watchdog/core: Rename some softlockup_* functions
[linux/fpc-iii.git] / drivers / md / raid1.c
blobf3f3e40dc9d8fcdf473d8c49387d556c41240db4
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
42 #include <trace/events/block.h>
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
48 #define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL) | \
52 (1L << MD_HAS_MULTIPLE_PPLS))
55 * Number of guaranteed r1bios in case of extreme VM load:
57 #define NR_RAID1_BIOS 256
59 /* when we get a read error on a read-only array, we redirect to another
60 * device without failing the first device, or trying to over-write to
61 * correct the read error. To keep track of bad blocks on a per-bio
62 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
64 #define IO_BLOCKED ((struct bio *)1)
65 /* When we successfully write to a known bad-block, we need to remove the
66 * bad-block marking which must be done from process context. So we record
67 * the success by setting devs[n].bio to IO_MADE_GOOD
69 #define IO_MADE_GOOD ((struct bio *)2)
71 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
73 /* When there are this many requests queue to be written by
74 * the raid1 thread, we become 'congested' to provide back-pressure
75 * for writeback.
77 static int max_queued_requests = 1024;
79 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
80 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
82 #define raid1_log(md, fmt, args...) \
83 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
85 #include "raid1-10.c"
88 * for resync bio, r1bio pointer can be retrieved from the per-bio
89 * 'struct resync_pages'.
91 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
93 return get_resync_pages(bio)->raid_bio;
96 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
98 struct pool_info *pi = data;
99 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
101 /* allocate a r1bio with room for raid_disks entries in the bios array */
102 return kzalloc(size, gfp_flags);
105 static void r1bio_pool_free(void *r1_bio, void *data)
107 kfree(r1_bio);
110 #define RESYNC_DEPTH 32
111 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
112 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
113 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
114 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
115 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
117 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
119 struct pool_info *pi = data;
120 struct r1bio *r1_bio;
121 struct bio *bio;
122 int need_pages;
123 int j;
124 struct resync_pages *rps;
126 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
127 if (!r1_bio)
128 return NULL;
130 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
131 gfp_flags);
132 if (!rps)
133 goto out_free_r1bio;
136 * Allocate bios : 1 for reading, n-1 for writing
138 for (j = pi->raid_disks ; j-- ; ) {
139 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
140 if (!bio)
141 goto out_free_bio;
142 r1_bio->bios[j] = bio;
145 * Allocate RESYNC_PAGES data pages and attach them to
146 * the first bio.
147 * If this is a user-requested check/repair, allocate
148 * RESYNC_PAGES for each bio.
150 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
151 need_pages = pi->raid_disks;
152 else
153 need_pages = 1;
154 for (j = 0; j < pi->raid_disks; j++) {
155 struct resync_pages *rp = &rps[j];
157 bio = r1_bio->bios[j];
159 if (j < need_pages) {
160 if (resync_alloc_pages(rp, gfp_flags))
161 goto out_free_pages;
162 } else {
163 memcpy(rp, &rps[0], sizeof(*rp));
164 resync_get_all_pages(rp);
167 rp->raid_bio = r1_bio;
168 bio->bi_private = rp;
171 r1_bio->master_bio = NULL;
173 return r1_bio;
175 out_free_pages:
176 while (--j >= 0)
177 resync_free_pages(&rps[j]);
179 out_free_bio:
180 while (++j < pi->raid_disks)
181 bio_put(r1_bio->bios[j]);
182 kfree(rps);
184 out_free_r1bio:
185 r1bio_pool_free(r1_bio, data);
186 return NULL;
189 static void r1buf_pool_free(void *__r1_bio, void *data)
191 struct pool_info *pi = data;
192 int i;
193 struct r1bio *r1bio = __r1_bio;
194 struct resync_pages *rp = NULL;
196 for (i = pi->raid_disks; i--; ) {
197 rp = get_resync_pages(r1bio->bios[i]);
198 resync_free_pages(rp);
199 bio_put(r1bio->bios[i]);
202 /* resync pages array stored in the 1st bio's .bi_private */
203 kfree(rp);
205 r1bio_pool_free(r1bio, data);
208 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
210 int i;
212 for (i = 0; i < conf->raid_disks * 2; i++) {
213 struct bio **bio = r1_bio->bios + i;
214 if (!BIO_SPECIAL(*bio))
215 bio_put(*bio);
216 *bio = NULL;
220 static void free_r1bio(struct r1bio *r1_bio)
222 struct r1conf *conf = r1_bio->mddev->private;
224 put_all_bios(conf, r1_bio);
225 mempool_free(r1_bio, conf->r1bio_pool);
228 static void put_buf(struct r1bio *r1_bio)
230 struct r1conf *conf = r1_bio->mddev->private;
231 sector_t sect = r1_bio->sector;
232 int i;
234 for (i = 0; i < conf->raid_disks * 2; i++) {
235 struct bio *bio = r1_bio->bios[i];
236 if (bio->bi_end_io)
237 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
240 mempool_free(r1_bio, conf->r1buf_pool);
242 lower_barrier(conf, sect);
245 static void reschedule_retry(struct r1bio *r1_bio)
247 unsigned long flags;
248 struct mddev *mddev = r1_bio->mddev;
249 struct r1conf *conf = mddev->private;
250 int idx;
252 idx = sector_to_idx(r1_bio->sector);
253 spin_lock_irqsave(&conf->device_lock, flags);
254 list_add(&r1_bio->retry_list, &conf->retry_list);
255 atomic_inc(&conf->nr_queued[idx]);
256 spin_unlock_irqrestore(&conf->device_lock, flags);
258 wake_up(&conf->wait_barrier);
259 md_wakeup_thread(mddev->thread);
263 * raid_end_bio_io() is called when we have finished servicing a mirrored
264 * operation and are ready to return a success/failure code to the buffer
265 * cache layer.
267 static void call_bio_endio(struct r1bio *r1_bio)
269 struct bio *bio = r1_bio->master_bio;
270 struct r1conf *conf = r1_bio->mddev->private;
272 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
273 bio->bi_status = BLK_STS_IOERR;
275 bio_endio(bio);
277 * Wake up any possible resync thread that waits for the device
278 * to go idle.
280 allow_barrier(conf, r1_bio->sector);
283 static void raid_end_bio_io(struct r1bio *r1_bio)
285 struct bio *bio = r1_bio->master_bio;
287 /* if nobody has done the final endio yet, do it now */
288 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
289 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
290 (bio_data_dir(bio) == WRITE) ? "write" : "read",
291 (unsigned long long) bio->bi_iter.bi_sector,
292 (unsigned long long) bio_end_sector(bio) - 1);
294 call_bio_endio(r1_bio);
296 free_r1bio(r1_bio);
300 * Update disk head position estimator based on IRQ completion info.
302 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
304 struct r1conf *conf = r1_bio->mddev->private;
306 conf->mirrors[disk].head_position =
307 r1_bio->sector + (r1_bio->sectors);
311 * Find the disk number which triggered given bio
313 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
315 int mirror;
316 struct r1conf *conf = r1_bio->mddev->private;
317 int raid_disks = conf->raid_disks;
319 for (mirror = 0; mirror < raid_disks * 2; mirror++)
320 if (r1_bio->bios[mirror] == bio)
321 break;
323 BUG_ON(mirror == raid_disks * 2);
324 update_head_pos(mirror, r1_bio);
326 return mirror;
329 static void raid1_end_read_request(struct bio *bio)
331 int uptodate = !bio->bi_status;
332 struct r1bio *r1_bio = bio->bi_private;
333 struct r1conf *conf = r1_bio->mddev->private;
334 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
337 * this branch is our 'one mirror IO has finished' event handler:
339 update_head_pos(r1_bio->read_disk, r1_bio);
341 if (uptodate)
342 set_bit(R1BIO_Uptodate, &r1_bio->state);
343 else if (test_bit(FailFast, &rdev->flags) &&
344 test_bit(R1BIO_FailFast, &r1_bio->state))
345 /* This was a fail-fast read so we definitely
346 * want to retry */
348 else {
349 /* If all other devices have failed, we want to return
350 * the error upwards rather than fail the last device.
351 * Here we redefine "uptodate" to mean "Don't want to retry"
353 unsigned long flags;
354 spin_lock_irqsave(&conf->device_lock, flags);
355 if (r1_bio->mddev->degraded == conf->raid_disks ||
356 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
357 test_bit(In_sync, &rdev->flags)))
358 uptodate = 1;
359 spin_unlock_irqrestore(&conf->device_lock, flags);
362 if (uptodate) {
363 raid_end_bio_io(r1_bio);
364 rdev_dec_pending(rdev, conf->mddev);
365 } else {
367 * oops, read error:
369 char b[BDEVNAME_SIZE];
370 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
371 mdname(conf->mddev),
372 bdevname(rdev->bdev, b),
373 (unsigned long long)r1_bio->sector);
374 set_bit(R1BIO_ReadError, &r1_bio->state);
375 reschedule_retry(r1_bio);
376 /* don't drop the reference on read_disk yet */
380 static void close_write(struct r1bio *r1_bio)
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384 bio_free_pages(r1_bio->behind_master_bio);
385 bio_put(r1_bio->behind_master_bio);
386 r1_bio->behind_master_bio = NULL;
388 /* clear the bitmap if all writes complete successfully */
389 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390 r1_bio->sectors,
391 !test_bit(R1BIO_Degraded, &r1_bio->state),
392 test_bit(R1BIO_BehindIO, &r1_bio->state));
393 md_write_end(r1_bio->mddev);
396 static void r1_bio_write_done(struct r1bio *r1_bio)
398 if (!atomic_dec_and_test(&r1_bio->remaining))
399 return;
401 if (test_bit(R1BIO_WriteError, &r1_bio->state))
402 reschedule_retry(r1_bio);
403 else {
404 close_write(r1_bio);
405 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
406 reschedule_retry(r1_bio);
407 else
408 raid_end_bio_io(r1_bio);
412 static void raid1_end_write_request(struct bio *bio)
414 struct r1bio *r1_bio = bio->bi_private;
415 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
416 struct r1conf *conf = r1_bio->mddev->private;
417 struct bio *to_put = NULL;
418 int mirror = find_bio_disk(r1_bio, bio);
419 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
420 bool discard_error;
422 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
425 * 'one mirror IO has finished' event handler:
427 if (bio->bi_status && !discard_error) {
428 set_bit(WriteErrorSeen, &rdev->flags);
429 if (!test_and_set_bit(WantReplacement, &rdev->flags))
430 set_bit(MD_RECOVERY_NEEDED, &
431 conf->mddev->recovery);
433 if (test_bit(FailFast, &rdev->flags) &&
434 (bio->bi_opf & MD_FAILFAST) &&
435 /* We never try FailFast to WriteMostly devices */
436 !test_bit(WriteMostly, &rdev->flags)) {
437 md_error(r1_bio->mddev, rdev);
438 if (!test_bit(Faulty, &rdev->flags))
439 /* This is the only remaining device,
440 * We need to retry the write without
441 * FailFast
443 set_bit(R1BIO_WriteError, &r1_bio->state);
444 else {
445 /* Finished with this branch */
446 r1_bio->bios[mirror] = NULL;
447 to_put = bio;
449 } else
450 set_bit(R1BIO_WriteError, &r1_bio->state);
451 } else {
453 * Set R1BIO_Uptodate in our master bio, so that we
454 * will return a good error code for to the higher
455 * levels even if IO on some other mirrored buffer
456 * fails.
458 * The 'master' represents the composite IO operation
459 * to user-side. So if something waits for IO, then it
460 * will wait for the 'master' bio.
462 sector_t first_bad;
463 int bad_sectors;
465 r1_bio->bios[mirror] = NULL;
466 to_put = bio;
468 * Do not set R1BIO_Uptodate if the current device is
469 * rebuilding or Faulty. This is because we cannot use
470 * such device for properly reading the data back (we could
471 * potentially use it, if the current write would have felt
472 * before rdev->recovery_offset, but for simplicity we don't
473 * check this here.
475 if (test_bit(In_sync, &rdev->flags) &&
476 !test_bit(Faulty, &rdev->flags))
477 set_bit(R1BIO_Uptodate, &r1_bio->state);
479 /* Maybe we can clear some bad blocks. */
480 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
481 &first_bad, &bad_sectors) && !discard_error) {
482 r1_bio->bios[mirror] = IO_MADE_GOOD;
483 set_bit(R1BIO_MadeGood, &r1_bio->state);
487 if (behind) {
488 if (test_bit(WriteMostly, &rdev->flags))
489 atomic_dec(&r1_bio->behind_remaining);
492 * In behind mode, we ACK the master bio once the I/O
493 * has safely reached all non-writemostly
494 * disks. Setting the Returned bit ensures that this
495 * gets done only once -- we don't ever want to return
496 * -EIO here, instead we'll wait
498 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
499 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
500 /* Maybe we can return now */
501 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
502 struct bio *mbio = r1_bio->master_bio;
503 pr_debug("raid1: behind end write sectors"
504 " %llu-%llu\n",
505 (unsigned long long) mbio->bi_iter.bi_sector,
506 (unsigned long long) bio_end_sector(mbio) - 1);
507 call_bio_endio(r1_bio);
511 if (r1_bio->bios[mirror] == NULL)
512 rdev_dec_pending(rdev, conf->mddev);
515 * Let's see if all mirrored write operations have finished
516 * already.
518 r1_bio_write_done(r1_bio);
520 if (to_put)
521 bio_put(to_put);
524 static sector_t align_to_barrier_unit_end(sector_t start_sector,
525 sector_t sectors)
527 sector_t len;
529 WARN_ON(sectors == 0);
531 * len is the number of sectors from start_sector to end of the
532 * barrier unit which start_sector belongs to.
534 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
535 start_sector;
537 if (len > sectors)
538 len = sectors;
540 return len;
544 * This routine returns the disk from which the requested read should
545 * be done. There is a per-array 'next expected sequential IO' sector
546 * number - if this matches on the next IO then we use the last disk.
547 * There is also a per-disk 'last know head position' sector that is
548 * maintained from IRQ contexts, both the normal and the resync IO
549 * completion handlers update this position correctly. If there is no
550 * perfect sequential match then we pick the disk whose head is closest.
552 * If there are 2 mirrors in the same 2 devices, performance degrades
553 * because position is mirror, not device based.
555 * The rdev for the device selected will have nr_pending incremented.
557 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
559 const sector_t this_sector = r1_bio->sector;
560 int sectors;
561 int best_good_sectors;
562 int best_disk, best_dist_disk, best_pending_disk;
563 int has_nonrot_disk;
564 int disk;
565 sector_t best_dist;
566 unsigned int min_pending;
567 struct md_rdev *rdev;
568 int choose_first;
569 int choose_next_idle;
571 rcu_read_lock();
573 * Check if we can balance. We can balance on the whole
574 * device if no resync is going on, or below the resync window.
575 * We take the first readable disk when above the resync window.
577 retry:
578 sectors = r1_bio->sectors;
579 best_disk = -1;
580 best_dist_disk = -1;
581 best_dist = MaxSector;
582 best_pending_disk = -1;
583 min_pending = UINT_MAX;
584 best_good_sectors = 0;
585 has_nonrot_disk = 0;
586 choose_next_idle = 0;
587 clear_bit(R1BIO_FailFast, &r1_bio->state);
589 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
590 (mddev_is_clustered(conf->mddev) &&
591 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
592 this_sector + sectors)))
593 choose_first = 1;
594 else
595 choose_first = 0;
597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 sector_t dist;
599 sector_t first_bad;
600 int bad_sectors;
601 unsigned int pending;
602 bool nonrot;
604 rdev = rcu_dereference(conf->mirrors[disk].rdev);
605 if (r1_bio->bios[disk] == IO_BLOCKED
606 || rdev == NULL
607 || test_bit(Faulty, &rdev->flags))
608 continue;
609 if (!test_bit(In_sync, &rdev->flags) &&
610 rdev->recovery_offset < this_sector + sectors)
611 continue;
612 if (test_bit(WriteMostly, &rdev->flags)) {
613 /* Don't balance among write-mostly, just
614 * use the first as a last resort */
615 if (best_dist_disk < 0) {
616 if (is_badblock(rdev, this_sector, sectors,
617 &first_bad, &bad_sectors)) {
618 if (first_bad <= this_sector)
619 /* Cannot use this */
620 continue;
621 best_good_sectors = first_bad - this_sector;
622 } else
623 best_good_sectors = sectors;
624 best_dist_disk = disk;
625 best_pending_disk = disk;
627 continue;
629 /* This is a reasonable device to use. It might
630 * even be best.
632 if (is_badblock(rdev, this_sector, sectors,
633 &first_bad, &bad_sectors)) {
634 if (best_dist < MaxSector)
635 /* already have a better device */
636 continue;
637 if (first_bad <= this_sector) {
638 /* cannot read here. If this is the 'primary'
639 * device, then we must not read beyond
640 * bad_sectors from another device..
642 bad_sectors -= (this_sector - first_bad);
643 if (choose_first && sectors > bad_sectors)
644 sectors = bad_sectors;
645 if (best_good_sectors > sectors)
646 best_good_sectors = sectors;
648 } else {
649 sector_t good_sectors = first_bad - this_sector;
650 if (good_sectors > best_good_sectors) {
651 best_good_sectors = good_sectors;
652 best_disk = disk;
654 if (choose_first)
655 break;
657 continue;
658 } else {
659 if ((sectors > best_good_sectors) && (best_disk >= 0))
660 best_disk = -1;
661 best_good_sectors = sectors;
664 if (best_disk >= 0)
665 /* At least two disks to choose from so failfast is OK */
666 set_bit(R1BIO_FailFast, &r1_bio->state);
668 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
669 has_nonrot_disk |= nonrot;
670 pending = atomic_read(&rdev->nr_pending);
671 dist = abs(this_sector - conf->mirrors[disk].head_position);
672 if (choose_first) {
673 best_disk = disk;
674 break;
676 /* Don't change to another disk for sequential reads */
677 if (conf->mirrors[disk].next_seq_sect == this_sector
678 || dist == 0) {
679 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
680 struct raid1_info *mirror = &conf->mirrors[disk];
682 best_disk = disk;
684 * If buffered sequential IO size exceeds optimal
685 * iosize, check if there is idle disk. If yes, choose
686 * the idle disk. read_balance could already choose an
687 * idle disk before noticing it's a sequential IO in
688 * this disk. This doesn't matter because this disk
689 * will idle, next time it will be utilized after the
690 * first disk has IO size exceeds optimal iosize. In
691 * this way, iosize of the first disk will be optimal
692 * iosize at least. iosize of the second disk might be
693 * small, but not a big deal since when the second disk
694 * starts IO, the first disk is likely still busy.
696 if (nonrot && opt_iosize > 0 &&
697 mirror->seq_start != MaxSector &&
698 mirror->next_seq_sect > opt_iosize &&
699 mirror->next_seq_sect - opt_iosize >=
700 mirror->seq_start) {
701 choose_next_idle = 1;
702 continue;
704 break;
707 if (choose_next_idle)
708 continue;
710 if (min_pending > pending) {
711 min_pending = pending;
712 best_pending_disk = disk;
715 if (dist < best_dist) {
716 best_dist = dist;
717 best_dist_disk = disk;
722 * If all disks are rotational, choose the closest disk. If any disk is
723 * non-rotational, choose the disk with less pending request even the
724 * disk is rotational, which might/might not be optimal for raids with
725 * mixed ratation/non-rotational disks depending on workload.
727 if (best_disk == -1) {
728 if (has_nonrot_disk || min_pending == 0)
729 best_disk = best_pending_disk;
730 else
731 best_disk = best_dist_disk;
734 if (best_disk >= 0) {
735 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
736 if (!rdev)
737 goto retry;
738 atomic_inc(&rdev->nr_pending);
739 sectors = best_good_sectors;
741 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
742 conf->mirrors[best_disk].seq_start = this_sector;
744 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
746 rcu_read_unlock();
747 *max_sectors = sectors;
749 return best_disk;
752 static int raid1_congested(struct mddev *mddev, int bits)
754 struct r1conf *conf = mddev->private;
755 int i, ret = 0;
757 if ((bits & (1 << WB_async_congested)) &&
758 conf->pending_count >= max_queued_requests)
759 return 1;
761 rcu_read_lock();
762 for (i = 0; i < conf->raid_disks * 2; i++) {
763 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
764 if (rdev && !test_bit(Faulty, &rdev->flags)) {
765 struct request_queue *q = bdev_get_queue(rdev->bdev);
767 BUG_ON(!q);
769 /* Note the '|| 1' - when read_balance prefers
770 * non-congested targets, it can be removed
772 if ((bits & (1 << WB_async_congested)) || 1)
773 ret |= bdi_congested(q->backing_dev_info, bits);
774 else
775 ret &= bdi_congested(q->backing_dev_info, bits);
778 rcu_read_unlock();
779 return ret;
782 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
784 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
785 bitmap_unplug(conf->mddev->bitmap);
786 wake_up(&conf->wait_barrier);
788 while (bio) { /* submit pending writes */
789 struct bio *next = bio->bi_next;
790 struct md_rdev *rdev = (void *)bio->bi_disk;
791 bio->bi_next = NULL;
792 bio_set_dev(bio, rdev->bdev);
793 if (test_bit(Faulty, &rdev->flags)) {
794 bio_io_error(bio);
795 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
796 !blk_queue_discard(bio->bi_disk->queue)))
797 /* Just ignore it */
798 bio_endio(bio);
799 else
800 generic_make_request(bio);
801 bio = next;
805 static void flush_pending_writes(struct r1conf *conf)
807 /* Any writes that have been queued but are awaiting
808 * bitmap updates get flushed here.
810 spin_lock_irq(&conf->device_lock);
812 if (conf->pending_bio_list.head) {
813 struct bio *bio;
814 bio = bio_list_get(&conf->pending_bio_list);
815 conf->pending_count = 0;
816 spin_unlock_irq(&conf->device_lock);
817 flush_bio_list(conf, bio);
818 } else
819 spin_unlock_irq(&conf->device_lock);
822 /* Barriers....
823 * Sometimes we need to suspend IO while we do something else,
824 * either some resync/recovery, or reconfigure the array.
825 * To do this we raise a 'barrier'.
826 * The 'barrier' is a counter that can be raised multiple times
827 * to count how many activities are happening which preclude
828 * normal IO.
829 * We can only raise the barrier if there is no pending IO.
830 * i.e. if nr_pending == 0.
831 * We choose only to raise the barrier if no-one is waiting for the
832 * barrier to go down. This means that as soon as an IO request
833 * is ready, no other operations which require a barrier will start
834 * until the IO request has had a chance.
836 * So: regular IO calls 'wait_barrier'. When that returns there
837 * is no backgroup IO happening, It must arrange to call
838 * allow_barrier when it has finished its IO.
839 * backgroup IO calls must call raise_barrier. Once that returns
840 * there is no normal IO happeing. It must arrange to call
841 * lower_barrier when the particular background IO completes.
843 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
845 int idx = sector_to_idx(sector_nr);
847 spin_lock_irq(&conf->resync_lock);
849 /* Wait until no block IO is waiting */
850 wait_event_lock_irq(conf->wait_barrier,
851 !atomic_read(&conf->nr_waiting[idx]),
852 conf->resync_lock);
854 /* block any new IO from starting */
855 atomic_inc(&conf->barrier[idx]);
857 * In raise_barrier() we firstly increase conf->barrier[idx] then
858 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
859 * increase conf->nr_pending[idx] then check conf->barrier[idx].
860 * A memory barrier here to make sure conf->nr_pending[idx] won't
861 * be fetched before conf->barrier[idx] is increased. Otherwise
862 * there will be a race between raise_barrier() and _wait_barrier().
864 smp_mb__after_atomic();
866 /* For these conditions we must wait:
867 * A: while the array is in frozen state
868 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
869 * existing in corresponding I/O barrier bucket.
870 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
871 * max resync count which allowed on current I/O barrier bucket.
873 wait_event_lock_irq(conf->wait_barrier,
874 !conf->array_frozen &&
875 !atomic_read(&conf->nr_pending[idx]) &&
876 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
877 conf->resync_lock);
879 atomic_inc(&conf->nr_sync_pending);
880 spin_unlock_irq(&conf->resync_lock);
883 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
885 int idx = sector_to_idx(sector_nr);
887 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
889 atomic_dec(&conf->barrier[idx]);
890 atomic_dec(&conf->nr_sync_pending);
891 wake_up(&conf->wait_barrier);
894 static void _wait_barrier(struct r1conf *conf, int idx)
897 * We need to increase conf->nr_pending[idx] very early here,
898 * then raise_barrier() can be blocked when it waits for
899 * conf->nr_pending[idx] to be 0. Then we can avoid holding
900 * conf->resync_lock when there is no barrier raised in same
901 * barrier unit bucket. Also if the array is frozen, I/O
902 * should be blocked until array is unfrozen.
904 atomic_inc(&conf->nr_pending[idx]);
906 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
907 * check conf->barrier[idx]. In raise_barrier() we firstly increase
908 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
909 * barrier is necessary here to make sure conf->barrier[idx] won't be
910 * fetched before conf->nr_pending[idx] is increased. Otherwise there
911 * will be a race between _wait_barrier() and raise_barrier().
913 smp_mb__after_atomic();
916 * Don't worry about checking two atomic_t variables at same time
917 * here. If during we check conf->barrier[idx], the array is
918 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
919 * 0, it is safe to return and make the I/O continue. Because the
920 * array is frozen, all I/O returned here will eventually complete
921 * or be queued, no race will happen. See code comment in
922 * frozen_array().
924 if (!READ_ONCE(conf->array_frozen) &&
925 !atomic_read(&conf->barrier[idx]))
926 return;
929 * After holding conf->resync_lock, conf->nr_pending[idx]
930 * should be decreased before waiting for barrier to drop.
931 * Otherwise, we may encounter a race condition because
932 * raise_barrer() might be waiting for conf->nr_pending[idx]
933 * to be 0 at same time.
935 spin_lock_irq(&conf->resync_lock);
936 atomic_inc(&conf->nr_waiting[idx]);
937 atomic_dec(&conf->nr_pending[idx]);
939 * In case freeze_array() is waiting for
940 * get_unqueued_pending() == extra
942 wake_up(&conf->wait_barrier);
943 /* Wait for the barrier in same barrier unit bucket to drop. */
944 wait_event_lock_irq(conf->wait_barrier,
945 !conf->array_frozen &&
946 !atomic_read(&conf->barrier[idx]),
947 conf->resync_lock);
948 atomic_inc(&conf->nr_pending[idx]);
949 atomic_dec(&conf->nr_waiting[idx]);
950 spin_unlock_irq(&conf->resync_lock);
953 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
955 int idx = sector_to_idx(sector_nr);
958 * Very similar to _wait_barrier(). The difference is, for read
959 * I/O we don't need wait for sync I/O, but if the whole array
960 * is frozen, the read I/O still has to wait until the array is
961 * unfrozen. Since there is no ordering requirement with
962 * conf->barrier[idx] here, memory barrier is unnecessary as well.
964 atomic_inc(&conf->nr_pending[idx]);
966 if (!READ_ONCE(conf->array_frozen))
967 return;
969 spin_lock_irq(&conf->resync_lock);
970 atomic_inc(&conf->nr_waiting[idx]);
971 atomic_dec(&conf->nr_pending[idx]);
973 * In case freeze_array() is waiting for
974 * get_unqueued_pending() == extra
976 wake_up(&conf->wait_barrier);
977 /* Wait for array to be unfrozen */
978 wait_event_lock_irq(conf->wait_barrier,
979 !conf->array_frozen,
980 conf->resync_lock);
981 atomic_inc(&conf->nr_pending[idx]);
982 atomic_dec(&conf->nr_waiting[idx]);
983 spin_unlock_irq(&conf->resync_lock);
986 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
988 int idx = sector_to_idx(sector_nr);
990 _wait_barrier(conf, idx);
993 static void wait_all_barriers(struct r1conf *conf)
995 int idx;
997 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
998 _wait_barrier(conf, idx);
1001 static void _allow_barrier(struct r1conf *conf, int idx)
1003 atomic_dec(&conf->nr_pending[idx]);
1004 wake_up(&conf->wait_barrier);
1007 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1009 int idx = sector_to_idx(sector_nr);
1011 _allow_barrier(conf, idx);
1014 static void allow_all_barriers(struct r1conf *conf)
1016 int idx;
1018 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1019 _allow_barrier(conf, idx);
1022 /* conf->resync_lock should be held */
1023 static int get_unqueued_pending(struct r1conf *conf)
1025 int idx, ret;
1027 ret = atomic_read(&conf->nr_sync_pending);
1028 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1029 ret += atomic_read(&conf->nr_pending[idx]) -
1030 atomic_read(&conf->nr_queued[idx]);
1032 return ret;
1035 static void freeze_array(struct r1conf *conf, int extra)
1037 /* Stop sync I/O and normal I/O and wait for everything to
1038 * go quiet.
1039 * This is called in two situations:
1040 * 1) management command handlers (reshape, remove disk, quiesce).
1041 * 2) one normal I/O request failed.
1043 * After array_frozen is set to 1, new sync IO will be blocked at
1044 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1045 * or wait_read_barrier(). The flying I/Os will either complete or be
1046 * queued. When everything goes quite, there are only queued I/Os left.
1048 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1049 * barrier bucket index which this I/O request hits. When all sync and
1050 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1051 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1052 * in handle_read_error(), we may call freeze_array() before trying to
1053 * fix the read error. In this case, the error read I/O is not queued,
1054 * so get_unqueued_pending() == 1.
1056 * Therefore before this function returns, we need to wait until
1057 * get_unqueued_pendings(conf) gets equal to extra. For
1058 * normal I/O context, extra is 1, in rested situations extra is 0.
1060 spin_lock_irq(&conf->resync_lock);
1061 conf->array_frozen = 1;
1062 raid1_log(conf->mddev, "wait freeze");
1063 wait_event_lock_irq_cmd(
1064 conf->wait_barrier,
1065 get_unqueued_pending(conf) == extra,
1066 conf->resync_lock,
1067 flush_pending_writes(conf));
1068 spin_unlock_irq(&conf->resync_lock);
1070 static void unfreeze_array(struct r1conf *conf)
1072 /* reverse the effect of the freeze */
1073 spin_lock_irq(&conf->resync_lock);
1074 conf->array_frozen = 0;
1075 spin_unlock_irq(&conf->resync_lock);
1076 wake_up(&conf->wait_barrier);
1079 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1080 struct bio *bio)
1082 int size = bio->bi_iter.bi_size;
1083 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1084 int i = 0;
1085 struct bio *behind_bio = NULL;
1087 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1088 if (!behind_bio)
1089 return;
1091 /* discard op, we don't support writezero/writesame yet */
1092 if (!bio_has_data(bio)) {
1093 behind_bio->bi_iter.bi_size = size;
1094 goto skip_copy;
1097 while (i < vcnt && size) {
1098 struct page *page;
1099 int len = min_t(int, PAGE_SIZE, size);
1101 page = alloc_page(GFP_NOIO);
1102 if (unlikely(!page))
1103 goto free_pages;
1105 bio_add_page(behind_bio, page, len, 0);
1107 size -= len;
1108 i++;
1111 bio_copy_data(behind_bio, bio);
1112 skip_copy:
1113 r1_bio->behind_master_bio = behind_bio;;
1114 set_bit(R1BIO_BehindIO, &r1_bio->state);
1116 return;
1118 free_pages:
1119 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1120 bio->bi_iter.bi_size);
1121 bio_free_pages(behind_bio);
1122 bio_put(behind_bio);
1125 struct raid1_plug_cb {
1126 struct blk_plug_cb cb;
1127 struct bio_list pending;
1128 int pending_cnt;
1131 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1133 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1134 cb);
1135 struct mddev *mddev = plug->cb.data;
1136 struct r1conf *conf = mddev->private;
1137 struct bio *bio;
1139 if (from_schedule || current->bio_list) {
1140 spin_lock_irq(&conf->device_lock);
1141 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1142 conf->pending_count += plug->pending_cnt;
1143 spin_unlock_irq(&conf->device_lock);
1144 wake_up(&conf->wait_barrier);
1145 md_wakeup_thread(mddev->thread);
1146 kfree(plug);
1147 return;
1150 /* we aren't scheduling, so we can do the write-out directly. */
1151 bio = bio_list_get(&plug->pending);
1152 flush_bio_list(conf, bio);
1153 kfree(plug);
1156 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1158 r1_bio->master_bio = bio;
1159 r1_bio->sectors = bio_sectors(bio);
1160 r1_bio->state = 0;
1161 r1_bio->mddev = mddev;
1162 r1_bio->sector = bio->bi_iter.bi_sector;
1165 static inline struct r1bio *
1166 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1168 struct r1conf *conf = mddev->private;
1169 struct r1bio *r1_bio;
1171 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1172 /* Ensure no bio records IO_BLOCKED */
1173 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1174 init_r1bio(r1_bio, mddev, bio);
1175 return r1_bio;
1178 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1179 int max_read_sectors, struct r1bio *r1_bio)
1181 struct r1conf *conf = mddev->private;
1182 struct raid1_info *mirror;
1183 struct bio *read_bio;
1184 struct bitmap *bitmap = mddev->bitmap;
1185 const int op = bio_op(bio);
1186 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1187 int max_sectors;
1188 int rdisk;
1189 bool print_msg = !!r1_bio;
1190 char b[BDEVNAME_SIZE];
1193 * If r1_bio is set, we are blocking the raid1d thread
1194 * so there is a tiny risk of deadlock. So ask for
1195 * emergency memory if needed.
1197 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1199 if (print_msg) {
1200 /* Need to get the block device name carefully */
1201 struct md_rdev *rdev;
1202 rcu_read_lock();
1203 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1204 if (rdev)
1205 bdevname(rdev->bdev, b);
1206 else
1207 strcpy(b, "???");
1208 rcu_read_unlock();
1212 * Still need barrier for READ in case that whole
1213 * array is frozen.
1215 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1217 if (!r1_bio)
1218 r1_bio = alloc_r1bio(mddev, bio);
1219 else
1220 init_r1bio(r1_bio, mddev, bio);
1221 r1_bio->sectors = max_read_sectors;
1224 * make_request() can abort the operation when read-ahead is being
1225 * used and no empty request is available.
1227 rdisk = read_balance(conf, r1_bio, &max_sectors);
1229 if (rdisk < 0) {
1230 /* couldn't find anywhere to read from */
1231 if (print_msg) {
1232 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1233 mdname(mddev),
1235 (unsigned long long)r1_bio->sector);
1237 raid_end_bio_io(r1_bio);
1238 return;
1240 mirror = conf->mirrors + rdisk;
1242 if (print_msg)
1243 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1244 mdname(mddev),
1245 (unsigned long long)r1_bio->sector,
1246 bdevname(mirror->rdev->bdev, b));
1248 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1249 bitmap) {
1251 * Reading from a write-mostly device must take care not to
1252 * over-take any writes that are 'behind'
1254 raid1_log(mddev, "wait behind writes");
1255 wait_event(bitmap->behind_wait,
1256 atomic_read(&bitmap->behind_writes) == 0);
1259 if (max_sectors < bio_sectors(bio)) {
1260 struct bio *split = bio_split(bio, max_sectors,
1261 gfp, conf->bio_split);
1262 bio_chain(split, bio);
1263 generic_make_request(bio);
1264 bio = split;
1265 r1_bio->master_bio = bio;
1266 r1_bio->sectors = max_sectors;
1269 r1_bio->read_disk = rdisk;
1271 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1273 r1_bio->bios[rdisk] = read_bio;
1275 read_bio->bi_iter.bi_sector = r1_bio->sector +
1276 mirror->rdev->data_offset;
1277 bio_set_dev(read_bio, mirror->rdev->bdev);
1278 read_bio->bi_end_io = raid1_end_read_request;
1279 bio_set_op_attrs(read_bio, op, do_sync);
1280 if (test_bit(FailFast, &mirror->rdev->flags) &&
1281 test_bit(R1BIO_FailFast, &r1_bio->state))
1282 read_bio->bi_opf |= MD_FAILFAST;
1283 read_bio->bi_private = r1_bio;
1285 if (mddev->gendisk)
1286 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1287 disk_devt(mddev->gendisk), r1_bio->sector);
1289 generic_make_request(read_bio);
1292 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1293 int max_write_sectors)
1295 struct r1conf *conf = mddev->private;
1296 struct r1bio *r1_bio;
1297 int i, disks;
1298 struct bitmap *bitmap = mddev->bitmap;
1299 unsigned long flags;
1300 struct md_rdev *blocked_rdev;
1301 struct blk_plug_cb *cb;
1302 struct raid1_plug_cb *plug = NULL;
1303 int first_clone;
1304 int max_sectors;
1307 * Register the new request and wait if the reconstruction
1308 * thread has put up a bar for new requests.
1309 * Continue immediately if no resync is active currently.
1313 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1314 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1315 (mddev_is_clustered(mddev) &&
1316 md_cluster_ops->area_resyncing(mddev, WRITE,
1317 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1320 * As the suspend_* range is controlled by userspace, we want
1321 * an interruptible wait.
1323 DEFINE_WAIT(w);
1324 for (;;) {
1325 sigset_t full, old;
1326 prepare_to_wait(&conf->wait_barrier,
1327 &w, TASK_INTERRUPTIBLE);
1328 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1329 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1330 (mddev_is_clustered(mddev) &&
1331 !md_cluster_ops->area_resyncing(mddev, WRITE,
1332 bio->bi_iter.bi_sector,
1333 bio_end_sector(bio))))
1334 break;
1335 sigfillset(&full);
1336 sigprocmask(SIG_BLOCK, &full, &old);
1337 schedule();
1338 sigprocmask(SIG_SETMASK, &old, NULL);
1340 finish_wait(&conf->wait_barrier, &w);
1342 wait_barrier(conf, bio->bi_iter.bi_sector);
1344 r1_bio = alloc_r1bio(mddev, bio);
1345 r1_bio->sectors = max_write_sectors;
1347 if (conf->pending_count >= max_queued_requests) {
1348 md_wakeup_thread(mddev->thread);
1349 raid1_log(mddev, "wait queued");
1350 wait_event(conf->wait_barrier,
1351 conf->pending_count < max_queued_requests);
1353 /* first select target devices under rcu_lock and
1354 * inc refcount on their rdev. Record them by setting
1355 * bios[x] to bio
1356 * If there are known/acknowledged bad blocks on any device on
1357 * which we have seen a write error, we want to avoid writing those
1358 * blocks.
1359 * This potentially requires several writes to write around
1360 * the bad blocks. Each set of writes gets it's own r1bio
1361 * with a set of bios attached.
1364 disks = conf->raid_disks * 2;
1365 retry_write:
1366 blocked_rdev = NULL;
1367 rcu_read_lock();
1368 max_sectors = r1_bio->sectors;
1369 for (i = 0; i < disks; i++) {
1370 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1371 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372 atomic_inc(&rdev->nr_pending);
1373 blocked_rdev = rdev;
1374 break;
1376 r1_bio->bios[i] = NULL;
1377 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1378 if (i < conf->raid_disks)
1379 set_bit(R1BIO_Degraded, &r1_bio->state);
1380 continue;
1383 atomic_inc(&rdev->nr_pending);
1384 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1385 sector_t first_bad;
1386 int bad_sectors;
1387 int is_bad;
1389 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1390 &first_bad, &bad_sectors);
1391 if (is_bad < 0) {
1392 /* mustn't write here until the bad block is
1393 * acknowledged*/
1394 set_bit(BlockedBadBlocks, &rdev->flags);
1395 blocked_rdev = rdev;
1396 break;
1398 if (is_bad && first_bad <= r1_bio->sector) {
1399 /* Cannot write here at all */
1400 bad_sectors -= (r1_bio->sector - first_bad);
1401 if (bad_sectors < max_sectors)
1402 /* mustn't write more than bad_sectors
1403 * to other devices yet
1405 max_sectors = bad_sectors;
1406 rdev_dec_pending(rdev, mddev);
1407 /* We don't set R1BIO_Degraded as that
1408 * only applies if the disk is
1409 * missing, so it might be re-added,
1410 * and we want to know to recover this
1411 * chunk.
1412 * In this case the device is here,
1413 * and the fact that this chunk is not
1414 * in-sync is recorded in the bad
1415 * block log
1417 continue;
1419 if (is_bad) {
1420 int good_sectors = first_bad - r1_bio->sector;
1421 if (good_sectors < max_sectors)
1422 max_sectors = good_sectors;
1425 r1_bio->bios[i] = bio;
1427 rcu_read_unlock();
1429 if (unlikely(blocked_rdev)) {
1430 /* Wait for this device to become unblocked */
1431 int j;
1433 for (j = 0; j < i; j++)
1434 if (r1_bio->bios[j])
1435 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1436 r1_bio->state = 0;
1437 allow_barrier(conf, bio->bi_iter.bi_sector);
1438 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1439 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1440 wait_barrier(conf, bio->bi_iter.bi_sector);
1441 goto retry_write;
1444 if (max_sectors < bio_sectors(bio)) {
1445 struct bio *split = bio_split(bio, max_sectors,
1446 GFP_NOIO, conf->bio_split);
1447 bio_chain(split, bio);
1448 generic_make_request(bio);
1449 bio = split;
1450 r1_bio->master_bio = bio;
1451 r1_bio->sectors = max_sectors;
1454 atomic_set(&r1_bio->remaining, 1);
1455 atomic_set(&r1_bio->behind_remaining, 0);
1457 first_clone = 1;
1459 for (i = 0; i < disks; i++) {
1460 struct bio *mbio = NULL;
1461 if (!r1_bio->bios[i])
1462 continue;
1465 if (first_clone) {
1466 /* do behind I/O ?
1467 * Not if there are too many, or cannot
1468 * allocate memory, or a reader on WriteMostly
1469 * is waiting for behind writes to flush */
1470 if (bitmap &&
1471 (atomic_read(&bitmap->behind_writes)
1472 < mddev->bitmap_info.max_write_behind) &&
1473 !waitqueue_active(&bitmap->behind_wait)) {
1474 alloc_behind_master_bio(r1_bio, bio);
1477 bitmap_startwrite(bitmap, r1_bio->sector,
1478 r1_bio->sectors,
1479 test_bit(R1BIO_BehindIO,
1480 &r1_bio->state));
1481 first_clone = 0;
1484 if (r1_bio->behind_master_bio)
1485 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1486 GFP_NOIO, mddev->bio_set);
1487 else
1488 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1490 if (r1_bio->behind_master_bio) {
1491 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1492 atomic_inc(&r1_bio->behind_remaining);
1495 r1_bio->bios[i] = mbio;
1497 mbio->bi_iter.bi_sector = (r1_bio->sector +
1498 conf->mirrors[i].rdev->data_offset);
1499 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1500 mbio->bi_end_io = raid1_end_write_request;
1501 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1502 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1503 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1504 conf->raid_disks - mddev->degraded > 1)
1505 mbio->bi_opf |= MD_FAILFAST;
1506 mbio->bi_private = r1_bio;
1508 atomic_inc(&r1_bio->remaining);
1510 if (mddev->gendisk)
1511 trace_block_bio_remap(mbio->bi_disk->queue,
1512 mbio, disk_devt(mddev->gendisk),
1513 r1_bio->sector);
1514 /* flush_pending_writes() needs access to the rdev so...*/
1515 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1517 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1518 if (cb)
1519 plug = container_of(cb, struct raid1_plug_cb, cb);
1520 else
1521 plug = NULL;
1522 if (plug) {
1523 bio_list_add(&plug->pending, mbio);
1524 plug->pending_cnt++;
1525 } else {
1526 spin_lock_irqsave(&conf->device_lock, flags);
1527 bio_list_add(&conf->pending_bio_list, mbio);
1528 conf->pending_count++;
1529 spin_unlock_irqrestore(&conf->device_lock, flags);
1530 md_wakeup_thread(mddev->thread);
1534 r1_bio_write_done(r1_bio);
1536 /* In case raid1d snuck in to freeze_array */
1537 wake_up(&conf->wait_barrier);
1540 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1542 sector_t sectors;
1544 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1545 md_flush_request(mddev, bio);
1546 return true;
1550 * There is a limit to the maximum size, but
1551 * the read/write handler might find a lower limit
1552 * due to bad blocks. To avoid multiple splits,
1553 * we pass the maximum number of sectors down
1554 * and let the lower level perform the split.
1556 sectors = align_to_barrier_unit_end(
1557 bio->bi_iter.bi_sector, bio_sectors(bio));
1559 if (bio_data_dir(bio) == READ)
1560 raid1_read_request(mddev, bio, sectors, NULL);
1561 else {
1562 if (!md_write_start(mddev,bio))
1563 return false;
1564 raid1_write_request(mddev, bio, sectors);
1566 return true;
1569 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1571 struct r1conf *conf = mddev->private;
1572 int i;
1574 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1575 conf->raid_disks - mddev->degraded);
1576 rcu_read_lock();
1577 for (i = 0; i < conf->raid_disks; i++) {
1578 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1579 seq_printf(seq, "%s",
1580 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1582 rcu_read_unlock();
1583 seq_printf(seq, "]");
1586 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1588 char b[BDEVNAME_SIZE];
1589 struct r1conf *conf = mddev->private;
1590 unsigned long flags;
1593 * If it is not operational, then we have already marked it as dead
1594 * else if it is the last working disks, ignore the error, let the
1595 * next level up know.
1596 * else mark the drive as failed
1598 spin_lock_irqsave(&conf->device_lock, flags);
1599 if (test_bit(In_sync, &rdev->flags)
1600 && (conf->raid_disks - mddev->degraded) == 1) {
1602 * Don't fail the drive, act as though we were just a
1603 * normal single drive.
1604 * However don't try a recovery from this drive as
1605 * it is very likely to fail.
1607 conf->recovery_disabled = mddev->recovery_disabled;
1608 spin_unlock_irqrestore(&conf->device_lock, flags);
1609 return;
1611 set_bit(Blocked, &rdev->flags);
1612 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1613 mddev->degraded++;
1614 set_bit(Faulty, &rdev->flags);
1615 } else
1616 set_bit(Faulty, &rdev->flags);
1617 spin_unlock_irqrestore(&conf->device_lock, flags);
1619 * if recovery is running, make sure it aborts.
1621 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1622 set_mask_bits(&mddev->sb_flags, 0,
1623 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1624 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1625 "md/raid1:%s: Operation continuing on %d devices.\n",
1626 mdname(mddev), bdevname(rdev->bdev, b),
1627 mdname(mddev), conf->raid_disks - mddev->degraded);
1630 static void print_conf(struct r1conf *conf)
1632 int i;
1634 pr_debug("RAID1 conf printout:\n");
1635 if (!conf) {
1636 pr_debug("(!conf)\n");
1637 return;
1639 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1640 conf->raid_disks);
1642 rcu_read_lock();
1643 for (i = 0; i < conf->raid_disks; i++) {
1644 char b[BDEVNAME_SIZE];
1645 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1646 if (rdev)
1647 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1648 i, !test_bit(In_sync, &rdev->flags),
1649 !test_bit(Faulty, &rdev->flags),
1650 bdevname(rdev->bdev,b));
1652 rcu_read_unlock();
1655 static void close_sync(struct r1conf *conf)
1657 wait_all_barriers(conf);
1658 allow_all_barriers(conf);
1660 mempool_destroy(conf->r1buf_pool);
1661 conf->r1buf_pool = NULL;
1664 static int raid1_spare_active(struct mddev *mddev)
1666 int i;
1667 struct r1conf *conf = mddev->private;
1668 int count = 0;
1669 unsigned long flags;
1672 * Find all failed disks within the RAID1 configuration
1673 * and mark them readable.
1674 * Called under mddev lock, so rcu protection not needed.
1675 * device_lock used to avoid races with raid1_end_read_request
1676 * which expects 'In_sync' flags and ->degraded to be consistent.
1678 spin_lock_irqsave(&conf->device_lock, flags);
1679 for (i = 0; i < conf->raid_disks; i++) {
1680 struct md_rdev *rdev = conf->mirrors[i].rdev;
1681 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682 if (repl
1683 && !test_bit(Candidate, &repl->flags)
1684 && repl->recovery_offset == MaxSector
1685 && !test_bit(Faulty, &repl->flags)
1686 && !test_and_set_bit(In_sync, &repl->flags)) {
1687 /* replacement has just become active */
1688 if (!rdev ||
1689 !test_and_clear_bit(In_sync, &rdev->flags))
1690 count++;
1691 if (rdev) {
1692 /* Replaced device not technically
1693 * faulty, but we need to be sure
1694 * it gets removed and never re-added
1696 set_bit(Faulty, &rdev->flags);
1697 sysfs_notify_dirent_safe(
1698 rdev->sysfs_state);
1701 if (rdev
1702 && rdev->recovery_offset == MaxSector
1703 && !test_bit(Faulty, &rdev->flags)
1704 && !test_and_set_bit(In_sync, &rdev->flags)) {
1705 count++;
1706 sysfs_notify_dirent_safe(rdev->sysfs_state);
1709 mddev->degraded -= count;
1710 spin_unlock_irqrestore(&conf->device_lock, flags);
1712 print_conf(conf);
1713 return count;
1716 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1718 struct r1conf *conf = mddev->private;
1719 int err = -EEXIST;
1720 int mirror = 0;
1721 struct raid1_info *p;
1722 int first = 0;
1723 int last = conf->raid_disks - 1;
1725 if (mddev->recovery_disabled == conf->recovery_disabled)
1726 return -EBUSY;
1728 if (md_integrity_add_rdev(rdev, mddev))
1729 return -ENXIO;
1731 if (rdev->raid_disk >= 0)
1732 first = last = rdev->raid_disk;
1735 * find the disk ... but prefer rdev->saved_raid_disk
1736 * if possible.
1738 if (rdev->saved_raid_disk >= 0 &&
1739 rdev->saved_raid_disk >= first &&
1740 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741 first = last = rdev->saved_raid_disk;
1743 for (mirror = first; mirror <= last; mirror++) {
1744 p = conf->mirrors+mirror;
1745 if (!p->rdev) {
1747 if (mddev->gendisk)
1748 disk_stack_limits(mddev->gendisk, rdev->bdev,
1749 rdev->data_offset << 9);
1751 p->head_position = 0;
1752 rdev->raid_disk = mirror;
1753 err = 0;
1754 /* As all devices are equivalent, we don't need a full recovery
1755 * if this was recently any drive of the array
1757 if (rdev->saved_raid_disk < 0)
1758 conf->fullsync = 1;
1759 rcu_assign_pointer(p->rdev, rdev);
1760 break;
1762 if (test_bit(WantReplacement, &p->rdev->flags) &&
1763 p[conf->raid_disks].rdev == NULL) {
1764 /* Add this device as a replacement */
1765 clear_bit(In_sync, &rdev->flags);
1766 set_bit(Replacement, &rdev->flags);
1767 rdev->raid_disk = mirror;
1768 err = 0;
1769 conf->fullsync = 1;
1770 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771 break;
1774 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1775 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1776 print_conf(conf);
1777 return err;
1780 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1782 struct r1conf *conf = mddev->private;
1783 int err = 0;
1784 int number = rdev->raid_disk;
1785 struct raid1_info *p = conf->mirrors + number;
1787 if (rdev != p->rdev)
1788 p = conf->mirrors + conf->raid_disks + number;
1790 print_conf(conf);
1791 if (rdev == p->rdev) {
1792 if (test_bit(In_sync, &rdev->flags) ||
1793 atomic_read(&rdev->nr_pending)) {
1794 err = -EBUSY;
1795 goto abort;
1797 /* Only remove non-faulty devices if recovery
1798 * is not possible.
1800 if (!test_bit(Faulty, &rdev->flags) &&
1801 mddev->recovery_disabled != conf->recovery_disabled &&
1802 mddev->degraded < conf->raid_disks) {
1803 err = -EBUSY;
1804 goto abort;
1806 p->rdev = NULL;
1807 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808 synchronize_rcu();
1809 if (atomic_read(&rdev->nr_pending)) {
1810 /* lost the race, try later */
1811 err = -EBUSY;
1812 p->rdev = rdev;
1813 goto abort;
1816 if (conf->mirrors[conf->raid_disks + number].rdev) {
1817 /* We just removed a device that is being replaced.
1818 * Move down the replacement. We drain all IO before
1819 * doing this to avoid confusion.
1821 struct md_rdev *repl =
1822 conf->mirrors[conf->raid_disks + number].rdev;
1823 freeze_array(conf, 0);
1824 clear_bit(Replacement, &repl->flags);
1825 p->rdev = repl;
1826 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1827 unfreeze_array(conf);
1830 clear_bit(WantReplacement, &rdev->flags);
1831 err = md_integrity_register(mddev);
1833 abort:
1835 print_conf(conf);
1836 return err;
1839 static void end_sync_read(struct bio *bio)
1841 struct r1bio *r1_bio = get_resync_r1bio(bio);
1843 update_head_pos(r1_bio->read_disk, r1_bio);
1846 * we have read a block, now it needs to be re-written,
1847 * or re-read if the read failed.
1848 * We don't do much here, just schedule handling by raid1d
1850 if (!bio->bi_status)
1851 set_bit(R1BIO_Uptodate, &r1_bio->state);
1853 if (atomic_dec_and_test(&r1_bio->remaining))
1854 reschedule_retry(r1_bio);
1857 static void end_sync_write(struct bio *bio)
1859 int uptodate = !bio->bi_status;
1860 struct r1bio *r1_bio = get_resync_r1bio(bio);
1861 struct mddev *mddev = r1_bio->mddev;
1862 struct r1conf *conf = mddev->private;
1863 sector_t first_bad;
1864 int bad_sectors;
1865 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1867 if (!uptodate) {
1868 sector_t sync_blocks = 0;
1869 sector_t s = r1_bio->sector;
1870 long sectors_to_go = r1_bio->sectors;
1871 /* make sure these bits doesn't get cleared. */
1872 do {
1873 bitmap_end_sync(mddev->bitmap, s,
1874 &sync_blocks, 1);
1875 s += sync_blocks;
1876 sectors_to_go -= sync_blocks;
1877 } while (sectors_to_go > 0);
1878 set_bit(WriteErrorSeen, &rdev->flags);
1879 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1880 set_bit(MD_RECOVERY_NEEDED, &
1881 mddev->recovery);
1882 set_bit(R1BIO_WriteError, &r1_bio->state);
1883 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1884 &first_bad, &bad_sectors) &&
1885 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1886 r1_bio->sector,
1887 r1_bio->sectors,
1888 &first_bad, &bad_sectors)
1890 set_bit(R1BIO_MadeGood, &r1_bio->state);
1892 if (atomic_dec_and_test(&r1_bio->remaining)) {
1893 int s = r1_bio->sectors;
1894 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1895 test_bit(R1BIO_WriteError, &r1_bio->state))
1896 reschedule_retry(r1_bio);
1897 else {
1898 put_buf(r1_bio);
1899 md_done_sync(mddev, s, uptodate);
1904 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1905 int sectors, struct page *page, int rw)
1907 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1908 /* success */
1909 return 1;
1910 if (rw == WRITE) {
1911 set_bit(WriteErrorSeen, &rdev->flags);
1912 if (!test_and_set_bit(WantReplacement,
1913 &rdev->flags))
1914 set_bit(MD_RECOVERY_NEEDED, &
1915 rdev->mddev->recovery);
1917 /* need to record an error - either for the block or the device */
1918 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1919 md_error(rdev->mddev, rdev);
1920 return 0;
1923 static int fix_sync_read_error(struct r1bio *r1_bio)
1925 /* Try some synchronous reads of other devices to get
1926 * good data, much like with normal read errors. Only
1927 * read into the pages we already have so we don't
1928 * need to re-issue the read request.
1929 * We don't need to freeze the array, because being in an
1930 * active sync request, there is no normal IO, and
1931 * no overlapping syncs.
1932 * We don't need to check is_badblock() again as we
1933 * made sure that anything with a bad block in range
1934 * will have bi_end_io clear.
1936 struct mddev *mddev = r1_bio->mddev;
1937 struct r1conf *conf = mddev->private;
1938 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1939 struct page **pages = get_resync_pages(bio)->pages;
1940 sector_t sect = r1_bio->sector;
1941 int sectors = r1_bio->sectors;
1942 int idx = 0;
1943 struct md_rdev *rdev;
1945 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1946 if (test_bit(FailFast, &rdev->flags)) {
1947 /* Don't try recovering from here - just fail it
1948 * ... unless it is the last working device of course */
1949 md_error(mddev, rdev);
1950 if (test_bit(Faulty, &rdev->flags))
1951 /* Don't try to read from here, but make sure
1952 * put_buf does it's thing
1954 bio->bi_end_io = end_sync_write;
1957 while(sectors) {
1958 int s = sectors;
1959 int d = r1_bio->read_disk;
1960 int success = 0;
1961 int start;
1963 if (s > (PAGE_SIZE>>9))
1964 s = PAGE_SIZE >> 9;
1965 do {
1966 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1967 /* No rcu protection needed here devices
1968 * can only be removed when no resync is
1969 * active, and resync is currently active
1971 rdev = conf->mirrors[d].rdev;
1972 if (sync_page_io(rdev, sect, s<<9,
1973 pages[idx],
1974 REQ_OP_READ, 0, false)) {
1975 success = 1;
1976 break;
1979 d++;
1980 if (d == conf->raid_disks * 2)
1981 d = 0;
1982 } while (!success && d != r1_bio->read_disk);
1984 if (!success) {
1985 char b[BDEVNAME_SIZE];
1986 int abort = 0;
1987 /* Cannot read from anywhere, this block is lost.
1988 * Record a bad block on each device. If that doesn't
1989 * work just disable and interrupt the recovery.
1990 * Don't fail devices as that won't really help.
1992 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1993 mdname(mddev), bio_devname(bio, b),
1994 (unsigned long long)r1_bio->sector);
1995 for (d = 0; d < conf->raid_disks * 2; d++) {
1996 rdev = conf->mirrors[d].rdev;
1997 if (!rdev || test_bit(Faulty, &rdev->flags))
1998 continue;
1999 if (!rdev_set_badblocks(rdev, sect, s, 0))
2000 abort = 1;
2002 if (abort) {
2003 conf->recovery_disabled =
2004 mddev->recovery_disabled;
2005 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2006 md_done_sync(mddev, r1_bio->sectors, 0);
2007 put_buf(r1_bio);
2008 return 0;
2010 /* Try next page */
2011 sectors -= s;
2012 sect += s;
2013 idx++;
2014 continue;
2017 start = d;
2018 /* write it back and re-read */
2019 while (d != r1_bio->read_disk) {
2020 if (d == 0)
2021 d = conf->raid_disks * 2;
2022 d--;
2023 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2024 continue;
2025 rdev = conf->mirrors[d].rdev;
2026 if (r1_sync_page_io(rdev, sect, s,
2027 pages[idx],
2028 WRITE) == 0) {
2029 r1_bio->bios[d]->bi_end_io = NULL;
2030 rdev_dec_pending(rdev, mddev);
2033 d = start;
2034 while (d != r1_bio->read_disk) {
2035 if (d == 0)
2036 d = conf->raid_disks * 2;
2037 d--;
2038 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2039 continue;
2040 rdev = conf->mirrors[d].rdev;
2041 if (r1_sync_page_io(rdev, sect, s,
2042 pages[idx],
2043 READ) != 0)
2044 atomic_add(s, &rdev->corrected_errors);
2046 sectors -= s;
2047 sect += s;
2048 idx ++;
2050 set_bit(R1BIO_Uptodate, &r1_bio->state);
2051 bio->bi_status = 0;
2052 return 1;
2055 static void process_checks(struct r1bio *r1_bio)
2057 /* We have read all readable devices. If we haven't
2058 * got the block, then there is no hope left.
2059 * If we have, then we want to do a comparison
2060 * and skip the write if everything is the same.
2061 * If any blocks failed to read, then we need to
2062 * attempt an over-write
2064 struct mddev *mddev = r1_bio->mddev;
2065 struct r1conf *conf = mddev->private;
2066 int primary;
2067 int i;
2068 int vcnt;
2070 /* Fix variable parts of all bios */
2071 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2072 for (i = 0; i < conf->raid_disks * 2; i++) {
2073 blk_status_t status;
2074 struct bio *b = r1_bio->bios[i];
2075 struct resync_pages *rp = get_resync_pages(b);
2076 if (b->bi_end_io != end_sync_read)
2077 continue;
2078 /* fixup the bio for reuse, but preserve errno */
2079 status = b->bi_status;
2080 bio_reset(b);
2081 b->bi_status = status;
2082 b->bi_iter.bi_sector = r1_bio->sector +
2083 conf->mirrors[i].rdev->data_offset;
2084 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2085 b->bi_end_io = end_sync_read;
2086 rp->raid_bio = r1_bio;
2087 b->bi_private = rp;
2089 /* initialize bvec table again */
2090 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2092 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2093 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2094 !r1_bio->bios[primary]->bi_status) {
2095 r1_bio->bios[primary]->bi_end_io = NULL;
2096 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2097 break;
2099 r1_bio->read_disk = primary;
2100 for (i = 0; i < conf->raid_disks * 2; i++) {
2101 int j;
2102 struct bio *pbio = r1_bio->bios[primary];
2103 struct bio *sbio = r1_bio->bios[i];
2104 blk_status_t status = sbio->bi_status;
2105 struct page **ppages = get_resync_pages(pbio)->pages;
2106 struct page **spages = get_resync_pages(sbio)->pages;
2107 struct bio_vec *bi;
2108 int page_len[RESYNC_PAGES] = { 0 };
2110 if (sbio->bi_end_io != end_sync_read)
2111 continue;
2112 /* Now we can 'fixup' the error value */
2113 sbio->bi_status = 0;
2115 bio_for_each_segment_all(bi, sbio, j)
2116 page_len[j] = bi->bv_len;
2118 if (!status) {
2119 for (j = vcnt; j-- ; ) {
2120 if (memcmp(page_address(ppages[j]),
2121 page_address(spages[j]),
2122 page_len[j]))
2123 break;
2125 } else
2126 j = 0;
2127 if (j >= 0)
2128 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2129 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2130 && !status)) {
2131 /* No need to write to this device. */
2132 sbio->bi_end_io = NULL;
2133 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2134 continue;
2137 bio_copy_data(sbio, pbio);
2141 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2143 struct r1conf *conf = mddev->private;
2144 int i;
2145 int disks = conf->raid_disks * 2;
2146 struct bio *wbio;
2148 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2149 /* ouch - failed to read all of that. */
2150 if (!fix_sync_read_error(r1_bio))
2151 return;
2153 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2154 process_checks(r1_bio);
2157 * schedule writes
2159 atomic_set(&r1_bio->remaining, 1);
2160 for (i = 0; i < disks ; i++) {
2161 wbio = r1_bio->bios[i];
2162 if (wbio->bi_end_io == NULL ||
2163 (wbio->bi_end_io == end_sync_read &&
2164 (i == r1_bio->read_disk ||
2165 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2166 continue;
2167 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2168 continue;
2170 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2171 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2172 wbio->bi_opf |= MD_FAILFAST;
2174 wbio->bi_end_io = end_sync_write;
2175 atomic_inc(&r1_bio->remaining);
2176 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2178 generic_make_request(wbio);
2181 if (atomic_dec_and_test(&r1_bio->remaining)) {
2182 /* if we're here, all write(s) have completed, so clean up */
2183 int s = r1_bio->sectors;
2184 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2185 test_bit(R1BIO_WriteError, &r1_bio->state))
2186 reschedule_retry(r1_bio);
2187 else {
2188 put_buf(r1_bio);
2189 md_done_sync(mddev, s, 1);
2195 * This is a kernel thread which:
2197 * 1. Retries failed read operations on working mirrors.
2198 * 2. Updates the raid superblock when problems encounter.
2199 * 3. Performs writes following reads for array synchronising.
2202 static void fix_read_error(struct r1conf *conf, int read_disk,
2203 sector_t sect, int sectors)
2205 struct mddev *mddev = conf->mddev;
2206 while(sectors) {
2207 int s = sectors;
2208 int d = read_disk;
2209 int success = 0;
2210 int start;
2211 struct md_rdev *rdev;
2213 if (s > (PAGE_SIZE>>9))
2214 s = PAGE_SIZE >> 9;
2216 do {
2217 sector_t first_bad;
2218 int bad_sectors;
2220 rcu_read_lock();
2221 rdev = rcu_dereference(conf->mirrors[d].rdev);
2222 if (rdev &&
2223 (test_bit(In_sync, &rdev->flags) ||
2224 (!test_bit(Faulty, &rdev->flags) &&
2225 rdev->recovery_offset >= sect + s)) &&
2226 is_badblock(rdev, sect, s,
2227 &first_bad, &bad_sectors) == 0) {
2228 atomic_inc(&rdev->nr_pending);
2229 rcu_read_unlock();
2230 if (sync_page_io(rdev, sect, s<<9,
2231 conf->tmppage, REQ_OP_READ, 0, false))
2232 success = 1;
2233 rdev_dec_pending(rdev, mddev);
2234 if (success)
2235 break;
2236 } else
2237 rcu_read_unlock();
2238 d++;
2239 if (d == conf->raid_disks * 2)
2240 d = 0;
2241 } while (!success && d != read_disk);
2243 if (!success) {
2244 /* Cannot read from anywhere - mark it bad */
2245 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2246 if (!rdev_set_badblocks(rdev, sect, s, 0))
2247 md_error(mddev, rdev);
2248 break;
2250 /* write it back and re-read */
2251 start = d;
2252 while (d != read_disk) {
2253 if (d==0)
2254 d = conf->raid_disks * 2;
2255 d--;
2256 rcu_read_lock();
2257 rdev = rcu_dereference(conf->mirrors[d].rdev);
2258 if (rdev &&
2259 !test_bit(Faulty, &rdev->flags)) {
2260 atomic_inc(&rdev->nr_pending);
2261 rcu_read_unlock();
2262 r1_sync_page_io(rdev, sect, s,
2263 conf->tmppage, WRITE);
2264 rdev_dec_pending(rdev, mddev);
2265 } else
2266 rcu_read_unlock();
2268 d = start;
2269 while (d != read_disk) {
2270 char b[BDEVNAME_SIZE];
2271 if (d==0)
2272 d = conf->raid_disks * 2;
2273 d--;
2274 rcu_read_lock();
2275 rdev = rcu_dereference(conf->mirrors[d].rdev);
2276 if (rdev &&
2277 !test_bit(Faulty, &rdev->flags)) {
2278 atomic_inc(&rdev->nr_pending);
2279 rcu_read_unlock();
2280 if (r1_sync_page_io(rdev, sect, s,
2281 conf->tmppage, READ)) {
2282 atomic_add(s, &rdev->corrected_errors);
2283 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2284 mdname(mddev), s,
2285 (unsigned long long)(sect +
2286 rdev->data_offset),
2287 bdevname(rdev->bdev, b));
2289 rdev_dec_pending(rdev, mddev);
2290 } else
2291 rcu_read_unlock();
2293 sectors -= s;
2294 sect += s;
2298 static int narrow_write_error(struct r1bio *r1_bio, int i)
2300 struct mddev *mddev = r1_bio->mddev;
2301 struct r1conf *conf = mddev->private;
2302 struct md_rdev *rdev = conf->mirrors[i].rdev;
2304 /* bio has the data to be written to device 'i' where
2305 * we just recently had a write error.
2306 * We repeatedly clone the bio and trim down to one block,
2307 * then try the write. Where the write fails we record
2308 * a bad block.
2309 * It is conceivable that the bio doesn't exactly align with
2310 * blocks. We must handle this somehow.
2312 * We currently own a reference on the rdev.
2315 int block_sectors;
2316 sector_t sector;
2317 int sectors;
2318 int sect_to_write = r1_bio->sectors;
2319 int ok = 1;
2321 if (rdev->badblocks.shift < 0)
2322 return 0;
2324 block_sectors = roundup(1 << rdev->badblocks.shift,
2325 bdev_logical_block_size(rdev->bdev) >> 9);
2326 sector = r1_bio->sector;
2327 sectors = ((sector + block_sectors)
2328 & ~(sector_t)(block_sectors - 1))
2329 - sector;
2331 while (sect_to_write) {
2332 struct bio *wbio;
2333 if (sectors > sect_to_write)
2334 sectors = sect_to_write;
2335 /* Write at 'sector' for 'sectors'*/
2337 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2338 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2339 GFP_NOIO,
2340 mddev->bio_set);
2341 } else {
2342 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2343 mddev->bio_set);
2346 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2347 wbio->bi_iter.bi_sector = r1_bio->sector;
2348 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2350 bio_trim(wbio, sector - r1_bio->sector, sectors);
2351 wbio->bi_iter.bi_sector += rdev->data_offset;
2352 bio_set_dev(wbio, rdev->bdev);
2354 if (submit_bio_wait(wbio) < 0)
2355 /* failure! */
2356 ok = rdev_set_badblocks(rdev, sector,
2357 sectors, 0)
2358 && ok;
2360 bio_put(wbio);
2361 sect_to_write -= sectors;
2362 sector += sectors;
2363 sectors = block_sectors;
2365 return ok;
2368 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2370 int m;
2371 int s = r1_bio->sectors;
2372 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2373 struct md_rdev *rdev = conf->mirrors[m].rdev;
2374 struct bio *bio = r1_bio->bios[m];
2375 if (bio->bi_end_io == NULL)
2376 continue;
2377 if (!bio->bi_status &&
2378 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2379 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2381 if (bio->bi_status &&
2382 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2383 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2384 md_error(conf->mddev, rdev);
2387 put_buf(r1_bio);
2388 md_done_sync(conf->mddev, s, 1);
2391 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2393 int m, idx;
2394 bool fail = false;
2396 for (m = 0; m < conf->raid_disks * 2 ; m++)
2397 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2398 struct md_rdev *rdev = conf->mirrors[m].rdev;
2399 rdev_clear_badblocks(rdev,
2400 r1_bio->sector,
2401 r1_bio->sectors, 0);
2402 rdev_dec_pending(rdev, conf->mddev);
2403 } else if (r1_bio->bios[m] != NULL) {
2404 /* This drive got a write error. We need to
2405 * narrow down and record precise write
2406 * errors.
2408 fail = true;
2409 if (!narrow_write_error(r1_bio, m)) {
2410 md_error(conf->mddev,
2411 conf->mirrors[m].rdev);
2412 /* an I/O failed, we can't clear the bitmap */
2413 set_bit(R1BIO_Degraded, &r1_bio->state);
2415 rdev_dec_pending(conf->mirrors[m].rdev,
2416 conf->mddev);
2418 if (fail) {
2419 spin_lock_irq(&conf->device_lock);
2420 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2421 idx = sector_to_idx(r1_bio->sector);
2422 atomic_inc(&conf->nr_queued[idx]);
2423 spin_unlock_irq(&conf->device_lock);
2425 * In case freeze_array() is waiting for condition
2426 * get_unqueued_pending() == extra to be true.
2428 wake_up(&conf->wait_barrier);
2429 md_wakeup_thread(conf->mddev->thread);
2430 } else {
2431 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2432 close_write(r1_bio);
2433 raid_end_bio_io(r1_bio);
2437 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2439 struct mddev *mddev = conf->mddev;
2440 struct bio *bio;
2441 struct md_rdev *rdev;
2442 sector_t bio_sector;
2444 clear_bit(R1BIO_ReadError, &r1_bio->state);
2445 /* we got a read error. Maybe the drive is bad. Maybe just
2446 * the block and we can fix it.
2447 * We freeze all other IO, and try reading the block from
2448 * other devices. When we find one, we re-write
2449 * and check it that fixes the read error.
2450 * This is all done synchronously while the array is
2451 * frozen
2454 bio = r1_bio->bios[r1_bio->read_disk];
2455 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2456 bio_put(bio);
2457 r1_bio->bios[r1_bio->read_disk] = NULL;
2459 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2460 if (mddev->ro == 0
2461 && !test_bit(FailFast, &rdev->flags)) {
2462 freeze_array(conf, 1);
2463 fix_read_error(conf, r1_bio->read_disk,
2464 r1_bio->sector, r1_bio->sectors);
2465 unfreeze_array(conf);
2466 } else {
2467 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2470 rdev_dec_pending(rdev, conf->mddev);
2471 allow_barrier(conf, r1_bio->sector);
2472 bio = r1_bio->master_bio;
2474 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2475 r1_bio->state = 0;
2476 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2479 static void raid1d(struct md_thread *thread)
2481 struct mddev *mddev = thread->mddev;
2482 struct r1bio *r1_bio;
2483 unsigned long flags;
2484 struct r1conf *conf = mddev->private;
2485 struct list_head *head = &conf->retry_list;
2486 struct blk_plug plug;
2487 int idx;
2489 md_check_recovery(mddev);
2491 if (!list_empty_careful(&conf->bio_end_io_list) &&
2492 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2493 LIST_HEAD(tmp);
2494 spin_lock_irqsave(&conf->device_lock, flags);
2495 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2496 list_splice_init(&conf->bio_end_io_list, &tmp);
2497 spin_unlock_irqrestore(&conf->device_lock, flags);
2498 while (!list_empty(&tmp)) {
2499 r1_bio = list_first_entry(&tmp, struct r1bio,
2500 retry_list);
2501 list_del(&r1_bio->retry_list);
2502 idx = sector_to_idx(r1_bio->sector);
2503 atomic_dec(&conf->nr_queued[idx]);
2504 if (mddev->degraded)
2505 set_bit(R1BIO_Degraded, &r1_bio->state);
2506 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2507 close_write(r1_bio);
2508 raid_end_bio_io(r1_bio);
2512 blk_start_plug(&plug);
2513 for (;;) {
2515 flush_pending_writes(conf);
2517 spin_lock_irqsave(&conf->device_lock, flags);
2518 if (list_empty(head)) {
2519 spin_unlock_irqrestore(&conf->device_lock, flags);
2520 break;
2522 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2523 list_del(head->prev);
2524 idx = sector_to_idx(r1_bio->sector);
2525 atomic_dec(&conf->nr_queued[idx]);
2526 spin_unlock_irqrestore(&conf->device_lock, flags);
2528 mddev = r1_bio->mddev;
2529 conf = mddev->private;
2530 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2531 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2532 test_bit(R1BIO_WriteError, &r1_bio->state))
2533 handle_sync_write_finished(conf, r1_bio);
2534 else
2535 sync_request_write(mddev, r1_bio);
2536 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2537 test_bit(R1BIO_WriteError, &r1_bio->state))
2538 handle_write_finished(conf, r1_bio);
2539 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2540 handle_read_error(conf, r1_bio);
2541 else
2542 WARN_ON_ONCE(1);
2544 cond_resched();
2545 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2546 md_check_recovery(mddev);
2548 blk_finish_plug(&plug);
2551 static int init_resync(struct r1conf *conf)
2553 int buffs;
2555 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2556 BUG_ON(conf->r1buf_pool);
2557 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2558 conf->poolinfo);
2559 if (!conf->r1buf_pool)
2560 return -ENOMEM;
2561 return 0;
2564 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2566 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2567 struct resync_pages *rps;
2568 struct bio *bio;
2569 int i;
2571 for (i = conf->poolinfo->raid_disks; i--; ) {
2572 bio = r1bio->bios[i];
2573 rps = bio->bi_private;
2574 bio_reset(bio);
2575 bio->bi_private = rps;
2577 r1bio->master_bio = NULL;
2578 return r1bio;
2582 * perform a "sync" on one "block"
2584 * We need to make sure that no normal I/O request - particularly write
2585 * requests - conflict with active sync requests.
2587 * This is achieved by tracking pending requests and a 'barrier' concept
2588 * that can be installed to exclude normal IO requests.
2591 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2592 int *skipped)
2594 struct r1conf *conf = mddev->private;
2595 struct r1bio *r1_bio;
2596 struct bio *bio;
2597 sector_t max_sector, nr_sectors;
2598 int disk = -1;
2599 int i;
2600 int wonly = -1;
2601 int write_targets = 0, read_targets = 0;
2602 sector_t sync_blocks;
2603 int still_degraded = 0;
2604 int good_sectors = RESYNC_SECTORS;
2605 int min_bad = 0; /* number of sectors that are bad in all devices */
2606 int idx = sector_to_idx(sector_nr);
2607 int page_idx = 0;
2609 if (!conf->r1buf_pool)
2610 if (init_resync(conf))
2611 return 0;
2613 max_sector = mddev->dev_sectors;
2614 if (sector_nr >= max_sector) {
2615 /* If we aborted, we need to abort the
2616 * sync on the 'current' bitmap chunk (there will
2617 * only be one in raid1 resync.
2618 * We can find the current addess in mddev->curr_resync
2620 if (mddev->curr_resync < max_sector) /* aborted */
2621 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2622 &sync_blocks, 1);
2623 else /* completed sync */
2624 conf->fullsync = 0;
2626 bitmap_close_sync(mddev->bitmap);
2627 close_sync(conf);
2629 if (mddev_is_clustered(mddev)) {
2630 conf->cluster_sync_low = 0;
2631 conf->cluster_sync_high = 0;
2633 return 0;
2636 if (mddev->bitmap == NULL &&
2637 mddev->recovery_cp == MaxSector &&
2638 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2639 conf->fullsync == 0) {
2640 *skipped = 1;
2641 return max_sector - sector_nr;
2643 /* before building a request, check if we can skip these blocks..
2644 * This call the bitmap_start_sync doesn't actually record anything
2646 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2647 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2648 /* We can skip this block, and probably several more */
2649 *skipped = 1;
2650 return sync_blocks;
2654 * If there is non-resync activity waiting for a turn, then let it
2655 * though before starting on this new sync request.
2657 if (atomic_read(&conf->nr_waiting[idx]))
2658 schedule_timeout_uninterruptible(1);
2660 /* we are incrementing sector_nr below. To be safe, we check against
2661 * sector_nr + two times RESYNC_SECTORS
2664 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2665 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2666 r1_bio = raid1_alloc_init_r1buf(conf);
2668 raise_barrier(conf, sector_nr);
2670 rcu_read_lock();
2672 * If we get a correctably read error during resync or recovery,
2673 * we might want to read from a different device. So we
2674 * flag all drives that could conceivably be read from for READ,
2675 * and any others (which will be non-In_sync devices) for WRITE.
2676 * If a read fails, we try reading from something else for which READ
2677 * is OK.
2680 r1_bio->mddev = mddev;
2681 r1_bio->sector = sector_nr;
2682 r1_bio->state = 0;
2683 set_bit(R1BIO_IsSync, &r1_bio->state);
2684 /* make sure good_sectors won't go across barrier unit boundary */
2685 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2687 for (i = 0; i < conf->raid_disks * 2; i++) {
2688 struct md_rdev *rdev;
2689 bio = r1_bio->bios[i];
2691 rdev = rcu_dereference(conf->mirrors[i].rdev);
2692 if (rdev == NULL ||
2693 test_bit(Faulty, &rdev->flags)) {
2694 if (i < conf->raid_disks)
2695 still_degraded = 1;
2696 } else if (!test_bit(In_sync, &rdev->flags)) {
2697 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2698 bio->bi_end_io = end_sync_write;
2699 write_targets ++;
2700 } else {
2701 /* may need to read from here */
2702 sector_t first_bad = MaxSector;
2703 int bad_sectors;
2705 if (is_badblock(rdev, sector_nr, good_sectors,
2706 &first_bad, &bad_sectors)) {
2707 if (first_bad > sector_nr)
2708 good_sectors = first_bad - sector_nr;
2709 else {
2710 bad_sectors -= (sector_nr - first_bad);
2711 if (min_bad == 0 ||
2712 min_bad > bad_sectors)
2713 min_bad = bad_sectors;
2716 if (sector_nr < first_bad) {
2717 if (test_bit(WriteMostly, &rdev->flags)) {
2718 if (wonly < 0)
2719 wonly = i;
2720 } else {
2721 if (disk < 0)
2722 disk = i;
2724 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2725 bio->bi_end_io = end_sync_read;
2726 read_targets++;
2727 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2728 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2729 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2731 * The device is suitable for reading (InSync),
2732 * but has bad block(s) here. Let's try to correct them,
2733 * if we are doing resync or repair. Otherwise, leave
2734 * this device alone for this sync request.
2736 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2737 bio->bi_end_io = end_sync_write;
2738 write_targets++;
2741 if (bio->bi_end_io) {
2742 atomic_inc(&rdev->nr_pending);
2743 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2744 bio_set_dev(bio, rdev->bdev);
2745 if (test_bit(FailFast, &rdev->flags))
2746 bio->bi_opf |= MD_FAILFAST;
2749 rcu_read_unlock();
2750 if (disk < 0)
2751 disk = wonly;
2752 r1_bio->read_disk = disk;
2754 if (read_targets == 0 && min_bad > 0) {
2755 /* These sectors are bad on all InSync devices, so we
2756 * need to mark them bad on all write targets
2758 int ok = 1;
2759 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2760 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2761 struct md_rdev *rdev = conf->mirrors[i].rdev;
2762 ok = rdev_set_badblocks(rdev, sector_nr,
2763 min_bad, 0
2764 ) && ok;
2766 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2767 *skipped = 1;
2768 put_buf(r1_bio);
2770 if (!ok) {
2771 /* Cannot record the badblocks, so need to
2772 * abort the resync.
2773 * If there are multiple read targets, could just
2774 * fail the really bad ones ???
2776 conf->recovery_disabled = mddev->recovery_disabled;
2777 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2778 return 0;
2779 } else
2780 return min_bad;
2783 if (min_bad > 0 && min_bad < good_sectors) {
2784 /* only resync enough to reach the next bad->good
2785 * transition */
2786 good_sectors = min_bad;
2789 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2790 /* extra read targets are also write targets */
2791 write_targets += read_targets-1;
2793 if (write_targets == 0 || read_targets == 0) {
2794 /* There is nowhere to write, so all non-sync
2795 * drives must be failed - so we are finished
2797 sector_t rv;
2798 if (min_bad > 0)
2799 max_sector = sector_nr + min_bad;
2800 rv = max_sector - sector_nr;
2801 *skipped = 1;
2802 put_buf(r1_bio);
2803 return rv;
2806 if (max_sector > mddev->resync_max)
2807 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2808 if (max_sector > sector_nr + good_sectors)
2809 max_sector = sector_nr + good_sectors;
2810 nr_sectors = 0;
2811 sync_blocks = 0;
2812 do {
2813 struct page *page;
2814 int len = PAGE_SIZE;
2815 if (sector_nr + (len>>9) > max_sector)
2816 len = (max_sector - sector_nr) << 9;
2817 if (len == 0)
2818 break;
2819 if (sync_blocks == 0) {
2820 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2821 &sync_blocks, still_degraded) &&
2822 !conf->fullsync &&
2823 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2824 break;
2825 if ((len >> 9) > sync_blocks)
2826 len = sync_blocks<<9;
2829 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2830 struct resync_pages *rp;
2832 bio = r1_bio->bios[i];
2833 rp = get_resync_pages(bio);
2834 if (bio->bi_end_io) {
2835 page = resync_fetch_page(rp, page_idx);
2838 * won't fail because the vec table is big
2839 * enough to hold all these pages
2841 bio_add_page(bio, page, len, 0);
2844 nr_sectors += len>>9;
2845 sector_nr += len>>9;
2846 sync_blocks -= (len>>9);
2847 } while (++page_idx < RESYNC_PAGES);
2849 r1_bio->sectors = nr_sectors;
2851 if (mddev_is_clustered(mddev) &&
2852 conf->cluster_sync_high < sector_nr + nr_sectors) {
2853 conf->cluster_sync_low = mddev->curr_resync_completed;
2854 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2855 /* Send resync message */
2856 md_cluster_ops->resync_info_update(mddev,
2857 conf->cluster_sync_low,
2858 conf->cluster_sync_high);
2861 /* For a user-requested sync, we read all readable devices and do a
2862 * compare
2864 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2865 atomic_set(&r1_bio->remaining, read_targets);
2866 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2867 bio = r1_bio->bios[i];
2868 if (bio->bi_end_io == end_sync_read) {
2869 read_targets--;
2870 md_sync_acct_bio(bio, nr_sectors);
2871 if (read_targets == 1)
2872 bio->bi_opf &= ~MD_FAILFAST;
2873 generic_make_request(bio);
2876 } else {
2877 atomic_set(&r1_bio->remaining, 1);
2878 bio = r1_bio->bios[r1_bio->read_disk];
2879 md_sync_acct_bio(bio, nr_sectors);
2880 if (read_targets == 1)
2881 bio->bi_opf &= ~MD_FAILFAST;
2882 generic_make_request(bio);
2885 return nr_sectors;
2888 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2890 if (sectors)
2891 return sectors;
2893 return mddev->dev_sectors;
2896 static struct r1conf *setup_conf(struct mddev *mddev)
2898 struct r1conf *conf;
2899 int i;
2900 struct raid1_info *disk;
2901 struct md_rdev *rdev;
2902 int err = -ENOMEM;
2904 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2905 if (!conf)
2906 goto abort;
2908 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2909 sizeof(atomic_t), GFP_KERNEL);
2910 if (!conf->nr_pending)
2911 goto abort;
2913 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2914 sizeof(atomic_t), GFP_KERNEL);
2915 if (!conf->nr_waiting)
2916 goto abort;
2918 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2919 sizeof(atomic_t), GFP_KERNEL);
2920 if (!conf->nr_queued)
2921 goto abort;
2923 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2924 sizeof(atomic_t), GFP_KERNEL);
2925 if (!conf->barrier)
2926 goto abort;
2928 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2929 * mddev->raid_disks * 2,
2930 GFP_KERNEL);
2931 if (!conf->mirrors)
2932 goto abort;
2934 conf->tmppage = alloc_page(GFP_KERNEL);
2935 if (!conf->tmppage)
2936 goto abort;
2938 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2939 if (!conf->poolinfo)
2940 goto abort;
2941 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2942 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2943 r1bio_pool_free,
2944 conf->poolinfo);
2945 if (!conf->r1bio_pool)
2946 goto abort;
2948 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2949 if (!conf->bio_split)
2950 goto abort;
2952 conf->poolinfo->mddev = mddev;
2954 err = -EINVAL;
2955 spin_lock_init(&conf->device_lock);
2956 rdev_for_each(rdev, mddev) {
2957 int disk_idx = rdev->raid_disk;
2958 if (disk_idx >= mddev->raid_disks
2959 || disk_idx < 0)
2960 continue;
2961 if (test_bit(Replacement, &rdev->flags))
2962 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2963 else
2964 disk = conf->mirrors + disk_idx;
2966 if (disk->rdev)
2967 goto abort;
2968 disk->rdev = rdev;
2969 disk->head_position = 0;
2970 disk->seq_start = MaxSector;
2972 conf->raid_disks = mddev->raid_disks;
2973 conf->mddev = mddev;
2974 INIT_LIST_HEAD(&conf->retry_list);
2975 INIT_LIST_HEAD(&conf->bio_end_io_list);
2977 spin_lock_init(&conf->resync_lock);
2978 init_waitqueue_head(&conf->wait_barrier);
2980 bio_list_init(&conf->pending_bio_list);
2981 conf->pending_count = 0;
2982 conf->recovery_disabled = mddev->recovery_disabled - 1;
2984 err = -EIO;
2985 for (i = 0; i < conf->raid_disks * 2; i++) {
2987 disk = conf->mirrors + i;
2989 if (i < conf->raid_disks &&
2990 disk[conf->raid_disks].rdev) {
2991 /* This slot has a replacement. */
2992 if (!disk->rdev) {
2993 /* No original, just make the replacement
2994 * a recovering spare
2996 disk->rdev =
2997 disk[conf->raid_disks].rdev;
2998 disk[conf->raid_disks].rdev = NULL;
2999 } else if (!test_bit(In_sync, &disk->rdev->flags))
3000 /* Original is not in_sync - bad */
3001 goto abort;
3004 if (!disk->rdev ||
3005 !test_bit(In_sync, &disk->rdev->flags)) {
3006 disk->head_position = 0;
3007 if (disk->rdev &&
3008 (disk->rdev->saved_raid_disk < 0))
3009 conf->fullsync = 1;
3013 err = -ENOMEM;
3014 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3015 if (!conf->thread)
3016 goto abort;
3018 return conf;
3020 abort:
3021 if (conf) {
3022 mempool_destroy(conf->r1bio_pool);
3023 kfree(conf->mirrors);
3024 safe_put_page(conf->tmppage);
3025 kfree(conf->poolinfo);
3026 kfree(conf->nr_pending);
3027 kfree(conf->nr_waiting);
3028 kfree(conf->nr_queued);
3029 kfree(conf->barrier);
3030 if (conf->bio_split)
3031 bioset_free(conf->bio_split);
3032 kfree(conf);
3034 return ERR_PTR(err);
3037 static void raid1_free(struct mddev *mddev, void *priv);
3038 static int raid1_run(struct mddev *mddev)
3040 struct r1conf *conf;
3041 int i;
3042 struct md_rdev *rdev;
3043 int ret;
3044 bool discard_supported = false;
3046 if (mddev->level != 1) {
3047 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3048 mdname(mddev), mddev->level);
3049 return -EIO;
3051 if (mddev->reshape_position != MaxSector) {
3052 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3053 mdname(mddev));
3054 return -EIO;
3056 if (mddev_init_writes_pending(mddev) < 0)
3057 return -ENOMEM;
3059 * copy the already verified devices into our private RAID1
3060 * bookkeeping area. [whatever we allocate in run(),
3061 * should be freed in raid1_free()]
3063 if (mddev->private == NULL)
3064 conf = setup_conf(mddev);
3065 else
3066 conf = mddev->private;
3068 if (IS_ERR(conf))
3069 return PTR_ERR(conf);
3071 if (mddev->queue) {
3072 blk_queue_max_write_same_sectors(mddev->queue, 0);
3073 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3076 rdev_for_each(rdev, mddev) {
3077 if (!mddev->gendisk)
3078 continue;
3079 disk_stack_limits(mddev->gendisk, rdev->bdev,
3080 rdev->data_offset << 9);
3081 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3082 discard_supported = true;
3085 mddev->degraded = 0;
3086 for (i=0; i < conf->raid_disks; i++)
3087 if (conf->mirrors[i].rdev == NULL ||
3088 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3089 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3090 mddev->degraded++;
3092 if (conf->raid_disks - mddev->degraded == 1)
3093 mddev->recovery_cp = MaxSector;
3095 if (mddev->recovery_cp != MaxSector)
3096 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3097 mdname(mddev));
3098 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3099 mdname(mddev), mddev->raid_disks - mddev->degraded,
3100 mddev->raid_disks);
3103 * Ok, everything is just fine now
3105 mddev->thread = conf->thread;
3106 conf->thread = NULL;
3107 mddev->private = conf;
3108 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3110 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3112 if (mddev->queue) {
3113 if (discard_supported)
3114 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3115 mddev->queue);
3116 else
3117 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3118 mddev->queue);
3121 ret = md_integrity_register(mddev);
3122 if (ret) {
3123 md_unregister_thread(&mddev->thread);
3124 raid1_free(mddev, conf);
3126 return ret;
3129 static void raid1_free(struct mddev *mddev, void *priv)
3131 struct r1conf *conf = priv;
3133 mempool_destroy(conf->r1bio_pool);
3134 kfree(conf->mirrors);
3135 safe_put_page(conf->tmppage);
3136 kfree(conf->poolinfo);
3137 kfree(conf->nr_pending);
3138 kfree(conf->nr_waiting);
3139 kfree(conf->nr_queued);
3140 kfree(conf->barrier);
3141 if (conf->bio_split)
3142 bioset_free(conf->bio_split);
3143 kfree(conf);
3146 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3148 /* no resync is happening, and there is enough space
3149 * on all devices, so we can resize.
3150 * We need to make sure resync covers any new space.
3151 * If the array is shrinking we should possibly wait until
3152 * any io in the removed space completes, but it hardly seems
3153 * worth it.
3155 sector_t newsize = raid1_size(mddev, sectors, 0);
3156 if (mddev->external_size &&
3157 mddev->array_sectors > newsize)
3158 return -EINVAL;
3159 if (mddev->bitmap) {
3160 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3161 if (ret)
3162 return ret;
3164 md_set_array_sectors(mddev, newsize);
3165 if (sectors > mddev->dev_sectors &&
3166 mddev->recovery_cp > mddev->dev_sectors) {
3167 mddev->recovery_cp = mddev->dev_sectors;
3168 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3170 mddev->dev_sectors = sectors;
3171 mddev->resync_max_sectors = sectors;
3172 return 0;
3175 static int raid1_reshape(struct mddev *mddev)
3177 /* We need to:
3178 * 1/ resize the r1bio_pool
3179 * 2/ resize conf->mirrors
3181 * We allocate a new r1bio_pool if we can.
3182 * Then raise a device barrier and wait until all IO stops.
3183 * Then resize conf->mirrors and swap in the new r1bio pool.
3185 * At the same time, we "pack" the devices so that all the missing
3186 * devices have the higher raid_disk numbers.
3188 mempool_t *newpool, *oldpool;
3189 struct pool_info *newpoolinfo;
3190 struct raid1_info *newmirrors;
3191 struct r1conf *conf = mddev->private;
3192 int cnt, raid_disks;
3193 unsigned long flags;
3194 int d, d2;
3196 /* Cannot change chunk_size, layout, or level */
3197 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3198 mddev->layout != mddev->new_layout ||
3199 mddev->level != mddev->new_level) {
3200 mddev->new_chunk_sectors = mddev->chunk_sectors;
3201 mddev->new_layout = mddev->layout;
3202 mddev->new_level = mddev->level;
3203 return -EINVAL;
3206 if (!mddev_is_clustered(mddev))
3207 md_allow_write(mddev);
3209 raid_disks = mddev->raid_disks + mddev->delta_disks;
3211 if (raid_disks < conf->raid_disks) {
3212 cnt=0;
3213 for (d= 0; d < conf->raid_disks; d++)
3214 if (conf->mirrors[d].rdev)
3215 cnt++;
3216 if (cnt > raid_disks)
3217 return -EBUSY;
3220 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3221 if (!newpoolinfo)
3222 return -ENOMEM;
3223 newpoolinfo->mddev = mddev;
3224 newpoolinfo->raid_disks = raid_disks * 2;
3226 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3227 r1bio_pool_free, newpoolinfo);
3228 if (!newpool) {
3229 kfree(newpoolinfo);
3230 return -ENOMEM;
3232 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3233 GFP_KERNEL);
3234 if (!newmirrors) {
3235 kfree(newpoolinfo);
3236 mempool_destroy(newpool);
3237 return -ENOMEM;
3240 freeze_array(conf, 0);
3242 /* ok, everything is stopped */
3243 oldpool = conf->r1bio_pool;
3244 conf->r1bio_pool = newpool;
3246 for (d = d2 = 0; d < conf->raid_disks; d++) {
3247 struct md_rdev *rdev = conf->mirrors[d].rdev;
3248 if (rdev && rdev->raid_disk != d2) {
3249 sysfs_unlink_rdev(mddev, rdev);
3250 rdev->raid_disk = d2;
3251 sysfs_unlink_rdev(mddev, rdev);
3252 if (sysfs_link_rdev(mddev, rdev))
3253 pr_warn("md/raid1:%s: cannot register rd%d\n",
3254 mdname(mddev), rdev->raid_disk);
3256 if (rdev)
3257 newmirrors[d2++].rdev = rdev;
3259 kfree(conf->mirrors);
3260 conf->mirrors = newmirrors;
3261 kfree(conf->poolinfo);
3262 conf->poolinfo = newpoolinfo;
3264 spin_lock_irqsave(&conf->device_lock, flags);
3265 mddev->degraded += (raid_disks - conf->raid_disks);
3266 spin_unlock_irqrestore(&conf->device_lock, flags);
3267 conf->raid_disks = mddev->raid_disks = raid_disks;
3268 mddev->delta_disks = 0;
3270 unfreeze_array(conf);
3272 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3273 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3274 md_wakeup_thread(mddev->thread);
3276 mempool_destroy(oldpool);
3277 return 0;
3280 static void raid1_quiesce(struct mddev *mddev, int state)
3282 struct r1conf *conf = mddev->private;
3284 switch(state) {
3285 case 2: /* wake for suspend */
3286 wake_up(&conf->wait_barrier);
3287 break;
3288 case 1:
3289 freeze_array(conf, 0);
3290 break;
3291 case 0:
3292 unfreeze_array(conf);
3293 break;
3297 static void *raid1_takeover(struct mddev *mddev)
3299 /* raid1 can take over:
3300 * raid5 with 2 devices, any layout or chunk size
3302 if (mddev->level == 5 && mddev->raid_disks == 2) {
3303 struct r1conf *conf;
3304 mddev->new_level = 1;
3305 mddev->new_layout = 0;
3306 mddev->new_chunk_sectors = 0;
3307 conf = setup_conf(mddev);
3308 if (!IS_ERR(conf)) {
3309 /* Array must appear to be quiesced */
3310 conf->array_frozen = 1;
3311 mddev_clear_unsupported_flags(mddev,
3312 UNSUPPORTED_MDDEV_FLAGS);
3314 return conf;
3316 return ERR_PTR(-EINVAL);
3319 static struct md_personality raid1_personality =
3321 .name = "raid1",
3322 .level = 1,
3323 .owner = THIS_MODULE,
3324 .make_request = raid1_make_request,
3325 .run = raid1_run,
3326 .free = raid1_free,
3327 .status = raid1_status,
3328 .error_handler = raid1_error,
3329 .hot_add_disk = raid1_add_disk,
3330 .hot_remove_disk= raid1_remove_disk,
3331 .spare_active = raid1_spare_active,
3332 .sync_request = raid1_sync_request,
3333 .resize = raid1_resize,
3334 .size = raid1_size,
3335 .check_reshape = raid1_reshape,
3336 .quiesce = raid1_quiesce,
3337 .takeover = raid1_takeover,
3338 .congested = raid1_congested,
3341 static int __init raid_init(void)
3343 return register_md_personality(&raid1_personality);
3346 static void raid_exit(void)
3348 unregister_md_personality(&raid1_personality);
3351 module_init(raid_init);
3352 module_exit(raid_exit);
3353 MODULE_LICENSE("GPL");
3354 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3355 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3356 MODULE_ALIAS("md-raid1");
3357 MODULE_ALIAS("md-level-1");
3359 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);