Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / kernel / dumpstack.c
blob0c5a9fc6e36dc318a783fb1a3bc8a4455fde2472
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/ftrace.h>
16 #include <linux/kexec.h>
17 #include <linux/bug.h>
18 #include <linux/nmi.h>
19 #include <linux/sysfs.h>
20 #include <linux/kasan.h>
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/unwind.h>
26 #define OPCODE_BUFSIZE 64
28 int panic_on_unrecovered_nmi;
29 int panic_on_io_nmi;
30 static int die_counter;
32 static struct pt_regs exec_summary_regs;
34 bool in_task_stack(unsigned long *stack, struct task_struct *task,
35 struct stack_info *info)
37 unsigned long *begin = task_stack_page(task);
38 unsigned long *end = task_stack_page(task) + THREAD_SIZE;
40 if (stack < begin || stack >= end)
41 return false;
43 info->type = STACK_TYPE_TASK;
44 info->begin = begin;
45 info->end = end;
46 info->next_sp = NULL;
48 return true;
51 bool in_entry_stack(unsigned long *stack, struct stack_info *info)
53 struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
55 void *begin = ss;
56 void *end = ss + 1;
58 if ((void *)stack < begin || (void *)stack >= end)
59 return false;
61 info->type = STACK_TYPE_ENTRY;
62 info->begin = begin;
63 info->end = end;
64 info->next_sp = NULL;
66 return true;
69 static void printk_stack_address(unsigned long address, int reliable,
70 char *log_lvl)
72 touch_nmi_watchdog();
73 printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
77 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
79 * In case where we don't have the exact kernel image (which, if we did, we can
80 * simply disassemble and navigate to the RIP), the purpose of the bigger
81 * prologue is to have more context and to be able to correlate the code from
82 * the different toolchains better.
84 * In addition, it helps in recreating the register allocation of the failing
85 * kernel and thus make sense of the register dump.
87 * What is more, the additional complication of a variable length insn arch like
88 * x86 warrants having longer byte sequence before rIP so that the disassembler
89 * can "sync" up properly and find instruction boundaries when decoding the
90 * opcode bytes.
92 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
93 * guesstimate in attempt to achieve all of the above.
95 void show_opcodes(struct pt_regs *regs, const char *loglvl)
97 unsigned int code_prologue = OPCODE_BUFSIZE * 2 / 3;
98 u8 opcodes[OPCODE_BUFSIZE];
99 unsigned long ip;
100 int i;
101 bool bad_ip;
103 printk("%sCode: ", loglvl);
105 ip = regs->ip - code_prologue;
108 * Make sure userspace isn't trying to trick us into dumping kernel
109 * memory by pointing the userspace instruction pointer at it.
111 bad_ip = user_mode(regs) &&
112 __chk_range_not_ok(ip, OPCODE_BUFSIZE, TASK_SIZE_MAX);
114 if (bad_ip || probe_kernel_read(opcodes, (u8 *)ip, OPCODE_BUFSIZE)) {
115 pr_cont("Bad RIP value.\n");
116 return;
119 for (i = 0; i < OPCODE_BUFSIZE; i++, ip++) {
120 if (ip == regs->ip)
121 pr_cont("<%02x> ", opcodes[i]);
122 else
123 pr_cont("%02x ", opcodes[i]);
125 pr_cont("\n");
128 void show_ip(struct pt_regs *regs, const char *loglvl)
130 #ifdef CONFIG_X86_32
131 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
132 #else
133 printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
134 #endif
135 show_opcodes(regs, loglvl);
138 void show_iret_regs(struct pt_regs *regs)
140 show_ip(regs, KERN_DEFAULT);
141 printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
142 regs->sp, regs->flags);
145 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
146 bool partial)
149 * These on_stack() checks aren't strictly necessary: the unwind code
150 * has already validated the 'regs' pointer. The checks are done for
151 * ordering reasons: if the registers are on the next stack, we don't
152 * want to print them out yet. Otherwise they'll be shown as part of
153 * the wrong stack. Later, when show_trace_log_lvl() switches to the
154 * next stack, this function will be called again with the same regs so
155 * they can be printed in the right context.
157 if (!partial && on_stack(info, regs, sizeof(*regs))) {
158 __show_regs(regs, SHOW_REGS_SHORT);
160 } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
161 IRET_FRAME_SIZE)) {
163 * When an interrupt or exception occurs in entry code, the
164 * full pt_regs might not have been saved yet. In that case
165 * just print the iret frame.
167 show_iret_regs(regs);
171 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
172 unsigned long *stack, char *log_lvl)
174 struct unwind_state state;
175 struct stack_info stack_info = {0};
176 unsigned long visit_mask = 0;
177 int graph_idx = 0;
178 bool partial = false;
180 printk("%sCall Trace:\n", log_lvl);
182 unwind_start(&state, task, regs, stack);
183 stack = stack ? : get_stack_pointer(task, regs);
184 regs = unwind_get_entry_regs(&state, &partial);
187 * Iterate through the stacks, starting with the current stack pointer.
188 * Each stack has a pointer to the next one.
190 * x86-64 can have several stacks:
191 * - task stack
192 * - interrupt stack
193 * - HW exception stacks (double fault, nmi, debug, mce)
194 * - entry stack
196 * x86-32 can have up to four stacks:
197 * - task stack
198 * - softirq stack
199 * - hardirq stack
200 * - entry stack
202 for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
203 const char *stack_name;
205 if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
207 * We weren't on a valid stack. It's possible that
208 * we overflowed a valid stack into a guard page.
209 * See if the next page up is valid so that we can
210 * generate some kind of backtrace if this happens.
212 stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
213 if (get_stack_info(stack, task, &stack_info, &visit_mask))
214 break;
217 stack_name = stack_type_name(stack_info.type);
218 if (stack_name)
219 printk("%s <%s>\n", log_lvl, stack_name);
221 if (regs)
222 show_regs_if_on_stack(&stack_info, regs, partial);
225 * Scan the stack, printing any text addresses we find. At the
226 * same time, follow proper stack frames with the unwinder.
228 * Addresses found during the scan which are not reported by
229 * the unwinder are considered to be additional clues which are
230 * sometimes useful for debugging and are prefixed with '?'.
231 * This also serves as a failsafe option in case the unwinder
232 * goes off in the weeds.
234 for (; stack < stack_info.end; stack++) {
235 unsigned long real_addr;
236 int reliable = 0;
237 unsigned long addr = READ_ONCE_NOCHECK(*stack);
238 unsigned long *ret_addr_p =
239 unwind_get_return_address_ptr(&state);
241 if (!__kernel_text_address(addr))
242 continue;
245 * Don't print regs->ip again if it was already printed
246 * by show_regs_if_on_stack().
248 if (regs && stack == &regs->ip)
249 goto next;
251 if (stack == ret_addr_p)
252 reliable = 1;
255 * When function graph tracing is enabled for a
256 * function, its return address on the stack is
257 * replaced with the address of an ftrace handler
258 * (return_to_handler). In that case, before printing
259 * the "real" address, we want to print the handler
260 * address as an "unreliable" hint that function graph
261 * tracing was involved.
263 real_addr = ftrace_graph_ret_addr(task, &graph_idx,
264 addr, stack);
265 if (real_addr != addr)
266 printk_stack_address(addr, 0, log_lvl);
267 printk_stack_address(real_addr, reliable, log_lvl);
269 if (!reliable)
270 continue;
272 next:
274 * Get the next frame from the unwinder. No need to
275 * check for an error: if anything goes wrong, the rest
276 * of the addresses will just be printed as unreliable.
278 unwind_next_frame(&state);
280 /* if the frame has entry regs, print them */
281 regs = unwind_get_entry_regs(&state, &partial);
282 if (regs)
283 show_regs_if_on_stack(&stack_info, regs, partial);
286 if (stack_name)
287 printk("%s </%s>\n", log_lvl, stack_name);
291 void show_stack(struct task_struct *task, unsigned long *sp)
293 task = task ? : current;
296 * Stack frames below this one aren't interesting. Don't show them
297 * if we're printing for %current.
299 if (!sp && task == current)
300 sp = get_stack_pointer(current, NULL);
302 show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
305 void show_stack_regs(struct pt_regs *regs)
307 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
310 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
311 static int die_owner = -1;
312 static unsigned int die_nest_count;
314 unsigned long oops_begin(void)
316 int cpu;
317 unsigned long flags;
319 oops_enter();
321 /* racy, but better than risking deadlock. */
322 raw_local_irq_save(flags);
323 cpu = smp_processor_id();
324 if (!arch_spin_trylock(&die_lock)) {
325 if (cpu == die_owner)
326 /* nested oops. should stop eventually */;
327 else
328 arch_spin_lock(&die_lock);
330 die_nest_count++;
331 die_owner = cpu;
332 console_verbose();
333 bust_spinlocks(1);
334 return flags;
336 NOKPROBE_SYMBOL(oops_begin);
338 void __noreturn rewind_stack_do_exit(int signr);
340 void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
342 if (regs && kexec_should_crash(current))
343 crash_kexec(regs);
345 bust_spinlocks(0);
346 die_owner = -1;
347 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
348 die_nest_count--;
349 if (!die_nest_count)
350 /* Nest count reaches zero, release the lock. */
351 arch_spin_unlock(&die_lock);
352 raw_local_irq_restore(flags);
353 oops_exit();
355 /* Executive summary in case the oops scrolled away */
356 __show_regs(&exec_summary_regs, SHOW_REGS_ALL);
358 if (!signr)
359 return;
360 if (in_interrupt())
361 panic("Fatal exception in interrupt");
362 if (panic_on_oops)
363 panic("Fatal exception");
366 * We're not going to return, but we might be on an IST stack or
367 * have very little stack space left. Rewind the stack and kill
368 * the task.
369 * Before we rewind the stack, we have to tell KASAN that we're going to
370 * reuse the task stack and that existing poisons are invalid.
372 kasan_unpoison_task_stack(current);
373 rewind_stack_do_exit(signr);
375 NOKPROBE_SYMBOL(oops_end);
377 int __die(const char *str, struct pt_regs *regs, long err)
379 /* Save the regs of the first oops for the executive summary later. */
380 if (!die_counter)
381 exec_summary_regs = *regs;
383 printk(KERN_DEFAULT
384 "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
385 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
386 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
387 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
388 IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "",
389 IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
390 (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
392 show_regs(regs);
393 print_modules();
395 if (notify_die(DIE_OOPS, str, regs, err,
396 current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
397 return 1;
399 return 0;
401 NOKPROBE_SYMBOL(__die);
404 * This is gone through when something in the kernel has done something bad
405 * and is about to be terminated:
407 void die(const char *str, struct pt_regs *regs, long err)
409 unsigned long flags = oops_begin();
410 int sig = SIGSEGV;
412 if (__die(str, regs, err))
413 sig = 0;
414 oops_end(flags, regs, sig);
417 void show_regs(struct pt_regs *regs)
419 show_regs_print_info(KERN_DEFAULT);
421 __show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
424 * When in-kernel, we also print out the stack at the time of the fault..
426 if (!user_mode(regs))
427 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);