages;
1075 size_t off;
1076 unsigned i, thr, run_threads, nr_threads;
1077 unsigned ring = 0, pg = 0, ring_size = 0,
1078 have = 0, want, need, asked = 0;
1079 unsigned long read_pages = 0;
1080 unsigned char **page = NULL;
1081 struct dec_data *data = NULL;
1082 struct crc_data *crc = NULL;
1085 * We'll limit the number of threads for decompression to limit memory
1086 * footprint.
1088 nr_threads = num_online_cpus() - 1;
1089 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1091 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1092 if (!page) {
1093 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1094 ret = -ENOMEM;
1095 goto out_clean;
1098 data = vmalloc(sizeof(*data) * nr_threads);
1099 if (!data) {
1100 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1101 ret = -ENOMEM;
1102 goto out_clean;
1104 for (thr = 0; thr < nr_threads; thr++)
1105 memset(&data[thr], 0, offsetof(struct dec_data, go));
1107 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1108 if (!crc) {
1109 printk(KERN_ERR "PM: Failed to allocate crc\n");
1110 ret = -ENOMEM;
1111 goto out_clean;
1113 memset(crc, 0, offsetof(struct crc_data, go));
1116 * Start the decompression threads.
1118 for (thr = 0; thr < nr_threads; thr++) {
1119 init_waitqueue_head(&data[thr].go);
1120 init_waitqueue_head(&data[thr].done);
1122 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1123 &data[thr],
1124 "image_decompress/%u", thr);
1125 if (IS_ERR(data[thr].thr)) {
1126 data[thr].thr = NULL;
1127 printk(KERN_ERR
1128 "PM: Cannot start decompression threads\n");
1129 ret = -ENOMEM;
1130 goto out_clean;
1135 * Start the CRC32 thread.
1137 init_waitqueue_head(&crc->go);
1138 init_waitqueue_head(&crc->done);
1140 handle->crc32 = 0;
1141 crc->crc32 = &handle->crc32;
1142 for (thr = 0; thr < nr_threads; thr++) {
1143 crc->unc[thr] = data[thr].unc;
1144 crc->unc_len[thr] = &data[thr].unc_len;
1147 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1148 if (IS_ERR(crc->thr)) {
1149 crc->thr = NULL;
1150 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1151 ret = -ENOMEM;
1152 goto out_clean;
1156 * Set the number of pages for read buffering.
1157 * This is complete guesswork, because we'll only know the real
1158 * picture once prepare_image() is called, which is much later on
1159 * during the image load phase. We'll assume the worst case and
1160 * say that none of the image pages are from high memory.
1162 if (low_free_pages() > snapshot_get_image_size())
1163 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1164 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1166 for (i = 0; i < read_pages; i++) {
1167 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1168 __GFP_WAIT | __GFP_HIGH :
1169 __GFP_WAIT | __GFP_NOWARN |
1170 __GFP_NORETRY);
1172 if (!page[i]) {
1173 if (i < LZO_CMP_PAGES) {
1174 ring_size = i;
1175 printk(KERN_ERR
1176 "PM: Failed to allocate LZO pages\n");
1177 ret = -ENOMEM;
1178 goto out_clean;
1179 } else {
1180 break;
1184 want = ring_size = i;
1186 printk(KERN_INFO
1187 "PM: Using %u thread(s) for decompression.\n"
1188 "PM: Loading and decompressing image data (%u pages) ... ",
1189 nr_threads, nr_to_read);
1190 m = nr_to_read / 100;
1191 if (!m)
1192 m = 1;
1193 nr_pages = 0;
1194 bio = NULL;
1195 do_gettimeofday(&start);
1197 ret = snapshot_write_next(snapshot);
1198 if (ret <= 0)
1199 goto out_finish;
1201 for(;;) {
1202 for (i = 0; !eof && i < want; i++) {
1203 ret = swap_read_page(handle, page[ring], &bio);
1204 if (ret) {
1206 * On real read error, finish. On end of data,
1207 * set EOF flag and just exit the read loop.
1209 if (handle->cur &&
1210 handle->cur->entries[handle->k]) {
1211 goto out_finish;
1212 } else {
1213 eof = 1;
1214 break;
1217 if (++ring >= ring_size)
1218 ring = 0;
1220 asked += i;
1221 want -= i;
1224 * We are out of data, wait for some more.
1226 if (!have) {
1227 if (!asked)
1228 break;
1230 ret = hib_wait_on_bio_chain(&bio);
1231 if (ret)
1232 goto out_finish;
1233 have += asked;
1234 asked = 0;
1235 if (eof)
1236 eof = 2;
1239 if (crc->run_threads) {
1240 wait_event(crc->done, atomic_read(&crc->stop));
1241 atomic_set(&crc->stop, 0);
1242 crc->run_threads = 0;
1245 for (thr = 0; have && thr < nr_threads; thr++) {
1246 data[thr].cmp_len = *(size_t *)page[pg];
1247 if (unlikely(!data[thr].cmp_len ||
1248 data[thr].cmp_len >
1249 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1250 printk(KERN_ERR
1251 "PM: Invalid LZO compressed length\n");
1252 ret = -1;
1253 goto out_finish;
1256 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1257 PAGE_SIZE);
1258 if (need > have) {
1259 if (eof > 1) {
1260 ret = -1;
1261 goto out_finish;
1263 break;
1266 for (off = 0;
1267 off < LZO_HEADER + data[thr].cmp_len;
1268 off += PAGE_SIZE) {
1269 memcpy(data[thr].cmp + off,
1270 page[pg], PAGE_SIZE);
1271 have--;
1272 want++;
1273 if (++pg >= ring_size)
1274 pg = 0;
1277 atomic_set(&data[thr].ready, 1);
1278 wake_up(&data[thr].go);
1282 * Wait for more data while we are decompressing.
1284 if (have < LZO_CMP_PAGES && asked) {
1285 ret = hib_wait_on_bio_chain(&bio);
1286 if (ret)
1287 goto out_finish;
1288 have += asked;
1289 asked = 0;
1290 if (eof)
1291 eof = 2;
1294 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1295 wait_event(data[thr].done,
1296 atomic_read(&data[thr].stop));
1297 atomic_set(&data[thr].stop, 0);
1299 ret = data[thr].ret;
1301 if (ret < 0) {
1302 printk(KERN_ERR
1303 "PM: LZO decompression failed\n");
1304 goto out_finish;
1307 if (unlikely(!data[thr].unc_len ||
1308 data[thr].unc_len > LZO_UNC_SIZE ||
1309 data[thr].unc_len & (PAGE_SIZE - 1))) {
1310 printk(KERN_ERR
1311 "PM: Invalid LZO uncompressed length\n");
1312 ret = -1;
1313 goto out_finish;
1316 for (off = 0;
1317 off < data[thr].unc_len; off += PAGE_SIZE) {
1318 memcpy(data_of(*snapshot),
1319 data[thr].unc + off, PAGE_SIZE);
1321 if (!(nr_pages % m))
1322 printk("\b\b\b\b%3d%%", nr_pages / m);
1323 nr_pages++;
1325 ret = snapshot_write_next(snapshot);
1326 if (ret <= 0) {
1327 crc->run_threads = thr + 1;
1328 atomic_set(&crc->ready, 1);
1329 wake_up(&crc->go);
1330 goto out_finish;
1335 crc->run_threads = thr;
1336 atomic_set(&crc->ready, 1);
1337 wake_up(&crc->go);
1340 out_finish:
1341 if (crc->run_threads) {
1342 wait_event(crc->done, atomic_read(&crc->stop));
1343 atomic_set(&crc->stop, 0);
1345 do_gettimeofday(&stop);
1346 if (!ret) {
1347 printk("\b\b\b\bdone\n");
1348 snapshot_write_finalize(snapshot);
1349 if (!snapshot_image_loaded(snapshot))
1350 ret = -ENODATA;
1351 if (!ret) {
1352 if (swsusp_header->flags & SF_CRC32_MODE) {
1353 if(handle->crc32 != swsusp_header->crc32) {
1354 printk(KERN_ERR
1355 "PM: Invalid image CRC32!\n");
1356 ret = -ENODATA;
1360 } else
1361 printk("\n");
1362 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1363 out_clean:
1364 for (i = 0; i < ring_size; i++)
1365 free_page((unsigned long)page[i]);
1366 if (crc) {
1367 if (crc->thr)
1368 kthread_stop(crc->thr);
1369 kfree(crc);
1371 if (data) {
1372 for (thr = 0; thr < nr_threads; thr++)
1373 if (data[thr].thr)
1374 kthread_stop(data[thr].thr);
1375 vfree(data);
1377 if (page) vfree(page);
1379 return ret;
1383 * swsusp_read - read the hibernation image.
1384 * @flags_p: flags passed by the "frozen" kernel in the image header should
1385 * be written into this memory location
1388 int swsusp_read(unsigned int *flags_p)
1390 int error;
1391 struct swap_map_handle handle;
1392 struct snapshot_handle snapshot;
1393 struct swsusp_info *header;
1395 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1396 error = snapshot_write_next(&snapshot);
1397 if (error < PAGE_SIZE)
1398 return error < 0 ? error : -EFAULT;
1399 header = (struct swsusp_info *)data_of(snapshot);
1400 error = get_swap_reader(&handle, flags_p);
1401 if (error)
1402 goto end;
1403 if (!error)
1404 error = swap_read_page(&handle, header, NULL);
1405 if (!error) {
1406 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1407 load_image(&handle, &snapshot, header->pages - 1) :
1408 load_image_lzo(&handle, &snapshot, header->pages - 1);
1410 swap_reader_finish(&handle);
1411 end:
1412 if (!error)
1413 pr_debug("PM: Image successfully loaded\n");
1414 else
1415 pr_debug("PM: Error %d resuming\n", error);
1416 return error;
1420 * swsusp_check - Check for swsusp signature in the resume device
1423 int swsusp_check(void)
1425 int error;
1427 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1428 FMODE_READ, NULL);
1429 if (!IS_ERR(hib_resume_bdev)) {
1430 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1431 clear_page(swsusp_header);
1432 error = hib_bio_read_page(swsusp_resume_block,
1433 swsusp_header, NULL);
1434 if (error)
1435 goto put;
1437 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1438 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1439 /* Reset swap signature now */
1440 error = hib_bio_write_page(swsusp_resume_block,
1441 swsusp_header, NULL);
1442 } else {
1443 error = -EINVAL;
1446 put:
1447 if (error)
1448 blkdev_put(hib_resume_bdev, FMODE_READ);
1449 else
1450 pr_debug("PM: Image signature found, resuming\n");
1451 } else {
1452 error = PTR_ERR(hib_resume_bdev);
1455 if (error)
1456 pr_debug("PM: Image not found (code %d)\n", error);
1458 return error;
1462 * swsusp_close - close swap device.
1465 void swsusp_close(fmode_t mode)
1467 if (IS_ERR(hib_resume_bdev)) {
1468 pr_debug("PM: Image device not initialised\n");
1469 return;
1472 blkdev_put(hib_resume_bdev, mode);
1475 static int swsusp_header_init(void)
1477 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1478 if (!swsusp_header)
1479 panic("Could not allocate memory for swsusp_header\n");
1480 return 0;
1483 core_initcall(swsusp_header_init);