Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / kernel / hw_breakpoint.c
blob8771766d46b6c3e74d914136578f0b8d6f64b5ad
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 * Copyright (C) 2007 Alan Stern
17 * Copyright (C) 2009 IBM Corporation
18 * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
20 * Authors: Alan Stern <stern@rowland.harvard.edu>
21 * K.Prasad <prasad@linux.vnet.ibm.com>
22 * Frederic Weisbecker <fweisbec@gmail.com>
26 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
27 * using the CPU's debug registers.
30 #include <linux/perf_event.h>
31 #include <linux/hw_breakpoint.h>
32 #include <linux/irqflags.h>
33 #include <linux/notifier.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kprobes.h>
36 #include <linux/percpu.h>
37 #include <linux/kdebug.h>
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/sched.h>
41 #include <linux/smp.h>
43 #include <asm/hw_breakpoint.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/user.h>
48 /* Per cpu debug control register value */
49 DEFINE_PER_CPU(unsigned long, cpu_dr7);
50 EXPORT_PER_CPU_SYMBOL(cpu_dr7);
52 /* Per cpu debug address registers values */
53 static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
56 * Stores the breakpoints currently in use on each breakpoint address
57 * register for each cpus
59 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
62 static inline unsigned long
63 __encode_dr7(int drnum, unsigned int len, unsigned int type)
65 unsigned long bp_info;
67 bp_info = (len | type) & 0xf;
68 bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
69 bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
71 return bp_info;
75 * Encode the length, type, Exact, and Enable bits for a particular breakpoint
76 * as stored in debug register 7.
78 unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
80 return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
84 * Decode the length and type bits for a particular breakpoint as
85 * stored in debug register 7. Return the "enabled" status.
87 int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
89 int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
91 *len = (bp_info & 0xc) | 0x40;
92 *type = (bp_info & 0x3) | 0x80;
94 return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
98 * Install a perf counter breakpoint.
100 * We seek a free debug address register and use it for this
101 * breakpoint. Eventually we enable it in the debug control register.
103 * Atomic: we hold the counter->ctx->lock and we only handle variables
104 * and registers local to this cpu.
106 int arch_install_hw_breakpoint(struct perf_event *bp)
108 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
109 unsigned long *dr7;
110 int i;
112 for (i = 0; i < HBP_NUM; i++) {
113 struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
115 if (!*slot) {
116 *slot = bp;
117 break;
121 if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
122 return -EBUSY;
124 set_debugreg(info->address, i);
125 __this_cpu_write(cpu_debugreg[i], info->address);
127 dr7 = this_cpu_ptr(&cpu_dr7);
128 *dr7 |= encode_dr7(i, info->len, info->type);
130 set_debugreg(*dr7, 7);
131 if (info->mask)
132 set_dr_addr_mask(info->mask, i);
134 return 0;
138 * Uninstall the breakpoint contained in the given counter.
140 * First we search the debug address register it uses and then we disable
141 * it.
143 * Atomic: we hold the counter->ctx->lock and we only handle variables
144 * and registers local to this cpu.
146 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
148 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
149 unsigned long *dr7;
150 int i;
152 for (i = 0; i < HBP_NUM; i++) {
153 struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
155 if (*slot == bp) {
156 *slot = NULL;
157 break;
161 if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
162 return;
164 dr7 = this_cpu_ptr(&cpu_dr7);
165 *dr7 &= ~__encode_dr7(i, info->len, info->type);
167 set_debugreg(*dr7, 7);
168 if (info->mask)
169 set_dr_addr_mask(0, i);
173 * Check for virtual address in kernel space.
175 int arch_check_bp_in_kernelspace(struct perf_event *bp)
177 unsigned int len;
178 unsigned long va;
179 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
181 va = info->address;
182 len = bp->attr.bp_len;
185 * We don't need to worry about va + len - 1 overflowing:
186 * we already require that va is aligned to a multiple of len.
188 return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
191 int arch_bp_generic_fields(int x86_len, int x86_type,
192 int *gen_len, int *gen_type)
194 /* Type */
195 switch (x86_type) {
196 case X86_BREAKPOINT_EXECUTE:
197 if (x86_len != X86_BREAKPOINT_LEN_X)
198 return -EINVAL;
200 *gen_type = HW_BREAKPOINT_X;
201 *gen_len = sizeof(long);
202 return 0;
203 case X86_BREAKPOINT_WRITE:
204 *gen_type = HW_BREAKPOINT_W;
205 break;
206 case X86_BREAKPOINT_RW:
207 *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
208 break;
209 default:
210 return -EINVAL;
213 /* Len */
214 switch (x86_len) {
215 case X86_BREAKPOINT_LEN_1:
216 *gen_len = HW_BREAKPOINT_LEN_1;
217 break;
218 case X86_BREAKPOINT_LEN_2:
219 *gen_len = HW_BREAKPOINT_LEN_2;
220 break;
221 case X86_BREAKPOINT_LEN_4:
222 *gen_len = HW_BREAKPOINT_LEN_4;
223 break;
224 #ifdef CONFIG_X86_64
225 case X86_BREAKPOINT_LEN_8:
226 *gen_len = HW_BREAKPOINT_LEN_8;
227 break;
228 #endif
229 default:
230 return -EINVAL;
233 return 0;
237 static int arch_build_bp_info(struct perf_event *bp)
239 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
241 info->address = bp->attr.bp_addr;
243 /* Type */
244 switch (bp->attr.bp_type) {
245 case HW_BREAKPOINT_W:
246 info->type = X86_BREAKPOINT_WRITE;
247 break;
248 case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
249 info->type = X86_BREAKPOINT_RW;
250 break;
251 case HW_BREAKPOINT_X:
253 * We don't allow kernel breakpoints in places that are not
254 * acceptable for kprobes. On non-kprobes kernels, we don't
255 * allow kernel breakpoints at all.
257 if (bp->attr.bp_addr >= TASK_SIZE_MAX) {
258 #ifdef CONFIG_KPROBES
259 if (within_kprobe_blacklist(bp->attr.bp_addr))
260 return -EINVAL;
261 #else
262 return -EINVAL;
263 #endif
266 info->type = X86_BREAKPOINT_EXECUTE;
268 * x86 inst breakpoints need to have a specific undefined len.
269 * But we still need to check userspace is not trying to setup
270 * an unsupported length, to get a range breakpoint for example.
272 if (bp->attr.bp_len == sizeof(long)) {
273 info->len = X86_BREAKPOINT_LEN_X;
274 return 0;
276 default:
277 return -EINVAL;
280 /* Len */
281 info->mask = 0;
283 switch (bp->attr.bp_len) {
284 case HW_BREAKPOINT_LEN_1:
285 info->len = X86_BREAKPOINT_LEN_1;
286 break;
287 case HW_BREAKPOINT_LEN_2:
288 info->len = X86_BREAKPOINT_LEN_2;
289 break;
290 case HW_BREAKPOINT_LEN_4:
291 info->len = X86_BREAKPOINT_LEN_4;
292 break;
293 #ifdef CONFIG_X86_64
294 case HW_BREAKPOINT_LEN_8:
295 info->len = X86_BREAKPOINT_LEN_8;
296 break;
297 #endif
298 default:
299 /* AMD range breakpoint */
300 if (!is_power_of_2(bp->attr.bp_len))
301 return -EINVAL;
302 if (bp->attr.bp_addr & (bp->attr.bp_len - 1))
303 return -EINVAL;
305 if (!boot_cpu_has(X86_FEATURE_BPEXT))
306 return -EOPNOTSUPP;
309 * It's impossible to use a range breakpoint to fake out
310 * user vs kernel detection because bp_len - 1 can't
311 * have the high bit set. If we ever allow range instruction
312 * breakpoints, then we'll have to check for kprobe-blacklisted
313 * addresses anywhere in the range.
315 info->mask = bp->attr.bp_len - 1;
316 info->len = X86_BREAKPOINT_LEN_1;
319 return 0;
323 * Validate the arch-specific HW Breakpoint register settings
325 int arch_validate_hwbkpt_settings(struct perf_event *bp)
327 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
328 unsigned int align;
329 int ret;
332 ret = arch_build_bp_info(bp);
333 if (ret)
334 return ret;
336 switch (info->len) {
337 case X86_BREAKPOINT_LEN_1:
338 align = 0;
339 if (info->mask)
340 align = info->mask;
341 break;
342 case X86_BREAKPOINT_LEN_2:
343 align = 1;
344 break;
345 case X86_BREAKPOINT_LEN_4:
346 align = 3;
347 break;
348 #ifdef CONFIG_X86_64
349 case X86_BREAKPOINT_LEN_8:
350 align = 7;
351 break;
352 #endif
353 default:
354 WARN_ON_ONCE(1);
358 * Check that the low-order bits of the address are appropriate
359 * for the alignment implied by len.
361 if (info->address & align)
362 return -EINVAL;
364 return 0;
368 * Dump the debug register contents to the user.
369 * We can't dump our per cpu values because it
370 * may contain cpu wide breakpoint, something that
371 * doesn't belong to the current task.
373 * TODO: include non-ptrace user breakpoints (perf)
375 void aout_dump_debugregs(struct user *dump)
377 int i;
378 int dr7 = 0;
379 struct perf_event *bp;
380 struct arch_hw_breakpoint *info;
381 struct thread_struct *thread = &current->thread;
383 for (i = 0; i < HBP_NUM; i++) {
384 bp = thread->ptrace_bps[i];
386 if (bp && !bp->attr.disabled) {
387 dump->u_debugreg[i] = bp->attr.bp_addr;
388 info = counter_arch_bp(bp);
389 dr7 |= encode_dr7(i, info->len, info->type);
390 } else {
391 dump->u_debugreg[i] = 0;
395 dump->u_debugreg[4] = 0;
396 dump->u_debugreg[5] = 0;
397 dump->u_debugreg[6] = current->thread.debugreg6;
399 dump->u_debugreg[7] = dr7;
401 EXPORT_SYMBOL_GPL(aout_dump_debugregs);
404 * Release the user breakpoints used by ptrace
406 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
408 int i;
409 struct thread_struct *t = &tsk->thread;
411 for (i = 0; i < HBP_NUM; i++) {
412 unregister_hw_breakpoint(t->ptrace_bps[i]);
413 t->ptrace_bps[i] = NULL;
416 t->debugreg6 = 0;
417 t->ptrace_dr7 = 0;
420 void hw_breakpoint_restore(void)
422 set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
423 set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
424 set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
425 set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
426 set_debugreg(current->thread.debugreg6, 6);
427 set_debugreg(__this_cpu_read(cpu_dr7), 7);
429 EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
432 * Handle debug exception notifications.
434 * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
436 * NOTIFY_DONE returned if one of the following conditions is true.
437 * i) When the causative address is from user-space and the exception
438 * is a valid one, i.e. not triggered as a result of lazy debug register
439 * switching
440 * ii) When there are more bits than trap<n> set in DR6 register (such
441 * as BD, BS or BT) indicating that more than one debug condition is
442 * met and requires some more action in do_debug().
444 * NOTIFY_STOP returned for all other cases
447 static int hw_breakpoint_handler(struct die_args *args)
449 int i, cpu, rc = NOTIFY_STOP;
450 struct perf_event *bp;
451 unsigned long dr7, dr6;
452 unsigned long *dr6_p;
454 /* The DR6 value is pointed by args->err */
455 dr6_p = (unsigned long *)ERR_PTR(args->err);
456 dr6 = *dr6_p;
458 /* If it's a single step, TRAP bits are random */
459 if (dr6 & DR_STEP)
460 return NOTIFY_DONE;
462 /* Do an early return if no trap bits are set in DR6 */
463 if ((dr6 & DR_TRAP_BITS) == 0)
464 return NOTIFY_DONE;
466 get_debugreg(dr7, 7);
467 /* Disable breakpoints during exception handling */
468 set_debugreg(0UL, 7);
470 * Assert that local interrupts are disabled
471 * Reset the DRn bits in the virtualized register value.
472 * The ptrace trigger routine will add in whatever is needed.
474 current->thread.debugreg6 &= ~DR_TRAP_BITS;
475 cpu = get_cpu();
477 /* Handle all the breakpoints that were triggered */
478 for (i = 0; i < HBP_NUM; ++i) {
479 if (likely(!(dr6 & (DR_TRAP0 << i))))
480 continue;
483 * The counter may be concurrently released but that can only
484 * occur from a call_rcu() path. We can then safely fetch
485 * the breakpoint, use its callback, touch its counter
486 * while we are in an rcu_read_lock() path.
488 rcu_read_lock();
490 bp = per_cpu(bp_per_reg[i], cpu);
492 * Reset the 'i'th TRAP bit in dr6 to denote completion of
493 * exception handling
495 (*dr6_p) &= ~(DR_TRAP0 << i);
497 * bp can be NULL due to lazy debug register switching
498 * or due to concurrent perf counter removing.
500 if (!bp) {
501 rcu_read_unlock();
502 break;
505 perf_bp_event(bp, args->regs);
508 * Set up resume flag to avoid breakpoint recursion when
509 * returning back to origin.
511 if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE)
512 args->regs->flags |= X86_EFLAGS_RF;
514 rcu_read_unlock();
517 * Further processing in do_debug() is needed for a) user-space
518 * breakpoints (to generate signals) and b) when the system has
519 * taken exception due to multiple causes
521 if ((current->thread.debugreg6 & DR_TRAP_BITS) ||
522 (dr6 & (~DR_TRAP_BITS)))
523 rc = NOTIFY_DONE;
525 set_debugreg(dr7, 7);
526 put_cpu();
528 return rc;
532 * Handle debug exception notifications.
534 int hw_breakpoint_exceptions_notify(
535 struct notifier_block *unused, unsigned long val, void *data)
537 if (val != DIE_DEBUG)
538 return NOTIFY_DONE;
540 return hw_breakpoint_handler(data);
543 void hw_breakpoint_pmu_read(struct perf_event *bp)
545 /* TODO */