2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
24 #include <linux/spi/spi.h>
26 #define SUN6I_FIFO_DEPTH 128
28 #define SUN6I_GBL_CTL_REG 0x04
29 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
30 #define SUN6I_GBL_CTL_MASTER BIT(1)
31 #define SUN6I_GBL_CTL_TP BIT(7)
32 #define SUN6I_GBL_CTL_RST BIT(31)
34 #define SUN6I_TFR_CTL_REG 0x08
35 #define SUN6I_TFR_CTL_CPHA BIT(0)
36 #define SUN6I_TFR_CTL_CPOL BIT(1)
37 #define SUN6I_TFR_CTL_SPOL BIT(2)
38 #define SUN6I_TFR_CTL_CS_MASK 0x30
39 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
40 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
41 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
42 #define SUN6I_TFR_CTL_DHB BIT(8)
43 #define SUN6I_TFR_CTL_FBS BIT(12)
44 #define SUN6I_TFR_CTL_XCH BIT(31)
46 #define SUN6I_INT_CTL_REG 0x10
47 #define SUN6I_INT_CTL_RF_OVF BIT(8)
48 #define SUN6I_INT_CTL_TC BIT(12)
50 #define SUN6I_INT_STA_REG 0x14
52 #define SUN6I_FIFO_CTL_REG 0x18
53 #define SUN6I_FIFO_CTL_RF_RST BIT(15)
54 #define SUN6I_FIFO_CTL_TF_RST BIT(31)
56 #define SUN6I_FIFO_STA_REG 0x1c
57 #define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
58 #define SUN6I_FIFO_STA_RF_CNT_BITS 0
59 #define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
60 #define SUN6I_FIFO_STA_TF_CNT_BITS 16
62 #define SUN6I_CLK_CTL_REG 0x24
63 #define SUN6I_CLK_CTL_CDR2_MASK 0xff
64 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
65 #define SUN6I_CLK_CTL_CDR1_MASK 0xf
66 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
67 #define SUN6I_CLK_CTL_DRS BIT(12)
69 #define SUN6I_BURST_CNT_REG 0x30
70 #define SUN6I_BURST_CNT(cnt) ((cnt) & 0xffffff)
72 #define SUN6I_XMIT_CNT_REG 0x34
73 #define SUN6I_XMIT_CNT(cnt) ((cnt) & 0xffffff)
75 #define SUN6I_BURST_CTL_CNT_REG 0x38
76 #define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & 0xffffff)
78 #define SUN6I_TXDATA_REG 0x200
79 #define SUN6I_RXDATA_REG 0x300
82 struct spi_master
*master
;
83 void __iomem
*base_addr
;
86 struct reset_control
*rstc
;
88 struct completion done
;
95 static inline u32
sun6i_spi_read(struct sun6i_spi
*sspi
, u32 reg
)
97 return readl(sspi
->base_addr
+ reg
);
100 static inline void sun6i_spi_write(struct sun6i_spi
*sspi
, u32 reg
, u32 value
)
102 writel(value
, sspi
->base_addr
+ reg
);
105 static inline void sun6i_spi_drain_fifo(struct sun6i_spi
*sspi
, int len
)
110 /* See how much data is available */
111 reg
= sun6i_spi_read(sspi
, SUN6I_FIFO_STA_REG
);
112 reg
&= SUN6I_FIFO_STA_RF_CNT_MASK
;
113 cnt
= reg
>> SUN6I_FIFO_STA_RF_CNT_BITS
;
119 byte
= readb(sspi
->base_addr
+ SUN6I_RXDATA_REG
);
121 *sspi
->rx_buf
++ = byte
;
125 static inline void sun6i_spi_fill_fifo(struct sun6i_spi
*sspi
, int len
)
133 byte
= sspi
->tx_buf
? *sspi
->tx_buf
++ : 0;
134 writeb(byte
, sspi
->base_addr
+ SUN6I_TXDATA_REG
);
139 static void sun6i_spi_set_cs(struct spi_device
*spi
, bool enable
)
141 struct sun6i_spi
*sspi
= spi_master_get_devdata(spi
->master
);
144 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
145 reg
&= ~SUN6I_TFR_CTL_CS_MASK
;
146 reg
|= SUN6I_TFR_CTL_CS(spi
->chip_select
);
149 reg
|= SUN6I_TFR_CTL_CS_LEVEL
;
151 reg
&= ~SUN6I_TFR_CTL_CS_LEVEL
;
153 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
);
156 static size_t sun6i_spi_max_transfer_size(struct spi_device
*spi
)
158 return SUN6I_FIFO_DEPTH
- 1;
161 static int sun6i_spi_transfer_one(struct spi_master
*master
,
162 struct spi_device
*spi
,
163 struct spi_transfer
*tfr
)
165 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
166 unsigned int mclk_rate
, div
, timeout
;
167 unsigned int start
, end
, tx_time
;
168 unsigned int tx_len
= 0;
172 /* We don't support transfer larger than the FIFO */
173 if (tfr
->len
> SUN6I_FIFO_DEPTH
)
176 reinit_completion(&sspi
->done
);
177 sspi
->tx_buf
= tfr
->tx_buf
;
178 sspi
->rx_buf
= tfr
->rx_buf
;
179 sspi
->len
= tfr
->len
;
181 /* Clear pending interrupts */
182 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, ~0);
185 sun6i_spi_write(sspi
, SUN6I_FIFO_CTL_REG
,
186 SUN6I_FIFO_CTL_RF_RST
| SUN6I_FIFO_CTL_TF_RST
);
189 * Setup the transfer control register: Chip Select,
192 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
194 if (spi
->mode
& SPI_CPOL
)
195 reg
|= SUN6I_TFR_CTL_CPOL
;
197 reg
&= ~SUN6I_TFR_CTL_CPOL
;
199 if (spi
->mode
& SPI_CPHA
)
200 reg
|= SUN6I_TFR_CTL_CPHA
;
202 reg
&= ~SUN6I_TFR_CTL_CPHA
;
204 if (spi
->mode
& SPI_LSB_FIRST
)
205 reg
|= SUN6I_TFR_CTL_FBS
;
207 reg
&= ~SUN6I_TFR_CTL_FBS
;
210 * If it's a TX only transfer, we don't want to fill the RX
211 * FIFO with bogus data
214 reg
&= ~SUN6I_TFR_CTL_DHB
;
216 reg
|= SUN6I_TFR_CTL_DHB
;
218 /* We want to control the chip select manually */
219 reg
|= SUN6I_TFR_CTL_CS_MANUAL
;
221 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
);
223 /* Ensure that we have a parent clock fast enough */
224 mclk_rate
= clk_get_rate(sspi
->mclk
);
225 if (mclk_rate
< (2 * tfr
->speed_hz
)) {
226 clk_set_rate(sspi
->mclk
, 2 * tfr
->speed_hz
);
227 mclk_rate
= clk_get_rate(sspi
->mclk
);
231 * Setup clock divider.
233 * We have two choices there. Either we can use the clock
234 * divide rate 1, which is calculated thanks to this formula:
235 * SPI_CLK = MOD_CLK / (2 ^ cdr)
236 * Or we can use CDR2, which is calculated with the formula:
237 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
238 * Wether we use the former or the latter is set through the
241 * First try CDR2, and if we can't reach the expected
242 * frequency, fall back to CDR1.
244 div
= mclk_rate
/ (2 * tfr
->speed_hz
);
245 if (div
<= (SUN6I_CLK_CTL_CDR2_MASK
+ 1)) {
249 reg
= SUN6I_CLK_CTL_CDR2(div
) | SUN6I_CLK_CTL_DRS
;
251 div
= ilog2(mclk_rate
) - ilog2(tfr
->speed_hz
);
252 reg
= SUN6I_CLK_CTL_CDR1(div
);
255 sun6i_spi_write(sspi
, SUN6I_CLK_CTL_REG
, reg
);
257 /* Setup the transfer now... */
261 /* Setup the counters */
262 sun6i_spi_write(sspi
, SUN6I_BURST_CNT_REG
, SUN6I_BURST_CNT(tfr
->len
));
263 sun6i_spi_write(sspi
, SUN6I_XMIT_CNT_REG
, SUN6I_XMIT_CNT(tx_len
));
264 sun6i_spi_write(sspi
, SUN6I_BURST_CTL_CNT_REG
,
265 SUN6I_BURST_CTL_CNT_STC(tx_len
));
267 /* Fill the TX FIFO */
268 sun6i_spi_fill_fifo(sspi
, SUN6I_FIFO_DEPTH
);
270 /* Enable the interrupts */
271 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, SUN6I_INT_CTL_TC
);
273 /* Start the transfer */
274 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
275 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
| SUN6I_TFR_CTL_XCH
);
277 tx_time
= max(tfr
->len
* 8 * 2 / (tfr
->speed_hz
/ 1000), 100U);
279 timeout
= wait_for_completion_timeout(&sspi
->done
,
280 msecs_to_jiffies(tx_time
));
283 dev_warn(&master
->dev
,
284 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
285 dev_name(&spi
->dev
), tfr
->len
, tfr
->speed_hz
,
286 jiffies_to_msecs(end
- start
), tx_time
);
291 sun6i_spi_drain_fifo(sspi
, SUN6I_FIFO_DEPTH
);
294 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, 0);
299 static irqreturn_t
sun6i_spi_handler(int irq
, void *dev_id
)
301 struct sun6i_spi
*sspi
= dev_id
;
302 u32 status
= sun6i_spi_read(sspi
, SUN6I_INT_STA_REG
);
304 /* Transfer complete */
305 if (status
& SUN6I_INT_CTL_TC
) {
306 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_TC
);
307 complete(&sspi
->done
);
314 static int sun6i_spi_runtime_resume(struct device
*dev
)
316 struct spi_master
*master
= dev_get_drvdata(dev
);
317 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
320 ret
= clk_prepare_enable(sspi
->hclk
);
322 dev_err(dev
, "Couldn't enable AHB clock\n");
326 ret
= clk_prepare_enable(sspi
->mclk
);
328 dev_err(dev
, "Couldn't enable module clock\n");
332 ret
= reset_control_deassert(sspi
->rstc
);
334 dev_err(dev
, "Couldn't deassert the device from reset\n");
338 sun6i_spi_write(sspi
, SUN6I_GBL_CTL_REG
,
339 SUN6I_GBL_CTL_BUS_ENABLE
| SUN6I_GBL_CTL_MASTER
| SUN6I_GBL_CTL_TP
);
344 clk_disable_unprepare(sspi
->mclk
);
346 clk_disable_unprepare(sspi
->hclk
);
351 static int sun6i_spi_runtime_suspend(struct device
*dev
)
353 struct spi_master
*master
= dev_get_drvdata(dev
);
354 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
356 reset_control_assert(sspi
->rstc
);
357 clk_disable_unprepare(sspi
->mclk
);
358 clk_disable_unprepare(sspi
->hclk
);
363 static int sun6i_spi_probe(struct platform_device
*pdev
)
365 struct spi_master
*master
;
366 struct sun6i_spi
*sspi
;
367 struct resource
*res
;
370 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct sun6i_spi
));
372 dev_err(&pdev
->dev
, "Unable to allocate SPI Master\n");
376 platform_set_drvdata(pdev
, master
);
377 sspi
= spi_master_get_devdata(master
);
379 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
380 sspi
->base_addr
= devm_ioremap_resource(&pdev
->dev
, res
);
381 if (IS_ERR(sspi
->base_addr
)) {
382 ret
= PTR_ERR(sspi
->base_addr
);
383 goto err_free_master
;
386 irq
= platform_get_irq(pdev
, 0);
388 dev_err(&pdev
->dev
, "No spi IRQ specified\n");
390 goto err_free_master
;
393 ret
= devm_request_irq(&pdev
->dev
, irq
, sun6i_spi_handler
,
394 0, "sun6i-spi", sspi
);
396 dev_err(&pdev
->dev
, "Cannot request IRQ\n");
397 goto err_free_master
;
400 sspi
->master
= master
;
401 master
->max_speed_hz
= 100 * 1000 * 1000;
402 master
->min_speed_hz
= 3 * 1000;
403 master
->set_cs
= sun6i_spi_set_cs
;
404 master
->transfer_one
= sun6i_spi_transfer_one
;
405 master
->num_chipselect
= 4;
406 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
;
407 master
->bits_per_word_mask
= SPI_BPW_MASK(8);
408 master
->dev
.of_node
= pdev
->dev
.of_node
;
409 master
->auto_runtime_pm
= true;
410 master
->max_transfer_size
= sun6i_spi_max_transfer_size
;
412 sspi
->hclk
= devm_clk_get(&pdev
->dev
, "ahb");
413 if (IS_ERR(sspi
->hclk
)) {
414 dev_err(&pdev
->dev
, "Unable to acquire AHB clock\n");
415 ret
= PTR_ERR(sspi
->hclk
);
416 goto err_free_master
;
419 sspi
->mclk
= devm_clk_get(&pdev
->dev
, "mod");
420 if (IS_ERR(sspi
->mclk
)) {
421 dev_err(&pdev
->dev
, "Unable to acquire module clock\n");
422 ret
= PTR_ERR(sspi
->mclk
);
423 goto err_free_master
;
426 init_completion(&sspi
->done
);
428 sspi
->rstc
= devm_reset_control_get(&pdev
->dev
, NULL
);
429 if (IS_ERR(sspi
->rstc
)) {
430 dev_err(&pdev
->dev
, "Couldn't get reset controller\n");
431 ret
= PTR_ERR(sspi
->rstc
);
432 goto err_free_master
;
436 * This wake-up/shutdown pattern is to be able to have the
437 * device woken up, even if runtime_pm is disabled
439 ret
= sun6i_spi_runtime_resume(&pdev
->dev
);
441 dev_err(&pdev
->dev
, "Couldn't resume the device\n");
442 goto err_free_master
;
445 pm_runtime_set_active(&pdev
->dev
);
446 pm_runtime_enable(&pdev
->dev
);
447 pm_runtime_idle(&pdev
->dev
);
449 ret
= devm_spi_register_master(&pdev
->dev
, master
);
451 dev_err(&pdev
->dev
, "cannot register SPI master\n");
458 pm_runtime_disable(&pdev
->dev
);
459 sun6i_spi_runtime_suspend(&pdev
->dev
);
461 spi_master_put(master
);
465 static int sun6i_spi_remove(struct platform_device
*pdev
)
467 pm_runtime_force_suspend(&pdev
->dev
);
472 static const struct of_device_id sun6i_spi_match
[] = {
473 { .compatible
= "allwinner,sun6i-a31-spi", },
476 MODULE_DEVICE_TABLE(of
, sun6i_spi_match
);
478 static const struct dev_pm_ops sun6i_spi_pm_ops
= {
479 .runtime_resume
= sun6i_spi_runtime_resume
,
480 .runtime_suspend
= sun6i_spi_runtime_suspend
,
483 static struct platform_driver sun6i_spi_driver
= {
484 .probe
= sun6i_spi_probe
,
485 .remove
= sun6i_spi_remove
,
488 .of_match_table
= sun6i_spi_match
,
489 .pm
= &sun6i_spi_pm_ops
,
492 module_platform_driver(sun6i_spi_driver
);
494 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
495 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
496 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
497 MODULE_LICENSE("GPL");