proc: protect mm start_code/end_code in /proc/pid/stat
[linux/fpc-iii.git] / net / sunrpc / cache.c
blob25f7801e0ab9766db9a839d2a7e6fb08639a542c
1 /*
2 * net/sunrpc/cache.c
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #define RPCDBG_FACILITY RPCDBG_CACHE
39 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
40 static void cache_revisit_request(struct cache_head *item);
42 static void cache_init(struct cache_head *h)
44 time_t now = get_seconds();
45 h->next = NULL;
46 h->flags = 0;
47 kref_init(&h->ref);
48 h->expiry_time = now + CACHE_NEW_EXPIRY;
49 h->last_refresh = now;
52 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
53 struct cache_head *key, int hash)
55 struct cache_head **head, **hp;
56 struct cache_head *new = NULL;
58 head = &detail->hash_table[hash];
60 read_lock(&detail->hash_lock);
62 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
63 struct cache_head *tmp = *hp;
64 if (detail->match(tmp, key)) {
65 cache_get(tmp);
66 read_unlock(&detail->hash_lock);
67 return tmp;
70 read_unlock(&detail->hash_lock);
71 /* Didn't find anything, insert an empty entry */
73 new = detail->alloc();
74 if (!new)
75 return NULL;
76 /* must fully initialise 'new', else
77 * we might get lose if we need to
78 * cache_put it soon.
80 cache_init(new);
81 detail->init(new, key);
83 write_lock(&detail->hash_lock);
85 /* check if entry appeared while we slept */
86 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
87 struct cache_head *tmp = *hp;
88 if (detail->match(tmp, key)) {
89 cache_get(tmp);
90 write_unlock(&detail->hash_lock);
91 cache_put(new, detail);
92 return tmp;
95 new->next = *head;
96 *head = new;
97 detail->entries++;
98 cache_get(new);
99 write_unlock(&detail->hash_lock);
101 return new;
103 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
106 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
108 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
110 head->expiry_time = expiry;
111 head->last_refresh = get_seconds();
112 set_bit(CACHE_VALID, &head->flags);
115 static void cache_fresh_unlocked(struct cache_head *head,
116 struct cache_detail *detail)
118 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119 cache_revisit_request(head);
120 cache_dequeue(detail, head);
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125 struct cache_head *new, struct cache_head *old, int hash)
127 /* The 'old' entry is to be replaced by 'new'.
128 * If 'old' is not VALID, we update it directly,
129 * otherwise we need to replace it
131 struct cache_head **head;
132 struct cache_head *tmp;
134 if (!test_bit(CACHE_VALID, &old->flags)) {
135 write_lock(&detail->hash_lock);
136 if (!test_bit(CACHE_VALID, &old->flags)) {
137 if (test_bit(CACHE_NEGATIVE, &new->flags))
138 set_bit(CACHE_NEGATIVE, &old->flags);
139 else
140 detail->update(old, new);
141 cache_fresh_locked(old, new->expiry_time);
142 write_unlock(&detail->hash_lock);
143 cache_fresh_unlocked(old, detail);
144 return old;
146 write_unlock(&detail->hash_lock);
148 /* We need to insert a new entry */
149 tmp = detail->alloc();
150 if (!tmp) {
151 cache_put(old, detail);
152 return NULL;
154 cache_init(tmp);
155 detail->init(tmp, old);
156 head = &detail->hash_table[hash];
158 write_lock(&detail->hash_lock);
159 if (test_bit(CACHE_NEGATIVE, &new->flags))
160 set_bit(CACHE_NEGATIVE, &tmp->flags);
161 else
162 detail->update(tmp, new);
163 tmp->next = *head;
164 *head = tmp;
165 detail->entries++;
166 cache_get(tmp);
167 cache_fresh_locked(tmp, new->expiry_time);
168 cache_fresh_locked(old, 0);
169 write_unlock(&detail->hash_lock);
170 cache_fresh_unlocked(tmp, detail);
171 cache_fresh_unlocked(old, detail);
172 cache_put(old, detail);
173 return tmp;
175 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
177 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
179 if (!cd->cache_upcall)
180 return -EINVAL;
181 return cd->cache_upcall(cd, h);
184 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
186 if (!test_bit(CACHE_VALID, &h->flags) ||
187 h->expiry_time < get_seconds())
188 return -EAGAIN;
189 else if (detail->flush_time > h->last_refresh)
190 return -EAGAIN;
191 else {
192 /* entry is valid */
193 if (test_bit(CACHE_NEGATIVE, &h->flags))
194 return -ENOENT;
195 else
196 return 0;
201 * This is the generic cache management routine for all
202 * the authentication caches.
203 * It checks the currency of a cache item and will (later)
204 * initiate an upcall to fill it if needed.
207 * Returns 0 if the cache_head can be used, or cache_puts it and returns
208 * -EAGAIN if upcall is pending and request has been queued
209 * -ETIMEDOUT if upcall failed or request could not be queue or
210 * upcall completed but item is still invalid (implying that
211 * the cache item has been replaced with a newer one).
212 * -ENOENT if cache entry was negative
214 int cache_check(struct cache_detail *detail,
215 struct cache_head *h, struct cache_req *rqstp)
217 int rv;
218 long refresh_age, age;
220 /* First decide return status as best we can */
221 rv = cache_is_valid(detail, h);
223 /* now see if we want to start an upcall */
224 refresh_age = (h->expiry_time - h->last_refresh);
225 age = get_seconds() - h->last_refresh;
227 if (rqstp == NULL) {
228 if (rv == -EAGAIN)
229 rv = -ENOENT;
230 } else if (rv == -EAGAIN || age > refresh_age/2) {
231 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
232 refresh_age, age);
233 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
234 switch (cache_make_upcall(detail, h)) {
235 case -EINVAL:
236 clear_bit(CACHE_PENDING, &h->flags);
237 cache_revisit_request(h);
238 if (rv == -EAGAIN) {
239 set_bit(CACHE_NEGATIVE, &h->flags);
240 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY);
241 cache_fresh_unlocked(h, detail);
242 rv = -ENOENT;
244 break;
246 case -EAGAIN:
247 clear_bit(CACHE_PENDING, &h->flags);
248 cache_revisit_request(h);
249 break;
254 if (rv == -EAGAIN) {
255 if (cache_defer_req(rqstp, h) < 0) {
256 /* Request is not deferred */
257 rv = cache_is_valid(detail, h);
258 if (rv == -EAGAIN)
259 rv = -ETIMEDOUT;
262 if (rv)
263 cache_put(h, detail);
264 return rv;
266 EXPORT_SYMBOL_GPL(cache_check);
269 * caches need to be periodically cleaned.
270 * For this we maintain a list of cache_detail and
271 * a current pointer into that list and into the table
272 * for that entry.
274 * Each time clean_cache is called it finds the next non-empty entry
275 * in the current table and walks the list in that entry
276 * looking for entries that can be removed.
278 * An entry gets removed if:
279 * - The expiry is before current time
280 * - The last_refresh time is before the flush_time for that cache
282 * later we might drop old entries with non-NEVER expiry if that table
283 * is getting 'full' for some definition of 'full'
285 * The question of "how often to scan a table" is an interesting one
286 * and is answered in part by the use of the "nextcheck" field in the
287 * cache_detail.
288 * When a scan of a table begins, the nextcheck field is set to a time
289 * that is well into the future.
290 * While scanning, if an expiry time is found that is earlier than the
291 * current nextcheck time, nextcheck is set to that expiry time.
292 * If the flush_time is ever set to a time earlier than the nextcheck
293 * time, the nextcheck time is then set to that flush_time.
295 * A table is then only scanned if the current time is at least
296 * the nextcheck time.
300 static LIST_HEAD(cache_list);
301 static DEFINE_SPINLOCK(cache_list_lock);
302 static struct cache_detail *current_detail;
303 static int current_index;
305 static void do_cache_clean(struct work_struct *work);
306 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
308 static void sunrpc_init_cache_detail(struct cache_detail *cd)
310 rwlock_init(&cd->hash_lock);
311 INIT_LIST_HEAD(&cd->queue);
312 spin_lock(&cache_list_lock);
313 cd->nextcheck = 0;
314 cd->entries = 0;
315 atomic_set(&cd->readers, 0);
316 cd->last_close = 0;
317 cd->last_warn = -1;
318 list_add(&cd->others, &cache_list);
319 spin_unlock(&cache_list_lock);
321 /* start the cleaning process */
322 schedule_delayed_work(&cache_cleaner, 0);
325 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
327 cache_purge(cd);
328 spin_lock(&cache_list_lock);
329 write_lock(&cd->hash_lock);
330 if (cd->entries || atomic_read(&cd->inuse)) {
331 write_unlock(&cd->hash_lock);
332 spin_unlock(&cache_list_lock);
333 goto out;
335 if (current_detail == cd)
336 current_detail = NULL;
337 list_del_init(&cd->others);
338 write_unlock(&cd->hash_lock);
339 spin_unlock(&cache_list_lock);
340 if (list_empty(&cache_list)) {
341 /* module must be being unloaded so its safe to kill the worker */
342 cancel_delayed_work_sync(&cache_cleaner);
344 return;
345 out:
346 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
349 /* clean cache tries to find something to clean
350 * and cleans it.
351 * It returns 1 if it cleaned something,
352 * 0 if it didn't find anything this time
353 * -1 if it fell off the end of the list.
355 static int cache_clean(void)
357 int rv = 0;
358 struct list_head *next;
360 spin_lock(&cache_list_lock);
362 /* find a suitable table if we don't already have one */
363 while (current_detail == NULL ||
364 current_index >= current_detail->hash_size) {
365 if (current_detail)
366 next = current_detail->others.next;
367 else
368 next = cache_list.next;
369 if (next == &cache_list) {
370 current_detail = NULL;
371 spin_unlock(&cache_list_lock);
372 return -1;
374 current_detail = list_entry(next, struct cache_detail, others);
375 if (current_detail->nextcheck > get_seconds())
376 current_index = current_detail->hash_size;
377 else {
378 current_index = 0;
379 current_detail->nextcheck = get_seconds()+30*60;
383 /* find a non-empty bucket in the table */
384 while (current_detail &&
385 current_index < current_detail->hash_size &&
386 current_detail->hash_table[current_index] == NULL)
387 current_index++;
389 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
391 if (current_detail && current_index < current_detail->hash_size) {
392 struct cache_head *ch, **cp;
393 struct cache_detail *d;
395 write_lock(&current_detail->hash_lock);
397 /* Ok, now to clean this strand */
399 cp = & current_detail->hash_table[current_index];
400 ch = *cp;
401 for (; ch; cp= & ch->next, ch= *cp) {
402 if (current_detail->nextcheck > ch->expiry_time)
403 current_detail->nextcheck = ch->expiry_time+1;
404 if (ch->expiry_time >= get_seconds()
405 && ch->last_refresh >= current_detail->flush_time
407 continue;
408 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
409 cache_dequeue(current_detail, ch);
411 if (atomic_read(&ch->ref.refcount) == 1)
412 break;
414 if (ch) {
415 *cp = ch->next;
416 ch->next = NULL;
417 current_detail->entries--;
418 rv = 1;
420 write_unlock(&current_detail->hash_lock);
421 d = current_detail;
422 if (!ch)
423 current_index ++;
424 spin_unlock(&cache_list_lock);
425 if (ch) {
426 cache_revisit_request(ch);
427 cache_put(ch, d);
429 } else
430 spin_unlock(&cache_list_lock);
432 return rv;
436 * We want to regularly clean the cache, so we need to schedule some work ...
438 static void do_cache_clean(struct work_struct *work)
440 int delay = 5;
441 if (cache_clean() == -1)
442 delay = round_jiffies_relative(30*HZ);
444 if (list_empty(&cache_list))
445 delay = 0;
447 if (delay)
448 schedule_delayed_work(&cache_cleaner, delay);
453 * Clean all caches promptly. This just calls cache_clean
454 * repeatedly until we are sure that every cache has had a chance to
455 * be fully cleaned
457 void cache_flush(void)
459 while (cache_clean() != -1)
460 cond_resched();
461 while (cache_clean() != -1)
462 cond_resched();
464 EXPORT_SYMBOL_GPL(cache_flush);
466 void cache_purge(struct cache_detail *detail)
468 detail->flush_time = LONG_MAX;
469 detail->nextcheck = get_seconds();
470 cache_flush();
471 detail->flush_time = 1;
473 EXPORT_SYMBOL_GPL(cache_purge);
477 * Deferral and Revisiting of Requests.
479 * If a cache lookup finds a pending entry, we
480 * need to defer the request and revisit it later.
481 * All deferred requests are stored in a hash table,
482 * indexed by "struct cache_head *".
483 * As it may be wasteful to store a whole request
484 * structure, we allow the request to provide a
485 * deferred form, which must contain a
486 * 'struct cache_deferred_req'
487 * This cache_deferred_req contains a method to allow
488 * it to be revisited when cache info is available
491 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
492 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
494 #define DFR_MAX 300 /* ??? */
496 static DEFINE_SPINLOCK(cache_defer_lock);
497 static LIST_HEAD(cache_defer_list);
498 static struct list_head cache_defer_hash[DFR_HASHSIZE];
499 static int cache_defer_cnt;
501 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
503 struct cache_deferred_req *dreq, *discard;
504 int hash = DFR_HASH(item);
506 if (cache_defer_cnt >= DFR_MAX) {
507 /* too much in the cache, randomly drop this one,
508 * or continue and drop the oldest below
510 if (net_random()&1)
511 return -ENOMEM;
513 dreq = req->defer(req);
514 if (dreq == NULL)
515 return -ENOMEM;
517 dreq->item = item;
519 spin_lock(&cache_defer_lock);
521 list_add(&dreq->recent, &cache_defer_list);
523 if (cache_defer_hash[hash].next == NULL)
524 INIT_LIST_HEAD(&cache_defer_hash[hash]);
525 list_add(&dreq->hash, &cache_defer_hash[hash]);
527 /* it is in, now maybe clean up */
528 discard = NULL;
529 if (++cache_defer_cnt > DFR_MAX) {
530 discard = list_entry(cache_defer_list.prev,
531 struct cache_deferred_req, recent);
532 list_del_init(&discard->recent);
533 list_del_init(&discard->hash);
534 cache_defer_cnt--;
536 spin_unlock(&cache_defer_lock);
538 if (discard)
539 /* there was one too many */
540 discard->revisit(discard, 1);
542 if (!test_bit(CACHE_PENDING, &item->flags)) {
543 /* must have just been validated... */
544 cache_revisit_request(item);
545 return -EAGAIN;
547 return 0;
550 static void cache_revisit_request(struct cache_head *item)
552 struct cache_deferred_req *dreq;
553 struct list_head pending;
555 struct list_head *lp;
556 int hash = DFR_HASH(item);
558 INIT_LIST_HEAD(&pending);
559 spin_lock(&cache_defer_lock);
561 lp = cache_defer_hash[hash].next;
562 if (lp) {
563 while (lp != &cache_defer_hash[hash]) {
564 dreq = list_entry(lp, struct cache_deferred_req, hash);
565 lp = lp->next;
566 if (dreq->item == item) {
567 list_del_init(&dreq->hash);
568 list_move(&dreq->recent, &pending);
569 cache_defer_cnt--;
573 spin_unlock(&cache_defer_lock);
575 while (!list_empty(&pending)) {
576 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
577 list_del_init(&dreq->recent);
578 dreq->revisit(dreq, 0);
582 void cache_clean_deferred(void *owner)
584 struct cache_deferred_req *dreq, *tmp;
585 struct list_head pending;
588 INIT_LIST_HEAD(&pending);
589 spin_lock(&cache_defer_lock);
591 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
592 if (dreq->owner == owner) {
593 list_del_init(&dreq->hash);
594 list_move(&dreq->recent, &pending);
595 cache_defer_cnt--;
598 spin_unlock(&cache_defer_lock);
600 while (!list_empty(&pending)) {
601 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
602 list_del_init(&dreq->recent);
603 dreq->revisit(dreq, 1);
608 * communicate with user-space
610 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
611 * On read, you get a full request, or block.
612 * On write, an update request is processed.
613 * Poll works if anything to read, and always allows write.
615 * Implemented by linked list of requests. Each open file has
616 * a ->private that also exists in this list. New requests are added
617 * to the end and may wakeup and preceding readers.
618 * New readers are added to the head. If, on read, an item is found with
619 * CACHE_UPCALLING clear, we free it from the list.
623 static DEFINE_SPINLOCK(queue_lock);
624 static DEFINE_MUTEX(queue_io_mutex);
626 struct cache_queue {
627 struct list_head list;
628 int reader; /* if 0, then request */
630 struct cache_request {
631 struct cache_queue q;
632 struct cache_head *item;
633 char * buf;
634 int len;
635 int readers;
637 struct cache_reader {
638 struct cache_queue q;
639 int offset; /* if non-0, we have a refcnt on next request */
642 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
643 loff_t *ppos, struct cache_detail *cd)
645 struct cache_reader *rp = filp->private_data;
646 struct cache_request *rq;
647 struct inode *inode = filp->f_path.dentry->d_inode;
648 int err;
650 if (count == 0)
651 return 0;
653 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
654 * readers on this file */
655 again:
656 spin_lock(&queue_lock);
657 /* need to find next request */
658 while (rp->q.list.next != &cd->queue &&
659 list_entry(rp->q.list.next, struct cache_queue, list)
660 ->reader) {
661 struct list_head *next = rp->q.list.next;
662 list_move(&rp->q.list, next);
664 if (rp->q.list.next == &cd->queue) {
665 spin_unlock(&queue_lock);
666 mutex_unlock(&inode->i_mutex);
667 BUG_ON(rp->offset);
668 return 0;
670 rq = container_of(rp->q.list.next, struct cache_request, q.list);
671 BUG_ON(rq->q.reader);
672 if (rp->offset == 0)
673 rq->readers++;
674 spin_unlock(&queue_lock);
676 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
677 err = -EAGAIN;
678 spin_lock(&queue_lock);
679 list_move(&rp->q.list, &rq->q.list);
680 spin_unlock(&queue_lock);
681 } else {
682 if (rp->offset + count > rq->len)
683 count = rq->len - rp->offset;
684 err = -EFAULT;
685 if (copy_to_user(buf, rq->buf + rp->offset, count))
686 goto out;
687 rp->offset += count;
688 if (rp->offset >= rq->len) {
689 rp->offset = 0;
690 spin_lock(&queue_lock);
691 list_move(&rp->q.list, &rq->q.list);
692 spin_unlock(&queue_lock);
694 err = 0;
696 out:
697 if (rp->offset == 0) {
698 /* need to release rq */
699 spin_lock(&queue_lock);
700 rq->readers--;
701 if (rq->readers == 0 &&
702 !test_bit(CACHE_PENDING, &rq->item->flags)) {
703 list_del(&rq->q.list);
704 spin_unlock(&queue_lock);
705 cache_put(rq->item, cd);
706 kfree(rq->buf);
707 kfree(rq);
708 } else
709 spin_unlock(&queue_lock);
711 if (err == -EAGAIN)
712 goto again;
713 mutex_unlock(&inode->i_mutex);
714 return err ? err : count;
717 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
718 size_t count, struct cache_detail *cd)
720 ssize_t ret;
722 if (copy_from_user(kaddr, buf, count))
723 return -EFAULT;
724 kaddr[count] = '\0';
725 ret = cd->cache_parse(cd, kaddr, count);
726 if (!ret)
727 ret = count;
728 return ret;
731 static ssize_t cache_slow_downcall(const char __user *buf,
732 size_t count, struct cache_detail *cd)
734 static char write_buf[8192]; /* protected by queue_io_mutex */
735 ssize_t ret = -EINVAL;
737 if (count >= sizeof(write_buf))
738 goto out;
739 mutex_lock(&queue_io_mutex);
740 ret = cache_do_downcall(write_buf, buf, count, cd);
741 mutex_unlock(&queue_io_mutex);
742 out:
743 return ret;
746 static ssize_t cache_downcall(struct address_space *mapping,
747 const char __user *buf,
748 size_t count, struct cache_detail *cd)
750 struct page *page;
751 char *kaddr;
752 ssize_t ret = -ENOMEM;
754 if (count >= PAGE_CACHE_SIZE)
755 goto out_slow;
757 page = find_or_create_page(mapping, 0, GFP_KERNEL);
758 if (!page)
759 goto out_slow;
761 kaddr = kmap(page);
762 ret = cache_do_downcall(kaddr, buf, count, cd);
763 kunmap(page);
764 unlock_page(page);
765 page_cache_release(page);
766 return ret;
767 out_slow:
768 return cache_slow_downcall(buf, count, cd);
771 static ssize_t cache_write(struct file *filp, const char __user *buf,
772 size_t count, loff_t *ppos,
773 struct cache_detail *cd)
775 struct address_space *mapping = filp->f_mapping;
776 struct inode *inode = filp->f_path.dentry->d_inode;
777 ssize_t ret = -EINVAL;
779 if (!cd->cache_parse)
780 goto out;
782 mutex_lock(&inode->i_mutex);
783 ret = cache_downcall(mapping, buf, count, cd);
784 mutex_unlock(&inode->i_mutex);
785 out:
786 return ret;
789 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
791 static unsigned int cache_poll(struct file *filp, poll_table *wait,
792 struct cache_detail *cd)
794 unsigned int mask;
795 struct cache_reader *rp = filp->private_data;
796 struct cache_queue *cq;
798 poll_wait(filp, &queue_wait, wait);
800 /* alway allow write */
801 mask = POLL_OUT | POLLWRNORM;
803 if (!rp)
804 return mask;
806 spin_lock(&queue_lock);
808 for (cq= &rp->q; &cq->list != &cd->queue;
809 cq = list_entry(cq->list.next, struct cache_queue, list))
810 if (!cq->reader) {
811 mask |= POLLIN | POLLRDNORM;
812 break;
814 spin_unlock(&queue_lock);
815 return mask;
818 static int cache_ioctl(struct inode *ino, struct file *filp,
819 unsigned int cmd, unsigned long arg,
820 struct cache_detail *cd)
822 int len = 0;
823 struct cache_reader *rp = filp->private_data;
824 struct cache_queue *cq;
826 if (cmd != FIONREAD || !rp)
827 return -EINVAL;
829 spin_lock(&queue_lock);
831 /* only find the length remaining in current request,
832 * or the length of the next request
834 for (cq= &rp->q; &cq->list != &cd->queue;
835 cq = list_entry(cq->list.next, struct cache_queue, list))
836 if (!cq->reader) {
837 struct cache_request *cr =
838 container_of(cq, struct cache_request, q);
839 len = cr->len - rp->offset;
840 break;
842 spin_unlock(&queue_lock);
844 return put_user(len, (int __user *)arg);
847 static int cache_open(struct inode *inode, struct file *filp,
848 struct cache_detail *cd)
850 struct cache_reader *rp = NULL;
852 if (!cd || !try_module_get(cd->owner))
853 return -EACCES;
854 nonseekable_open(inode, filp);
855 if (filp->f_mode & FMODE_READ) {
856 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
857 if (!rp)
858 return -ENOMEM;
859 rp->offset = 0;
860 rp->q.reader = 1;
861 atomic_inc(&cd->readers);
862 spin_lock(&queue_lock);
863 list_add(&rp->q.list, &cd->queue);
864 spin_unlock(&queue_lock);
866 filp->private_data = rp;
867 return 0;
870 static int cache_release(struct inode *inode, struct file *filp,
871 struct cache_detail *cd)
873 struct cache_reader *rp = filp->private_data;
875 if (rp) {
876 spin_lock(&queue_lock);
877 if (rp->offset) {
878 struct cache_queue *cq;
879 for (cq= &rp->q; &cq->list != &cd->queue;
880 cq = list_entry(cq->list.next, struct cache_queue, list))
881 if (!cq->reader) {
882 container_of(cq, struct cache_request, q)
883 ->readers--;
884 break;
886 rp->offset = 0;
888 list_del(&rp->q.list);
889 spin_unlock(&queue_lock);
891 filp->private_data = NULL;
892 kfree(rp);
894 cd->last_close = get_seconds();
895 atomic_dec(&cd->readers);
897 module_put(cd->owner);
898 return 0;
903 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
905 struct cache_queue *cq;
906 spin_lock(&queue_lock);
907 list_for_each_entry(cq, &detail->queue, list)
908 if (!cq->reader) {
909 struct cache_request *cr = container_of(cq, struct cache_request, q);
910 if (cr->item != ch)
911 continue;
912 if (cr->readers != 0)
913 continue;
914 list_del(&cr->q.list);
915 spin_unlock(&queue_lock);
916 cache_put(cr->item, detail);
917 kfree(cr->buf);
918 kfree(cr);
919 return;
921 spin_unlock(&queue_lock);
925 * Support routines for text-based upcalls.
926 * Fields are separated by spaces.
927 * Fields are either mangled to quote space tab newline slosh with slosh
928 * or a hexified with a leading \x
929 * Record is terminated with newline.
933 void qword_add(char **bpp, int *lp, char *str)
935 char *bp = *bpp;
936 int len = *lp;
937 char c;
939 if (len < 0) return;
941 while ((c=*str++) && len)
942 switch(c) {
943 case ' ':
944 case '\t':
945 case '\n':
946 case '\\':
947 if (len >= 4) {
948 *bp++ = '\\';
949 *bp++ = '0' + ((c & 0300)>>6);
950 *bp++ = '0' + ((c & 0070)>>3);
951 *bp++ = '0' + ((c & 0007)>>0);
953 len -= 4;
954 break;
955 default:
956 *bp++ = c;
957 len--;
959 if (c || len <1) len = -1;
960 else {
961 *bp++ = ' ';
962 len--;
964 *bpp = bp;
965 *lp = len;
967 EXPORT_SYMBOL_GPL(qword_add);
969 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
971 char *bp = *bpp;
972 int len = *lp;
974 if (len < 0) return;
976 if (len > 2) {
977 *bp++ = '\\';
978 *bp++ = 'x';
979 len -= 2;
980 while (blen && len >= 2) {
981 unsigned char c = *buf++;
982 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
983 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
984 len -= 2;
985 blen--;
988 if (blen || len<1) len = -1;
989 else {
990 *bp++ = ' ';
991 len--;
993 *bpp = bp;
994 *lp = len;
996 EXPORT_SYMBOL_GPL(qword_addhex);
998 static void warn_no_listener(struct cache_detail *detail)
1000 if (detail->last_warn != detail->last_close) {
1001 detail->last_warn = detail->last_close;
1002 if (detail->warn_no_listener)
1003 detail->warn_no_listener(detail, detail->last_close != 0);
1008 * register an upcall request to user-space and queue it up for read() by the
1009 * upcall daemon.
1011 * Each request is at most one page long.
1013 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1014 void (*cache_request)(struct cache_detail *,
1015 struct cache_head *,
1016 char **,
1017 int *))
1020 char *buf;
1021 struct cache_request *crq;
1022 char *bp;
1023 int len;
1025 if (atomic_read(&detail->readers) == 0 &&
1026 detail->last_close < get_seconds() - 30) {
1027 warn_no_listener(detail);
1028 return -EINVAL;
1031 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1032 if (!buf)
1033 return -EAGAIN;
1035 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1036 if (!crq) {
1037 kfree(buf);
1038 return -EAGAIN;
1041 bp = buf; len = PAGE_SIZE;
1043 cache_request(detail, h, &bp, &len);
1045 if (len < 0) {
1046 kfree(buf);
1047 kfree(crq);
1048 return -EAGAIN;
1050 crq->q.reader = 0;
1051 crq->item = cache_get(h);
1052 crq->buf = buf;
1053 crq->len = PAGE_SIZE - len;
1054 crq->readers = 0;
1055 spin_lock(&queue_lock);
1056 list_add_tail(&crq->q.list, &detail->queue);
1057 spin_unlock(&queue_lock);
1058 wake_up(&queue_wait);
1059 return 0;
1061 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1064 * parse a message from user-space and pass it
1065 * to an appropriate cache
1066 * Messages are, like requests, separated into fields by
1067 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1069 * Message is
1070 * reply cachename expiry key ... content....
1072 * key and content are both parsed by cache
1075 #define isodigit(c) (isdigit(c) && c <= '7')
1076 int qword_get(char **bpp, char *dest, int bufsize)
1078 /* return bytes copied, or -1 on error */
1079 char *bp = *bpp;
1080 int len = 0;
1082 while (*bp == ' ') bp++;
1084 if (bp[0] == '\\' && bp[1] == 'x') {
1085 /* HEX STRING */
1086 bp += 2;
1087 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1088 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1089 bp++;
1090 byte <<= 4;
1091 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1092 *dest++ = byte;
1093 bp++;
1094 len++;
1096 } else {
1097 /* text with \nnn octal quoting */
1098 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1099 if (*bp == '\\' &&
1100 isodigit(bp[1]) && (bp[1] <= '3') &&
1101 isodigit(bp[2]) &&
1102 isodigit(bp[3])) {
1103 int byte = (*++bp -'0');
1104 bp++;
1105 byte = (byte << 3) | (*bp++ - '0');
1106 byte = (byte << 3) | (*bp++ - '0');
1107 *dest++ = byte;
1108 len++;
1109 } else {
1110 *dest++ = *bp++;
1111 len++;
1116 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1117 return -1;
1118 while (*bp == ' ') bp++;
1119 *bpp = bp;
1120 *dest = '\0';
1121 return len;
1123 EXPORT_SYMBOL_GPL(qword_get);
1127 * support /proc/sunrpc/cache/$CACHENAME/content
1128 * as a seqfile.
1129 * We call ->cache_show passing NULL for the item to
1130 * get a header, then pass each real item in the cache
1133 struct handle {
1134 struct cache_detail *cd;
1137 static void *c_start(struct seq_file *m, loff_t *pos)
1138 __acquires(cd->hash_lock)
1140 loff_t n = *pos;
1141 unsigned hash, entry;
1142 struct cache_head *ch;
1143 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1146 read_lock(&cd->hash_lock);
1147 if (!n--)
1148 return SEQ_START_TOKEN;
1149 hash = n >> 32;
1150 entry = n & ((1LL<<32) - 1);
1152 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1153 if (!entry--)
1154 return ch;
1155 n &= ~((1LL<<32) - 1);
1156 do {
1157 hash++;
1158 n += 1LL<<32;
1159 } while(hash < cd->hash_size &&
1160 cd->hash_table[hash]==NULL);
1161 if (hash >= cd->hash_size)
1162 return NULL;
1163 *pos = n+1;
1164 return cd->hash_table[hash];
1167 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1169 struct cache_head *ch = p;
1170 int hash = (*pos >> 32);
1171 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1173 if (p == SEQ_START_TOKEN)
1174 hash = 0;
1175 else if (ch->next == NULL) {
1176 hash++;
1177 *pos += 1LL<<32;
1178 } else {
1179 ++*pos;
1180 return ch->next;
1182 *pos &= ~((1LL<<32) - 1);
1183 while (hash < cd->hash_size &&
1184 cd->hash_table[hash] == NULL) {
1185 hash++;
1186 *pos += 1LL<<32;
1188 if (hash >= cd->hash_size)
1189 return NULL;
1190 ++*pos;
1191 return cd->hash_table[hash];
1194 static void c_stop(struct seq_file *m, void *p)
1195 __releases(cd->hash_lock)
1197 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1198 read_unlock(&cd->hash_lock);
1201 static int c_show(struct seq_file *m, void *p)
1203 struct cache_head *cp = p;
1204 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1206 if (p == SEQ_START_TOKEN)
1207 return cd->cache_show(m, cd, NULL);
1209 ifdebug(CACHE)
1210 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1211 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1212 cache_get(cp);
1213 if (cache_check(cd, cp, NULL))
1214 /* cache_check does a cache_put on failure */
1215 seq_printf(m, "# ");
1216 else
1217 cache_put(cp, cd);
1219 return cd->cache_show(m, cd, cp);
1222 static const struct seq_operations cache_content_op = {
1223 .start = c_start,
1224 .next = c_next,
1225 .stop = c_stop,
1226 .show = c_show,
1229 static int content_open(struct inode *inode, struct file *file,
1230 struct cache_detail *cd)
1232 struct handle *han;
1234 if (!cd || !try_module_get(cd->owner))
1235 return -EACCES;
1236 han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1237 if (han == NULL) {
1238 module_put(cd->owner);
1239 return -ENOMEM;
1242 han->cd = cd;
1243 return 0;
1246 static int content_release(struct inode *inode, struct file *file,
1247 struct cache_detail *cd)
1249 int ret = seq_release_private(inode, file);
1250 module_put(cd->owner);
1251 return ret;
1254 static int open_flush(struct inode *inode, struct file *file,
1255 struct cache_detail *cd)
1257 if (!cd || !try_module_get(cd->owner))
1258 return -EACCES;
1259 return nonseekable_open(inode, file);
1262 static int release_flush(struct inode *inode, struct file *file,
1263 struct cache_detail *cd)
1265 module_put(cd->owner);
1266 return 0;
1269 static ssize_t read_flush(struct file *file, char __user *buf,
1270 size_t count, loff_t *ppos,
1271 struct cache_detail *cd)
1273 char tbuf[20];
1274 unsigned long p = *ppos;
1275 size_t len;
1277 sprintf(tbuf, "%lu\n", cd->flush_time);
1278 len = strlen(tbuf);
1279 if (p >= len)
1280 return 0;
1281 len -= p;
1282 if (len > count)
1283 len = count;
1284 if (copy_to_user(buf, (void*)(tbuf+p), len))
1285 return -EFAULT;
1286 *ppos += len;
1287 return len;
1290 static ssize_t write_flush(struct file *file, const char __user *buf,
1291 size_t count, loff_t *ppos,
1292 struct cache_detail *cd)
1294 char tbuf[20];
1295 char *ep;
1296 long flushtime;
1297 if (*ppos || count > sizeof(tbuf)-1)
1298 return -EINVAL;
1299 if (copy_from_user(tbuf, buf, count))
1300 return -EFAULT;
1301 tbuf[count] = 0;
1302 flushtime = simple_strtoul(tbuf, &ep, 0);
1303 if (*ep && *ep != '\n')
1304 return -EINVAL;
1306 cd->flush_time = flushtime;
1307 cd->nextcheck = get_seconds();
1308 cache_flush();
1310 *ppos += count;
1311 return count;
1314 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1315 size_t count, loff_t *ppos)
1317 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1319 return cache_read(filp, buf, count, ppos, cd);
1322 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1323 size_t count, loff_t *ppos)
1325 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1327 return cache_write(filp, buf, count, ppos, cd);
1330 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1332 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1334 return cache_poll(filp, wait, cd);
1337 static int cache_ioctl_procfs(struct inode *inode, struct file *filp,
1338 unsigned int cmd, unsigned long arg)
1340 struct cache_detail *cd = PDE(inode)->data;
1342 return cache_ioctl(inode, filp, cmd, arg, cd);
1345 static int cache_open_procfs(struct inode *inode, struct file *filp)
1347 struct cache_detail *cd = PDE(inode)->data;
1349 return cache_open(inode, filp, cd);
1352 static int cache_release_procfs(struct inode *inode, struct file *filp)
1354 struct cache_detail *cd = PDE(inode)->data;
1356 return cache_release(inode, filp, cd);
1359 static const struct file_operations cache_file_operations_procfs = {
1360 .owner = THIS_MODULE,
1361 .llseek = no_llseek,
1362 .read = cache_read_procfs,
1363 .write = cache_write_procfs,
1364 .poll = cache_poll_procfs,
1365 .ioctl = cache_ioctl_procfs, /* for FIONREAD */
1366 .open = cache_open_procfs,
1367 .release = cache_release_procfs,
1370 static int content_open_procfs(struct inode *inode, struct file *filp)
1372 struct cache_detail *cd = PDE(inode)->data;
1374 return content_open(inode, filp, cd);
1377 static int content_release_procfs(struct inode *inode, struct file *filp)
1379 struct cache_detail *cd = PDE(inode)->data;
1381 return content_release(inode, filp, cd);
1384 static const struct file_operations content_file_operations_procfs = {
1385 .open = content_open_procfs,
1386 .read = seq_read,
1387 .llseek = seq_lseek,
1388 .release = content_release_procfs,
1391 static int open_flush_procfs(struct inode *inode, struct file *filp)
1393 struct cache_detail *cd = PDE(inode)->data;
1395 return open_flush(inode, filp, cd);
1398 static int release_flush_procfs(struct inode *inode, struct file *filp)
1400 struct cache_detail *cd = PDE(inode)->data;
1402 return release_flush(inode, filp, cd);
1405 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1406 size_t count, loff_t *ppos)
1408 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1410 return read_flush(filp, buf, count, ppos, cd);
1413 static ssize_t write_flush_procfs(struct file *filp,
1414 const char __user *buf,
1415 size_t count, loff_t *ppos)
1417 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1419 return write_flush(filp, buf, count, ppos, cd);
1422 static const struct file_operations cache_flush_operations_procfs = {
1423 .open = open_flush_procfs,
1424 .read = read_flush_procfs,
1425 .write = write_flush_procfs,
1426 .release = release_flush_procfs,
1429 static void remove_cache_proc_entries(struct cache_detail *cd)
1431 if (cd->u.procfs.proc_ent == NULL)
1432 return;
1433 if (cd->u.procfs.flush_ent)
1434 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1435 if (cd->u.procfs.channel_ent)
1436 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1437 if (cd->u.procfs.content_ent)
1438 remove_proc_entry("content", cd->u.procfs.proc_ent);
1439 cd->u.procfs.proc_ent = NULL;
1440 remove_proc_entry(cd->name, proc_net_rpc);
1443 #ifdef CONFIG_PROC_FS
1444 static int create_cache_proc_entries(struct cache_detail *cd)
1446 struct proc_dir_entry *p;
1448 cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1449 if (cd->u.procfs.proc_ent == NULL)
1450 goto out_nomem;
1451 cd->u.procfs.channel_ent = NULL;
1452 cd->u.procfs.content_ent = NULL;
1454 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1455 cd->u.procfs.proc_ent,
1456 &cache_flush_operations_procfs, cd);
1457 cd->u.procfs.flush_ent = p;
1458 if (p == NULL)
1459 goto out_nomem;
1461 if (cd->cache_upcall || cd->cache_parse) {
1462 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1463 cd->u.procfs.proc_ent,
1464 &cache_file_operations_procfs, cd);
1465 cd->u.procfs.channel_ent = p;
1466 if (p == NULL)
1467 goto out_nomem;
1469 if (cd->cache_show) {
1470 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1471 cd->u.procfs.proc_ent,
1472 &content_file_operations_procfs, cd);
1473 cd->u.procfs.content_ent = p;
1474 if (p == NULL)
1475 goto out_nomem;
1477 return 0;
1478 out_nomem:
1479 remove_cache_proc_entries(cd);
1480 return -ENOMEM;
1482 #else /* CONFIG_PROC_FS */
1483 static int create_cache_proc_entries(struct cache_detail *cd)
1485 return 0;
1487 #endif
1489 int cache_register(struct cache_detail *cd)
1491 int ret;
1493 sunrpc_init_cache_detail(cd);
1494 ret = create_cache_proc_entries(cd);
1495 if (ret)
1496 sunrpc_destroy_cache_detail(cd);
1497 return ret;
1499 EXPORT_SYMBOL_GPL(cache_register);
1501 void cache_unregister(struct cache_detail *cd)
1503 remove_cache_proc_entries(cd);
1504 sunrpc_destroy_cache_detail(cd);
1506 EXPORT_SYMBOL_GPL(cache_unregister);
1508 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1509 size_t count, loff_t *ppos)
1511 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1513 return cache_read(filp, buf, count, ppos, cd);
1516 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1517 size_t count, loff_t *ppos)
1519 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1521 return cache_write(filp, buf, count, ppos, cd);
1524 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1526 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1528 return cache_poll(filp, wait, cd);
1531 static int cache_ioctl_pipefs(struct inode *inode, struct file *filp,
1532 unsigned int cmd, unsigned long arg)
1534 struct cache_detail *cd = RPC_I(inode)->private;
1536 return cache_ioctl(inode, filp, cmd, arg, cd);
1539 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1541 struct cache_detail *cd = RPC_I(inode)->private;
1543 return cache_open(inode, filp, cd);
1546 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1548 struct cache_detail *cd = RPC_I(inode)->private;
1550 return cache_release(inode, filp, cd);
1553 const struct file_operations cache_file_operations_pipefs = {
1554 .owner = THIS_MODULE,
1555 .llseek = no_llseek,
1556 .read = cache_read_pipefs,
1557 .write = cache_write_pipefs,
1558 .poll = cache_poll_pipefs,
1559 .ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1560 .open = cache_open_pipefs,
1561 .release = cache_release_pipefs,
1564 static int content_open_pipefs(struct inode *inode, struct file *filp)
1566 struct cache_detail *cd = RPC_I(inode)->private;
1568 return content_open(inode, filp, cd);
1571 static int content_release_pipefs(struct inode *inode, struct file *filp)
1573 struct cache_detail *cd = RPC_I(inode)->private;
1575 return content_release(inode, filp, cd);
1578 const struct file_operations content_file_operations_pipefs = {
1579 .open = content_open_pipefs,
1580 .read = seq_read,
1581 .llseek = seq_lseek,
1582 .release = content_release_pipefs,
1585 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1587 struct cache_detail *cd = RPC_I(inode)->private;
1589 return open_flush(inode, filp, cd);
1592 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1594 struct cache_detail *cd = RPC_I(inode)->private;
1596 return release_flush(inode, filp, cd);
1599 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1600 size_t count, loff_t *ppos)
1602 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1604 return read_flush(filp, buf, count, ppos, cd);
1607 static ssize_t write_flush_pipefs(struct file *filp,
1608 const char __user *buf,
1609 size_t count, loff_t *ppos)
1611 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1613 return write_flush(filp, buf, count, ppos, cd);
1616 const struct file_operations cache_flush_operations_pipefs = {
1617 .open = open_flush_pipefs,
1618 .read = read_flush_pipefs,
1619 .write = write_flush_pipefs,
1620 .release = release_flush_pipefs,
1623 int sunrpc_cache_register_pipefs(struct dentry *parent,
1624 const char *name, mode_t umode,
1625 struct cache_detail *cd)
1627 struct qstr q;
1628 struct dentry *dir;
1629 int ret = 0;
1631 sunrpc_init_cache_detail(cd);
1632 q.name = name;
1633 q.len = strlen(name);
1634 q.hash = full_name_hash(q.name, q.len);
1635 dir = rpc_create_cache_dir(parent, &q, umode, cd);
1636 if (!IS_ERR(dir))
1637 cd->u.pipefs.dir = dir;
1638 else {
1639 sunrpc_destroy_cache_detail(cd);
1640 ret = PTR_ERR(dir);
1642 return ret;
1644 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1646 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1648 rpc_remove_cache_dir(cd->u.pipefs.dir);
1649 cd->u.pipefs.dir = NULL;
1650 sunrpc_destroy_cache_detail(cd);
1652 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);