2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
42 #include <trace/events/block.h>
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL) | \
52 (1L << MD_HAS_MULTIPLE_PPLS))
55 * Number of guaranteed r1bios in case of extreme VM load:
57 #define NR_RAID1_BIOS 256
59 /* when we get a read error on a read-only array, we redirect to another
60 * device without failing the first device, or trying to over-write to
61 * correct the read error. To keep track of bad blocks on a per-bio
62 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
64 #define IO_BLOCKED ((struct bio *)1)
65 /* When we successfully write to a known bad-block, we need to remove the
66 * bad-block marking which must be done from process context. So we record
67 * the success by setting devs[n].bio to IO_MADE_GOOD
69 #define IO_MADE_GOOD ((struct bio *)2)
71 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
73 /* When there are this many requests queue to be written by
74 * the raid1 thread, we become 'congested' to provide back-pressure
77 static int max_queued_requests
= 1024;
79 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
);
80 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
);
82 #define raid1_log(md, fmt, args...) \
83 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
88 * for resync bio, r1bio pointer can be retrieved from the per-bio
89 * 'struct resync_pages'.
91 static inline struct r1bio
*get_resync_r1bio(struct bio
*bio
)
93 return get_resync_pages(bio
)->raid_bio
;
96 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
98 struct pool_info
*pi
= data
;
99 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
101 /* allocate a r1bio with room for raid_disks entries in the bios array */
102 return kzalloc(size
, gfp_flags
);
105 static void r1bio_pool_free(void *r1_bio
, void *data
)
110 #define RESYNC_DEPTH 32
111 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
112 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
113 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
114 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
115 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
117 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
119 struct pool_info
*pi
= data
;
120 struct r1bio
*r1_bio
;
124 struct resync_pages
*rps
;
126 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
130 rps
= kmalloc(sizeof(struct resync_pages
) * pi
->raid_disks
,
136 * Allocate bios : 1 for reading, n-1 for writing
138 for (j
= pi
->raid_disks
; j
-- ; ) {
139 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
142 r1_bio
->bios
[j
] = bio
;
145 * Allocate RESYNC_PAGES data pages and attach them to
147 * If this is a user-requested check/repair, allocate
148 * RESYNC_PAGES for each bio.
150 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
151 need_pages
= pi
->raid_disks
;
154 for (j
= 0; j
< pi
->raid_disks
; j
++) {
155 struct resync_pages
*rp
= &rps
[j
];
157 bio
= r1_bio
->bios
[j
];
159 if (j
< need_pages
) {
160 if (resync_alloc_pages(rp
, gfp_flags
))
163 memcpy(rp
, &rps
[0], sizeof(*rp
));
164 resync_get_all_pages(rp
);
167 rp
->raid_bio
= r1_bio
;
168 bio
->bi_private
= rp
;
171 r1_bio
->master_bio
= NULL
;
177 resync_free_pages(&rps
[j
]);
180 while (++j
< pi
->raid_disks
)
181 bio_put(r1_bio
->bios
[j
]);
185 r1bio_pool_free(r1_bio
, data
);
189 static void r1buf_pool_free(void *__r1_bio
, void *data
)
191 struct pool_info
*pi
= data
;
193 struct r1bio
*r1bio
= __r1_bio
;
194 struct resync_pages
*rp
= NULL
;
196 for (i
= pi
->raid_disks
; i
--; ) {
197 rp
= get_resync_pages(r1bio
->bios
[i
]);
198 resync_free_pages(rp
);
199 bio_put(r1bio
->bios
[i
]);
202 /* resync pages array stored in the 1st bio's .bi_private */
205 r1bio_pool_free(r1bio
, data
);
208 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
212 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
213 struct bio
**bio
= r1_bio
->bios
+ i
;
214 if (!BIO_SPECIAL(*bio
))
220 static void free_r1bio(struct r1bio
*r1_bio
)
222 struct r1conf
*conf
= r1_bio
->mddev
->private;
224 put_all_bios(conf
, r1_bio
);
225 mempool_free(r1_bio
, conf
->r1bio_pool
);
228 static void put_buf(struct r1bio
*r1_bio
)
230 struct r1conf
*conf
= r1_bio
->mddev
->private;
231 sector_t sect
= r1_bio
->sector
;
234 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
235 struct bio
*bio
= r1_bio
->bios
[i
];
237 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
240 mempool_free(r1_bio
, conf
->r1buf_pool
);
242 lower_barrier(conf
, sect
);
245 static void reschedule_retry(struct r1bio
*r1_bio
)
248 struct mddev
*mddev
= r1_bio
->mddev
;
249 struct r1conf
*conf
= mddev
->private;
252 idx
= sector_to_idx(r1_bio
->sector
);
253 spin_lock_irqsave(&conf
->device_lock
, flags
);
254 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
255 atomic_inc(&conf
->nr_queued
[idx
]);
256 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
258 wake_up(&conf
->wait_barrier
);
259 md_wakeup_thread(mddev
->thread
);
263 * raid_end_bio_io() is called when we have finished servicing a mirrored
264 * operation and are ready to return a success/failure code to the buffer
267 static void call_bio_endio(struct r1bio
*r1_bio
)
269 struct bio
*bio
= r1_bio
->master_bio
;
270 struct r1conf
*conf
= r1_bio
->mddev
->private;
272 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
273 bio
->bi_status
= BLK_STS_IOERR
;
277 * Wake up any possible resync thread that waits for the device
280 allow_barrier(conf
, r1_bio
->sector
);
283 static void raid_end_bio_io(struct r1bio
*r1_bio
)
285 struct bio
*bio
= r1_bio
->master_bio
;
287 /* if nobody has done the final endio yet, do it now */
288 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
289 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
290 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
291 (unsigned long long) bio
->bi_iter
.bi_sector
,
292 (unsigned long long) bio_end_sector(bio
) - 1);
294 call_bio_endio(r1_bio
);
300 * Update disk head position estimator based on IRQ completion info.
302 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
304 struct r1conf
*conf
= r1_bio
->mddev
->private;
306 conf
->mirrors
[disk
].head_position
=
307 r1_bio
->sector
+ (r1_bio
->sectors
);
311 * Find the disk number which triggered given bio
313 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
316 struct r1conf
*conf
= r1_bio
->mddev
->private;
317 int raid_disks
= conf
->raid_disks
;
319 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
320 if (r1_bio
->bios
[mirror
] == bio
)
323 BUG_ON(mirror
== raid_disks
* 2);
324 update_head_pos(mirror
, r1_bio
);
329 static void raid1_end_read_request(struct bio
*bio
)
331 int uptodate
= !bio
->bi_status
;
332 struct r1bio
*r1_bio
= bio
->bi_private
;
333 struct r1conf
*conf
= r1_bio
->mddev
->private;
334 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
337 * this branch is our 'one mirror IO has finished' event handler:
339 update_head_pos(r1_bio
->read_disk
, r1_bio
);
342 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
343 else if (test_bit(FailFast
, &rdev
->flags
) &&
344 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
345 /* This was a fail-fast read so we definitely
349 /* If all other devices have failed, we want to return
350 * the error upwards rather than fail the last device.
351 * Here we redefine "uptodate" to mean "Don't want to retry"
354 spin_lock_irqsave(&conf
->device_lock
, flags
);
355 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
356 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
357 test_bit(In_sync
, &rdev
->flags
)))
359 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
363 raid_end_bio_io(r1_bio
);
364 rdev_dec_pending(rdev
, conf
->mddev
);
369 char b
[BDEVNAME_SIZE
];
370 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
372 bdevname(rdev
->bdev
, b
),
373 (unsigned long long)r1_bio
->sector
);
374 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
375 reschedule_retry(r1_bio
);
376 /* don't drop the reference on read_disk yet */
380 static void close_write(struct r1bio
*r1_bio
)
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
384 bio_free_pages(r1_bio
->behind_master_bio
);
385 bio_put(r1_bio
->behind_master_bio
);
386 r1_bio
->behind_master_bio
= NULL
;
388 /* clear the bitmap if all writes complete successfully */
389 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
391 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
392 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
393 md_write_end(r1_bio
->mddev
);
396 static void r1_bio_write_done(struct r1bio
*r1_bio
)
398 if (!atomic_dec_and_test(&r1_bio
->remaining
))
401 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
402 reschedule_retry(r1_bio
);
405 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
406 reschedule_retry(r1_bio
);
408 raid_end_bio_io(r1_bio
);
412 static void raid1_end_write_request(struct bio
*bio
)
414 struct r1bio
*r1_bio
= bio
->bi_private
;
415 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
416 struct r1conf
*conf
= r1_bio
->mddev
->private;
417 struct bio
*to_put
= NULL
;
418 int mirror
= find_bio_disk(r1_bio
, bio
);
419 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
422 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
425 * 'one mirror IO has finished' event handler:
427 if (bio
->bi_status
&& !discard_error
) {
428 set_bit(WriteErrorSeen
, &rdev
->flags
);
429 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
430 set_bit(MD_RECOVERY_NEEDED
, &
431 conf
->mddev
->recovery
);
433 if (test_bit(FailFast
, &rdev
->flags
) &&
434 (bio
->bi_opf
& MD_FAILFAST
) &&
435 /* We never try FailFast to WriteMostly devices */
436 !test_bit(WriteMostly
, &rdev
->flags
)) {
437 md_error(r1_bio
->mddev
, rdev
);
438 if (!test_bit(Faulty
, &rdev
->flags
))
439 /* This is the only remaining device,
440 * We need to retry the write without
443 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
445 /* Finished with this branch */
446 r1_bio
->bios
[mirror
] = NULL
;
450 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
453 * Set R1BIO_Uptodate in our master bio, so that we
454 * will return a good error code for to the higher
455 * levels even if IO on some other mirrored buffer
458 * The 'master' represents the composite IO operation
459 * to user-side. So if something waits for IO, then it
460 * will wait for the 'master' bio.
465 r1_bio
->bios
[mirror
] = NULL
;
468 * Do not set R1BIO_Uptodate if the current device is
469 * rebuilding or Faulty. This is because we cannot use
470 * such device for properly reading the data back (we could
471 * potentially use it, if the current write would have felt
472 * before rdev->recovery_offset, but for simplicity we don't
475 if (test_bit(In_sync
, &rdev
->flags
) &&
476 !test_bit(Faulty
, &rdev
->flags
))
477 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
479 /* Maybe we can clear some bad blocks. */
480 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
481 &first_bad
, &bad_sectors
) && !discard_error
) {
482 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
483 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
488 if (test_bit(WriteMostly
, &rdev
->flags
))
489 atomic_dec(&r1_bio
->behind_remaining
);
492 * In behind mode, we ACK the master bio once the I/O
493 * has safely reached all non-writemostly
494 * disks. Setting the Returned bit ensures that this
495 * gets done only once -- we don't ever want to return
496 * -EIO here, instead we'll wait
498 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
499 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
500 /* Maybe we can return now */
501 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
502 struct bio
*mbio
= r1_bio
->master_bio
;
503 pr_debug("raid1: behind end write sectors"
505 (unsigned long long) mbio
->bi_iter
.bi_sector
,
506 (unsigned long long) bio_end_sector(mbio
) - 1);
507 call_bio_endio(r1_bio
);
511 if (r1_bio
->bios
[mirror
] == NULL
)
512 rdev_dec_pending(rdev
, conf
->mddev
);
515 * Let's see if all mirrored write operations have finished
518 r1_bio_write_done(r1_bio
);
524 static sector_t
align_to_barrier_unit_end(sector_t start_sector
,
529 WARN_ON(sectors
== 0);
531 * len is the number of sectors from start_sector to end of the
532 * barrier unit which start_sector belongs to.
534 len
= round_up(start_sector
+ 1, BARRIER_UNIT_SECTOR_SIZE
) -
544 * This routine returns the disk from which the requested read should
545 * be done. There is a per-array 'next expected sequential IO' sector
546 * number - if this matches on the next IO then we use the last disk.
547 * There is also a per-disk 'last know head position' sector that is
548 * maintained from IRQ contexts, both the normal and the resync IO
549 * completion handlers update this position correctly. If there is no
550 * perfect sequential match then we pick the disk whose head is closest.
552 * If there are 2 mirrors in the same 2 devices, performance degrades
553 * because position is mirror, not device based.
555 * The rdev for the device selected will have nr_pending incremented.
557 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
559 const sector_t this_sector
= r1_bio
->sector
;
561 int best_good_sectors
;
562 int best_disk
, best_dist_disk
, best_pending_disk
;
566 unsigned int min_pending
;
567 struct md_rdev
*rdev
;
569 int choose_next_idle
;
573 * Check if we can balance. We can balance on the whole
574 * device if no resync is going on, or below the resync window.
575 * We take the first readable disk when above the resync window.
578 sectors
= r1_bio
->sectors
;
581 best_dist
= MaxSector
;
582 best_pending_disk
= -1;
583 min_pending
= UINT_MAX
;
584 best_good_sectors
= 0;
586 choose_next_idle
= 0;
587 clear_bit(R1BIO_FailFast
, &r1_bio
->state
);
589 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
590 (mddev_is_clustered(conf
->mddev
) &&
591 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
592 this_sector
+ sectors
)))
597 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
601 unsigned int pending
;
604 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
605 if (r1_bio
->bios
[disk
] == IO_BLOCKED
607 || test_bit(Faulty
, &rdev
->flags
))
609 if (!test_bit(In_sync
, &rdev
->flags
) &&
610 rdev
->recovery_offset
< this_sector
+ sectors
)
612 if (test_bit(WriteMostly
, &rdev
->flags
)) {
613 /* Don't balance among write-mostly, just
614 * use the first as a last resort */
615 if (best_dist_disk
< 0) {
616 if (is_badblock(rdev
, this_sector
, sectors
,
617 &first_bad
, &bad_sectors
)) {
618 if (first_bad
<= this_sector
)
619 /* Cannot use this */
621 best_good_sectors
= first_bad
- this_sector
;
623 best_good_sectors
= sectors
;
624 best_dist_disk
= disk
;
625 best_pending_disk
= disk
;
629 /* This is a reasonable device to use. It might
632 if (is_badblock(rdev
, this_sector
, sectors
,
633 &first_bad
, &bad_sectors
)) {
634 if (best_dist
< MaxSector
)
635 /* already have a better device */
637 if (first_bad
<= this_sector
) {
638 /* cannot read here. If this is the 'primary'
639 * device, then we must not read beyond
640 * bad_sectors from another device..
642 bad_sectors
-= (this_sector
- first_bad
);
643 if (choose_first
&& sectors
> bad_sectors
)
644 sectors
= bad_sectors
;
645 if (best_good_sectors
> sectors
)
646 best_good_sectors
= sectors
;
649 sector_t good_sectors
= first_bad
- this_sector
;
650 if (good_sectors
> best_good_sectors
) {
651 best_good_sectors
= good_sectors
;
659 if ((sectors
> best_good_sectors
) && (best_disk
>= 0))
661 best_good_sectors
= sectors
;
665 /* At least two disks to choose from so failfast is OK */
666 set_bit(R1BIO_FailFast
, &r1_bio
->state
);
668 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
669 has_nonrot_disk
|= nonrot
;
670 pending
= atomic_read(&rdev
->nr_pending
);
671 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
676 /* Don't change to another disk for sequential reads */
677 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
679 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
680 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
684 * If buffered sequential IO size exceeds optimal
685 * iosize, check if there is idle disk. If yes, choose
686 * the idle disk. read_balance could already choose an
687 * idle disk before noticing it's a sequential IO in
688 * this disk. This doesn't matter because this disk
689 * will idle, next time it will be utilized after the
690 * first disk has IO size exceeds optimal iosize. In
691 * this way, iosize of the first disk will be optimal
692 * iosize at least. iosize of the second disk might be
693 * small, but not a big deal since when the second disk
694 * starts IO, the first disk is likely still busy.
696 if (nonrot
&& opt_iosize
> 0 &&
697 mirror
->seq_start
!= MaxSector
&&
698 mirror
->next_seq_sect
> opt_iosize
&&
699 mirror
->next_seq_sect
- opt_iosize
>=
701 choose_next_idle
= 1;
707 if (choose_next_idle
)
710 if (min_pending
> pending
) {
711 min_pending
= pending
;
712 best_pending_disk
= disk
;
715 if (dist
< best_dist
) {
717 best_dist_disk
= disk
;
722 * If all disks are rotational, choose the closest disk. If any disk is
723 * non-rotational, choose the disk with less pending request even the
724 * disk is rotational, which might/might not be optimal for raids with
725 * mixed ratation/non-rotational disks depending on workload.
727 if (best_disk
== -1) {
728 if (has_nonrot_disk
|| min_pending
== 0)
729 best_disk
= best_pending_disk
;
731 best_disk
= best_dist_disk
;
734 if (best_disk
>= 0) {
735 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
738 atomic_inc(&rdev
->nr_pending
);
739 sectors
= best_good_sectors
;
741 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
742 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
744 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
747 *max_sectors
= sectors
;
752 static int raid1_congested(struct mddev
*mddev
, int bits
)
754 struct r1conf
*conf
= mddev
->private;
757 if ((bits
& (1 << WB_async_congested
)) &&
758 conf
->pending_count
>= max_queued_requests
)
762 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
763 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
764 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
765 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
769 /* Note the '|| 1' - when read_balance prefers
770 * non-congested targets, it can be removed
772 if ((bits
& (1 << WB_async_congested
)) || 1)
773 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
775 ret
&= bdi_congested(q
->backing_dev_info
, bits
);
782 static void flush_bio_list(struct r1conf
*conf
, struct bio
*bio
)
784 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
785 bitmap_unplug(conf
->mddev
->bitmap
);
786 wake_up(&conf
->wait_barrier
);
788 while (bio
) { /* submit pending writes */
789 struct bio
*next
= bio
->bi_next
;
790 struct md_rdev
*rdev
= (void *)bio
->bi_disk
;
792 bio_set_dev(bio
, rdev
->bdev
);
793 if (test_bit(Faulty
, &rdev
->flags
)) {
795 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
796 !blk_queue_discard(bio
->bi_disk
->queue
)))
800 generic_make_request(bio
);
805 static void flush_pending_writes(struct r1conf
*conf
)
807 /* Any writes that have been queued but are awaiting
808 * bitmap updates get flushed here.
810 spin_lock_irq(&conf
->device_lock
);
812 if (conf
->pending_bio_list
.head
) {
814 bio
= bio_list_get(&conf
->pending_bio_list
);
815 conf
->pending_count
= 0;
816 spin_unlock_irq(&conf
->device_lock
);
817 flush_bio_list(conf
, bio
);
819 spin_unlock_irq(&conf
->device_lock
);
823 * Sometimes we need to suspend IO while we do something else,
824 * either some resync/recovery, or reconfigure the array.
825 * To do this we raise a 'barrier'.
826 * The 'barrier' is a counter that can be raised multiple times
827 * to count how many activities are happening which preclude
829 * We can only raise the barrier if there is no pending IO.
830 * i.e. if nr_pending == 0.
831 * We choose only to raise the barrier if no-one is waiting for the
832 * barrier to go down. This means that as soon as an IO request
833 * is ready, no other operations which require a barrier will start
834 * until the IO request has had a chance.
836 * So: regular IO calls 'wait_barrier'. When that returns there
837 * is no backgroup IO happening, It must arrange to call
838 * allow_barrier when it has finished its IO.
839 * backgroup IO calls must call raise_barrier. Once that returns
840 * there is no normal IO happeing. It must arrange to call
841 * lower_barrier when the particular background IO completes.
843 static void raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
845 int idx
= sector_to_idx(sector_nr
);
847 spin_lock_irq(&conf
->resync_lock
);
849 /* Wait until no block IO is waiting */
850 wait_event_lock_irq(conf
->wait_barrier
,
851 !atomic_read(&conf
->nr_waiting
[idx
]),
854 /* block any new IO from starting */
855 atomic_inc(&conf
->barrier
[idx
]);
857 * In raise_barrier() we firstly increase conf->barrier[idx] then
858 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
859 * increase conf->nr_pending[idx] then check conf->barrier[idx].
860 * A memory barrier here to make sure conf->nr_pending[idx] won't
861 * be fetched before conf->barrier[idx] is increased. Otherwise
862 * there will be a race between raise_barrier() and _wait_barrier().
864 smp_mb__after_atomic();
866 /* For these conditions we must wait:
867 * A: while the array is in frozen state
868 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
869 * existing in corresponding I/O barrier bucket.
870 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
871 * max resync count which allowed on current I/O barrier bucket.
873 wait_event_lock_irq(conf
->wait_barrier
,
874 !conf
->array_frozen
&&
875 !atomic_read(&conf
->nr_pending
[idx
]) &&
876 atomic_read(&conf
->barrier
[idx
]) < RESYNC_DEPTH
,
879 atomic_inc(&conf
->nr_sync_pending
);
880 spin_unlock_irq(&conf
->resync_lock
);
883 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
)
885 int idx
= sector_to_idx(sector_nr
);
887 BUG_ON(atomic_read(&conf
->barrier
[idx
]) <= 0);
889 atomic_dec(&conf
->barrier
[idx
]);
890 atomic_dec(&conf
->nr_sync_pending
);
891 wake_up(&conf
->wait_barrier
);
894 static void _wait_barrier(struct r1conf
*conf
, int idx
)
897 * We need to increase conf->nr_pending[idx] very early here,
898 * then raise_barrier() can be blocked when it waits for
899 * conf->nr_pending[idx] to be 0. Then we can avoid holding
900 * conf->resync_lock when there is no barrier raised in same
901 * barrier unit bucket. Also if the array is frozen, I/O
902 * should be blocked until array is unfrozen.
904 atomic_inc(&conf
->nr_pending
[idx
]);
906 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
907 * check conf->barrier[idx]. In raise_barrier() we firstly increase
908 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
909 * barrier is necessary here to make sure conf->barrier[idx] won't be
910 * fetched before conf->nr_pending[idx] is increased. Otherwise there
911 * will be a race between _wait_barrier() and raise_barrier().
913 smp_mb__after_atomic();
916 * Don't worry about checking two atomic_t variables at same time
917 * here. If during we check conf->barrier[idx], the array is
918 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
919 * 0, it is safe to return and make the I/O continue. Because the
920 * array is frozen, all I/O returned here will eventually complete
921 * or be queued, no race will happen. See code comment in
924 if (!READ_ONCE(conf
->array_frozen
) &&
925 !atomic_read(&conf
->barrier
[idx
]))
929 * After holding conf->resync_lock, conf->nr_pending[idx]
930 * should be decreased before waiting for barrier to drop.
931 * Otherwise, we may encounter a race condition because
932 * raise_barrer() might be waiting for conf->nr_pending[idx]
933 * to be 0 at same time.
935 spin_lock_irq(&conf
->resync_lock
);
936 atomic_inc(&conf
->nr_waiting
[idx
]);
937 atomic_dec(&conf
->nr_pending
[idx
]);
939 * In case freeze_array() is waiting for
940 * get_unqueued_pending() == extra
942 wake_up(&conf
->wait_barrier
);
943 /* Wait for the barrier in same barrier unit bucket to drop. */
944 wait_event_lock_irq(conf
->wait_barrier
,
945 !conf
->array_frozen
&&
946 !atomic_read(&conf
->barrier
[idx
]),
948 atomic_inc(&conf
->nr_pending
[idx
]);
949 atomic_dec(&conf
->nr_waiting
[idx
]);
950 spin_unlock_irq(&conf
->resync_lock
);
953 static void wait_read_barrier(struct r1conf
*conf
, sector_t sector_nr
)
955 int idx
= sector_to_idx(sector_nr
);
958 * Very similar to _wait_barrier(). The difference is, for read
959 * I/O we don't need wait for sync I/O, but if the whole array
960 * is frozen, the read I/O still has to wait until the array is
961 * unfrozen. Since there is no ordering requirement with
962 * conf->barrier[idx] here, memory barrier is unnecessary as well.
964 atomic_inc(&conf
->nr_pending
[idx
]);
966 if (!READ_ONCE(conf
->array_frozen
))
969 spin_lock_irq(&conf
->resync_lock
);
970 atomic_inc(&conf
->nr_waiting
[idx
]);
971 atomic_dec(&conf
->nr_pending
[idx
]);
973 * In case freeze_array() is waiting for
974 * get_unqueued_pending() == extra
976 wake_up(&conf
->wait_barrier
);
977 /* Wait for array to be unfrozen */
978 wait_event_lock_irq(conf
->wait_barrier
,
981 atomic_inc(&conf
->nr_pending
[idx
]);
982 atomic_dec(&conf
->nr_waiting
[idx
]);
983 spin_unlock_irq(&conf
->resync_lock
);
986 static void wait_barrier(struct r1conf
*conf
, sector_t sector_nr
)
988 int idx
= sector_to_idx(sector_nr
);
990 _wait_barrier(conf
, idx
);
993 static void wait_all_barriers(struct r1conf
*conf
)
997 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
998 _wait_barrier(conf
, idx
);
1001 static void _allow_barrier(struct r1conf
*conf
, int idx
)
1003 atomic_dec(&conf
->nr_pending
[idx
]);
1004 wake_up(&conf
->wait_barrier
);
1007 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1009 int idx
= sector_to_idx(sector_nr
);
1011 _allow_barrier(conf
, idx
);
1014 static void allow_all_barriers(struct r1conf
*conf
)
1018 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1019 _allow_barrier(conf
, idx
);
1022 /* conf->resync_lock should be held */
1023 static int get_unqueued_pending(struct r1conf
*conf
)
1027 ret
= atomic_read(&conf
->nr_sync_pending
);
1028 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1029 ret
+= atomic_read(&conf
->nr_pending
[idx
]) -
1030 atomic_read(&conf
->nr_queued
[idx
]);
1035 static void freeze_array(struct r1conf
*conf
, int extra
)
1037 /* Stop sync I/O and normal I/O and wait for everything to
1039 * This is called in two situations:
1040 * 1) management command handlers (reshape, remove disk, quiesce).
1041 * 2) one normal I/O request failed.
1043 * After array_frozen is set to 1, new sync IO will be blocked at
1044 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1045 * or wait_read_barrier(). The flying I/Os will either complete or be
1046 * queued. When everything goes quite, there are only queued I/Os left.
1048 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1049 * barrier bucket index which this I/O request hits. When all sync and
1050 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1051 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1052 * in handle_read_error(), we may call freeze_array() before trying to
1053 * fix the read error. In this case, the error read I/O is not queued,
1054 * so get_unqueued_pending() == 1.
1056 * Therefore before this function returns, we need to wait until
1057 * get_unqueued_pendings(conf) gets equal to extra. For
1058 * normal I/O context, extra is 1, in rested situations extra is 0.
1060 spin_lock_irq(&conf
->resync_lock
);
1061 conf
->array_frozen
= 1;
1062 raid1_log(conf
->mddev
, "wait freeze");
1063 wait_event_lock_irq_cmd(
1065 get_unqueued_pending(conf
) == extra
,
1067 flush_pending_writes(conf
));
1068 spin_unlock_irq(&conf
->resync_lock
);
1070 static void unfreeze_array(struct r1conf
*conf
)
1072 /* reverse the effect of the freeze */
1073 spin_lock_irq(&conf
->resync_lock
);
1074 conf
->array_frozen
= 0;
1075 spin_unlock_irq(&conf
->resync_lock
);
1076 wake_up(&conf
->wait_barrier
);
1079 static void alloc_behind_master_bio(struct r1bio
*r1_bio
,
1082 int size
= bio
->bi_iter
.bi_size
;
1083 unsigned vcnt
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1085 struct bio
*behind_bio
= NULL
;
1087 behind_bio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, r1_bio
->mddev
);
1091 /* discard op, we don't support writezero/writesame yet */
1092 if (!bio_has_data(bio
)) {
1093 behind_bio
->bi_iter
.bi_size
= size
;
1097 while (i
< vcnt
&& size
) {
1099 int len
= min_t(int, PAGE_SIZE
, size
);
1101 page
= alloc_page(GFP_NOIO
);
1102 if (unlikely(!page
))
1105 bio_add_page(behind_bio
, page
, len
, 0);
1111 bio_copy_data(behind_bio
, bio
);
1113 r1_bio
->behind_master_bio
= behind_bio
;;
1114 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1119 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1120 bio
->bi_iter
.bi_size
);
1121 bio_free_pages(behind_bio
);
1122 bio_put(behind_bio
);
1125 struct raid1_plug_cb
{
1126 struct blk_plug_cb cb
;
1127 struct bio_list pending
;
1131 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1133 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1135 struct mddev
*mddev
= plug
->cb
.data
;
1136 struct r1conf
*conf
= mddev
->private;
1139 if (from_schedule
|| current
->bio_list
) {
1140 spin_lock_irq(&conf
->device_lock
);
1141 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1142 conf
->pending_count
+= plug
->pending_cnt
;
1143 spin_unlock_irq(&conf
->device_lock
);
1144 wake_up(&conf
->wait_barrier
);
1145 md_wakeup_thread(mddev
->thread
);
1150 /* we aren't scheduling, so we can do the write-out directly. */
1151 bio
= bio_list_get(&plug
->pending
);
1152 flush_bio_list(conf
, bio
);
1156 static void init_r1bio(struct r1bio
*r1_bio
, struct mddev
*mddev
, struct bio
*bio
)
1158 r1_bio
->master_bio
= bio
;
1159 r1_bio
->sectors
= bio_sectors(bio
);
1161 r1_bio
->mddev
= mddev
;
1162 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1165 static inline struct r1bio
*
1166 alloc_r1bio(struct mddev
*mddev
, struct bio
*bio
)
1168 struct r1conf
*conf
= mddev
->private;
1169 struct r1bio
*r1_bio
;
1171 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1172 /* Ensure no bio records IO_BLOCKED */
1173 memset(r1_bio
->bios
, 0, conf
->raid_disks
* sizeof(r1_bio
->bios
[0]));
1174 init_r1bio(r1_bio
, mddev
, bio
);
1178 static void raid1_read_request(struct mddev
*mddev
, struct bio
*bio
,
1179 int max_read_sectors
, struct r1bio
*r1_bio
)
1181 struct r1conf
*conf
= mddev
->private;
1182 struct raid1_info
*mirror
;
1183 struct bio
*read_bio
;
1184 struct bitmap
*bitmap
= mddev
->bitmap
;
1185 const int op
= bio_op(bio
);
1186 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1189 bool print_msg
= !!r1_bio
;
1190 char b
[BDEVNAME_SIZE
];
1193 * If r1_bio is set, we are blocking the raid1d thread
1194 * so there is a tiny risk of deadlock. So ask for
1195 * emergency memory if needed.
1197 gfp_t gfp
= r1_bio
? (GFP_NOIO
| __GFP_HIGH
) : GFP_NOIO
;
1200 /* Need to get the block device name carefully */
1201 struct md_rdev
*rdev
;
1203 rdev
= rcu_dereference(conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1205 bdevname(rdev
->bdev
, b
);
1212 * Still need barrier for READ in case that whole
1215 wait_read_barrier(conf
, bio
->bi_iter
.bi_sector
);
1218 r1_bio
= alloc_r1bio(mddev
, bio
);
1220 init_r1bio(r1_bio
, mddev
, bio
);
1221 r1_bio
->sectors
= max_read_sectors
;
1224 * make_request() can abort the operation when read-ahead is being
1225 * used and no empty request is available.
1227 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1230 /* couldn't find anywhere to read from */
1232 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1235 (unsigned long long)r1_bio
->sector
);
1237 raid_end_bio_io(r1_bio
);
1240 mirror
= conf
->mirrors
+ rdisk
;
1243 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1245 (unsigned long long)r1_bio
->sector
,
1246 bdevname(mirror
->rdev
->bdev
, b
));
1248 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1251 * Reading from a write-mostly device must take care not to
1252 * over-take any writes that are 'behind'
1254 raid1_log(mddev
, "wait behind writes");
1255 wait_event(bitmap
->behind_wait
,
1256 atomic_read(&bitmap
->behind_writes
) == 0);
1259 if (max_sectors
< bio_sectors(bio
)) {
1260 struct bio
*split
= bio_split(bio
, max_sectors
,
1261 gfp
, conf
->bio_split
);
1262 bio_chain(split
, bio
);
1263 generic_make_request(bio
);
1265 r1_bio
->master_bio
= bio
;
1266 r1_bio
->sectors
= max_sectors
;
1269 r1_bio
->read_disk
= rdisk
;
1271 read_bio
= bio_clone_fast(bio
, gfp
, mddev
->bio_set
);
1273 r1_bio
->bios
[rdisk
] = read_bio
;
1275 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1276 mirror
->rdev
->data_offset
;
1277 bio_set_dev(read_bio
, mirror
->rdev
->bdev
);
1278 read_bio
->bi_end_io
= raid1_end_read_request
;
1279 bio_set_op_attrs(read_bio
, op
, do_sync
);
1280 if (test_bit(FailFast
, &mirror
->rdev
->flags
) &&
1281 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
1282 read_bio
->bi_opf
|= MD_FAILFAST
;
1283 read_bio
->bi_private
= r1_bio
;
1286 trace_block_bio_remap(read_bio
->bi_disk
->queue
, read_bio
,
1287 disk_devt(mddev
->gendisk
), r1_bio
->sector
);
1289 generic_make_request(read_bio
);
1292 static void raid1_write_request(struct mddev
*mddev
, struct bio
*bio
,
1293 int max_write_sectors
)
1295 struct r1conf
*conf
= mddev
->private;
1296 struct r1bio
*r1_bio
;
1298 struct bitmap
*bitmap
= mddev
->bitmap
;
1299 unsigned long flags
;
1300 struct md_rdev
*blocked_rdev
;
1301 struct blk_plug_cb
*cb
;
1302 struct raid1_plug_cb
*plug
= NULL
;
1307 * Register the new request and wait if the reconstruction
1308 * thread has put up a bar for new requests.
1309 * Continue immediately if no resync is active currently.
1313 if ((bio_end_sector(bio
) > mddev
->suspend_lo
&&
1314 bio
->bi_iter
.bi_sector
< mddev
->suspend_hi
) ||
1315 (mddev_is_clustered(mddev
) &&
1316 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1317 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
)))) {
1320 * As the suspend_* range is controlled by userspace, we want
1321 * an interruptible wait.
1326 prepare_to_wait(&conf
->wait_barrier
,
1327 &w
, TASK_INTERRUPTIBLE
);
1328 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1329 bio
->bi_iter
.bi_sector
>= mddev
->suspend_hi
||
1330 (mddev_is_clustered(mddev
) &&
1331 !md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1332 bio
->bi_iter
.bi_sector
,
1333 bio_end_sector(bio
))))
1336 sigprocmask(SIG_BLOCK
, &full
, &old
);
1338 sigprocmask(SIG_SETMASK
, &old
, NULL
);
1340 finish_wait(&conf
->wait_barrier
, &w
);
1342 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1344 r1_bio
= alloc_r1bio(mddev
, bio
);
1345 r1_bio
->sectors
= max_write_sectors
;
1347 if (conf
->pending_count
>= max_queued_requests
) {
1348 md_wakeup_thread(mddev
->thread
);
1349 raid1_log(mddev
, "wait queued");
1350 wait_event(conf
->wait_barrier
,
1351 conf
->pending_count
< max_queued_requests
);
1353 /* first select target devices under rcu_lock and
1354 * inc refcount on their rdev. Record them by setting
1356 * If there are known/acknowledged bad blocks on any device on
1357 * which we have seen a write error, we want to avoid writing those
1359 * This potentially requires several writes to write around
1360 * the bad blocks. Each set of writes gets it's own r1bio
1361 * with a set of bios attached.
1364 disks
= conf
->raid_disks
* 2;
1366 blocked_rdev
= NULL
;
1368 max_sectors
= r1_bio
->sectors
;
1369 for (i
= 0; i
< disks
; i
++) {
1370 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1371 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1372 atomic_inc(&rdev
->nr_pending
);
1373 blocked_rdev
= rdev
;
1376 r1_bio
->bios
[i
] = NULL
;
1377 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1378 if (i
< conf
->raid_disks
)
1379 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1383 atomic_inc(&rdev
->nr_pending
);
1384 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1389 is_bad
= is_badblock(rdev
, r1_bio
->sector
, max_sectors
,
1390 &first_bad
, &bad_sectors
);
1392 /* mustn't write here until the bad block is
1394 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1395 blocked_rdev
= rdev
;
1398 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1399 /* Cannot write here at all */
1400 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1401 if (bad_sectors
< max_sectors
)
1402 /* mustn't write more than bad_sectors
1403 * to other devices yet
1405 max_sectors
= bad_sectors
;
1406 rdev_dec_pending(rdev
, mddev
);
1407 /* We don't set R1BIO_Degraded as that
1408 * only applies if the disk is
1409 * missing, so it might be re-added,
1410 * and we want to know to recover this
1412 * In this case the device is here,
1413 * and the fact that this chunk is not
1414 * in-sync is recorded in the bad
1420 int good_sectors
= first_bad
- r1_bio
->sector
;
1421 if (good_sectors
< max_sectors
)
1422 max_sectors
= good_sectors
;
1425 r1_bio
->bios
[i
] = bio
;
1429 if (unlikely(blocked_rdev
)) {
1430 /* Wait for this device to become unblocked */
1433 for (j
= 0; j
< i
; j
++)
1434 if (r1_bio
->bios
[j
])
1435 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1437 allow_barrier(conf
, bio
->bi_iter
.bi_sector
);
1438 raid1_log(mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1439 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1440 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1444 if (max_sectors
< bio_sectors(bio
)) {
1445 struct bio
*split
= bio_split(bio
, max_sectors
,
1446 GFP_NOIO
, conf
->bio_split
);
1447 bio_chain(split
, bio
);
1448 generic_make_request(bio
);
1450 r1_bio
->master_bio
= bio
;
1451 r1_bio
->sectors
= max_sectors
;
1454 atomic_set(&r1_bio
->remaining
, 1);
1455 atomic_set(&r1_bio
->behind_remaining
, 0);
1459 for (i
= 0; i
< disks
; i
++) {
1460 struct bio
*mbio
= NULL
;
1461 if (!r1_bio
->bios
[i
])
1467 * Not if there are too many, or cannot
1468 * allocate memory, or a reader on WriteMostly
1469 * is waiting for behind writes to flush */
1471 (atomic_read(&bitmap
->behind_writes
)
1472 < mddev
->bitmap_info
.max_write_behind
) &&
1473 !waitqueue_active(&bitmap
->behind_wait
)) {
1474 alloc_behind_master_bio(r1_bio
, bio
);
1477 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1479 test_bit(R1BIO_BehindIO
,
1484 if (r1_bio
->behind_master_bio
)
1485 mbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
1486 GFP_NOIO
, mddev
->bio_set
);
1488 mbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1490 if (r1_bio
->behind_master_bio
) {
1491 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1492 atomic_inc(&r1_bio
->behind_remaining
);
1495 r1_bio
->bios
[i
] = mbio
;
1497 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1498 conf
->mirrors
[i
].rdev
->data_offset
);
1499 bio_set_dev(mbio
, conf
->mirrors
[i
].rdev
->bdev
);
1500 mbio
->bi_end_io
= raid1_end_write_request
;
1501 mbio
->bi_opf
= bio_op(bio
) | (bio
->bi_opf
& (REQ_SYNC
| REQ_FUA
));
1502 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
) &&
1503 !test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
) &&
1504 conf
->raid_disks
- mddev
->degraded
> 1)
1505 mbio
->bi_opf
|= MD_FAILFAST
;
1506 mbio
->bi_private
= r1_bio
;
1508 atomic_inc(&r1_bio
->remaining
);
1511 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1512 mbio
, disk_devt(mddev
->gendisk
),
1514 /* flush_pending_writes() needs access to the rdev so...*/
1515 mbio
->bi_disk
= (void *)conf
->mirrors
[i
].rdev
;
1517 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1519 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1523 bio_list_add(&plug
->pending
, mbio
);
1524 plug
->pending_cnt
++;
1526 spin_lock_irqsave(&conf
->device_lock
, flags
);
1527 bio_list_add(&conf
->pending_bio_list
, mbio
);
1528 conf
->pending_count
++;
1529 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1530 md_wakeup_thread(mddev
->thread
);
1534 r1_bio_write_done(r1_bio
);
1536 /* In case raid1d snuck in to freeze_array */
1537 wake_up(&conf
->wait_barrier
);
1540 static bool raid1_make_request(struct mddev
*mddev
, struct bio
*bio
)
1544 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1545 md_flush_request(mddev
, bio
);
1550 * There is a limit to the maximum size, but
1551 * the read/write handler might find a lower limit
1552 * due to bad blocks. To avoid multiple splits,
1553 * we pass the maximum number of sectors down
1554 * and let the lower level perform the split.
1556 sectors
= align_to_barrier_unit_end(
1557 bio
->bi_iter
.bi_sector
, bio_sectors(bio
));
1559 if (bio_data_dir(bio
) == READ
)
1560 raid1_read_request(mddev
, bio
, sectors
, NULL
);
1562 if (!md_write_start(mddev
,bio
))
1564 raid1_write_request(mddev
, bio
, sectors
);
1569 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1571 struct r1conf
*conf
= mddev
->private;
1574 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1575 conf
->raid_disks
- mddev
->degraded
);
1577 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1578 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1579 seq_printf(seq
, "%s",
1580 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1583 seq_printf(seq
, "]");
1586 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1588 char b
[BDEVNAME_SIZE
];
1589 struct r1conf
*conf
= mddev
->private;
1590 unsigned long flags
;
1593 * If it is not operational, then we have already marked it as dead
1594 * else if it is the last working disks, ignore the error, let the
1595 * next level up know.
1596 * else mark the drive as failed
1598 spin_lock_irqsave(&conf
->device_lock
, flags
);
1599 if (test_bit(In_sync
, &rdev
->flags
)
1600 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1602 * Don't fail the drive, act as though we were just a
1603 * normal single drive.
1604 * However don't try a recovery from this drive as
1605 * it is very likely to fail.
1607 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1608 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1611 set_bit(Blocked
, &rdev
->flags
);
1612 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1614 set_bit(Faulty
, &rdev
->flags
);
1616 set_bit(Faulty
, &rdev
->flags
);
1617 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1619 * if recovery is running, make sure it aborts.
1621 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1622 set_mask_bits(&mddev
->sb_flags
, 0,
1623 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1624 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1625 "md/raid1:%s: Operation continuing on %d devices.\n",
1626 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1627 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1630 static void print_conf(struct r1conf
*conf
)
1634 pr_debug("RAID1 conf printout:\n");
1636 pr_debug("(!conf)\n");
1639 pr_debug(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1643 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1644 char b
[BDEVNAME_SIZE
];
1645 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1647 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1648 i
, !test_bit(In_sync
, &rdev
->flags
),
1649 !test_bit(Faulty
, &rdev
->flags
),
1650 bdevname(rdev
->bdev
,b
));
1655 static void close_sync(struct r1conf
*conf
)
1657 wait_all_barriers(conf
);
1658 allow_all_barriers(conf
);
1660 mempool_destroy(conf
->r1buf_pool
);
1661 conf
->r1buf_pool
= NULL
;
1664 static int raid1_spare_active(struct mddev
*mddev
)
1667 struct r1conf
*conf
= mddev
->private;
1669 unsigned long flags
;
1672 * Find all failed disks within the RAID1 configuration
1673 * and mark them readable.
1674 * Called under mddev lock, so rcu protection not needed.
1675 * device_lock used to avoid races with raid1_end_read_request
1676 * which expects 'In_sync' flags and ->degraded to be consistent.
1678 spin_lock_irqsave(&conf
->device_lock
, flags
);
1679 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1680 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1681 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1683 && !test_bit(Candidate
, &repl
->flags
)
1684 && repl
->recovery_offset
== MaxSector
1685 && !test_bit(Faulty
, &repl
->flags
)
1686 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1687 /* replacement has just become active */
1689 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1692 /* Replaced device not technically
1693 * faulty, but we need to be sure
1694 * it gets removed and never re-added
1696 set_bit(Faulty
, &rdev
->flags
);
1697 sysfs_notify_dirent_safe(
1702 && rdev
->recovery_offset
== MaxSector
1703 && !test_bit(Faulty
, &rdev
->flags
)
1704 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1706 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1709 mddev
->degraded
-= count
;
1710 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1716 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1718 struct r1conf
*conf
= mddev
->private;
1721 struct raid1_info
*p
;
1723 int last
= conf
->raid_disks
- 1;
1725 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1728 if (md_integrity_add_rdev(rdev
, mddev
))
1731 if (rdev
->raid_disk
>= 0)
1732 first
= last
= rdev
->raid_disk
;
1735 * find the disk ... but prefer rdev->saved_raid_disk
1738 if (rdev
->saved_raid_disk
>= 0 &&
1739 rdev
->saved_raid_disk
>= first
&&
1740 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1741 first
= last
= rdev
->saved_raid_disk
;
1743 for (mirror
= first
; mirror
<= last
; mirror
++) {
1744 p
= conf
->mirrors
+mirror
;
1748 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1749 rdev
->data_offset
<< 9);
1751 p
->head_position
= 0;
1752 rdev
->raid_disk
= mirror
;
1754 /* As all devices are equivalent, we don't need a full recovery
1755 * if this was recently any drive of the array
1757 if (rdev
->saved_raid_disk
< 0)
1759 rcu_assign_pointer(p
->rdev
, rdev
);
1762 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1763 p
[conf
->raid_disks
].rdev
== NULL
) {
1764 /* Add this device as a replacement */
1765 clear_bit(In_sync
, &rdev
->flags
);
1766 set_bit(Replacement
, &rdev
->flags
);
1767 rdev
->raid_disk
= mirror
;
1770 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1774 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1775 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1780 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1782 struct r1conf
*conf
= mddev
->private;
1784 int number
= rdev
->raid_disk
;
1785 struct raid1_info
*p
= conf
->mirrors
+ number
;
1787 if (rdev
!= p
->rdev
)
1788 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1791 if (rdev
== p
->rdev
) {
1792 if (test_bit(In_sync
, &rdev
->flags
) ||
1793 atomic_read(&rdev
->nr_pending
)) {
1797 /* Only remove non-faulty devices if recovery
1800 if (!test_bit(Faulty
, &rdev
->flags
) &&
1801 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1802 mddev
->degraded
< conf
->raid_disks
) {
1807 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1809 if (atomic_read(&rdev
->nr_pending
)) {
1810 /* lost the race, try later */
1816 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1817 /* We just removed a device that is being replaced.
1818 * Move down the replacement. We drain all IO before
1819 * doing this to avoid confusion.
1821 struct md_rdev
*repl
=
1822 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1823 freeze_array(conf
, 0);
1824 clear_bit(Replacement
, &repl
->flags
);
1826 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1827 unfreeze_array(conf
);
1830 clear_bit(WantReplacement
, &rdev
->flags
);
1831 err
= md_integrity_register(mddev
);
1839 static void end_sync_read(struct bio
*bio
)
1841 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1843 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1846 * we have read a block, now it needs to be re-written,
1847 * or re-read if the read failed.
1848 * We don't do much here, just schedule handling by raid1d
1850 if (!bio
->bi_status
)
1851 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1853 if (atomic_dec_and_test(&r1_bio
->remaining
))
1854 reschedule_retry(r1_bio
);
1857 static void end_sync_write(struct bio
*bio
)
1859 int uptodate
= !bio
->bi_status
;
1860 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1861 struct mddev
*mddev
= r1_bio
->mddev
;
1862 struct r1conf
*conf
= mddev
->private;
1865 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1868 sector_t sync_blocks
= 0;
1869 sector_t s
= r1_bio
->sector
;
1870 long sectors_to_go
= r1_bio
->sectors
;
1871 /* make sure these bits doesn't get cleared. */
1873 bitmap_end_sync(mddev
->bitmap
, s
,
1876 sectors_to_go
-= sync_blocks
;
1877 } while (sectors_to_go
> 0);
1878 set_bit(WriteErrorSeen
, &rdev
->flags
);
1879 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1880 set_bit(MD_RECOVERY_NEEDED
, &
1882 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1883 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1884 &first_bad
, &bad_sectors
) &&
1885 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1888 &first_bad
, &bad_sectors
)
1890 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1892 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1893 int s
= r1_bio
->sectors
;
1894 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1895 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1896 reschedule_retry(r1_bio
);
1899 md_done_sync(mddev
, s
, uptodate
);
1904 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1905 int sectors
, struct page
*page
, int rw
)
1907 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1911 set_bit(WriteErrorSeen
, &rdev
->flags
);
1912 if (!test_and_set_bit(WantReplacement
,
1914 set_bit(MD_RECOVERY_NEEDED
, &
1915 rdev
->mddev
->recovery
);
1917 /* need to record an error - either for the block or the device */
1918 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1919 md_error(rdev
->mddev
, rdev
);
1923 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1925 /* Try some synchronous reads of other devices to get
1926 * good data, much like with normal read errors. Only
1927 * read into the pages we already have so we don't
1928 * need to re-issue the read request.
1929 * We don't need to freeze the array, because being in an
1930 * active sync request, there is no normal IO, and
1931 * no overlapping syncs.
1932 * We don't need to check is_badblock() again as we
1933 * made sure that anything with a bad block in range
1934 * will have bi_end_io clear.
1936 struct mddev
*mddev
= r1_bio
->mddev
;
1937 struct r1conf
*conf
= mddev
->private;
1938 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1939 struct page
**pages
= get_resync_pages(bio
)->pages
;
1940 sector_t sect
= r1_bio
->sector
;
1941 int sectors
= r1_bio
->sectors
;
1943 struct md_rdev
*rdev
;
1945 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
1946 if (test_bit(FailFast
, &rdev
->flags
)) {
1947 /* Don't try recovering from here - just fail it
1948 * ... unless it is the last working device of course */
1949 md_error(mddev
, rdev
);
1950 if (test_bit(Faulty
, &rdev
->flags
))
1951 /* Don't try to read from here, but make sure
1952 * put_buf does it's thing
1954 bio
->bi_end_io
= end_sync_write
;
1959 int d
= r1_bio
->read_disk
;
1963 if (s
> (PAGE_SIZE
>>9))
1966 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1967 /* No rcu protection needed here devices
1968 * can only be removed when no resync is
1969 * active, and resync is currently active
1971 rdev
= conf
->mirrors
[d
].rdev
;
1972 if (sync_page_io(rdev
, sect
, s
<<9,
1974 REQ_OP_READ
, 0, false)) {
1980 if (d
== conf
->raid_disks
* 2)
1982 } while (!success
&& d
!= r1_bio
->read_disk
);
1985 char b
[BDEVNAME_SIZE
];
1987 /* Cannot read from anywhere, this block is lost.
1988 * Record a bad block on each device. If that doesn't
1989 * work just disable and interrupt the recovery.
1990 * Don't fail devices as that won't really help.
1992 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1993 mdname(mddev
), bio_devname(bio
, b
),
1994 (unsigned long long)r1_bio
->sector
);
1995 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1996 rdev
= conf
->mirrors
[d
].rdev
;
1997 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1999 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2003 conf
->recovery_disabled
=
2004 mddev
->recovery_disabled
;
2005 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2006 md_done_sync(mddev
, r1_bio
->sectors
, 0);
2018 /* write it back and re-read */
2019 while (d
!= r1_bio
->read_disk
) {
2021 d
= conf
->raid_disks
* 2;
2023 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2025 rdev
= conf
->mirrors
[d
].rdev
;
2026 if (r1_sync_page_io(rdev
, sect
, s
,
2029 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
2030 rdev_dec_pending(rdev
, mddev
);
2034 while (d
!= r1_bio
->read_disk
) {
2036 d
= conf
->raid_disks
* 2;
2038 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2040 rdev
= conf
->mirrors
[d
].rdev
;
2041 if (r1_sync_page_io(rdev
, sect
, s
,
2044 atomic_add(s
, &rdev
->corrected_errors
);
2050 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
2055 static void process_checks(struct r1bio
*r1_bio
)
2057 /* We have read all readable devices. If we haven't
2058 * got the block, then there is no hope left.
2059 * If we have, then we want to do a comparison
2060 * and skip the write if everything is the same.
2061 * If any blocks failed to read, then we need to
2062 * attempt an over-write
2064 struct mddev
*mddev
= r1_bio
->mddev
;
2065 struct r1conf
*conf
= mddev
->private;
2070 /* Fix variable parts of all bios */
2071 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
2072 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2073 blk_status_t status
;
2074 struct bio
*b
= r1_bio
->bios
[i
];
2075 struct resync_pages
*rp
= get_resync_pages(b
);
2076 if (b
->bi_end_io
!= end_sync_read
)
2078 /* fixup the bio for reuse, but preserve errno */
2079 status
= b
->bi_status
;
2081 b
->bi_status
= status
;
2082 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
2083 conf
->mirrors
[i
].rdev
->data_offset
;
2084 bio_set_dev(b
, conf
->mirrors
[i
].rdev
->bdev
);
2085 b
->bi_end_io
= end_sync_read
;
2086 rp
->raid_bio
= r1_bio
;
2089 /* initialize bvec table again */
2090 md_bio_reset_resync_pages(b
, rp
, r1_bio
->sectors
<< 9);
2092 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
2093 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
2094 !r1_bio
->bios
[primary
]->bi_status
) {
2095 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
2096 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2099 r1_bio
->read_disk
= primary
;
2100 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2102 struct bio
*pbio
= r1_bio
->bios
[primary
];
2103 struct bio
*sbio
= r1_bio
->bios
[i
];
2104 blk_status_t status
= sbio
->bi_status
;
2105 struct page
**ppages
= get_resync_pages(pbio
)->pages
;
2106 struct page
**spages
= get_resync_pages(sbio
)->pages
;
2108 int page_len
[RESYNC_PAGES
] = { 0 };
2110 if (sbio
->bi_end_io
!= end_sync_read
)
2112 /* Now we can 'fixup' the error value */
2113 sbio
->bi_status
= 0;
2115 bio_for_each_segment_all(bi
, sbio
, j
)
2116 page_len
[j
] = bi
->bv_len
;
2119 for (j
= vcnt
; j
-- ; ) {
2120 if (memcmp(page_address(ppages
[j
]),
2121 page_address(spages
[j
]),
2128 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2129 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2131 /* No need to write to this device. */
2132 sbio
->bi_end_io
= NULL
;
2133 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2137 bio_copy_data(sbio
, pbio
);
2141 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2143 struct r1conf
*conf
= mddev
->private;
2145 int disks
= conf
->raid_disks
* 2;
2148 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2149 /* ouch - failed to read all of that. */
2150 if (!fix_sync_read_error(r1_bio
))
2153 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2154 process_checks(r1_bio
);
2159 atomic_set(&r1_bio
->remaining
, 1);
2160 for (i
= 0; i
< disks
; i
++) {
2161 wbio
= r1_bio
->bios
[i
];
2162 if (wbio
->bi_end_io
== NULL
||
2163 (wbio
->bi_end_io
== end_sync_read
&&
2164 (i
== r1_bio
->read_disk
||
2165 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2167 if (test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2170 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2171 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
))
2172 wbio
->bi_opf
|= MD_FAILFAST
;
2174 wbio
->bi_end_io
= end_sync_write
;
2175 atomic_inc(&r1_bio
->remaining
);
2176 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2178 generic_make_request(wbio
);
2181 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2182 /* if we're here, all write(s) have completed, so clean up */
2183 int s
= r1_bio
->sectors
;
2184 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2185 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2186 reschedule_retry(r1_bio
);
2189 md_done_sync(mddev
, s
, 1);
2195 * This is a kernel thread which:
2197 * 1. Retries failed read operations on working mirrors.
2198 * 2. Updates the raid superblock when problems encounter.
2199 * 3. Performs writes following reads for array synchronising.
2202 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2203 sector_t sect
, int sectors
)
2205 struct mddev
*mddev
= conf
->mddev
;
2211 struct md_rdev
*rdev
;
2213 if (s
> (PAGE_SIZE
>>9))
2221 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2223 (test_bit(In_sync
, &rdev
->flags
) ||
2224 (!test_bit(Faulty
, &rdev
->flags
) &&
2225 rdev
->recovery_offset
>= sect
+ s
)) &&
2226 is_badblock(rdev
, sect
, s
,
2227 &first_bad
, &bad_sectors
) == 0) {
2228 atomic_inc(&rdev
->nr_pending
);
2230 if (sync_page_io(rdev
, sect
, s
<<9,
2231 conf
->tmppage
, REQ_OP_READ
, 0, false))
2233 rdev_dec_pending(rdev
, mddev
);
2239 if (d
== conf
->raid_disks
* 2)
2241 } while (!success
&& d
!= read_disk
);
2244 /* Cannot read from anywhere - mark it bad */
2245 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2246 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2247 md_error(mddev
, rdev
);
2250 /* write it back and re-read */
2252 while (d
!= read_disk
) {
2254 d
= conf
->raid_disks
* 2;
2257 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2259 !test_bit(Faulty
, &rdev
->flags
)) {
2260 atomic_inc(&rdev
->nr_pending
);
2262 r1_sync_page_io(rdev
, sect
, s
,
2263 conf
->tmppage
, WRITE
);
2264 rdev_dec_pending(rdev
, mddev
);
2269 while (d
!= read_disk
) {
2270 char b
[BDEVNAME_SIZE
];
2272 d
= conf
->raid_disks
* 2;
2275 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2277 !test_bit(Faulty
, &rdev
->flags
)) {
2278 atomic_inc(&rdev
->nr_pending
);
2280 if (r1_sync_page_io(rdev
, sect
, s
,
2281 conf
->tmppage
, READ
)) {
2282 atomic_add(s
, &rdev
->corrected_errors
);
2283 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2285 (unsigned long long)(sect
+
2287 bdevname(rdev
->bdev
, b
));
2289 rdev_dec_pending(rdev
, mddev
);
2298 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2300 struct mddev
*mddev
= r1_bio
->mddev
;
2301 struct r1conf
*conf
= mddev
->private;
2302 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2304 /* bio has the data to be written to device 'i' where
2305 * we just recently had a write error.
2306 * We repeatedly clone the bio and trim down to one block,
2307 * then try the write. Where the write fails we record
2309 * It is conceivable that the bio doesn't exactly align with
2310 * blocks. We must handle this somehow.
2312 * We currently own a reference on the rdev.
2318 int sect_to_write
= r1_bio
->sectors
;
2321 if (rdev
->badblocks
.shift
< 0)
2324 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2325 bdev_logical_block_size(rdev
->bdev
) >> 9);
2326 sector
= r1_bio
->sector
;
2327 sectors
= ((sector
+ block_sectors
)
2328 & ~(sector_t
)(block_sectors
- 1))
2331 while (sect_to_write
) {
2333 if (sectors
> sect_to_write
)
2334 sectors
= sect_to_write
;
2335 /* Write at 'sector' for 'sectors'*/
2337 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2338 wbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
2342 wbio
= bio_clone_fast(r1_bio
->master_bio
, GFP_NOIO
,
2346 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2347 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2348 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2350 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2351 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2352 bio_set_dev(wbio
, rdev
->bdev
);
2354 if (submit_bio_wait(wbio
) < 0)
2356 ok
= rdev_set_badblocks(rdev
, sector
,
2361 sect_to_write
-= sectors
;
2363 sectors
= block_sectors
;
2368 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2371 int s
= r1_bio
->sectors
;
2372 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2373 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2374 struct bio
*bio
= r1_bio
->bios
[m
];
2375 if (bio
->bi_end_io
== NULL
)
2377 if (!bio
->bi_status
&&
2378 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2379 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2381 if (bio
->bi_status
&&
2382 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2383 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2384 md_error(conf
->mddev
, rdev
);
2388 md_done_sync(conf
->mddev
, s
, 1);
2391 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2396 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2397 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2398 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2399 rdev_clear_badblocks(rdev
,
2401 r1_bio
->sectors
, 0);
2402 rdev_dec_pending(rdev
, conf
->mddev
);
2403 } else if (r1_bio
->bios
[m
] != NULL
) {
2404 /* This drive got a write error. We need to
2405 * narrow down and record precise write
2409 if (!narrow_write_error(r1_bio
, m
)) {
2410 md_error(conf
->mddev
,
2411 conf
->mirrors
[m
].rdev
);
2412 /* an I/O failed, we can't clear the bitmap */
2413 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2415 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2419 spin_lock_irq(&conf
->device_lock
);
2420 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2421 idx
= sector_to_idx(r1_bio
->sector
);
2422 atomic_inc(&conf
->nr_queued
[idx
]);
2423 spin_unlock_irq(&conf
->device_lock
);
2425 * In case freeze_array() is waiting for condition
2426 * get_unqueued_pending() == extra to be true.
2428 wake_up(&conf
->wait_barrier
);
2429 md_wakeup_thread(conf
->mddev
->thread
);
2431 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2432 close_write(r1_bio
);
2433 raid_end_bio_io(r1_bio
);
2437 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2439 struct mddev
*mddev
= conf
->mddev
;
2441 struct md_rdev
*rdev
;
2442 sector_t bio_sector
;
2444 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2445 /* we got a read error. Maybe the drive is bad. Maybe just
2446 * the block and we can fix it.
2447 * We freeze all other IO, and try reading the block from
2448 * other devices. When we find one, we re-write
2449 * and check it that fixes the read error.
2450 * This is all done synchronously while the array is
2454 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2455 bio_sector
= conf
->mirrors
[r1_bio
->read_disk
].rdev
->data_offset
+ r1_bio
->sector
;
2457 r1_bio
->bios
[r1_bio
->read_disk
] = NULL
;
2459 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
2461 && !test_bit(FailFast
, &rdev
->flags
)) {
2462 freeze_array(conf
, 1);
2463 fix_read_error(conf
, r1_bio
->read_disk
,
2464 r1_bio
->sector
, r1_bio
->sectors
);
2465 unfreeze_array(conf
);
2467 r1_bio
->bios
[r1_bio
->read_disk
] = IO_BLOCKED
;
2470 rdev_dec_pending(rdev
, conf
->mddev
);
2471 allow_barrier(conf
, r1_bio
->sector
);
2472 bio
= r1_bio
->master_bio
;
2474 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2476 raid1_read_request(mddev
, bio
, r1_bio
->sectors
, r1_bio
);
2479 static void raid1d(struct md_thread
*thread
)
2481 struct mddev
*mddev
= thread
->mddev
;
2482 struct r1bio
*r1_bio
;
2483 unsigned long flags
;
2484 struct r1conf
*conf
= mddev
->private;
2485 struct list_head
*head
= &conf
->retry_list
;
2486 struct blk_plug plug
;
2489 md_check_recovery(mddev
);
2491 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2492 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2494 spin_lock_irqsave(&conf
->device_lock
, flags
);
2495 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
))
2496 list_splice_init(&conf
->bio_end_io_list
, &tmp
);
2497 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2498 while (!list_empty(&tmp
)) {
2499 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2501 list_del(&r1_bio
->retry_list
);
2502 idx
= sector_to_idx(r1_bio
->sector
);
2503 atomic_dec(&conf
->nr_queued
[idx
]);
2504 if (mddev
->degraded
)
2505 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2506 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2507 close_write(r1_bio
);
2508 raid_end_bio_io(r1_bio
);
2512 blk_start_plug(&plug
);
2515 flush_pending_writes(conf
);
2517 spin_lock_irqsave(&conf
->device_lock
, flags
);
2518 if (list_empty(head
)) {
2519 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2522 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2523 list_del(head
->prev
);
2524 idx
= sector_to_idx(r1_bio
->sector
);
2525 atomic_dec(&conf
->nr_queued
[idx
]);
2526 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2528 mddev
= r1_bio
->mddev
;
2529 conf
= mddev
->private;
2530 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2531 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2532 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2533 handle_sync_write_finished(conf
, r1_bio
);
2535 sync_request_write(mddev
, r1_bio
);
2536 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2537 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2538 handle_write_finished(conf
, r1_bio
);
2539 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2540 handle_read_error(conf
, r1_bio
);
2545 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2546 md_check_recovery(mddev
);
2548 blk_finish_plug(&plug
);
2551 static int init_resync(struct r1conf
*conf
)
2555 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2556 BUG_ON(conf
->r1buf_pool
);
2557 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2559 if (!conf
->r1buf_pool
)
2564 static struct r1bio
*raid1_alloc_init_r1buf(struct r1conf
*conf
)
2566 struct r1bio
*r1bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2567 struct resync_pages
*rps
;
2571 for (i
= conf
->poolinfo
->raid_disks
; i
--; ) {
2572 bio
= r1bio
->bios
[i
];
2573 rps
= bio
->bi_private
;
2575 bio
->bi_private
= rps
;
2577 r1bio
->master_bio
= NULL
;
2582 * perform a "sync" on one "block"
2584 * We need to make sure that no normal I/O request - particularly write
2585 * requests - conflict with active sync requests.
2587 * This is achieved by tracking pending requests and a 'barrier' concept
2588 * that can be installed to exclude normal IO requests.
2591 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2594 struct r1conf
*conf
= mddev
->private;
2595 struct r1bio
*r1_bio
;
2597 sector_t max_sector
, nr_sectors
;
2601 int write_targets
= 0, read_targets
= 0;
2602 sector_t sync_blocks
;
2603 int still_degraded
= 0;
2604 int good_sectors
= RESYNC_SECTORS
;
2605 int min_bad
= 0; /* number of sectors that are bad in all devices */
2606 int idx
= sector_to_idx(sector_nr
);
2609 if (!conf
->r1buf_pool
)
2610 if (init_resync(conf
))
2613 max_sector
= mddev
->dev_sectors
;
2614 if (sector_nr
>= max_sector
) {
2615 /* If we aborted, we need to abort the
2616 * sync on the 'current' bitmap chunk (there will
2617 * only be one in raid1 resync.
2618 * We can find the current addess in mddev->curr_resync
2620 if (mddev
->curr_resync
< max_sector
) /* aborted */
2621 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2623 else /* completed sync */
2626 bitmap_close_sync(mddev
->bitmap
);
2629 if (mddev_is_clustered(mddev
)) {
2630 conf
->cluster_sync_low
= 0;
2631 conf
->cluster_sync_high
= 0;
2636 if (mddev
->bitmap
== NULL
&&
2637 mddev
->recovery_cp
== MaxSector
&&
2638 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2639 conf
->fullsync
== 0) {
2641 return max_sector
- sector_nr
;
2643 /* before building a request, check if we can skip these blocks..
2644 * This call the bitmap_start_sync doesn't actually record anything
2646 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2647 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2648 /* We can skip this block, and probably several more */
2654 * If there is non-resync activity waiting for a turn, then let it
2655 * though before starting on this new sync request.
2657 if (atomic_read(&conf
->nr_waiting
[idx
]))
2658 schedule_timeout_uninterruptible(1);
2660 /* we are incrementing sector_nr below. To be safe, we check against
2661 * sector_nr + two times RESYNC_SECTORS
2664 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2665 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2666 r1_bio
= raid1_alloc_init_r1buf(conf
);
2668 raise_barrier(conf
, sector_nr
);
2672 * If we get a correctably read error during resync or recovery,
2673 * we might want to read from a different device. So we
2674 * flag all drives that could conceivably be read from for READ,
2675 * and any others (which will be non-In_sync devices) for WRITE.
2676 * If a read fails, we try reading from something else for which READ
2680 r1_bio
->mddev
= mddev
;
2681 r1_bio
->sector
= sector_nr
;
2683 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2684 /* make sure good_sectors won't go across barrier unit boundary */
2685 good_sectors
= align_to_barrier_unit_end(sector_nr
, good_sectors
);
2687 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2688 struct md_rdev
*rdev
;
2689 bio
= r1_bio
->bios
[i
];
2691 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2693 test_bit(Faulty
, &rdev
->flags
)) {
2694 if (i
< conf
->raid_disks
)
2696 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2697 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2698 bio
->bi_end_io
= end_sync_write
;
2701 /* may need to read from here */
2702 sector_t first_bad
= MaxSector
;
2705 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2706 &first_bad
, &bad_sectors
)) {
2707 if (first_bad
> sector_nr
)
2708 good_sectors
= first_bad
- sector_nr
;
2710 bad_sectors
-= (sector_nr
- first_bad
);
2712 min_bad
> bad_sectors
)
2713 min_bad
= bad_sectors
;
2716 if (sector_nr
< first_bad
) {
2717 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2724 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2725 bio
->bi_end_io
= end_sync_read
;
2727 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2728 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2729 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2731 * The device is suitable for reading (InSync),
2732 * but has bad block(s) here. Let's try to correct them,
2733 * if we are doing resync or repair. Otherwise, leave
2734 * this device alone for this sync request.
2736 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2737 bio
->bi_end_io
= end_sync_write
;
2741 if (bio
->bi_end_io
) {
2742 atomic_inc(&rdev
->nr_pending
);
2743 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2744 bio_set_dev(bio
, rdev
->bdev
);
2745 if (test_bit(FailFast
, &rdev
->flags
))
2746 bio
->bi_opf
|= MD_FAILFAST
;
2752 r1_bio
->read_disk
= disk
;
2754 if (read_targets
== 0 && min_bad
> 0) {
2755 /* These sectors are bad on all InSync devices, so we
2756 * need to mark them bad on all write targets
2759 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2760 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2761 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2762 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2766 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2771 /* Cannot record the badblocks, so need to
2773 * If there are multiple read targets, could just
2774 * fail the really bad ones ???
2776 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2777 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2783 if (min_bad
> 0 && min_bad
< good_sectors
) {
2784 /* only resync enough to reach the next bad->good
2786 good_sectors
= min_bad
;
2789 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2790 /* extra read targets are also write targets */
2791 write_targets
+= read_targets
-1;
2793 if (write_targets
== 0 || read_targets
== 0) {
2794 /* There is nowhere to write, so all non-sync
2795 * drives must be failed - so we are finished
2799 max_sector
= sector_nr
+ min_bad
;
2800 rv
= max_sector
- sector_nr
;
2806 if (max_sector
> mddev
->resync_max
)
2807 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2808 if (max_sector
> sector_nr
+ good_sectors
)
2809 max_sector
= sector_nr
+ good_sectors
;
2814 int len
= PAGE_SIZE
;
2815 if (sector_nr
+ (len
>>9) > max_sector
)
2816 len
= (max_sector
- sector_nr
) << 9;
2819 if (sync_blocks
== 0) {
2820 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2821 &sync_blocks
, still_degraded
) &&
2823 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2825 if ((len
>> 9) > sync_blocks
)
2826 len
= sync_blocks
<<9;
2829 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2830 struct resync_pages
*rp
;
2832 bio
= r1_bio
->bios
[i
];
2833 rp
= get_resync_pages(bio
);
2834 if (bio
->bi_end_io
) {
2835 page
= resync_fetch_page(rp
, page_idx
);
2838 * won't fail because the vec table is big
2839 * enough to hold all these pages
2841 bio_add_page(bio
, page
, len
, 0);
2844 nr_sectors
+= len
>>9;
2845 sector_nr
+= len
>>9;
2846 sync_blocks
-= (len
>>9);
2847 } while (++page_idx
< RESYNC_PAGES
);
2849 r1_bio
->sectors
= nr_sectors
;
2851 if (mddev_is_clustered(mddev
) &&
2852 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2853 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2854 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2855 /* Send resync message */
2856 md_cluster_ops
->resync_info_update(mddev
,
2857 conf
->cluster_sync_low
,
2858 conf
->cluster_sync_high
);
2861 /* For a user-requested sync, we read all readable devices and do a
2864 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2865 atomic_set(&r1_bio
->remaining
, read_targets
);
2866 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2867 bio
= r1_bio
->bios
[i
];
2868 if (bio
->bi_end_io
== end_sync_read
) {
2870 md_sync_acct_bio(bio
, nr_sectors
);
2871 if (read_targets
== 1)
2872 bio
->bi_opf
&= ~MD_FAILFAST
;
2873 generic_make_request(bio
);
2877 atomic_set(&r1_bio
->remaining
, 1);
2878 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2879 md_sync_acct_bio(bio
, nr_sectors
);
2880 if (read_targets
== 1)
2881 bio
->bi_opf
&= ~MD_FAILFAST
;
2882 generic_make_request(bio
);
2888 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2893 return mddev
->dev_sectors
;
2896 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2898 struct r1conf
*conf
;
2900 struct raid1_info
*disk
;
2901 struct md_rdev
*rdev
;
2904 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2908 conf
->nr_pending
= kcalloc(BARRIER_BUCKETS_NR
,
2909 sizeof(atomic_t
), GFP_KERNEL
);
2910 if (!conf
->nr_pending
)
2913 conf
->nr_waiting
= kcalloc(BARRIER_BUCKETS_NR
,
2914 sizeof(atomic_t
), GFP_KERNEL
);
2915 if (!conf
->nr_waiting
)
2918 conf
->nr_queued
= kcalloc(BARRIER_BUCKETS_NR
,
2919 sizeof(atomic_t
), GFP_KERNEL
);
2920 if (!conf
->nr_queued
)
2923 conf
->barrier
= kcalloc(BARRIER_BUCKETS_NR
,
2924 sizeof(atomic_t
), GFP_KERNEL
);
2928 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2929 * mddev
->raid_disks
* 2,
2934 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2938 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2939 if (!conf
->poolinfo
)
2941 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2942 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2945 if (!conf
->r1bio_pool
)
2948 conf
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0, 0);
2949 if (!conf
->bio_split
)
2952 conf
->poolinfo
->mddev
= mddev
;
2955 spin_lock_init(&conf
->device_lock
);
2956 rdev_for_each(rdev
, mddev
) {
2957 int disk_idx
= rdev
->raid_disk
;
2958 if (disk_idx
>= mddev
->raid_disks
2961 if (test_bit(Replacement
, &rdev
->flags
))
2962 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2964 disk
= conf
->mirrors
+ disk_idx
;
2969 disk
->head_position
= 0;
2970 disk
->seq_start
= MaxSector
;
2972 conf
->raid_disks
= mddev
->raid_disks
;
2973 conf
->mddev
= mddev
;
2974 INIT_LIST_HEAD(&conf
->retry_list
);
2975 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
2977 spin_lock_init(&conf
->resync_lock
);
2978 init_waitqueue_head(&conf
->wait_barrier
);
2980 bio_list_init(&conf
->pending_bio_list
);
2981 conf
->pending_count
= 0;
2982 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2985 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2987 disk
= conf
->mirrors
+ i
;
2989 if (i
< conf
->raid_disks
&&
2990 disk
[conf
->raid_disks
].rdev
) {
2991 /* This slot has a replacement. */
2993 /* No original, just make the replacement
2994 * a recovering spare
2997 disk
[conf
->raid_disks
].rdev
;
2998 disk
[conf
->raid_disks
].rdev
= NULL
;
2999 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
3000 /* Original is not in_sync - bad */
3005 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3006 disk
->head_position
= 0;
3008 (disk
->rdev
->saved_raid_disk
< 0))
3014 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
3022 mempool_destroy(conf
->r1bio_pool
);
3023 kfree(conf
->mirrors
);
3024 safe_put_page(conf
->tmppage
);
3025 kfree(conf
->poolinfo
);
3026 kfree(conf
->nr_pending
);
3027 kfree(conf
->nr_waiting
);
3028 kfree(conf
->nr_queued
);
3029 kfree(conf
->barrier
);
3030 if (conf
->bio_split
)
3031 bioset_free(conf
->bio_split
);
3034 return ERR_PTR(err
);
3037 static void raid1_free(struct mddev
*mddev
, void *priv
);
3038 static int raid1_run(struct mddev
*mddev
)
3040 struct r1conf
*conf
;
3042 struct md_rdev
*rdev
;
3044 bool discard_supported
= false;
3046 if (mddev
->level
!= 1) {
3047 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3048 mdname(mddev
), mddev
->level
);
3051 if (mddev
->reshape_position
!= MaxSector
) {
3052 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3056 if (mddev_init_writes_pending(mddev
) < 0)
3059 * copy the already verified devices into our private RAID1
3060 * bookkeeping area. [whatever we allocate in run(),
3061 * should be freed in raid1_free()]
3063 if (mddev
->private == NULL
)
3064 conf
= setup_conf(mddev
);
3066 conf
= mddev
->private;
3069 return PTR_ERR(conf
);
3072 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3073 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3076 rdev_for_each(rdev
, mddev
) {
3077 if (!mddev
->gendisk
)
3079 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3080 rdev
->data_offset
<< 9);
3081 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3082 discard_supported
= true;
3085 mddev
->degraded
= 0;
3086 for (i
=0; i
< conf
->raid_disks
; i
++)
3087 if (conf
->mirrors
[i
].rdev
== NULL
||
3088 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
3089 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
3092 if (conf
->raid_disks
- mddev
->degraded
== 1)
3093 mddev
->recovery_cp
= MaxSector
;
3095 if (mddev
->recovery_cp
!= MaxSector
)
3096 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3098 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3099 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3103 * Ok, everything is just fine now
3105 mddev
->thread
= conf
->thread
;
3106 conf
->thread
= NULL
;
3107 mddev
->private = conf
;
3108 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3110 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
3113 if (discard_supported
)
3114 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3117 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3121 ret
= md_integrity_register(mddev
);
3123 md_unregister_thread(&mddev
->thread
);
3124 raid1_free(mddev
, conf
);
3129 static void raid1_free(struct mddev
*mddev
, void *priv
)
3131 struct r1conf
*conf
= priv
;
3133 mempool_destroy(conf
->r1bio_pool
);
3134 kfree(conf
->mirrors
);
3135 safe_put_page(conf
->tmppage
);
3136 kfree(conf
->poolinfo
);
3137 kfree(conf
->nr_pending
);
3138 kfree(conf
->nr_waiting
);
3139 kfree(conf
->nr_queued
);
3140 kfree(conf
->barrier
);
3141 if (conf
->bio_split
)
3142 bioset_free(conf
->bio_split
);
3146 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3148 /* no resync is happening, and there is enough space
3149 * on all devices, so we can resize.
3150 * We need to make sure resync covers any new space.
3151 * If the array is shrinking we should possibly wait until
3152 * any io in the removed space completes, but it hardly seems
3155 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3156 if (mddev
->external_size
&&
3157 mddev
->array_sectors
> newsize
)
3159 if (mddev
->bitmap
) {
3160 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3164 md_set_array_sectors(mddev
, newsize
);
3165 if (sectors
> mddev
->dev_sectors
&&
3166 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3167 mddev
->recovery_cp
= mddev
->dev_sectors
;
3168 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3170 mddev
->dev_sectors
= sectors
;
3171 mddev
->resync_max_sectors
= sectors
;
3175 static int raid1_reshape(struct mddev
*mddev
)
3178 * 1/ resize the r1bio_pool
3179 * 2/ resize conf->mirrors
3181 * We allocate a new r1bio_pool if we can.
3182 * Then raise a device barrier and wait until all IO stops.
3183 * Then resize conf->mirrors and swap in the new r1bio pool.
3185 * At the same time, we "pack" the devices so that all the missing
3186 * devices have the higher raid_disk numbers.
3188 mempool_t
*newpool
, *oldpool
;
3189 struct pool_info
*newpoolinfo
;
3190 struct raid1_info
*newmirrors
;
3191 struct r1conf
*conf
= mddev
->private;
3192 int cnt
, raid_disks
;
3193 unsigned long flags
;
3196 /* Cannot change chunk_size, layout, or level */
3197 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3198 mddev
->layout
!= mddev
->new_layout
||
3199 mddev
->level
!= mddev
->new_level
) {
3200 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3201 mddev
->new_layout
= mddev
->layout
;
3202 mddev
->new_level
= mddev
->level
;
3206 if (!mddev_is_clustered(mddev
))
3207 md_allow_write(mddev
);
3209 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3211 if (raid_disks
< conf
->raid_disks
) {
3213 for (d
= 0; d
< conf
->raid_disks
; d
++)
3214 if (conf
->mirrors
[d
].rdev
)
3216 if (cnt
> raid_disks
)
3220 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3223 newpoolinfo
->mddev
= mddev
;
3224 newpoolinfo
->raid_disks
= raid_disks
* 2;
3226 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3227 r1bio_pool_free
, newpoolinfo
);
3232 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3236 mempool_destroy(newpool
);
3240 freeze_array(conf
, 0);
3242 /* ok, everything is stopped */
3243 oldpool
= conf
->r1bio_pool
;
3244 conf
->r1bio_pool
= newpool
;
3246 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3247 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3248 if (rdev
&& rdev
->raid_disk
!= d2
) {
3249 sysfs_unlink_rdev(mddev
, rdev
);
3250 rdev
->raid_disk
= d2
;
3251 sysfs_unlink_rdev(mddev
, rdev
);
3252 if (sysfs_link_rdev(mddev
, rdev
))
3253 pr_warn("md/raid1:%s: cannot register rd%d\n",
3254 mdname(mddev
), rdev
->raid_disk
);
3257 newmirrors
[d2
++].rdev
= rdev
;
3259 kfree(conf
->mirrors
);
3260 conf
->mirrors
= newmirrors
;
3261 kfree(conf
->poolinfo
);
3262 conf
->poolinfo
= newpoolinfo
;
3264 spin_lock_irqsave(&conf
->device_lock
, flags
);
3265 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3266 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3267 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3268 mddev
->delta_disks
= 0;
3270 unfreeze_array(conf
);
3272 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3273 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3274 md_wakeup_thread(mddev
->thread
);
3276 mempool_destroy(oldpool
);
3280 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3282 struct r1conf
*conf
= mddev
->private;
3285 case 2: /* wake for suspend */
3286 wake_up(&conf
->wait_barrier
);
3289 freeze_array(conf
, 0);
3292 unfreeze_array(conf
);
3297 static void *raid1_takeover(struct mddev
*mddev
)
3299 /* raid1 can take over:
3300 * raid5 with 2 devices, any layout or chunk size
3302 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3303 struct r1conf
*conf
;
3304 mddev
->new_level
= 1;
3305 mddev
->new_layout
= 0;
3306 mddev
->new_chunk_sectors
= 0;
3307 conf
= setup_conf(mddev
);
3308 if (!IS_ERR(conf
)) {
3309 /* Array must appear to be quiesced */
3310 conf
->array_frozen
= 1;
3311 mddev_clear_unsupported_flags(mddev
,
3312 UNSUPPORTED_MDDEV_FLAGS
);
3316 return ERR_PTR(-EINVAL
);
3319 static struct md_personality raid1_personality
=
3323 .owner
= THIS_MODULE
,
3324 .make_request
= raid1_make_request
,
3327 .status
= raid1_status
,
3328 .error_handler
= raid1_error
,
3329 .hot_add_disk
= raid1_add_disk
,
3330 .hot_remove_disk
= raid1_remove_disk
,
3331 .spare_active
= raid1_spare_active
,
3332 .sync_request
= raid1_sync_request
,
3333 .resize
= raid1_resize
,
3335 .check_reshape
= raid1_reshape
,
3336 .quiesce
= raid1_quiesce
,
3337 .takeover
= raid1_takeover
,
3338 .congested
= raid1_congested
,
3341 static int __init
raid_init(void)
3343 return register_md_personality(&raid1_personality
);
3346 static void raid_exit(void)
3348 unregister_md_personality(&raid1_personality
);
3351 module_init(raid_init
);
3352 module_exit(raid_exit
);
3353 MODULE_LICENSE("GPL");
3354 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3355 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3356 MODULE_ALIAS("md-raid1");
3357 MODULE_ALIAS("md-level-1");
3359 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);