2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
23 * Inode locking rules:
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_lru_lock
53 static unsigned int i_hash_mask __read_mostly
;
54 static unsigned int i_hash_shift __read_mostly
;
55 static struct hlist_head
*inode_hashtable __read_mostly
;
56 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
58 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_sb_list_lock
);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops
= {
66 EXPORT_SYMBOL(empty_aops
);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat
;
73 static DEFINE_PER_CPU(unsigned int, nr_inodes
);
74 static DEFINE_PER_CPU(unsigned int, nr_unused
);
76 static struct kmem_cache
*inode_cachep __read_mostly
;
78 static int get_nr_inodes(void)
82 for_each_possible_cpu(i
)
83 sum
+= per_cpu(nr_inodes
, i
);
84 return sum
< 0 ? 0 : sum
;
87 static inline int get_nr_inodes_unused(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_unused
, i
);
93 return sum
< 0 ? 0 : sum
;
96 int get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty
> 0 ? nr_dirty
: 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(ctl_table
*table
, int write
,
108 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
110 inodes_stat
.nr_inodes
= get_nr_inodes();
111 inodes_stat
.nr_unused
= get_nr_inodes_unused();
112 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
124 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
126 static const struct inode_operations empty_iops
;
127 static const struct file_operations empty_fops
;
128 struct address_space
*const mapping
= &inode
->i_data
;
131 inode
->i_blkbits
= sb
->s_blocksize_bits
;
133 atomic_set(&inode
->i_count
, 1);
134 inode
->i_op
= &empty_iops
;
135 inode
->i_fop
= &empty_fops
;
136 inode
->__i_nlink
= 1;
137 inode
->i_opflags
= 0;
138 i_uid_write(inode
, 0);
139 i_gid_write(inode
, 0);
140 atomic_set(&inode
->i_writecount
, 0);
144 inode
->i_generation
= 0;
146 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
148 inode
->i_pipe
= NULL
;
149 inode
->i_bdev
= NULL
;
150 inode
->i_cdev
= NULL
;
152 inode
->dirtied_when
= 0;
154 if (security_inode_alloc(inode
))
156 spin_lock_init(&inode
->i_lock
);
157 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
159 mutex_init(&inode
->i_mutex
);
160 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
162 atomic_set(&inode
->i_dio_count
, 0);
164 mapping
->a_ops
= &empty_aops
;
165 mapping
->host
= inode
;
167 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
168 mapping
->assoc_mapping
= NULL
;
169 mapping
->backing_dev_info
= &default_backing_dev_info
;
170 mapping
->writeback_index
= 0;
173 * If the block_device provides a backing_dev_info for client
174 * inodes then use that. Otherwise the inode share the bdev's
178 struct backing_dev_info
*bdi
;
180 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
181 mapping
->backing_dev_info
= bdi
;
183 inode
->i_private
= NULL
;
184 inode
->i_mapping
= mapping
;
185 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
190 #ifdef CONFIG_FSNOTIFY
191 inode
->i_fsnotify_mask
= 0;
194 this_cpu_inc(nr_inodes
);
200 EXPORT_SYMBOL(inode_init_always
);
202 static struct inode
*alloc_inode(struct super_block
*sb
)
206 if (sb
->s_op
->alloc_inode
)
207 inode
= sb
->s_op
->alloc_inode(sb
);
209 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
214 if (unlikely(inode_init_always(sb
, inode
))) {
215 if (inode
->i_sb
->s_op
->destroy_inode
)
216 inode
->i_sb
->s_op
->destroy_inode(inode
);
218 kmem_cache_free(inode_cachep
, inode
);
225 void free_inode_nonrcu(struct inode
*inode
)
227 kmem_cache_free(inode_cachep
, inode
);
229 EXPORT_SYMBOL(free_inode_nonrcu
);
231 void __destroy_inode(struct inode
*inode
)
233 BUG_ON(inode_has_buffers(inode
));
234 security_inode_free(inode
);
235 fsnotify_inode_delete(inode
);
236 if (!inode
->i_nlink
) {
237 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
238 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
243 posix_acl_release(inode
->i_acl
);
244 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
245 posix_acl_release(inode
->i_default_acl
);
247 this_cpu_dec(nr_inodes
);
249 EXPORT_SYMBOL(__destroy_inode
);
251 static void i_callback(struct rcu_head
*head
)
253 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
254 kmem_cache_free(inode_cachep
, inode
);
257 static void destroy_inode(struct inode
*inode
)
259 BUG_ON(!list_empty(&inode
->i_lru
));
260 __destroy_inode(inode
);
261 if (inode
->i_sb
->s_op
->destroy_inode
)
262 inode
->i_sb
->s_op
->destroy_inode(inode
);
264 call_rcu(&inode
->i_rcu
, i_callback
);
268 * drop_nlink - directly drop an inode's link count
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
278 void drop_nlink(struct inode
*inode
)
280 WARN_ON(inode
->i_nlink
== 0);
283 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
285 EXPORT_SYMBOL(drop_nlink
);
288 * clear_nlink - directly zero an inode's link count
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
295 void clear_nlink(struct inode
*inode
)
297 if (inode
->i_nlink
) {
298 inode
->__i_nlink
= 0;
299 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
302 EXPORT_SYMBOL(clear_nlink
);
305 * set_nlink - directly set an inode's link count
307 * @nlink: new nlink (should be non-zero)
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
312 void set_nlink(struct inode
*inode
, unsigned int nlink
)
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode
->i_nlink
== 0)
319 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
321 inode
->__i_nlink
= nlink
;
324 EXPORT_SYMBOL(set_nlink
);
327 * inc_nlink - directly increment an inode's link count
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
334 void inc_nlink(struct inode
*inode
)
336 if (WARN_ON(inode
->i_nlink
== 0))
337 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
341 EXPORT_SYMBOL(inc_nlink
);
343 void address_space_init_once(struct address_space
*mapping
)
345 memset(mapping
, 0, sizeof(*mapping
));
346 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
347 spin_lock_init(&mapping
->tree_lock
);
348 mutex_init(&mapping
->i_mmap_mutex
);
349 INIT_LIST_HEAD(&mapping
->private_list
);
350 spin_lock_init(&mapping
->private_lock
);
351 INIT_RAW_PRIO_TREE_ROOT(&mapping
->i_mmap
);
352 INIT_LIST_HEAD(&mapping
->i_mmap_nonlinear
);
354 EXPORT_SYMBOL(address_space_init_once
);
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
361 void inode_init_once(struct inode
*inode
)
363 memset(inode
, 0, sizeof(*inode
));
364 INIT_HLIST_NODE(&inode
->i_hash
);
365 INIT_LIST_HEAD(&inode
->i_devices
);
366 INIT_LIST_HEAD(&inode
->i_wb_list
);
367 INIT_LIST_HEAD(&inode
->i_lru
);
368 address_space_init_once(&inode
->i_data
);
369 i_size_ordered_init(inode
);
370 #ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
374 EXPORT_SYMBOL(inode_init_once
);
376 static void init_once(void *foo
)
378 struct inode
*inode
= (struct inode
*) foo
;
380 inode_init_once(inode
);
384 * inode->i_lock must be held
386 void __iget(struct inode
*inode
)
388 atomic_inc(&inode
->i_count
);
392 * get additional reference to inode; caller must already hold one.
394 void ihold(struct inode
*inode
)
396 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
398 EXPORT_SYMBOL(ihold
);
400 static void inode_lru_list_add(struct inode
*inode
)
402 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
403 if (list_empty(&inode
->i_lru
)) {
404 list_add(&inode
->i_lru
, &inode
->i_sb
->s_inode_lru
);
405 inode
->i_sb
->s_nr_inodes_unused
++;
406 this_cpu_inc(nr_unused
);
408 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
411 static void inode_lru_list_del(struct inode
*inode
)
413 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
414 if (!list_empty(&inode
->i_lru
)) {
415 list_del_init(&inode
->i_lru
);
416 inode
->i_sb
->s_nr_inodes_unused
--;
417 this_cpu_dec(nr_unused
);
419 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
423 * inode_sb_list_add - add inode to the superblock list of inodes
424 * @inode: inode to add
426 void inode_sb_list_add(struct inode
*inode
)
428 spin_lock(&inode_sb_list_lock
);
429 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
430 spin_unlock(&inode_sb_list_lock
);
432 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
434 static inline void inode_sb_list_del(struct inode
*inode
)
436 if (!list_empty(&inode
->i_sb_list
)) {
437 spin_lock(&inode_sb_list_lock
);
438 list_del_init(&inode
->i_sb_list
);
439 spin_unlock(&inode_sb_list_lock
);
443 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
447 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
449 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
450 return tmp
& i_hash_mask
;
454 * __insert_inode_hash - hash an inode
455 * @inode: unhashed inode
456 * @hashval: unsigned long value used to locate this object in the
459 * Add an inode to the inode hash for this superblock.
461 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
463 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
465 spin_lock(&inode_hash_lock
);
466 spin_lock(&inode
->i_lock
);
467 hlist_add_head(&inode
->i_hash
, b
);
468 spin_unlock(&inode
->i_lock
);
469 spin_unlock(&inode_hash_lock
);
471 EXPORT_SYMBOL(__insert_inode_hash
);
474 * __remove_inode_hash - remove an inode from the hash
475 * @inode: inode to unhash
477 * Remove an inode from the superblock.
479 void __remove_inode_hash(struct inode
*inode
)
481 spin_lock(&inode_hash_lock
);
482 spin_lock(&inode
->i_lock
);
483 hlist_del_init(&inode
->i_hash
);
484 spin_unlock(&inode
->i_lock
);
485 spin_unlock(&inode_hash_lock
);
487 EXPORT_SYMBOL(__remove_inode_hash
);
489 void clear_inode(struct inode
*inode
)
493 * We have to cycle tree_lock here because reclaim can be still in the
494 * process of removing the last page (in __delete_from_page_cache())
495 * and we must not free mapping under it.
497 spin_lock_irq(&inode
->i_data
.tree_lock
);
498 BUG_ON(inode
->i_data
.nrpages
);
499 spin_unlock_irq(&inode
->i_data
.tree_lock
);
500 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
501 BUG_ON(!(inode
->i_state
& I_FREEING
));
502 BUG_ON(inode
->i_state
& I_CLEAR
);
503 /* don't need i_lock here, no concurrent mods to i_state */
504 inode
->i_state
= I_FREEING
| I_CLEAR
;
506 EXPORT_SYMBOL(clear_inode
);
509 * Free the inode passed in, removing it from the lists it is still connected
510 * to. We remove any pages still attached to the inode and wait for any IO that
511 * is still in progress before finally destroying the inode.
513 * An inode must already be marked I_FREEING so that we avoid the inode being
514 * moved back onto lists if we race with other code that manipulates the lists
515 * (e.g. writeback_single_inode). The caller is responsible for setting this.
517 * An inode must already be removed from the LRU list before being evicted from
518 * the cache. This should occur atomically with setting the I_FREEING state
519 * flag, so no inodes here should ever be on the LRU when being evicted.
521 static void evict(struct inode
*inode
)
523 const struct super_operations
*op
= inode
->i_sb
->s_op
;
525 BUG_ON(!(inode
->i_state
& I_FREEING
));
526 BUG_ON(!list_empty(&inode
->i_lru
));
528 if (!list_empty(&inode
->i_wb_list
))
529 inode_wb_list_del(inode
);
531 inode_sb_list_del(inode
);
534 * Wait for flusher thread to be done with the inode so that filesystem
535 * does not start destroying it while writeback is still running. Since
536 * the inode has I_FREEING set, flusher thread won't start new work on
537 * the inode. We just have to wait for running writeback to finish.
539 inode_wait_for_writeback(inode
);
541 if (op
->evict_inode
) {
542 op
->evict_inode(inode
);
544 if (inode
->i_data
.nrpages
)
545 truncate_inode_pages(&inode
->i_data
, 0);
548 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
550 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
553 remove_inode_hash(inode
);
555 spin_lock(&inode
->i_lock
);
556 wake_up_bit(&inode
->i_state
, __I_NEW
);
557 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
558 spin_unlock(&inode
->i_lock
);
560 destroy_inode(inode
);
564 * dispose_list - dispose of the contents of a local list
565 * @head: the head of the list to free
567 * Dispose-list gets a local list with local inodes in it, so it doesn't
568 * need to worry about list corruption and SMP locks.
570 static void dispose_list(struct list_head
*head
)
572 while (!list_empty(head
)) {
575 inode
= list_first_entry(head
, struct inode
, i_lru
);
576 list_del_init(&inode
->i_lru
);
583 * evict_inodes - evict all evictable inodes for a superblock
584 * @sb: superblock to operate on
586 * Make sure that no inodes with zero refcount are retained. This is
587 * called by superblock shutdown after having MS_ACTIVE flag removed,
588 * so any inode reaching zero refcount during or after that call will
589 * be immediately evicted.
591 void evict_inodes(struct super_block
*sb
)
593 struct inode
*inode
, *next
;
596 spin_lock(&inode_sb_list_lock
);
597 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
598 if (atomic_read(&inode
->i_count
))
601 spin_lock(&inode
->i_lock
);
602 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
603 spin_unlock(&inode
->i_lock
);
607 inode
->i_state
|= I_FREEING
;
608 inode_lru_list_del(inode
);
609 spin_unlock(&inode
->i_lock
);
610 list_add(&inode
->i_lru
, &dispose
);
612 spin_unlock(&inode_sb_list_lock
);
614 dispose_list(&dispose
);
618 * invalidate_inodes - attempt to free all inodes on a superblock
619 * @sb: superblock to operate on
620 * @kill_dirty: flag to guide handling of dirty inodes
622 * Attempts to free all inodes for a given superblock. If there were any
623 * busy inodes return a non-zero value, else zero.
624 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
627 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
630 struct inode
*inode
, *next
;
633 spin_lock(&inode_sb_list_lock
);
634 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
635 spin_lock(&inode
->i_lock
);
636 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
637 spin_unlock(&inode
->i_lock
);
640 if (inode
->i_state
& I_DIRTY
&& !kill_dirty
) {
641 spin_unlock(&inode
->i_lock
);
645 if (atomic_read(&inode
->i_count
)) {
646 spin_unlock(&inode
->i_lock
);
651 inode
->i_state
|= I_FREEING
;
652 inode_lru_list_del(inode
);
653 spin_unlock(&inode
->i_lock
);
654 list_add(&inode
->i_lru
, &dispose
);
656 spin_unlock(&inode_sb_list_lock
);
658 dispose_list(&dispose
);
663 static int can_unuse(struct inode
*inode
)
665 if (inode
->i_state
& ~I_REFERENCED
)
667 if (inode_has_buffers(inode
))
669 if (atomic_read(&inode
->i_count
))
671 if (inode
->i_data
.nrpages
)
677 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
678 * This is called from the superblock shrinker function with a number of inodes
679 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
680 * then are freed outside inode_lock by dispose_list().
682 * Any inodes which are pinned purely because of attached pagecache have their
683 * pagecache removed. If the inode has metadata buffers attached to
684 * mapping->private_list then try to remove them.
686 * If the inode has the I_REFERENCED flag set, then it means that it has been
687 * used recently - the flag is set in iput_final(). When we encounter such an
688 * inode, clear the flag and move it to the back of the LRU so it gets another
689 * pass through the LRU before it gets reclaimed. This is necessary because of
690 * the fact we are doing lazy LRU updates to minimise lock contention so the
691 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
692 * with this flag set because they are the inodes that are out of order.
694 void prune_icache_sb(struct super_block
*sb
, int nr_to_scan
)
698 unsigned long reap
= 0;
700 spin_lock(&sb
->s_inode_lru_lock
);
701 for (nr_scanned
= nr_to_scan
; nr_scanned
>= 0; nr_scanned
--) {
704 if (list_empty(&sb
->s_inode_lru
))
707 inode
= list_entry(sb
->s_inode_lru
.prev
, struct inode
, i_lru
);
710 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
711 * so use a trylock. If we fail to get the lock, just move the
712 * inode to the back of the list so we don't spin on it.
714 if (!spin_trylock(&inode
->i_lock
)) {
715 list_move_tail(&inode
->i_lru
, &sb
->s_inode_lru
);
720 * Referenced or dirty inodes are still in use. Give them
721 * another pass through the LRU as we canot reclaim them now.
723 if (atomic_read(&inode
->i_count
) ||
724 (inode
->i_state
& ~I_REFERENCED
)) {
725 list_del_init(&inode
->i_lru
);
726 spin_unlock(&inode
->i_lock
);
727 sb
->s_nr_inodes_unused
--;
728 this_cpu_dec(nr_unused
);
732 /* recently referenced inodes get one more pass */
733 if (inode
->i_state
& I_REFERENCED
) {
734 inode
->i_state
&= ~I_REFERENCED
;
735 list_move(&inode
->i_lru
, &sb
->s_inode_lru
);
736 spin_unlock(&inode
->i_lock
);
739 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
741 spin_unlock(&inode
->i_lock
);
742 spin_unlock(&sb
->s_inode_lru_lock
);
743 if (remove_inode_buffers(inode
))
744 reap
+= invalidate_mapping_pages(&inode
->i_data
,
747 spin_lock(&sb
->s_inode_lru_lock
);
749 if (inode
!= list_entry(sb
->s_inode_lru
.next
,
750 struct inode
, i_lru
))
751 continue; /* wrong inode or list_empty */
752 /* avoid lock inversions with trylock */
753 if (!spin_trylock(&inode
->i_lock
))
755 if (!can_unuse(inode
)) {
756 spin_unlock(&inode
->i_lock
);
760 WARN_ON(inode
->i_state
& I_NEW
);
761 inode
->i_state
|= I_FREEING
;
762 spin_unlock(&inode
->i_lock
);
764 list_move(&inode
->i_lru
, &freeable
);
765 sb
->s_nr_inodes_unused
--;
766 this_cpu_dec(nr_unused
);
768 if (current_is_kswapd())
769 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
771 __count_vm_events(PGINODESTEAL
, reap
);
772 spin_unlock(&sb
->s_inode_lru_lock
);
773 if (current
->reclaim_state
)
774 current
->reclaim_state
->reclaimed_slab
+= reap
;
776 dispose_list(&freeable
);
779 static void __wait_on_freeing_inode(struct inode
*inode
);
781 * Called with the inode lock held.
783 static struct inode
*find_inode(struct super_block
*sb
,
784 struct hlist_head
*head
,
785 int (*test
)(struct inode
*, void *),
788 struct hlist_node
*node
;
789 struct inode
*inode
= NULL
;
792 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
793 spin_lock(&inode
->i_lock
);
794 if (inode
->i_sb
!= sb
) {
795 spin_unlock(&inode
->i_lock
);
798 if (!test(inode
, data
)) {
799 spin_unlock(&inode
->i_lock
);
802 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
803 __wait_on_freeing_inode(inode
);
807 spin_unlock(&inode
->i_lock
);
814 * find_inode_fast is the fast path version of find_inode, see the comment at
815 * iget_locked for details.
817 static struct inode
*find_inode_fast(struct super_block
*sb
,
818 struct hlist_head
*head
, unsigned long ino
)
820 struct hlist_node
*node
;
821 struct inode
*inode
= NULL
;
824 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
825 spin_lock(&inode
->i_lock
);
826 if (inode
->i_ino
!= ino
) {
827 spin_unlock(&inode
->i_lock
);
830 if (inode
->i_sb
!= sb
) {
831 spin_unlock(&inode
->i_lock
);
834 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
835 __wait_on_freeing_inode(inode
);
839 spin_unlock(&inode
->i_lock
);
846 * Each cpu owns a range of LAST_INO_BATCH numbers.
847 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
848 * to renew the exhausted range.
850 * This does not significantly increase overflow rate because every CPU can
851 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
852 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
853 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
854 * overflow rate by 2x, which does not seem too significant.
856 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
857 * error if st_ino won't fit in target struct field. Use 32bit counter
858 * here to attempt to avoid that.
860 #define LAST_INO_BATCH 1024
861 static DEFINE_PER_CPU(unsigned int, last_ino
);
863 unsigned int get_next_ino(void)
865 unsigned int *p
= &get_cpu_var(last_ino
);
866 unsigned int res
= *p
;
869 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
870 static atomic_t shared_last_ino
;
871 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
873 res
= next
- LAST_INO_BATCH
;
878 put_cpu_var(last_ino
);
881 EXPORT_SYMBOL(get_next_ino
);
884 * new_inode_pseudo - obtain an inode
887 * Allocates a new inode for given superblock.
888 * Inode wont be chained in superblock s_inodes list
890 * - fs can't be unmount
891 * - quotas, fsnotify, writeback can't work
893 struct inode
*new_inode_pseudo(struct super_block
*sb
)
895 struct inode
*inode
= alloc_inode(sb
);
898 spin_lock(&inode
->i_lock
);
900 spin_unlock(&inode
->i_lock
);
901 INIT_LIST_HEAD(&inode
->i_sb_list
);
907 * new_inode - obtain an inode
910 * Allocates a new inode for given superblock. The default gfp_mask
911 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
912 * If HIGHMEM pages are unsuitable or it is known that pages allocated
913 * for the page cache are not reclaimable or migratable,
914 * mapping_set_gfp_mask() must be called with suitable flags on the
915 * newly created inode's mapping
918 struct inode
*new_inode(struct super_block
*sb
)
922 spin_lock_prefetch(&inode_sb_list_lock
);
924 inode
= new_inode_pseudo(sb
);
926 inode_sb_list_add(inode
);
929 EXPORT_SYMBOL(new_inode
);
931 #ifdef CONFIG_DEBUG_LOCK_ALLOC
932 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
934 if (S_ISDIR(inode
->i_mode
)) {
935 struct file_system_type
*type
= inode
->i_sb
->s_type
;
937 /* Set new key only if filesystem hasn't already changed it */
938 if (lockdep_match_class(&inode
->i_mutex
, &type
->i_mutex_key
)) {
940 * ensure nobody is actually holding i_mutex
942 mutex_destroy(&inode
->i_mutex
);
943 mutex_init(&inode
->i_mutex
);
944 lockdep_set_class(&inode
->i_mutex
,
945 &type
->i_mutex_dir_key
);
949 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
953 * unlock_new_inode - clear the I_NEW state and wake up any waiters
954 * @inode: new inode to unlock
956 * Called when the inode is fully initialised to clear the new state of the
957 * inode and wake up anyone waiting for the inode to finish initialisation.
959 void unlock_new_inode(struct inode
*inode
)
961 lockdep_annotate_inode_mutex_key(inode
);
962 spin_lock(&inode
->i_lock
);
963 WARN_ON(!(inode
->i_state
& I_NEW
));
964 inode
->i_state
&= ~I_NEW
;
966 wake_up_bit(&inode
->i_state
, __I_NEW
);
967 spin_unlock(&inode
->i_lock
);
969 EXPORT_SYMBOL(unlock_new_inode
);
972 * iget5_locked - obtain an inode from a mounted file system
973 * @sb: super block of file system
974 * @hashval: hash value (usually inode number) to get
975 * @test: callback used for comparisons between inodes
976 * @set: callback used to initialize a new struct inode
977 * @data: opaque data pointer to pass to @test and @set
979 * Search for the inode specified by @hashval and @data in the inode cache,
980 * and if present it is return it with an increased reference count. This is
981 * a generalized version of iget_locked() for file systems where the inode
982 * number is not sufficient for unique identification of an inode.
984 * If the inode is not in cache, allocate a new inode and return it locked,
985 * hashed, and with the I_NEW flag set. The file system gets to fill it in
986 * before unlocking it via unlock_new_inode().
988 * Note both @test and @set are called with the inode_hash_lock held, so can't
991 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
992 int (*test
)(struct inode
*, void *),
993 int (*set
)(struct inode
*, void *), void *data
)
995 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
998 spin_lock(&inode_hash_lock
);
999 inode
= find_inode(sb
, head
, test
, data
);
1000 spin_unlock(&inode_hash_lock
);
1003 wait_on_inode(inode
);
1007 inode
= alloc_inode(sb
);
1011 spin_lock(&inode_hash_lock
);
1012 /* We released the lock, so.. */
1013 old
= find_inode(sb
, head
, test
, data
);
1015 if (set(inode
, data
))
1018 spin_lock(&inode
->i_lock
);
1019 inode
->i_state
= I_NEW
;
1020 hlist_add_head(&inode
->i_hash
, head
);
1021 spin_unlock(&inode
->i_lock
);
1022 inode_sb_list_add(inode
);
1023 spin_unlock(&inode_hash_lock
);
1025 /* Return the locked inode with I_NEW set, the
1026 * caller is responsible for filling in the contents
1032 * Uhhuh, somebody else created the same inode under
1033 * us. Use the old inode instead of the one we just
1036 spin_unlock(&inode_hash_lock
);
1037 destroy_inode(inode
);
1039 wait_on_inode(inode
);
1044 spin_unlock(&inode_hash_lock
);
1045 destroy_inode(inode
);
1048 EXPORT_SYMBOL(iget5_locked
);
1051 * iget_locked - obtain an inode from a mounted file system
1052 * @sb: super block of file system
1053 * @ino: inode number to get
1055 * Search for the inode specified by @ino in the inode cache and if present
1056 * return it with an increased reference count. This is for file systems
1057 * where the inode number is sufficient for unique identification of an inode.
1059 * If the inode is not in cache, allocate a new inode and return it locked,
1060 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1061 * before unlocking it via unlock_new_inode().
1063 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1065 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1066 struct inode
*inode
;
1068 spin_lock(&inode_hash_lock
);
1069 inode
= find_inode_fast(sb
, head
, ino
);
1070 spin_unlock(&inode_hash_lock
);
1072 wait_on_inode(inode
);
1076 inode
= alloc_inode(sb
);
1080 spin_lock(&inode_hash_lock
);
1081 /* We released the lock, so.. */
1082 old
= find_inode_fast(sb
, head
, ino
);
1085 spin_lock(&inode
->i_lock
);
1086 inode
->i_state
= I_NEW
;
1087 hlist_add_head(&inode
->i_hash
, head
);
1088 spin_unlock(&inode
->i_lock
);
1089 inode_sb_list_add(inode
);
1090 spin_unlock(&inode_hash_lock
);
1092 /* Return the locked inode with I_NEW set, the
1093 * caller is responsible for filling in the contents
1099 * Uhhuh, somebody else created the same inode under
1100 * us. Use the old inode instead of the one we just
1103 spin_unlock(&inode_hash_lock
);
1104 destroy_inode(inode
);
1106 wait_on_inode(inode
);
1110 EXPORT_SYMBOL(iget_locked
);
1113 * search the inode cache for a matching inode number.
1114 * If we find one, then the inode number we are trying to
1115 * allocate is not unique and so we should not use it.
1117 * Returns 1 if the inode number is unique, 0 if it is not.
1119 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1121 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1122 struct hlist_node
*node
;
1123 struct inode
*inode
;
1125 spin_lock(&inode_hash_lock
);
1126 hlist_for_each_entry(inode
, node
, b
, i_hash
) {
1127 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1128 spin_unlock(&inode_hash_lock
);
1132 spin_unlock(&inode_hash_lock
);
1138 * iunique - get a unique inode number
1140 * @max_reserved: highest reserved inode number
1142 * Obtain an inode number that is unique on the system for a given
1143 * superblock. This is used by file systems that have no natural
1144 * permanent inode numbering system. An inode number is returned that
1145 * is higher than the reserved limit but unique.
1148 * With a large number of inodes live on the file system this function
1149 * currently becomes quite slow.
1151 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1154 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1155 * error if st_ino won't fit in target struct field. Use 32bit counter
1156 * here to attempt to avoid that.
1158 static DEFINE_SPINLOCK(iunique_lock
);
1159 static unsigned int counter
;
1162 spin_lock(&iunique_lock
);
1164 if (counter
<= max_reserved
)
1165 counter
= max_reserved
+ 1;
1167 } while (!test_inode_iunique(sb
, res
));
1168 spin_unlock(&iunique_lock
);
1172 EXPORT_SYMBOL(iunique
);
1174 struct inode
*igrab(struct inode
*inode
)
1176 spin_lock(&inode
->i_lock
);
1177 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1179 spin_unlock(&inode
->i_lock
);
1181 spin_unlock(&inode
->i_lock
);
1183 * Handle the case where s_op->clear_inode is not been
1184 * called yet, and somebody is calling igrab
1185 * while the inode is getting freed.
1191 EXPORT_SYMBOL(igrab
);
1194 * ilookup5_nowait - search for an inode in the inode cache
1195 * @sb: super block of file system to search
1196 * @hashval: hash value (usually inode number) to search for
1197 * @test: callback used for comparisons between inodes
1198 * @data: opaque data pointer to pass to @test
1200 * Search for the inode specified by @hashval and @data in the inode cache.
1201 * If the inode is in the cache, the inode is returned with an incremented
1204 * Note: I_NEW is not waited upon so you have to be very careful what you do
1205 * with the returned inode. You probably should be using ilookup5() instead.
1207 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1209 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1210 int (*test
)(struct inode
*, void *), void *data
)
1212 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1213 struct inode
*inode
;
1215 spin_lock(&inode_hash_lock
);
1216 inode
= find_inode(sb
, head
, test
, data
);
1217 spin_unlock(&inode_hash_lock
);
1221 EXPORT_SYMBOL(ilookup5_nowait
);
1224 * ilookup5 - search for an inode in the inode cache
1225 * @sb: super block of file system to search
1226 * @hashval: hash value (usually inode number) to search for
1227 * @test: callback used for comparisons between inodes
1228 * @data: opaque data pointer to pass to @test
1230 * Search for the inode specified by @hashval and @data in the inode cache,
1231 * and if the inode is in the cache, return the inode with an incremented
1232 * reference count. Waits on I_NEW before returning the inode.
1233 * returned with an incremented reference count.
1235 * This is a generalized version of ilookup() for file systems where the
1236 * inode number is not sufficient for unique identification of an inode.
1238 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1240 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1241 int (*test
)(struct inode
*, void *), void *data
)
1243 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1246 wait_on_inode(inode
);
1249 EXPORT_SYMBOL(ilookup5
);
1252 * ilookup - search for an inode in the inode cache
1253 * @sb: super block of file system to search
1254 * @ino: inode number to search for
1256 * Search for the inode @ino in the inode cache, and if the inode is in the
1257 * cache, the inode is returned with an incremented reference count.
1259 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1261 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1262 struct inode
*inode
;
1264 spin_lock(&inode_hash_lock
);
1265 inode
= find_inode_fast(sb
, head
, ino
);
1266 spin_unlock(&inode_hash_lock
);
1269 wait_on_inode(inode
);
1272 EXPORT_SYMBOL(ilookup
);
1274 int insert_inode_locked(struct inode
*inode
)
1276 struct super_block
*sb
= inode
->i_sb
;
1277 ino_t ino
= inode
->i_ino
;
1278 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1281 struct hlist_node
*node
;
1282 struct inode
*old
= NULL
;
1283 spin_lock(&inode_hash_lock
);
1284 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1285 if (old
->i_ino
!= ino
)
1287 if (old
->i_sb
!= sb
)
1289 spin_lock(&old
->i_lock
);
1290 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1291 spin_unlock(&old
->i_lock
);
1296 if (likely(!node
)) {
1297 spin_lock(&inode
->i_lock
);
1298 inode
->i_state
|= I_NEW
;
1299 hlist_add_head(&inode
->i_hash
, head
);
1300 spin_unlock(&inode
->i_lock
);
1301 spin_unlock(&inode_hash_lock
);
1305 spin_unlock(&old
->i_lock
);
1306 spin_unlock(&inode_hash_lock
);
1308 if (unlikely(!inode_unhashed(old
))) {
1315 EXPORT_SYMBOL(insert_inode_locked
);
1317 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1318 int (*test
)(struct inode
*, void *), void *data
)
1320 struct super_block
*sb
= inode
->i_sb
;
1321 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1324 struct hlist_node
*node
;
1325 struct inode
*old
= NULL
;
1327 spin_lock(&inode_hash_lock
);
1328 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1329 if (old
->i_sb
!= sb
)
1331 if (!test(old
, data
))
1333 spin_lock(&old
->i_lock
);
1334 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1335 spin_unlock(&old
->i_lock
);
1340 if (likely(!node
)) {
1341 spin_lock(&inode
->i_lock
);
1342 inode
->i_state
|= I_NEW
;
1343 hlist_add_head(&inode
->i_hash
, head
);
1344 spin_unlock(&inode
->i_lock
);
1345 spin_unlock(&inode_hash_lock
);
1349 spin_unlock(&old
->i_lock
);
1350 spin_unlock(&inode_hash_lock
);
1352 if (unlikely(!inode_unhashed(old
))) {
1359 EXPORT_SYMBOL(insert_inode_locked4
);
1362 int generic_delete_inode(struct inode
*inode
)
1366 EXPORT_SYMBOL(generic_delete_inode
);
1369 * Called when we're dropping the last reference
1372 * Call the FS "drop_inode()" function, defaulting to
1373 * the legacy UNIX filesystem behaviour. If it tells
1374 * us to evict inode, do so. Otherwise, retain inode
1375 * in cache if fs is alive, sync and evict if fs is
1378 static void iput_final(struct inode
*inode
)
1380 struct super_block
*sb
= inode
->i_sb
;
1381 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1384 WARN_ON(inode
->i_state
& I_NEW
);
1387 drop
= op
->drop_inode(inode
);
1389 drop
= generic_drop_inode(inode
);
1391 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1392 inode
->i_state
|= I_REFERENCED
;
1393 if (!(inode
->i_state
& (I_DIRTY
|I_SYNC
)))
1394 inode_lru_list_add(inode
);
1395 spin_unlock(&inode
->i_lock
);
1400 inode
->i_state
|= I_WILL_FREE
;
1401 spin_unlock(&inode
->i_lock
);
1402 write_inode_now(inode
, 1);
1403 spin_lock(&inode
->i_lock
);
1404 WARN_ON(inode
->i_state
& I_NEW
);
1405 inode
->i_state
&= ~I_WILL_FREE
;
1408 inode
->i_state
|= I_FREEING
;
1409 if (!list_empty(&inode
->i_lru
))
1410 inode_lru_list_del(inode
);
1411 spin_unlock(&inode
->i_lock
);
1417 * iput - put an inode
1418 * @inode: inode to put
1420 * Puts an inode, dropping its usage count. If the inode use count hits
1421 * zero, the inode is then freed and may also be destroyed.
1423 * Consequently, iput() can sleep.
1425 void iput(struct inode
*inode
)
1428 BUG_ON(inode
->i_state
& I_CLEAR
);
1430 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
))
1434 EXPORT_SYMBOL(iput
);
1437 * bmap - find a block number in a file
1438 * @inode: inode of file
1439 * @block: block to find
1441 * Returns the block number on the device holding the inode that
1442 * is the disk block number for the block of the file requested.
1443 * That is, asked for block 4 of inode 1 the function will return the
1444 * disk block relative to the disk start that holds that block of the
1447 sector_t
bmap(struct inode
*inode
, sector_t block
)
1450 if (inode
->i_mapping
->a_ops
->bmap
)
1451 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1454 EXPORT_SYMBOL(bmap
);
1457 * With relative atime, only update atime if the previous atime is
1458 * earlier than either the ctime or mtime or if at least a day has
1459 * passed since the last atime update.
1461 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1462 struct timespec now
)
1465 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1468 * Is mtime younger than atime? If yes, update atime:
1470 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1473 * Is ctime younger than atime? If yes, update atime:
1475 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1479 * Is the previous atime value older than a day? If yes,
1482 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1485 * Good, we can skip the atime update:
1491 * This does the actual work of updating an inodes time or version. Must have
1492 * had called mnt_want_write() before calling this.
1494 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1496 if (inode
->i_op
->update_time
)
1497 return inode
->i_op
->update_time(inode
, time
, flags
);
1499 if (flags
& S_ATIME
)
1500 inode
->i_atime
= *time
;
1501 if (flags
& S_VERSION
)
1502 inode_inc_iversion(inode
);
1503 if (flags
& S_CTIME
)
1504 inode
->i_ctime
= *time
;
1505 if (flags
& S_MTIME
)
1506 inode
->i_mtime
= *time
;
1507 mark_inode_dirty_sync(inode
);
1512 * touch_atime - update the access time
1513 * @path: the &struct path to update
1515 * Update the accessed time on an inode and mark it for writeback.
1516 * This function automatically handles read only file systems and media,
1517 * as well as the "noatime" flag and inode specific "noatime" markers.
1519 void touch_atime(struct path
*path
)
1521 struct vfsmount
*mnt
= path
->mnt
;
1522 struct inode
*inode
= path
->dentry
->d_inode
;
1523 struct timespec now
;
1525 if (inode
->i_flags
& S_NOATIME
)
1527 if (IS_NOATIME(inode
))
1529 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1532 if (mnt
->mnt_flags
& MNT_NOATIME
)
1534 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1537 now
= current_fs_time(inode
->i_sb
);
1539 if (!relatime_need_update(mnt
, inode
, now
))
1542 if (timespec_equal(&inode
->i_atime
, &now
))
1545 if (mnt_want_write(mnt
))
1549 * File systems can error out when updating inodes if they need to
1550 * allocate new space to modify an inode (such is the case for
1551 * Btrfs), but since we touch atime while walking down the path we
1552 * really don't care if we failed to update the atime of the file,
1553 * so just ignore the return value.
1555 update_time(inode
, &now
, S_ATIME
);
1556 mnt_drop_write(mnt
);
1558 EXPORT_SYMBOL(touch_atime
);
1561 * The logic we want is
1563 * if suid or (sgid and xgrp)
1566 int should_remove_suid(struct dentry
*dentry
)
1568 umode_t mode
= dentry
->d_inode
->i_mode
;
1571 /* suid always must be killed */
1572 if (unlikely(mode
& S_ISUID
))
1573 kill
= ATTR_KILL_SUID
;
1576 * sgid without any exec bits is just a mandatory locking mark; leave
1577 * it alone. If some exec bits are set, it's a real sgid; kill it.
1579 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1580 kill
|= ATTR_KILL_SGID
;
1582 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1587 EXPORT_SYMBOL(should_remove_suid
);
1589 static int __remove_suid(struct dentry
*dentry
, int kill
)
1591 struct iattr newattrs
;
1593 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1594 return notify_change(dentry
, &newattrs
);
1597 int file_remove_suid(struct file
*file
)
1599 struct dentry
*dentry
= file
->f_path
.dentry
;
1600 struct inode
*inode
= dentry
->d_inode
;
1605 /* Fast path for nothing security related */
1606 if (IS_NOSEC(inode
))
1609 killsuid
= should_remove_suid(dentry
);
1610 killpriv
= security_inode_need_killpriv(dentry
);
1615 error
= security_inode_killpriv(dentry
);
1616 if (!error
&& killsuid
)
1617 error
= __remove_suid(dentry
, killsuid
);
1618 if (!error
&& (inode
->i_sb
->s_flags
& MS_NOSEC
))
1619 inode
->i_flags
|= S_NOSEC
;
1623 EXPORT_SYMBOL(file_remove_suid
);
1626 * file_update_time - update mtime and ctime time
1627 * @file: file accessed
1629 * Update the mtime and ctime members of an inode and mark the inode
1630 * for writeback. Note that this function is meant exclusively for
1631 * usage in the file write path of filesystems, and filesystems may
1632 * choose to explicitly ignore update via this function with the
1633 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1634 * timestamps are handled by the server. This can return an error for
1635 * file systems who need to allocate space in order to update an inode.
1638 int file_update_time(struct file
*file
)
1640 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1641 struct timespec now
;
1645 /* First try to exhaust all avenues to not sync */
1646 if (IS_NOCMTIME(inode
))
1649 now
= current_fs_time(inode
->i_sb
);
1650 if (!timespec_equal(&inode
->i_mtime
, &now
))
1653 if (!timespec_equal(&inode
->i_ctime
, &now
))
1656 if (IS_I_VERSION(inode
))
1657 sync_it
|= S_VERSION
;
1662 /* Finally allowed to write? Takes lock. */
1663 if (mnt_want_write_file(file
))
1666 ret
= update_time(inode
, &now
, sync_it
);
1667 mnt_drop_write_file(file
);
1671 EXPORT_SYMBOL(file_update_time
);
1673 int inode_needs_sync(struct inode
*inode
)
1677 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1681 EXPORT_SYMBOL(inode_needs_sync
);
1683 int inode_wait(void *word
)
1688 EXPORT_SYMBOL(inode_wait
);
1691 * If we try to find an inode in the inode hash while it is being
1692 * deleted, we have to wait until the filesystem completes its
1693 * deletion before reporting that it isn't found. This function waits
1694 * until the deletion _might_ have completed. Callers are responsible
1695 * to recheck inode state.
1697 * It doesn't matter if I_NEW is not set initially, a call to
1698 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1701 static void __wait_on_freeing_inode(struct inode
*inode
)
1703 wait_queue_head_t
*wq
;
1704 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1705 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1706 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1707 spin_unlock(&inode
->i_lock
);
1708 spin_unlock(&inode_hash_lock
);
1710 finish_wait(wq
, &wait
.wait
);
1711 spin_lock(&inode_hash_lock
);
1714 static __initdata
unsigned long ihash_entries
;
1715 static int __init
set_ihash_entries(char *str
)
1719 ihash_entries
= simple_strtoul(str
, &str
, 0);
1722 __setup("ihash_entries=", set_ihash_entries
);
1725 * Initialize the waitqueues and inode hash table.
1727 void __init
inode_init_early(void)
1731 /* If hashes are distributed across NUMA nodes, defer
1732 * hash allocation until vmalloc space is available.
1738 alloc_large_system_hash("Inode-cache",
1739 sizeof(struct hlist_head
),
1748 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1749 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1752 void __init
inode_init(void)
1756 /* inode slab cache */
1757 inode_cachep
= kmem_cache_create("inode_cache",
1758 sizeof(struct inode
),
1760 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1764 /* Hash may have been set up in inode_init_early */
1769 alloc_large_system_hash("Inode-cache",
1770 sizeof(struct hlist_head
),
1779 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1780 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1783 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1785 inode
->i_mode
= mode
;
1786 if (S_ISCHR(mode
)) {
1787 inode
->i_fop
= &def_chr_fops
;
1788 inode
->i_rdev
= rdev
;
1789 } else if (S_ISBLK(mode
)) {
1790 inode
->i_fop
= &def_blk_fops
;
1791 inode
->i_rdev
= rdev
;
1792 } else if (S_ISFIFO(mode
))
1793 inode
->i_fop
= &def_fifo_fops
;
1794 else if (S_ISSOCK(mode
))
1795 inode
->i_fop
= &bad_sock_fops
;
1797 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1798 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1801 EXPORT_SYMBOL(init_special_inode
);
1804 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1806 * @dir: Directory inode
1807 * @mode: mode of the new inode
1809 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1812 inode
->i_uid
= current_fsuid();
1813 if (dir
&& dir
->i_mode
& S_ISGID
) {
1814 inode
->i_gid
= dir
->i_gid
;
1818 inode
->i_gid
= current_fsgid();
1819 inode
->i_mode
= mode
;
1821 EXPORT_SYMBOL(inode_init_owner
);
1824 * inode_owner_or_capable - check current task permissions to inode
1825 * @inode: inode being checked
1827 * Return true if current either has CAP_FOWNER to the inode, or
1830 bool inode_owner_or_capable(const struct inode
*inode
)
1832 if (uid_eq(current_fsuid(), inode
->i_uid
))
1834 if (inode_capable(inode
, CAP_FOWNER
))
1838 EXPORT_SYMBOL(inode_owner_or_capable
);
1841 * Direct i/o helper functions
1843 static void __inode_dio_wait(struct inode
*inode
)
1845 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
1846 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
1849 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
1850 if (atomic_read(&inode
->i_dio_count
))
1852 } while (atomic_read(&inode
->i_dio_count
));
1853 finish_wait(wq
, &q
.wait
);
1857 * inode_dio_wait - wait for outstanding DIO requests to finish
1858 * @inode: inode to wait for
1860 * Waits for all pending direct I/O requests to finish so that we can
1861 * proceed with a truncate or equivalent operation.
1863 * Must be called under a lock that serializes taking new references
1864 * to i_dio_count, usually by inode->i_mutex.
1866 void inode_dio_wait(struct inode
*inode
)
1868 if (atomic_read(&inode
->i_dio_count
))
1869 __inode_dio_wait(inode
);
1871 EXPORT_SYMBOL(inode_dio_wait
);
1874 * inode_dio_done - signal finish of a direct I/O requests
1875 * @inode: inode the direct I/O happens on
1877 * This is called once we've finished processing a direct I/O request,
1878 * and is used to wake up callers waiting for direct I/O to be quiesced.
1880 void inode_dio_done(struct inode
*inode
)
1882 if (atomic_dec_and_test(&inode
->i_dio_count
))
1883 wake_up_bit(&inode
->i_state
, __I_DIO_WAKEUP
);
1885 EXPORT_SYMBOL(inode_dio_done
);