Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / kernel / i8259.c
blob519649ddf1001d423c5b0a7e02a42f7ca92e2a06
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/linkage.h>
3 #include <linux/errno.h>
4 #include <linux/signal.h>
5 #include <linux/sched.h>
6 #include <linux/ioport.h>
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/timex.h>
10 #include <linux/random.h>
11 #include <linux/init.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/syscore_ops.h>
14 #include <linux/bitops.h>
15 #include <linux/acpi.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
19 #include <linux/atomic.h>
20 #include <asm/timer.h>
21 #include <asm/hw_irq.h>
22 #include <asm/pgtable.h>
23 #include <asm/desc.h>
24 #include <asm/apic.h>
25 #include <asm/i8259.h>
28 * This is the 'legacy' 8259A Programmable Interrupt Controller,
29 * present in the majority of PC/AT boxes.
30 * plus some generic x86 specific things if generic specifics makes
31 * any sense at all.
33 static void init_8259A(int auto_eoi);
35 static int i8259A_auto_eoi;
36 DEFINE_RAW_SPINLOCK(i8259A_lock);
39 * 8259A PIC functions to handle ISA devices:
43 * This contains the irq mask for both 8259A irq controllers,
45 unsigned int cached_irq_mask = 0xffff;
48 * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
49 * boards the timer interrupt is not really connected to any IO-APIC pin,
50 * it's fed to the master 8259A's IR0 line only.
52 * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
53 * this 'mixed mode' IRQ handling costs nothing because it's only used
54 * at IRQ setup time.
56 unsigned long io_apic_irqs;
58 static void mask_8259A_irq(unsigned int irq)
60 unsigned int mask = 1 << irq;
61 unsigned long flags;
63 raw_spin_lock_irqsave(&i8259A_lock, flags);
64 cached_irq_mask |= mask;
65 if (irq & 8)
66 outb(cached_slave_mask, PIC_SLAVE_IMR);
67 else
68 outb(cached_master_mask, PIC_MASTER_IMR);
69 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
72 static void disable_8259A_irq(struct irq_data *data)
74 mask_8259A_irq(data->irq);
77 static void unmask_8259A_irq(unsigned int irq)
79 unsigned int mask = ~(1 << irq);
80 unsigned long flags;
82 raw_spin_lock_irqsave(&i8259A_lock, flags);
83 cached_irq_mask &= mask;
84 if (irq & 8)
85 outb(cached_slave_mask, PIC_SLAVE_IMR);
86 else
87 outb(cached_master_mask, PIC_MASTER_IMR);
88 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
91 static void enable_8259A_irq(struct irq_data *data)
93 unmask_8259A_irq(data->irq);
96 static int i8259A_irq_pending(unsigned int irq)
98 unsigned int mask = 1<<irq;
99 unsigned long flags;
100 int ret;
102 raw_spin_lock_irqsave(&i8259A_lock, flags);
103 if (irq < 8)
104 ret = inb(PIC_MASTER_CMD) & mask;
105 else
106 ret = inb(PIC_SLAVE_CMD) & (mask >> 8);
107 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
109 return ret;
112 static void make_8259A_irq(unsigned int irq)
114 disable_irq_nosync(irq);
115 io_apic_irqs &= ~(1<<irq);
116 irq_set_chip_and_handler(irq, &i8259A_chip, handle_level_irq);
117 enable_irq(irq);
118 lapic_assign_legacy_vector(irq, true);
122 * This function assumes to be called rarely. Switching between
123 * 8259A registers is slow.
124 * This has to be protected by the irq controller spinlock
125 * before being called.
127 static inline int i8259A_irq_real(unsigned int irq)
129 int value;
130 int irqmask = 1<<irq;
132 if (irq < 8) {
133 outb(0x0B, PIC_MASTER_CMD); /* ISR register */
134 value = inb(PIC_MASTER_CMD) & irqmask;
135 outb(0x0A, PIC_MASTER_CMD); /* back to the IRR register */
136 return value;
138 outb(0x0B, PIC_SLAVE_CMD); /* ISR register */
139 value = inb(PIC_SLAVE_CMD) & (irqmask >> 8);
140 outb(0x0A, PIC_SLAVE_CMD); /* back to the IRR register */
141 return value;
145 * Careful! The 8259A is a fragile beast, it pretty
146 * much _has_ to be done exactly like this (mask it
147 * first, _then_ send the EOI, and the order of EOI
148 * to the two 8259s is important!
150 static void mask_and_ack_8259A(struct irq_data *data)
152 unsigned int irq = data->irq;
153 unsigned int irqmask = 1 << irq;
154 unsigned long flags;
156 raw_spin_lock_irqsave(&i8259A_lock, flags);
158 * Lightweight spurious IRQ detection. We do not want
159 * to overdo spurious IRQ handling - it's usually a sign
160 * of hardware problems, so we only do the checks we can
161 * do without slowing down good hardware unnecessarily.
163 * Note that IRQ7 and IRQ15 (the two spurious IRQs
164 * usually resulting from the 8259A-1|2 PICs) occur
165 * even if the IRQ is masked in the 8259A. Thus we
166 * can check spurious 8259A IRQs without doing the
167 * quite slow i8259A_irq_real() call for every IRQ.
168 * This does not cover 100% of spurious interrupts,
169 * but should be enough to warn the user that there
170 * is something bad going on ...
172 if (cached_irq_mask & irqmask)
173 goto spurious_8259A_irq;
174 cached_irq_mask |= irqmask;
176 handle_real_irq:
177 if (irq & 8) {
178 inb(PIC_SLAVE_IMR); /* DUMMY - (do we need this?) */
179 outb(cached_slave_mask, PIC_SLAVE_IMR);
180 /* 'Specific EOI' to slave */
181 outb(0x60+(irq&7), PIC_SLAVE_CMD);
182 /* 'Specific EOI' to master-IRQ2 */
183 outb(0x60+PIC_CASCADE_IR, PIC_MASTER_CMD);
184 } else {
185 inb(PIC_MASTER_IMR); /* DUMMY - (do we need this?) */
186 outb(cached_master_mask, PIC_MASTER_IMR);
187 outb(0x60+irq, PIC_MASTER_CMD); /* 'Specific EOI to master */
189 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
190 return;
192 spurious_8259A_irq:
194 * this is the slow path - should happen rarely.
196 if (i8259A_irq_real(irq))
198 * oops, the IRQ _is_ in service according to the
199 * 8259A - not spurious, go handle it.
201 goto handle_real_irq;
204 static int spurious_irq_mask;
206 * At this point we can be sure the IRQ is spurious,
207 * lets ACK and report it. [once per IRQ]
209 if (!(spurious_irq_mask & irqmask)) {
210 printk(KERN_DEBUG
211 "spurious 8259A interrupt: IRQ%d.\n", irq);
212 spurious_irq_mask |= irqmask;
214 atomic_inc(&irq_err_count);
216 * Theoretically we do not have to handle this IRQ,
217 * but in Linux this does not cause problems and is
218 * simpler for us.
220 goto handle_real_irq;
224 struct irq_chip i8259A_chip = {
225 .name = "XT-PIC",
226 .irq_mask = disable_8259A_irq,
227 .irq_disable = disable_8259A_irq,
228 .irq_unmask = enable_8259A_irq,
229 .irq_mask_ack = mask_and_ack_8259A,
232 static char irq_trigger[2];
234 * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ
236 static void restore_ELCR(char *trigger)
238 outb(trigger[0], 0x4d0);
239 outb(trigger[1], 0x4d1);
242 static void save_ELCR(char *trigger)
244 /* IRQ 0,1,2,8,13 are marked as reserved */
245 trigger[0] = inb(0x4d0) & 0xF8;
246 trigger[1] = inb(0x4d1) & 0xDE;
249 static void i8259A_resume(void)
251 init_8259A(i8259A_auto_eoi);
252 restore_ELCR(irq_trigger);
255 static int i8259A_suspend(void)
257 save_ELCR(irq_trigger);
258 return 0;
261 static void i8259A_shutdown(void)
263 /* Put the i8259A into a quiescent state that
264 * the kernel initialization code can get it
265 * out of.
267 outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
268 outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */
271 static struct syscore_ops i8259_syscore_ops = {
272 .suspend = i8259A_suspend,
273 .resume = i8259A_resume,
274 .shutdown = i8259A_shutdown,
277 static void mask_8259A(void)
279 unsigned long flags;
281 raw_spin_lock_irqsave(&i8259A_lock, flags);
283 outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
284 outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */
286 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
289 static void unmask_8259A(void)
291 unsigned long flags;
293 raw_spin_lock_irqsave(&i8259A_lock, flags);
295 outb(cached_master_mask, PIC_MASTER_IMR); /* restore master IRQ mask */
296 outb(cached_slave_mask, PIC_SLAVE_IMR); /* restore slave IRQ mask */
298 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
301 static int probe_8259A(void)
303 unsigned long flags;
304 unsigned char probe_val = ~(1 << PIC_CASCADE_IR);
305 unsigned char new_val;
307 * Check to see if we have a PIC.
308 * Mask all except the cascade and read
309 * back the value we just wrote. If we don't
310 * have a PIC, we will read 0xff as opposed to the
311 * value we wrote.
313 raw_spin_lock_irqsave(&i8259A_lock, flags);
315 outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */
316 outb(probe_val, PIC_MASTER_IMR);
317 new_val = inb(PIC_MASTER_IMR);
318 if (new_val != probe_val) {
319 printk(KERN_INFO "Using NULL legacy PIC\n");
320 legacy_pic = &null_legacy_pic;
323 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
324 return nr_legacy_irqs();
327 static void init_8259A(int auto_eoi)
329 unsigned long flags;
331 i8259A_auto_eoi = auto_eoi;
333 raw_spin_lock_irqsave(&i8259A_lock, flags);
335 outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
338 * outb_pic - this has to work on a wide range of PC hardware.
340 outb_pic(0x11, PIC_MASTER_CMD); /* ICW1: select 8259A-1 init */
342 /* ICW2: 8259A-1 IR0-7 mapped to ISA_IRQ_VECTOR(0) */
343 outb_pic(ISA_IRQ_VECTOR(0), PIC_MASTER_IMR);
345 /* 8259A-1 (the master) has a slave on IR2 */
346 outb_pic(1U << PIC_CASCADE_IR, PIC_MASTER_IMR);
348 if (auto_eoi) /* master does Auto EOI */
349 outb_pic(MASTER_ICW4_DEFAULT | PIC_ICW4_AEOI, PIC_MASTER_IMR);
350 else /* master expects normal EOI */
351 outb_pic(MASTER_ICW4_DEFAULT, PIC_MASTER_IMR);
353 outb_pic(0x11, PIC_SLAVE_CMD); /* ICW1: select 8259A-2 init */
355 /* ICW2: 8259A-2 IR0-7 mapped to ISA_IRQ_VECTOR(8) */
356 outb_pic(ISA_IRQ_VECTOR(8), PIC_SLAVE_IMR);
357 /* 8259A-2 is a slave on master's IR2 */
358 outb_pic(PIC_CASCADE_IR, PIC_SLAVE_IMR);
359 /* (slave's support for AEOI in flat mode is to be investigated) */
360 outb_pic(SLAVE_ICW4_DEFAULT, PIC_SLAVE_IMR);
362 if (auto_eoi)
364 * In AEOI mode we just have to mask the interrupt
365 * when acking.
367 i8259A_chip.irq_mask_ack = disable_8259A_irq;
368 else
369 i8259A_chip.irq_mask_ack = mask_and_ack_8259A;
371 udelay(100); /* wait for 8259A to initialize */
373 outb(cached_master_mask, PIC_MASTER_IMR); /* restore master IRQ mask */
374 outb(cached_slave_mask, PIC_SLAVE_IMR); /* restore slave IRQ mask */
376 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
380 * make i8259 a driver so that we can select pic functions at run time. the goal
381 * is to make x86 binary compatible among pc compatible and non-pc compatible
382 * platforms, such as x86 MID.
385 static void legacy_pic_noop(void) { };
386 static void legacy_pic_uint_noop(unsigned int unused) { };
387 static void legacy_pic_int_noop(int unused) { };
388 static int legacy_pic_irq_pending_noop(unsigned int irq)
390 return 0;
392 static int legacy_pic_probe(void)
394 return 0;
397 struct legacy_pic null_legacy_pic = {
398 .nr_legacy_irqs = 0,
399 .chip = &dummy_irq_chip,
400 .mask = legacy_pic_uint_noop,
401 .unmask = legacy_pic_uint_noop,
402 .mask_all = legacy_pic_noop,
403 .restore_mask = legacy_pic_noop,
404 .init = legacy_pic_int_noop,
405 .probe = legacy_pic_probe,
406 .irq_pending = legacy_pic_irq_pending_noop,
407 .make_irq = legacy_pic_uint_noop,
410 struct legacy_pic default_legacy_pic = {
411 .nr_legacy_irqs = NR_IRQS_LEGACY,
412 .chip = &i8259A_chip,
413 .mask = mask_8259A_irq,
414 .unmask = unmask_8259A_irq,
415 .mask_all = mask_8259A,
416 .restore_mask = unmask_8259A,
417 .init = init_8259A,
418 .probe = probe_8259A,
419 .irq_pending = i8259A_irq_pending,
420 .make_irq = make_8259A_irq,
423 struct legacy_pic *legacy_pic = &default_legacy_pic;
424 EXPORT_SYMBOL(legacy_pic);
426 static int __init i8259A_init_ops(void)
428 if (legacy_pic == &default_legacy_pic)
429 register_syscore_ops(&i8259_syscore_ops);
431 return 0;
434 device_initcall(i8259A_init_ops);