drivers/macintosh: Fix memleak in windfarm_pm112 driver
[linux/fpc-iii.git] / ipc / sem.c
blob3687b71151b3921860613dcc7089fa2831f6237e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
91 #include <linux/uaccess.h>
92 #include "util.h"
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 int semval; /* current value */
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
104 struct pid *sempid;
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
126 struct sem sems[];
127 } __randomize_layout;
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
134 struct pid *pid; /* process id of requesting process */
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
137 struct sembuf *blocking; /* the operation that blocked */
138 int nsops; /* number of operations */
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
146 struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
162 struct sem_undo_list {
163 refcount_t refcnt;
164 spinlock_t lock;
165 struct list_head list_proc;
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
188 * Locking:
189 * a) global sem_lock() for read/write
190 * sem_undo.id_next,
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
209 * Exceptions:
210 * 1) use_global_lock: (SEM_BARRIER_1)
211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
221 * 2) queue.status: (SEM_BARRIER_2)
222 * Initialization is done while holding sem_lock(), so no further barrier is
223 * required.
224 * Setting it to a result code is a RELEASE, this is ensured by both a
225 * smp_store_release() (for case a) and while holding sem_lock()
226 * (for case b).
227 * The AQUIRE when reading the result code without holding sem_lock() is
228 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
229 * (case a above).
230 * Reading the result code while holding sem_lock() needs no further barriers,
231 * the locks inside sem_lock() enforce ordering (case b above)
233 * 3) current->state:
234 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
235 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
236 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
237 * when holding sem_lock(), no further barriers are required.
239 * See also ipc/mqueue.c for more details on the covered races.
242 #define sc_semmsl sem_ctls[0]
243 #define sc_semmns sem_ctls[1]
244 #define sc_semopm sem_ctls[2]
245 #define sc_semmni sem_ctls[3]
247 void sem_init_ns(struct ipc_namespace *ns)
249 ns->sc_semmsl = SEMMSL;
250 ns->sc_semmns = SEMMNS;
251 ns->sc_semopm = SEMOPM;
252 ns->sc_semmni = SEMMNI;
253 ns->used_sems = 0;
254 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
257 #ifdef CONFIG_IPC_NS
258 void sem_exit_ns(struct ipc_namespace *ns)
260 free_ipcs(ns, &sem_ids(ns), freeary);
261 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
262 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
264 #endif
266 void __init sem_init(void)
268 sem_init_ns(&init_ipc_ns);
269 ipc_init_proc_interface("sysvipc/sem",
270 " key semid perms nsems uid gid cuid cgid otime ctime\n",
271 IPC_SEM_IDS, sysvipc_sem_proc_show);
275 * unmerge_queues - unmerge queues, if possible.
276 * @sma: semaphore array
278 * The function unmerges the wait queues if complex_count is 0.
279 * It must be called prior to dropping the global semaphore array lock.
281 static void unmerge_queues(struct sem_array *sma)
283 struct sem_queue *q, *tq;
285 /* complex operations still around? */
286 if (sma->complex_count)
287 return;
289 * We will switch back to simple mode.
290 * Move all pending operation back into the per-semaphore
291 * queues.
293 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
294 struct sem *curr;
295 curr = &sma->sems[q->sops[0].sem_num];
297 list_add_tail(&q->list, &curr->pending_alter);
299 INIT_LIST_HEAD(&sma->pending_alter);
303 * merge_queues - merge single semop queues into global queue
304 * @sma: semaphore array
306 * This function merges all per-semaphore queues into the global queue.
307 * It is necessary to achieve FIFO ordering for the pending single-sop
308 * operations when a multi-semop operation must sleep.
309 * Only the alter operations must be moved, the const operations can stay.
311 static void merge_queues(struct sem_array *sma)
313 int i;
314 for (i = 0; i < sma->sem_nsems; i++) {
315 struct sem *sem = &sma->sems[i];
317 list_splice_init(&sem->pending_alter, &sma->pending_alter);
321 static void sem_rcu_free(struct rcu_head *head)
323 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
324 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
326 security_sem_free(&sma->sem_perm);
327 kvfree(sma);
331 * Enter the mode suitable for non-simple operations:
332 * Caller must own sem_perm.lock.
334 static void complexmode_enter(struct sem_array *sma)
336 int i;
337 struct sem *sem;
339 if (sma->use_global_lock > 0) {
341 * We are already in global lock mode.
342 * Nothing to do, just reset the
343 * counter until we return to simple mode.
345 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
346 return;
348 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
350 for (i = 0; i < sma->sem_nsems; i++) {
351 sem = &sma->sems[i];
352 spin_lock(&sem->lock);
353 spin_unlock(&sem->lock);
358 * Try to leave the mode that disallows simple operations:
359 * Caller must own sem_perm.lock.
361 static void complexmode_tryleave(struct sem_array *sma)
363 if (sma->complex_count) {
364 /* Complex ops are sleeping.
365 * We must stay in complex mode
367 return;
369 if (sma->use_global_lock == 1) {
371 /* See SEM_BARRIER_1 for purpose/pairing */
372 smp_store_release(&sma->use_global_lock, 0);
373 } else {
374 sma->use_global_lock--;
378 #define SEM_GLOBAL_LOCK (-1)
380 * If the request contains only one semaphore operation, and there are
381 * no complex transactions pending, lock only the semaphore involved.
382 * Otherwise, lock the entire semaphore array, since we either have
383 * multiple semaphores in our own semops, or we need to look at
384 * semaphores from other pending complex operations.
386 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
387 int nsops)
389 struct sem *sem;
390 int idx;
392 if (nsops != 1) {
393 /* Complex operation - acquire a full lock */
394 ipc_lock_object(&sma->sem_perm);
396 /* Prevent parallel simple ops */
397 complexmode_enter(sma);
398 return SEM_GLOBAL_LOCK;
402 * Only one semaphore affected - try to optimize locking.
403 * Optimized locking is possible if no complex operation
404 * is either enqueued or processed right now.
406 * Both facts are tracked by use_global_mode.
408 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
409 sem = &sma->sems[idx];
412 * Initial check for use_global_lock. Just an optimization,
413 * no locking, no memory barrier.
415 if (!sma->use_global_lock) {
417 * It appears that no complex operation is around.
418 * Acquire the per-semaphore lock.
420 spin_lock(&sem->lock);
422 /* see SEM_BARRIER_1 for purpose/pairing */
423 if (!smp_load_acquire(&sma->use_global_lock)) {
424 /* fast path successful! */
425 return sops->sem_num;
427 spin_unlock(&sem->lock);
430 /* slow path: acquire the full lock */
431 ipc_lock_object(&sma->sem_perm);
433 if (sma->use_global_lock == 0) {
435 * The use_global_lock mode ended while we waited for
436 * sma->sem_perm.lock. Thus we must switch to locking
437 * with sem->lock.
438 * Unlike in the fast path, there is no need to recheck
439 * sma->use_global_lock after we have acquired sem->lock:
440 * We own sma->sem_perm.lock, thus use_global_lock cannot
441 * change.
443 spin_lock(&sem->lock);
445 ipc_unlock_object(&sma->sem_perm);
446 return sops->sem_num;
447 } else {
449 * Not a false alarm, thus continue to use the global lock
450 * mode. No need for complexmode_enter(), this was done by
451 * the caller that has set use_global_mode to non-zero.
453 return SEM_GLOBAL_LOCK;
457 static inline void sem_unlock(struct sem_array *sma, int locknum)
459 if (locknum == SEM_GLOBAL_LOCK) {
460 unmerge_queues(sma);
461 complexmode_tryleave(sma);
462 ipc_unlock_object(&sma->sem_perm);
463 } else {
464 struct sem *sem = &sma->sems[locknum];
465 spin_unlock(&sem->lock);
470 * sem_lock_(check_) routines are called in the paths where the rwsem
471 * is not held.
473 * The caller holds the RCU read lock.
475 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
477 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
479 if (IS_ERR(ipcp))
480 return ERR_CAST(ipcp);
482 return container_of(ipcp, struct sem_array, sem_perm);
485 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
486 int id)
488 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
490 if (IS_ERR(ipcp))
491 return ERR_CAST(ipcp);
493 return container_of(ipcp, struct sem_array, sem_perm);
496 static inline void sem_lock_and_putref(struct sem_array *sma)
498 sem_lock(sma, NULL, -1);
499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
502 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
504 ipc_rmid(&sem_ids(ns), &s->sem_perm);
507 static struct sem_array *sem_alloc(size_t nsems)
509 struct sem_array *sma;
511 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
512 return NULL;
514 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
515 if (unlikely(!sma))
516 return NULL;
518 return sma;
522 * newary - Create a new semaphore set
523 * @ns: namespace
524 * @params: ptr to the structure that contains key, semflg and nsems
526 * Called with sem_ids.rwsem held (as a writer)
528 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
530 int retval;
531 struct sem_array *sma;
532 key_t key = params->key;
533 int nsems = params->u.nsems;
534 int semflg = params->flg;
535 int i;
537 if (!nsems)
538 return -EINVAL;
539 if (ns->used_sems + nsems > ns->sc_semmns)
540 return -ENOSPC;
542 sma = sem_alloc(nsems);
543 if (!sma)
544 return -ENOMEM;
546 sma->sem_perm.mode = (semflg & S_IRWXUGO);
547 sma->sem_perm.key = key;
549 sma->sem_perm.security = NULL;
550 retval = security_sem_alloc(&sma->sem_perm);
551 if (retval) {
552 kvfree(sma);
553 return retval;
556 for (i = 0; i < nsems; i++) {
557 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
558 INIT_LIST_HEAD(&sma->sems[i].pending_const);
559 spin_lock_init(&sma->sems[i].lock);
562 sma->complex_count = 0;
563 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
564 INIT_LIST_HEAD(&sma->pending_alter);
565 INIT_LIST_HEAD(&sma->pending_const);
566 INIT_LIST_HEAD(&sma->list_id);
567 sma->sem_nsems = nsems;
568 sma->sem_ctime = ktime_get_real_seconds();
570 /* ipc_addid() locks sma upon success. */
571 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
572 if (retval < 0) {
573 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
574 return retval;
576 ns->used_sems += nsems;
578 sem_unlock(sma, -1);
579 rcu_read_unlock();
581 return sma->sem_perm.id;
586 * Called with sem_ids.rwsem and ipcp locked.
588 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
589 struct ipc_params *params)
591 struct sem_array *sma;
593 sma = container_of(ipcp, struct sem_array, sem_perm);
594 if (params->u.nsems > sma->sem_nsems)
595 return -EINVAL;
597 return 0;
600 long ksys_semget(key_t key, int nsems, int semflg)
602 struct ipc_namespace *ns;
603 static const struct ipc_ops sem_ops = {
604 .getnew = newary,
605 .associate = security_sem_associate,
606 .more_checks = sem_more_checks,
608 struct ipc_params sem_params;
610 ns = current->nsproxy->ipc_ns;
612 if (nsems < 0 || nsems > ns->sc_semmsl)
613 return -EINVAL;
615 sem_params.key = key;
616 sem_params.flg = semflg;
617 sem_params.u.nsems = nsems;
619 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
622 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
624 return ksys_semget(key, nsems, semflg);
628 * perform_atomic_semop[_slow] - Attempt to perform semaphore
629 * operations on a given array.
630 * @sma: semaphore array
631 * @q: struct sem_queue that describes the operation
633 * Caller blocking are as follows, based the value
634 * indicated by the semaphore operation (sem_op):
636 * (1) >0 never blocks.
637 * (2) 0 (wait-for-zero operation): semval is non-zero.
638 * (3) <0 attempting to decrement semval to a value smaller than zero.
640 * Returns 0 if the operation was possible.
641 * Returns 1 if the operation is impossible, the caller must sleep.
642 * Returns <0 for error codes.
644 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
646 int result, sem_op, nsops;
647 struct pid *pid;
648 struct sembuf *sop;
649 struct sem *curr;
650 struct sembuf *sops;
651 struct sem_undo *un;
653 sops = q->sops;
654 nsops = q->nsops;
655 un = q->undo;
657 for (sop = sops; sop < sops + nsops; sop++) {
658 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
659 curr = &sma->sems[idx];
660 sem_op = sop->sem_op;
661 result = curr->semval;
663 if (!sem_op && result)
664 goto would_block;
666 result += sem_op;
667 if (result < 0)
668 goto would_block;
669 if (result > SEMVMX)
670 goto out_of_range;
672 if (sop->sem_flg & SEM_UNDO) {
673 int undo = un->semadj[sop->sem_num] - sem_op;
674 /* Exceeding the undo range is an error. */
675 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
676 goto out_of_range;
677 un->semadj[sop->sem_num] = undo;
680 curr->semval = result;
683 sop--;
684 pid = q->pid;
685 while (sop >= sops) {
686 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
687 sop--;
690 return 0;
692 out_of_range:
693 result = -ERANGE;
694 goto undo;
696 would_block:
697 q->blocking = sop;
699 if (sop->sem_flg & IPC_NOWAIT)
700 result = -EAGAIN;
701 else
702 result = 1;
704 undo:
705 sop--;
706 while (sop >= sops) {
707 sem_op = sop->sem_op;
708 sma->sems[sop->sem_num].semval -= sem_op;
709 if (sop->sem_flg & SEM_UNDO)
710 un->semadj[sop->sem_num] += sem_op;
711 sop--;
714 return result;
717 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
719 int result, sem_op, nsops;
720 struct sembuf *sop;
721 struct sem *curr;
722 struct sembuf *sops;
723 struct sem_undo *un;
725 sops = q->sops;
726 nsops = q->nsops;
727 un = q->undo;
729 if (unlikely(q->dupsop))
730 return perform_atomic_semop_slow(sma, q);
733 * We scan the semaphore set twice, first to ensure that the entire
734 * operation can succeed, therefore avoiding any pointless writes
735 * to shared memory and having to undo such changes in order to block
736 * until the operations can go through.
738 for (sop = sops; sop < sops + nsops; sop++) {
739 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
741 curr = &sma->sems[idx];
742 sem_op = sop->sem_op;
743 result = curr->semval;
745 if (!sem_op && result)
746 goto would_block; /* wait-for-zero */
748 result += sem_op;
749 if (result < 0)
750 goto would_block;
752 if (result > SEMVMX)
753 return -ERANGE;
755 if (sop->sem_flg & SEM_UNDO) {
756 int undo = un->semadj[sop->sem_num] - sem_op;
758 /* Exceeding the undo range is an error. */
759 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
760 return -ERANGE;
764 for (sop = sops; sop < sops + nsops; sop++) {
765 curr = &sma->sems[sop->sem_num];
766 sem_op = sop->sem_op;
767 result = curr->semval;
769 if (sop->sem_flg & SEM_UNDO) {
770 int undo = un->semadj[sop->sem_num] - sem_op;
772 un->semadj[sop->sem_num] = undo;
774 curr->semval += sem_op;
775 ipc_update_pid(&curr->sempid, q->pid);
778 return 0;
780 would_block:
781 q->blocking = sop;
782 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
785 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
786 struct wake_q_head *wake_q)
788 get_task_struct(q->sleeper);
790 /* see SEM_BARRIER_2 for purpuse/pairing */
791 smp_store_release(&q->status, error);
793 wake_q_add_safe(wake_q, q->sleeper);
796 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
798 list_del(&q->list);
799 if (q->nsops > 1)
800 sma->complex_count--;
803 /** check_restart(sma, q)
804 * @sma: semaphore array
805 * @q: the operation that just completed
807 * update_queue is O(N^2) when it restarts scanning the whole queue of
808 * waiting operations. Therefore this function checks if the restart is
809 * really necessary. It is called after a previously waiting operation
810 * modified the array.
811 * Note that wait-for-zero operations are handled without restart.
813 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
815 /* pending complex alter operations are too difficult to analyse */
816 if (!list_empty(&sma->pending_alter))
817 return 1;
819 /* we were a sleeping complex operation. Too difficult */
820 if (q->nsops > 1)
821 return 1;
823 /* It is impossible that someone waits for the new value:
824 * - complex operations always restart.
825 * - wait-for-zero are handled seperately.
826 * - q is a previously sleeping simple operation that
827 * altered the array. It must be a decrement, because
828 * simple increments never sleep.
829 * - If there are older (higher priority) decrements
830 * in the queue, then they have observed the original
831 * semval value and couldn't proceed. The operation
832 * decremented to value - thus they won't proceed either.
834 return 0;
838 * wake_const_ops - wake up non-alter tasks
839 * @sma: semaphore array.
840 * @semnum: semaphore that was modified.
841 * @wake_q: lockless wake-queue head.
843 * wake_const_ops must be called after a semaphore in a semaphore array
844 * was set to 0. If complex const operations are pending, wake_const_ops must
845 * be called with semnum = -1, as well as with the number of each modified
846 * semaphore.
847 * The tasks that must be woken up are added to @wake_q. The return code
848 * is stored in q->pid.
849 * The function returns 1 if at least one operation was completed successfully.
851 static int wake_const_ops(struct sem_array *sma, int semnum,
852 struct wake_q_head *wake_q)
854 struct sem_queue *q, *tmp;
855 struct list_head *pending_list;
856 int semop_completed = 0;
858 if (semnum == -1)
859 pending_list = &sma->pending_const;
860 else
861 pending_list = &sma->sems[semnum].pending_const;
863 list_for_each_entry_safe(q, tmp, pending_list, list) {
864 int error = perform_atomic_semop(sma, q);
866 if (error > 0)
867 continue;
868 /* operation completed, remove from queue & wakeup */
869 unlink_queue(sma, q);
871 wake_up_sem_queue_prepare(q, error, wake_q);
872 if (error == 0)
873 semop_completed = 1;
876 return semop_completed;
880 * do_smart_wakeup_zero - wakeup all wait for zero tasks
881 * @sma: semaphore array
882 * @sops: operations that were performed
883 * @nsops: number of operations
884 * @wake_q: lockless wake-queue head
886 * Checks all required queue for wait-for-zero operations, based
887 * on the actual changes that were performed on the semaphore array.
888 * The function returns 1 if at least one operation was completed successfully.
890 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
891 int nsops, struct wake_q_head *wake_q)
893 int i;
894 int semop_completed = 0;
895 int got_zero = 0;
897 /* first: the per-semaphore queues, if known */
898 if (sops) {
899 for (i = 0; i < nsops; i++) {
900 int num = sops[i].sem_num;
902 if (sma->sems[num].semval == 0) {
903 got_zero = 1;
904 semop_completed |= wake_const_ops(sma, num, wake_q);
907 } else {
909 * No sops means modified semaphores not known.
910 * Assume all were changed.
912 for (i = 0; i < sma->sem_nsems; i++) {
913 if (sma->sems[i].semval == 0) {
914 got_zero = 1;
915 semop_completed |= wake_const_ops(sma, i, wake_q);
920 * If one of the modified semaphores got 0,
921 * then check the global queue, too.
923 if (got_zero)
924 semop_completed |= wake_const_ops(sma, -1, wake_q);
926 return semop_completed;
931 * update_queue - look for tasks that can be completed.
932 * @sma: semaphore array.
933 * @semnum: semaphore that was modified.
934 * @wake_q: lockless wake-queue head.
936 * update_queue must be called after a semaphore in a semaphore array
937 * was modified. If multiple semaphores were modified, update_queue must
938 * be called with semnum = -1, as well as with the number of each modified
939 * semaphore.
940 * The tasks that must be woken up are added to @wake_q. The return code
941 * is stored in q->pid.
942 * The function internally checks if const operations can now succeed.
944 * The function return 1 if at least one semop was completed successfully.
946 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
948 struct sem_queue *q, *tmp;
949 struct list_head *pending_list;
950 int semop_completed = 0;
952 if (semnum == -1)
953 pending_list = &sma->pending_alter;
954 else
955 pending_list = &sma->sems[semnum].pending_alter;
957 again:
958 list_for_each_entry_safe(q, tmp, pending_list, list) {
959 int error, restart;
961 /* If we are scanning the single sop, per-semaphore list of
962 * one semaphore and that semaphore is 0, then it is not
963 * necessary to scan further: simple increments
964 * that affect only one entry succeed immediately and cannot
965 * be in the per semaphore pending queue, and decrements
966 * cannot be successful if the value is already 0.
968 if (semnum != -1 && sma->sems[semnum].semval == 0)
969 break;
971 error = perform_atomic_semop(sma, q);
973 /* Does q->sleeper still need to sleep? */
974 if (error > 0)
975 continue;
977 unlink_queue(sma, q);
979 if (error) {
980 restart = 0;
981 } else {
982 semop_completed = 1;
983 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
984 restart = check_restart(sma, q);
987 wake_up_sem_queue_prepare(q, error, wake_q);
988 if (restart)
989 goto again;
991 return semop_completed;
995 * set_semotime - set sem_otime
996 * @sma: semaphore array
997 * @sops: operations that modified the array, may be NULL
999 * sem_otime is replicated to avoid cache line trashing.
1000 * This function sets one instance to the current time.
1002 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1004 if (sops == NULL) {
1005 sma->sems[0].sem_otime = ktime_get_real_seconds();
1006 } else {
1007 sma->sems[sops[0].sem_num].sem_otime =
1008 ktime_get_real_seconds();
1013 * do_smart_update - optimized update_queue
1014 * @sma: semaphore array
1015 * @sops: operations that were performed
1016 * @nsops: number of operations
1017 * @otime: force setting otime
1018 * @wake_q: lockless wake-queue head
1020 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1021 * based on the actual changes that were performed on the semaphore array.
1022 * Note that the function does not do the actual wake-up: the caller is
1023 * responsible for calling wake_up_q().
1024 * It is safe to perform this call after dropping all locks.
1026 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1027 int otime, struct wake_q_head *wake_q)
1029 int i;
1031 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1033 if (!list_empty(&sma->pending_alter)) {
1034 /* semaphore array uses the global queue - just process it. */
1035 otime |= update_queue(sma, -1, wake_q);
1036 } else {
1037 if (!sops) {
1039 * No sops, thus the modified semaphores are not
1040 * known. Check all.
1042 for (i = 0; i < sma->sem_nsems; i++)
1043 otime |= update_queue(sma, i, wake_q);
1044 } else {
1046 * Check the semaphores that were increased:
1047 * - No complex ops, thus all sleeping ops are
1048 * decrease.
1049 * - if we decreased the value, then any sleeping
1050 * semaphore ops wont be able to run: If the
1051 * previous value was too small, then the new
1052 * value will be too small, too.
1054 for (i = 0; i < nsops; i++) {
1055 if (sops[i].sem_op > 0) {
1056 otime |= update_queue(sma,
1057 sops[i].sem_num, wake_q);
1062 if (otime)
1063 set_semotime(sma, sops);
1067 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1069 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1070 bool count_zero)
1072 struct sembuf *sop = q->blocking;
1075 * Linux always (since 0.99.10) reported a task as sleeping on all
1076 * semaphores. This violates SUS, therefore it was changed to the
1077 * standard compliant behavior.
1078 * Give the administrators a chance to notice that an application
1079 * might misbehave because it relies on the Linux behavior.
1081 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1082 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1083 current->comm, task_pid_nr(current));
1085 if (sop->sem_num != semnum)
1086 return 0;
1088 if (count_zero && sop->sem_op == 0)
1089 return 1;
1090 if (!count_zero && sop->sem_op < 0)
1091 return 1;
1093 return 0;
1096 /* The following counts are associated to each semaphore:
1097 * semncnt number of tasks waiting on semval being nonzero
1098 * semzcnt number of tasks waiting on semval being zero
1100 * Per definition, a task waits only on the semaphore of the first semop
1101 * that cannot proceed, even if additional operation would block, too.
1103 static int count_semcnt(struct sem_array *sma, ushort semnum,
1104 bool count_zero)
1106 struct list_head *l;
1107 struct sem_queue *q;
1108 int semcnt;
1110 semcnt = 0;
1111 /* First: check the simple operations. They are easy to evaluate */
1112 if (count_zero)
1113 l = &sma->sems[semnum].pending_const;
1114 else
1115 l = &sma->sems[semnum].pending_alter;
1117 list_for_each_entry(q, l, list) {
1118 /* all task on a per-semaphore list sleep on exactly
1119 * that semaphore
1121 semcnt++;
1124 /* Then: check the complex operations. */
1125 list_for_each_entry(q, &sma->pending_alter, list) {
1126 semcnt += check_qop(sma, semnum, q, count_zero);
1128 if (count_zero) {
1129 list_for_each_entry(q, &sma->pending_const, list) {
1130 semcnt += check_qop(sma, semnum, q, count_zero);
1133 return semcnt;
1136 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1137 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1138 * remains locked on exit.
1140 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1142 struct sem_undo *un, *tu;
1143 struct sem_queue *q, *tq;
1144 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1145 int i;
1146 DEFINE_WAKE_Q(wake_q);
1148 /* Free the existing undo structures for this semaphore set. */
1149 ipc_assert_locked_object(&sma->sem_perm);
1150 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1151 list_del(&un->list_id);
1152 spin_lock(&un->ulp->lock);
1153 un->semid = -1;
1154 list_del_rcu(&un->list_proc);
1155 spin_unlock(&un->ulp->lock);
1156 kfree_rcu(un, rcu);
1159 /* Wake up all pending processes and let them fail with EIDRM. */
1160 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1161 unlink_queue(sma, q);
1162 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1165 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1166 unlink_queue(sma, q);
1167 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1169 for (i = 0; i < sma->sem_nsems; i++) {
1170 struct sem *sem = &sma->sems[i];
1171 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1172 unlink_queue(sma, q);
1173 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1175 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1176 unlink_queue(sma, q);
1177 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1179 ipc_update_pid(&sem->sempid, NULL);
1182 /* Remove the semaphore set from the IDR */
1183 sem_rmid(ns, sma);
1184 sem_unlock(sma, -1);
1185 rcu_read_unlock();
1187 wake_up_q(&wake_q);
1188 ns->used_sems -= sma->sem_nsems;
1189 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1192 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1194 switch (version) {
1195 case IPC_64:
1196 return copy_to_user(buf, in, sizeof(*in));
1197 case IPC_OLD:
1199 struct semid_ds out;
1201 memset(&out, 0, sizeof(out));
1203 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1205 out.sem_otime = in->sem_otime;
1206 out.sem_ctime = in->sem_ctime;
1207 out.sem_nsems = in->sem_nsems;
1209 return copy_to_user(buf, &out, sizeof(out));
1211 default:
1212 return -EINVAL;
1216 static time64_t get_semotime(struct sem_array *sma)
1218 int i;
1219 time64_t res;
1221 res = sma->sems[0].sem_otime;
1222 for (i = 1; i < sma->sem_nsems; i++) {
1223 time64_t to = sma->sems[i].sem_otime;
1225 if (to > res)
1226 res = to;
1228 return res;
1231 static int semctl_stat(struct ipc_namespace *ns, int semid,
1232 int cmd, struct semid64_ds *semid64)
1234 struct sem_array *sma;
1235 time64_t semotime;
1236 int err;
1238 memset(semid64, 0, sizeof(*semid64));
1240 rcu_read_lock();
1241 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1242 sma = sem_obtain_object(ns, semid);
1243 if (IS_ERR(sma)) {
1244 err = PTR_ERR(sma);
1245 goto out_unlock;
1247 } else { /* IPC_STAT */
1248 sma = sem_obtain_object_check(ns, semid);
1249 if (IS_ERR(sma)) {
1250 err = PTR_ERR(sma);
1251 goto out_unlock;
1255 /* see comment for SHM_STAT_ANY */
1256 if (cmd == SEM_STAT_ANY)
1257 audit_ipc_obj(&sma->sem_perm);
1258 else {
1259 err = -EACCES;
1260 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1261 goto out_unlock;
1264 err = security_sem_semctl(&sma->sem_perm, cmd);
1265 if (err)
1266 goto out_unlock;
1268 ipc_lock_object(&sma->sem_perm);
1270 if (!ipc_valid_object(&sma->sem_perm)) {
1271 ipc_unlock_object(&sma->sem_perm);
1272 err = -EIDRM;
1273 goto out_unlock;
1276 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1277 semotime = get_semotime(sma);
1278 semid64->sem_otime = semotime;
1279 semid64->sem_ctime = sma->sem_ctime;
1280 #ifndef CONFIG_64BIT
1281 semid64->sem_otime_high = semotime >> 32;
1282 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1283 #endif
1284 semid64->sem_nsems = sma->sem_nsems;
1286 if (cmd == IPC_STAT) {
1288 * As defined in SUS:
1289 * Return 0 on success
1291 err = 0;
1292 } else {
1294 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1295 * Return the full id, including the sequence number
1297 err = sma->sem_perm.id;
1299 ipc_unlock_object(&sma->sem_perm);
1300 out_unlock:
1301 rcu_read_unlock();
1302 return err;
1305 static int semctl_info(struct ipc_namespace *ns, int semid,
1306 int cmd, void __user *p)
1308 struct seminfo seminfo;
1309 int max_idx;
1310 int err;
1312 err = security_sem_semctl(NULL, cmd);
1313 if (err)
1314 return err;
1316 memset(&seminfo, 0, sizeof(seminfo));
1317 seminfo.semmni = ns->sc_semmni;
1318 seminfo.semmns = ns->sc_semmns;
1319 seminfo.semmsl = ns->sc_semmsl;
1320 seminfo.semopm = ns->sc_semopm;
1321 seminfo.semvmx = SEMVMX;
1322 seminfo.semmnu = SEMMNU;
1323 seminfo.semmap = SEMMAP;
1324 seminfo.semume = SEMUME;
1325 down_read(&sem_ids(ns).rwsem);
1326 if (cmd == SEM_INFO) {
1327 seminfo.semusz = sem_ids(ns).in_use;
1328 seminfo.semaem = ns->used_sems;
1329 } else {
1330 seminfo.semusz = SEMUSZ;
1331 seminfo.semaem = SEMAEM;
1333 max_idx = ipc_get_maxidx(&sem_ids(ns));
1334 up_read(&sem_ids(ns).rwsem);
1335 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1336 return -EFAULT;
1337 return (max_idx < 0) ? 0 : max_idx;
1340 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1341 int val)
1343 struct sem_undo *un;
1344 struct sem_array *sma;
1345 struct sem *curr;
1346 int err;
1347 DEFINE_WAKE_Q(wake_q);
1349 if (val > SEMVMX || val < 0)
1350 return -ERANGE;
1352 rcu_read_lock();
1353 sma = sem_obtain_object_check(ns, semid);
1354 if (IS_ERR(sma)) {
1355 rcu_read_unlock();
1356 return PTR_ERR(sma);
1359 if (semnum < 0 || semnum >= sma->sem_nsems) {
1360 rcu_read_unlock();
1361 return -EINVAL;
1365 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1366 rcu_read_unlock();
1367 return -EACCES;
1370 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1371 if (err) {
1372 rcu_read_unlock();
1373 return -EACCES;
1376 sem_lock(sma, NULL, -1);
1378 if (!ipc_valid_object(&sma->sem_perm)) {
1379 sem_unlock(sma, -1);
1380 rcu_read_unlock();
1381 return -EIDRM;
1384 semnum = array_index_nospec(semnum, sma->sem_nsems);
1385 curr = &sma->sems[semnum];
1387 ipc_assert_locked_object(&sma->sem_perm);
1388 list_for_each_entry(un, &sma->list_id, list_id)
1389 un->semadj[semnum] = 0;
1391 curr->semval = val;
1392 ipc_update_pid(&curr->sempid, task_tgid(current));
1393 sma->sem_ctime = ktime_get_real_seconds();
1394 /* maybe some queued-up processes were waiting for this */
1395 do_smart_update(sma, NULL, 0, 0, &wake_q);
1396 sem_unlock(sma, -1);
1397 rcu_read_unlock();
1398 wake_up_q(&wake_q);
1399 return 0;
1402 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1403 int cmd, void __user *p)
1405 struct sem_array *sma;
1406 struct sem *curr;
1407 int err, nsems;
1408 ushort fast_sem_io[SEMMSL_FAST];
1409 ushort *sem_io = fast_sem_io;
1410 DEFINE_WAKE_Q(wake_q);
1412 rcu_read_lock();
1413 sma = sem_obtain_object_check(ns, semid);
1414 if (IS_ERR(sma)) {
1415 rcu_read_unlock();
1416 return PTR_ERR(sma);
1419 nsems = sma->sem_nsems;
1421 err = -EACCES;
1422 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1423 goto out_rcu_wakeup;
1425 err = security_sem_semctl(&sma->sem_perm, cmd);
1426 if (err)
1427 goto out_rcu_wakeup;
1429 err = -EACCES;
1430 switch (cmd) {
1431 case GETALL:
1433 ushort __user *array = p;
1434 int i;
1436 sem_lock(sma, NULL, -1);
1437 if (!ipc_valid_object(&sma->sem_perm)) {
1438 err = -EIDRM;
1439 goto out_unlock;
1441 if (nsems > SEMMSL_FAST) {
1442 if (!ipc_rcu_getref(&sma->sem_perm)) {
1443 err = -EIDRM;
1444 goto out_unlock;
1446 sem_unlock(sma, -1);
1447 rcu_read_unlock();
1448 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1449 GFP_KERNEL);
1450 if (sem_io == NULL) {
1451 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1452 return -ENOMEM;
1455 rcu_read_lock();
1456 sem_lock_and_putref(sma);
1457 if (!ipc_valid_object(&sma->sem_perm)) {
1458 err = -EIDRM;
1459 goto out_unlock;
1462 for (i = 0; i < sma->sem_nsems; i++)
1463 sem_io[i] = sma->sems[i].semval;
1464 sem_unlock(sma, -1);
1465 rcu_read_unlock();
1466 err = 0;
1467 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1468 err = -EFAULT;
1469 goto out_free;
1471 case SETALL:
1473 int i;
1474 struct sem_undo *un;
1476 if (!ipc_rcu_getref(&sma->sem_perm)) {
1477 err = -EIDRM;
1478 goto out_rcu_wakeup;
1480 rcu_read_unlock();
1482 if (nsems > SEMMSL_FAST) {
1483 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1484 GFP_KERNEL);
1485 if (sem_io == NULL) {
1486 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1487 return -ENOMEM;
1491 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1492 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1493 err = -EFAULT;
1494 goto out_free;
1497 for (i = 0; i < nsems; i++) {
1498 if (sem_io[i] > SEMVMX) {
1499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1500 err = -ERANGE;
1501 goto out_free;
1504 rcu_read_lock();
1505 sem_lock_and_putref(sma);
1506 if (!ipc_valid_object(&sma->sem_perm)) {
1507 err = -EIDRM;
1508 goto out_unlock;
1511 for (i = 0; i < nsems; i++) {
1512 sma->sems[i].semval = sem_io[i];
1513 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1516 ipc_assert_locked_object(&sma->sem_perm);
1517 list_for_each_entry(un, &sma->list_id, list_id) {
1518 for (i = 0; i < nsems; i++)
1519 un->semadj[i] = 0;
1521 sma->sem_ctime = ktime_get_real_seconds();
1522 /* maybe some queued-up processes were waiting for this */
1523 do_smart_update(sma, NULL, 0, 0, &wake_q);
1524 err = 0;
1525 goto out_unlock;
1527 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1529 err = -EINVAL;
1530 if (semnum < 0 || semnum >= nsems)
1531 goto out_rcu_wakeup;
1533 sem_lock(sma, NULL, -1);
1534 if (!ipc_valid_object(&sma->sem_perm)) {
1535 err = -EIDRM;
1536 goto out_unlock;
1539 semnum = array_index_nospec(semnum, nsems);
1540 curr = &sma->sems[semnum];
1542 switch (cmd) {
1543 case GETVAL:
1544 err = curr->semval;
1545 goto out_unlock;
1546 case GETPID:
1547 err = pid_vnr(curr->sempid);
1548 goto out_unlock;
1549 case GETNCNT:
1550 err = count_semcnt(sma, semnum, 0);
1551 goto out_unlock;
1552 case GETZCNT:
1553 err = count_semcnt(sma, semnum, 1);
1554 goto out_unlock;
1557 out_unlock:
1558 sem_unlock(sma, -1);
1559 out_rcu_wakeup:
1560 rcu_read_unlock();
1561 wake_up_q(&wake_q);
1562 out_free:
1563 if (sem_io != fast_sem_io)
1564 kvfree(sem_io);
1565 return err;
1568 static inline unsigned long
1569 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1571 switch (version) {
1572 case IPC_64:
1573 if (copy_from_user(out, buf, sizeof(*out)))
1574 return -EFAULT;
1575 return 0;
1576 case IPC_OLD:
1578 struct semid_ds tbuf_old;
1580 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1581 return -EFAULT;
1583 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1584 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1585 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1587 return 0;
1589 default:
1590 return -EINVAL;
1595 * This function handles some semctl commands which require the rwsem
1596 * to be held in write mode.
1597 * NOTE: no locks must be held, the rwsem is taken inside this function.
1599 static int semctl_down(struct ipc_namespace *ns, int semid,
1600 int cmd, struct semid64_ds *semid64)
1602 struct sem_array *sma;
1603 int err;
1604 struct kern_ipc_perm *ipcp;
1606 down_write(&sem_ids(ns).rwsem);
1607 rcu_read_lock();
1609 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1610 &semid64->sem_perm, 0);
1611 if (IS_ERR(ipcp)) {
1612 err = PTR_ERR(ipcp);
1613 goto out_unlock1;
1616 sma = container_of(ipcp, struct sem_array, sem_perm);
1618 err = security_sem_semctl(&sma->sem_perm, cmd);
1619 if (err)
1620 goto out_unlock1;
1622 switch (cmd) {
1623 case IPC_RMID:
1624 sem_lock(sma, NULL, -1);
1625 /* freeary unlocks the ipc object and rcu */
1626 freeary(ns, ipcp);
1627 goto out_up;
1628 case IPC_SET:
1629 sem_lock(sma, NULL, -1);
1630 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1631 if (err)
1632 goto out_unlock0;
1633 sma->sem_ctime = ktime_get_real_seconds();
1634 break;
1635 default:
1636 err = -EINVAL;
1637 goto out_unlock1;
1640 out_unlock0:
1641 sem_unlock(sma, -1);
1642 out_unlock1:
1643 rcu_read_unlock();
1644 out_up:
1645 up_write(&sem_ids(ns).rwsem);
1646 return err;
1649 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1651 struct ipc_namespace *ns;
1652 void __user *p = (void __user *)arg;
1653 struct semid64_ds semid64;
1654 int err;
1656 if (semid < 0)
1657 return -EINVAL;
1659 ns = current->nsproxy->ipc_ns;
1661 switch (cmd) {
1662 case IPC_INFO:
1663 case SEM_INFO:
1664 return semctl_info(ns, semid, cmd, p);
1665 case IPC_STAT:
1666 case SEM_STAT:
1667 case SEM_STAT_ANY:
1668 err = semctl_stat(ns, semid, cmd, &semid64);
1669 if (err < 0)
1670 return err;
1671 if (copy_semid_to_user(p, &semid64, version))
1672 err = -EFAULT;
1673 return err;
1674 case GETALL:
1675 case GETVAL:
1676 case GETPID:
1677 case GETNCNT:
1678 case GETZCNT:
1679 case SETALL:
1680 return semctl_main(ns, semid, semnum, cmd, p);
1681 case SETVAL: {
1682 int val;
1683 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1684 /* big-endian 64bit */
1685 val = arg >> 32;
1686 #else
1687 /* 32bit or little-endian 64bit */
1688 val = arg;
1689 #endif
1690 return semctl_setval(ns, semid, semnum, val);
1692 case IPC_SET:
1693 if (copy_semid_from_user(&semid64, p, version))
1694 return -EFAULT;
1695 /* fall through */
1696 case IPC_RMID:
1697 return semctl_down(ns, semid, cmd, &semid64);
1698 default:
1699 return -EINVAL;
1703 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1705 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1708 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1709 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1711 int version = ipc_parse_version(&cmd);
1713 return ksys_semctl(semid, semnum, cmd, arg, version);
1716 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1718 return ksys_old_semctl(semid, semnum, cmd, arg);
1720 #endif
1722 #ifdef CONFIG_COMPAT
1724 struct compat_semid_ds {
1725 struct compat_ipc_perm sem_perm;
1726 old_time32_t sem_otime;
1727 old_time32_t sem_ctime;
1728 compat_uptr_t sem_base;
1729 compat_uptr_t sem_pending;
1730 compat_uptr_t sem_pending_last;
1731 compat_uptr_t undo;
1732 unsigned short sem_nsems;
1735 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1736 int version)
1738 memset(out, 0, sizeof(*out));
1739 if (version == IPC_64) {
1740 struct compat_semid64_ds __user *p = buf;
1741 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1742 } else {
1743 struct compat_semid_ds __user *p = buf;
1744 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1748 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1749 int version)
1751 if (version == IPC_64) {
1752 struct compat_semid64_ds v;
1753 memset(&v, 0, sizeof(v));
1754 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1755 v.sem_otime = lower_32_bits(in->sem_otime);
1756 v.sem_otime_high = upper_32_bits(in->sem_otime);
1757 v.sem_ctime = lower_32_bits(in->sem_ctime);
1758 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1759 v.sem_nsems = in->sem_nsems;
1760 return copy_to_user(buf, &v, sizeof(v));
1761 } else {
1762 struct compat_semid_ds v;
1763 memset(&v, 0, sizeof(v));
1764 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1765 v.sem_otime = in->sem_otime;
1766 v.sem_ctime = in->sem_ctime;
1767 v.sem_nsems = in->sem_nsems;
1768 return copy_to_user(buf, &v, sizeof(v));
1772 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1774 void __user *p = compat_ptr(arg);
1775 struct ipc_namespace *ns;
1776 struct semid64_ds semid64;
1777 int err;
1779 ns = current->nsproxy->ipc_ns;
1781 if (semid < 0)
1782 return -EINVAL;
1784 switch (cmd & (~IPC_64)) {
1785 case IPC_INFO:
1786 case SEM_INFO:
1787 return semctl_info(ns, semid, cmd, p);
1788 case IPC_STAT:
1789 case SEM_STAT:
1790 case SEM_STAT_ANY:
1791 err = semctl_stat(ns, semid, cmd, &semid64);
1792 if (err < 0)
1793 return err;
1794 if (copy_compat_semid_to_user(p, &semid64, version))
1795 err = -EFAULT;
1796 return err;
1797 case GETVAL:
1798 case GETPID:
1799 case GETNCNT:
1800 case GETZCNT:
1801 case GETALL:
1802 case SETALL:
1803 return semctl_main(ns, semid, semnum, cmd, p);
1804 case SETVAL:
1805 return semctl_setval(ns, semid, semnum, arg);
1806 case IPC_SET:
1807 if (copy_compat_semid_from_user(&semid64, p, version))
1808 return -EFAULT;
1809 /* fallthru */
1810 case IPC_RMID:
1811 return semctl_down(ns, semid, cmd, &semid64);
1812 default:
1813 return -EINVAL;
1817 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1819 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1822 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1823 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1825 int version = compat_ipc_parse_version(&cmd);
1827 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1830 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1832 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1834 #endif
1835 #endif
1837 /* If the task doesn't already have a undo_list, then allocate one
1838 * here. We guarantee there is only one thread using this undo list,
1839 * and current is THE ONE
1841 * If this allocation and assignment succeeds, but later
1842 * portions of this code fail, there is no need to free the sem_undo_list.
1843 * Just let it stay associated with the task, and it'll be freed later
1844 * at exit time.
1846 * This can block, so callers must hold no locks.
1848 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1850 struct sem_undo_list *undo_list;
1852 undo_list = current->sysvsem.undo_list;
1853 if (!undo_list) {
1854 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1855 if (undo_list == NULL)
1856 return -ENOMEM;
1857 spin_lock_init(&undo_list->lock);
1858 refcount_set(&undo_list->refcnt, 1);
1859 INIT_LIST_HEAD(&undo_list->list_proc);
1861 current->sysvsem.undo_list = undo_list;
1863 *undo_listp = undo_list;
1864 return 0;
1867 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1869 struct sem_undo *un;
1871 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1872 spin_is_locked(&ulp->lock)) {
1873 if (un->semid == semid)
1874 return un;
1876 return NULL;
1879 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1881 struct sem_undo *un;
1883 assert_spin_locked(&ulp->lock);
1885 un = __lookup_undo(ulp, semid);
1886 if (un) {
1887 list_del_rcu(&un->list_proc);
1888 list_add_rcu(&un->list_proc, &ulp->list_proc);
1890 return un;
1894 * find_alloc_undo - lookup (and if not present create) undo array
1895 * @ns: namespace
1896 * @semid: semaphore array id
1898 * The function looks up (and if not present creates) the undo structure.
1899 * The size of the undo structure depends on the size of the semaphore
1900 * array, thus the alloc path is not that straightforward.
1901 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1902 * performs a rcu_read_lock().
1904 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1906 struct sem_array *sma;
1907 struct sem_undo_list *ulp;
1908 struct sem_undo *un, *new;
1909 int nsems, error;
1911 error = get_undo_list(&ulp);
1912 if (error)
1913 return ERR_PTR(error);
1915 rcu_read_lock();
1916 spin_lock(&ulp->lock);
1917 un = lookup_undo(ulp, semid);
1918 spin_unlock(&ulp->lock);
1919 if (likely(un != NULL))
1920 goto out;
1922 /* no undo structure around - allocate one. */
1923 /* step 1: figure out the size of the semaphore array */
1924 sma = sem_obtain_object_check(ns, semid);
1925 if (IS_ERR(sma)) {
1926 rcu_read_unlock();
1927 return ERR_CAST(sma);
1930 nsems = sma->sem_nsems;
1931 if (!ipc_rcu_getref(&sma->sem_perm)) {
1932 rcu_read_unlock();
1933 un = ERR_PTR(-EIDRM);
1934 goto out;
1936 rcu_read_unlock();
1938 /* step 2: allocate new undo structure */
1939 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1940 if (!new) {
1941 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1942 return ERR_PTR(-ENOMEM);
1945 /* step 3: Acquire the lock on semaphore array */
1946 rcu_read_lock();
1947 sem_lock_and_putref(sma);
1948 if (!ipc_valid_object(&sma->sem_perm)) {
1949 sem_unlock(sma, -1);
1950 rcu_read_unlock();
1951 kfree(new);
1952 un = ERR_PTR(-EIDRM);
1953 goto out;
1955 spin_lock(&ulp->lock);
1958 * step 4: check for races: did someone else allocate the undo struct?
1960 un = lookup_undo(ulp, semid);
1961 if (un) {
1962 kfree(new);
1963 goto success;
1965 /* step 5: initialize & link new undo structure */
1966 new->semadj = (short *) &new[1];
1967 new->ulp = ulp;
1968 new->semid = semid;
1969 assert_spin_locked(&ulp->lock);
1970 list_add_rcu(&new->list_proc, &ulp->list_proc);
1971 ipc_assert_locked_object(&sma->sem_perm);
1972 list_add(&new->list_id, &sma->list_id);
1973 un = new;
1975 success:
1976 spin_unlock(&ulp->lock);
1977 sem_unlock(sma, -1);
1978 out:
1979 return un;
1982 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1983 unsigned nsops, const struct timespec64 *timeout)
1985 int error = -EINVAL;
1986 struct sem_array *sma;
1987 struct sembuf fast_sops[SEMOPM_FAST];
1988 struct sembuf *sops = fast_sops, *sop;
1989 struct sem_undo *un;
1990 int max, locknum;
1991 bool undos = false, alter = false, dupsop = false;
1992 struct sem_queue queue;
1993 unsigned long dup = 0, jiffies_left = 0;
1994 struct ipc_namespace *ns;
1996 ns = current->nsproxy->ipc_ns;
1998 if (nsops < 1 || semid < 0)
1999 return -EINVAL;
2000 if (nsops > ns->sc_semopm)
2001 return -E2BIG;
2002 if (nsops > SEMOPM_FAST) {
2003 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
2004 if (sops == NULL)
2005 return -ENOMEM;
2008 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2009 error = -EFAULT;
2010 goto out_free;
2013 if (timeout) {
2014 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2015 timeout->tv_nsec >= 1000000000L) {
2016 error = -EINVAL;
2017 goto out_free;
2019 jiffies_left = timespec64_to_jiffies(timeout);
2022 max = 0;
2023 for (sop = sops; sop < sops + nsops; sop++) {
2024 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2026 if (sop->sem_num >= max)
2027 max = sop->sem_num;
2028 if (sop->sem_flg & SEM_UNDO)
2029 undos = true;
2030 if (dup & mask) {
2032 * There was a previous alter access that appears
2033 * to have accessed the same semaphore, thus use
2034 * the dupsop logic. "appears", because the detection
2035 * can only check % BITS_PER_LONG.
2037 dupsop = true;
2039 if (sop->sem_op != 0) {
2040 alter = true;
2041 dup |= mask;
2045 if (undos) {
2046 /* On success, find_alloc_undo takes the rcu_read_lock */
2047 un = find_alloc_undo(ns, semid);
2048 if (IS_ERR(un)) {
2049 error = PTR_ERR(un);
2050 goto out_free;
2052 } else {
2053 un = NULL;
2054 rcu_read_lock();
2057 sma = sem_obtain_object_check(ns, semid);
2058 if (IS_ERR(sma)) {
2059 rcu_read_unlock();
2060 error = PTR_ERR(sma);
2061 goto out_free;
2064 error = -EFBIG;
2065 if (max >= sma->sem_nsems) {
2066 rcu_read_unlock();
2067 goto out_free;
2070 error = -EACCES;
2071 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2072 rcu_read_unlock();
2073 goto out_free;
2076 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2077 if (error) {
2078 rcu_read_unlock();
2079 goto out_free;
2082 error = -EIDRM;
2083 locknum = sem_lock(sma, sops, nsops);
2085 * We eventually might perform the following check in a lockless
2086 * fashion, considering ipc_valid_object() locking constraints.
2087 * If nsops == 1 and there is no contention for sem_perm.lock, then
2088 * only a per-semaphore lock is held and it's OK to proceed with the
2089 * check below. More details on the fine grained locking scheme
2090 * entangled here and why it's RMID race safe on comments at sem_lock()
2092 if (!ipc_valid_object(&sma->sem_perm))
2093 goto out_unlock_free;
2095 * semid identifiers are not unique - find_alloc_undo may have
2096 * allocated an undo structure, it was invalidated by an RMID
2097 * and now a new array with received the same id. Check and fail.
2098 * This case can be detected checking un->semid. The existence of
2099 * "un" itself is guaranteed by rcu.
2101 if (un && un->semid == -1)
2102 goto out_unlock_free;
2104 queue.sops = sops;
2105 queue.nsops = nsops;
2106 queue.undo = un;
2107 queue.pid = task_tgid(current);
2108 queue.alter = alter;
2109 queue.dupsop = dupsop;
2111 error = perform_atomic_semop(sma, &queue);
2112 if (error == 0) { /* non-blocking succesfull path */
2113 DEFINE_WAKE_Q(wake_q);
2116 * If the operation was successful, then do
2117 * the required updates.
2119 if (alter)
2120 do_smart_update(sma, sops, nsops, 1, &wake_q);
2121 else
2122 set_semotime(sma, sops);
2124 sem_unlock(sma, locknum);
2125 rcu_read_unlock();
2126 wake_up_q(&wake_q);
2128 goto out_free;
2130 if (error < 0) /* non-blocking error path */
2131 goto out_unlock_free;
2134 * We need to sleep on this operation, so we put the current
2135 * task into the pending queue and go to sleep.
2137 if (nsops == 1) {
2138 struct sem *curr;
2139 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2140 curr = &sma->sems[idx];
2142 if (alter) {
2143 if (sma->complex_count) {
2144 list_add_tail(&queue.list,
2145 &sma->pending_alter);
2146 } else {
2148 list_add_tail(&queue.list,
2149 &curr->pending_alter);
2151 } else {
2152 list_add_tail(&queue.list, &curr->pending_const);
2154 } else {
2155 if (!sma->complex_count)
2156 merge_queues(sma);
2158 if (alter)
2159 list_add_tail(&queue.list, &sma->pending_alter);
2160 else
2161 list_add_tail(&queue.list, &sma->pending_const);
2163 sma->complex_count++;
2166 do {
2167 /* memory ordering ensured by the lock in sem_lock() */
2168 WRITE_ONCE(queue.status, -EINTR);
2169 queue.sleeper = current;
2171 /* memory ordering is ensured by the lock in sem_lock() */
2172 __set_current_state(TASK_INTERRUPTIBLE);
2173 sem_unlock(sma, locknum);
2174 rcu_read_unlock();
2176 if (timeout)
2177 jiffies_left = schedule_timeout(jiffies_left);
2178 else
2179 schedule();
2182 * fastpath: the semop has completed, either successfully or
2183 * not, from the syscall pov, is quite irrelevant to us at this
2184 * point; we're done.
2186 * We _do_ care, nonetheless, about being awoken by a signal or
2187 * spuriously. The queue.status is checked again in the
2188 * slowpath (aka after taking sem_lock), such that we can detect
2189 * scenarios where we were awakened externally, during the
2190 * window between wake_q_add() and wake_up_q().
2192 error = READ_ONCE(queue.status);
2193 if (error != -EINTR) {
2194 /* see SEM_BARRIER_2 for purpose/pairing */
2195 smp_acquire__after_ctrl_dep();
2196 goto out_free;
2199 rcu_read_lock();
2200 locknum = sem_lock(sma, sops, nsops);
2202 if (!ipc_valid_object(&sma->sem_perm))
2203 goto out_unlock_free;
2206 * No necessity for any barrier: We are protect by sem_lock()
2208 error = READ_ONCE(queue.status);
2211 * If queue.status != -EINTR we are woken up by another process.
2212 * Leave without unlink_queue(), but with sem_unlock().
2214 if (error != -EINTR)
2215 goto out_unlock_free;
2218 * If an interrupt occurred we have to clean up the queue.
2220 if (timeout && jiffies_left == 0)
2221 error = -EAGAIN;
2222 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2224 unlink_queue(sma, &queue);
2226 out_unlock_free:
2227 sem_unlock(sma, locknum);
2228 rcu_read_unlock();
2229 out_free:
2230 if (sops != fast_sops)
2231 kvfree(sops);
2232 return error;
2235 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2236 unsigned int nsops, const struct __kernel_timespec __user *timeout)
2238 if (timeout) {
2239 struct timespec64 ts;
2240 if (get_timespec64(&ts, timeout))
2241 return -EFAULT;
2242 return do_semtimedop(semid, tsops, nsops, &ts);
2244 return do_semtimedop(semid, tsops, nsops, NULL);
2247 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2248 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2250 return ksys_semtimedop(semid, tsops, nsops, timeout);
2253 #ifdef CONFIG_COMPAT_32BIT_TIME
2254 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2255 unsigned int nsops,
2256 const struct old_timespec32 __user *timeout)
2258 if (timeout) {
2259 struct timespec64 ts;
2260 if (get_old_timespec32(&ts, timeout))
2261 return -EFAULT;
2262 return do_semtimedop(semid, tsems, nsops, &ts);
2264 return do_semtimedop(semid, tsems, nsops, NULL);
2267 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2268 unsigned int, nsops,
2269 const struct old_timespec32 __user *, timeout)
2271 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2273 #endif
2275 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2276 unsigned, nsops)
2278 return do_semtimedop(semid, tsops, nsops, NULL);
2281 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2282 * parent and child tasks.
2285 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2287 struct sem_undo_list *undo_list;
2288 int error;
2290 if (clone_flags & CLONE_SYSVSEM) {
2291 error = get_undo_list(&undo_list);
2292 if (error)
2293 return error;
2294 refcount_inc(&undo_list->refcnt);
2295 tsk->sysvsem.undo_list = undo_list;
2296 } else
2297 tsk->sysvsem.undo_list = NULL;
2299 return 0;
2303 * add semadj values to semaphores, free undo structures.
2304 * undo structures are not freed when semaphore arrays are destroyed
2305 * so some of them may be out of date.
2306 * IMPLEMENTATION NOTE: There is some confusion over whether the
2307 * set of adjustments that needs to be done should be done in an atomic
2308 * manner or not. That is, if we are attempting to decrement the semval
2309 * should we queue up and wait until we can do so legally?
2310 * The original implementation attempted to do this (queue and wait).
2311 * The current implementation does not do so. The POSIX standard
2312 * and SVID should be consulted to determine what behavior is mandated.
2314 void exit_sem(struct task_struct *tsk)
2316 struct sem_undo_list *ulp;
2318 ulp = tsk->sysvsem.undo_list;
2319 if (!ulp)
2320 return;
2321 tsk->sysvsem.undo_list = NULL;
2323 if (!refcount_dec_and_test(&ulp->refcnt))
2324 return;
2326 for (;;) {
2327 struct sem_array *sma;
2328 struct sem_undo *un;
2329 int semid, i;
2330 DEFINE_WAKE_Q(wake_q);
2332 cond_resched();
2334 rcu_read_lock();
2335 un = list_entry_rcu(ulp->list_proc.next,
2336 struct sem_undo, list_proc);
2337 if (&un->list_proc == &ulp->list_proc) {
2339 * We must wait for freeary() before freeing this ulp,
2340 * in case we raced with last sem_undo. There is a small
2341 * possibility where we exit while freeary() didn't
2342 * finish unlocking sem_undo_list.
2344 spin_lock(&ulp->lock);
2345 spin_unlock(&ulp->lock);
2346 rcu_read_unlock();
2347 break;
2349 spin_lock(&ulp->lock);
2350 semid = un->semid;
2351 spin_unlock(&ulp->lock);
2353 /* exit_sem raced with IPC_RMID, nothing to do */
2354 if (semid == -1) {
2355 rcu_read_unlock();
2356 continue;
2359 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2360 /* exit_sem raced with IPC_RMID, nothing to do */
2361 if (IS_ERR(sma)) {
2362 rcu_read_unlock();
2363 continue;
2366 sem_lock(sma, NULL, -1);
2367 /* exit_sem raced with IPC_RMID, nothing to do */
2368 if (!ipc_valid_object(&sma->sem_perm)) {
2369 sem_unlock(sma, -1);
2370 rcu_read_unlock();
2371 continue;
2373 un = __lookup_undo(ulp, semid);
2374 if (un == NULL) {
2375 /* exit_sem raced with IPC_RMID+semget() that created
2376 * exactly the same semid. Nothing to do.
2378 sem_unlock(sma, -1);
2379 rcu_read_unlock();
2380 continue;
2383 /* remove un from the linked lists */
2384 ipc_assert_locked_object(&sma->sem_perm);
2385 list_del(&un->list_id);
2387 spin_lock(&ulp->lock);
2388 list_del_rcu(&un->list_proc);
2389 spin_unlock(&ulp->lock);
2391 /* perform adjustments registered in un */
2392 for (i = 0; i < sma->sem_nsems; i++) {
2393 struct sem *semaphore = &sma->sems[i];
2394 if (un->semadj[i]) {
2395 semaphore->semval += un->semadj[i];
2397 * Range checks of the new semaphore value,
2398 * not defined by sus:
2399 * - Some unices ignore the undo entirely
2400 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2401 * - some cap the value (e.g. FreeBSD caps
2402 * at 0, but doesn't enforce SEMVMX)
2404 * Linux caps the semaphore value, both at 0
2405 * and at SEMVMX.
2407 * Manfred <manfred@colorfullife.com>
2409 if (semaphore->semval < 0)
2410 semaphore->semval = 0;
2411 if (semaphore->semval > SEMVMX)
2412 semaphore->semval = SEMVMX;
2413 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2416 /* maybe some queued-up processes were waiting for this */
2417 do_smart_update(sma, NULL, 0, 1, &wake_q);
2418 sem_unlock(sma, -1);
2419 rcu_read_unlock();
2420 wake_up_q(&wake_q);
2422 kfree_rcu(un, rcu);
2424 kfree(ulp);
2427 #ifdef CONFIG_PROC_FS
2428 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2430 struct user_namespace *user_ns = seq_user_ns(s);
2431 struct kern_ipc_perm *ipcp = it;
2432 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2433 time64_t sem_otime;
2436 * The proc interface isn't aware of sem_lock(), it calls
2437 * ipc_lock_object() directly (in sysvipc_find_ipc).
2438 * In order to stay compatible with sem_lock(), we must
2439 * enter / leave complex_mode.
2441 complexmode_enter(sma);
2443 sem_otime = get_semotime(sma);
2445 seq_printf(s,
2446 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2447 sma->sem_perm.key,
2448 sma->sem_perm.id,
2449 sma->sem_perm.mode,
2450 sma->sem_nsems,
2451 from_kuid_munged(user_ns, sma->sem_perm.uid),
2452 from_kgid_munged(user_ns, sma->sem_perm.gid),
2453 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2454 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2455 sem_otime,
2456 sma->sem_ctime);
2458 complexmode_tryleave(sma);
2460 return 0;
2462 #endif