2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
11 * Handle hardware traps and faults.
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/sched/debug.h>
17 #include <linux/nmi.h>
18 #include <linux/debugfs.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/ratelimit.h>
22 #include <linux/slab.h>
23 #include <linux/export.h>
24 #include <linux/sched/clock.h>
26 #if defined(CONFIG_EDAC)
27 #include <linux/edac.h>
30 #include <linux/atomic.h>
31 #include <asm/traps.h>
32 #include <asm/mach_traps.h>
34 #include <asm/x86_init.h>
35 #include <asm/reboot.h>
36 #include <asm/cache.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/nmi.h>
43 struct list_head head
;
46 static struct nmi_desc nmi_desc
[NMI_MAX
] =
49 .lock
= __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc
[0].lock
),
50 .head
= LIST_HEAD_INIT(nmi_desc
[0].head
),
53 .lock
= __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc
[1].lock
),
54 .head
= LIST_HEAD_INIT(nmi_desc
[1].head
),
57 .lock
= __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc
[2].lock
),
58 .head
= LIST_HEAD_INIT(nmi_desc
[2].head
),
61 .lock
= __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc
[3].lock
),
62 .head
= LIST_HEAD_INIT(nmi_desc
[3].head
),
70 unsigned int external
;
74 static DEFINE_PER_CPU(struct nmi_stats
, nmi_stats
);
76 static int ignore_nmis __read_mostly
;
78 int unknown_nmi_panic
;
80 * Prevent NMI reason port (0x61) being accessed simultaneously, can
81 * only be used in NMI handler.
83 static DEFINE_RAW_SPINLOCK(nmi_reason_lock
);
85 static int __init
setup_unknown_nmi_panic(char *str
)
87 unknown_nmi_panic
= 1;
90 __setup("unknown_nmi_panic", setup_unknown_nmi_panic
);
92 #define nmi_to_desc(type) (&nmi_desc[type])
94 static u64 nmi_longest_ns
= 1 * NSEC_PER_MSEC
;
96 static int __init
nmi_warning_debugfs(void)
98 debugfs_create_u64("nmi_longest_ns", 0644,
99 arch_debugfs_dir
, &nmi_longest_ns
);
102 fs_initcall(nmi_warning_debugfs
);
104 static void nmi_max_handler(struct irq_work
*w
)
106 struct nmiaction
*a
= container_of(w
, struct nmiaction
, irq_work
);
107 int remainder_ns
, decimal_msecs
;
108 u64 whole_msecs
= READ_ONCE(a
->max_duration
);
110 remainder_ns
= do_div(whole_msecs
, (1000 * 1000));
111 decimal_msecs
= remainder_ns
/ 1000;
113 printk_ratelimited(KERN_INFO
114 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
115 a
->handler
, whole_msecs
, decimal_msecs
);
118 static int nmi_handle(unsigned int type
, struct pt_regs
*regs
)
120 struct nmi_desc
*desc
= nmi_to_desc(type
);
127 * NMIs are edge-triggered, which means if you have enough
128 * of them concurrently, you can lose some because only one
129 * can be latched at any given time. Walk the whole list
130 * to handle those situations.
132 list_for_each_entry_rcu(a
, &desc
->head
, list
) {
136 delta
= sched_clock();
137 thishandled
= a
->handler(type
, regs
);
138 handled
+= thishandled
;
139 delta
= sched_clock() - delta
;
140 trace_nmi_handler(a
->handler
, (int)delta
, thishandled
);
142 if (delta
< nmi_longest_ns
|| delta
< a
->max_duration
)
145 a
->max_duration
= delta
;
146 irq_work_queue(&a
->irq_work
);
151 /* return total number of NMI events handled */
154 NOKPROBE_SYMBOL(nmi_handle
);
156 int __register_nmi_handler(unsigned int type
, struct nmiaction
*action
)
158 struct nmi_desc
*desc
= nmi_to_desc(type
);
161 if (!action
->handler
)
164 init_irq_work(&action
->irq_work
, nmi_max_handler
);
166 raw_spin_lock_irqsave(&desc
->lock
, flags
);
169 * Indicate if there are multiple registrations on the
170 * internal NMI handler call chains (SERR and IO_CHECK).
172 WARN_ON_ONCE(type
== NMI_SERR
&& !list_empty(&desc
->head
));
173 WARN_ON_ONCE(type
== NMI_IO_CHECK
&& !list_empty(&desc
->head
));
176 * some handlers need to be executed first otherwise a fake
177 * event confuses some handlers (kdump uses this flag)
179 if (action
->flags
& NMI_FLAG_FIRST
)
180 list_add_rcu(&action
->list
, &desc
->head
);
182 list_add_tail_rcu(&action
->list
, &desc
->head
);
184 raw_spin_unlock_irqrestore(&desc
->lock
, flags
);
187 EXPORT_SYMBOL(__register_nmi_handler
);
189 void unregister_nmi_handler(unsigned int type
, const char *name
)
191 struct nmi_desc
*desc
= nmi_to_desc(type
);
195 raw_spin_lock_irqsave(&desc
->lock
, flags
);
197 list_for_each_entry_rcu(n
, &desc
->head
, list
) {
199 * the name passed in to describe the nmi handler
200 * is used as the lookup key
202 if (!strcmp(n
->name
, name
)) {
204 "Trying to free NMI (%s) from NMI context!\n", n
->name
);
205 list_del_rcu(&n
->list
);
210 raw_spin_unlock_irqrestore(&desc
->lock
, flags
);
213 EXPORT_SYMBOL_GPL(unregister_nmi_handler
);
216 pci_serr_error(unsigned char reason
, struct pt_regs
*regs
)
218 /* check to see if anyone registered against these types of errors */
219 if (nmi_handle(NMI_SERR
, regs
))
222 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
223 reason
, smp_processor_id());
225 if (panic_on_unrecovered_nmi
)
226 nmi_panic(regs
, "NMI: Not continuing");
228 pr_emerg("Dazed and confused, but trying to continue\n");
230 /* Clear and disable the PCI SERR error line. */
231 reason
= (reason
& NMI_REASON_CLEAR_MASK
) | NMI_REASON_CLEAR_SERR
;
232 outb(reason
, NMI_REASON_PORT
);
234 NOKPROBE_SYMBOL(pci_serr_error
);
237 io_check_error(unsigned char reason
, struct pt_regs
*regs
)
241 /* check to see if anyone registered against these types of errors */
242 if (nmi_handle(NMI_IO_CHECK
, regs
))
246 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
247 reason
, smp_processor_id());
250 if (panic_on_io_nmi
) {
251 nmi_panic(regs
, "NMI IOCK error: Not continuing");
254 * If we end up here, it means we have received an NMI while
255 * processing panic(). Simply return without delaying and
261 /* Re-enable the IOCK line, wait for a few seconds */
262 reason
= (reason
& NMI_REASON_CLEAR_MASK
) | NMI_REASON_CLEAR_IOCHK
;
263 outb(reason
, NMI_REASON_PORT
);
267 touch_nmi_watchdog();
271 reason
&= ~NMI_REASON_CLEAR_IOCHK
;
272 outb(reason
, NMI_REASON_PORT
);
274 NOKPROBE_SYMBOL(io_check_error
);
277 unknown_nmi_error(unsigned char reason
, struct pt_regs
*regs
)
282 * Use 'false' as back-to-back NMIs are dealt with one level up.
283 * Of course this makes having multiple 'unknown' handlers useless
284 * as only the first one is ever run (unless it can actually determine
285 * if it caused the NMI)
287 handled
= nmi_handle(NMI_UNKNOWN
, regs
);
289 __this_cpu_add(nmi_stats
.unknown
, handled
);
293 __this_cpu_add(nmi_stats
.unknown
, 1);
295 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
296 reason
, smp_processor_id());
298 pr_emerg("Do you have a strange power saving mode enabled?\n");
299 if (unknown_nmi_panic
|| panic_on_unrecovered_nmi
)
300 nmi_panic(regs
, "NMI: Not continuing");
302 pr_emerg("Dazed and confused, but trying to continue\n");
304 NOKPROBE_SYMBOL(unknown_nmi_error
);
306 static DEFINE_PER_CPU(bool, swallow_nmi
);
307 static DEFINE_PER_CPU(unsigned long, last_nmi_rip
);
309 static void default_do_nmi(struct pt_regs
*regs
)
311 unsigned char reason
= 0;
316 * CPU-specific NMI must be processed before non-CPU-specific
317 * NMI, otherwise we may lose it, because the CPU-specific
318 * NMI can not be detected/processed on other CPUs.
322 * Back-to-back NMIs are interesting because they can either
323 * be two NMI or more than two NMIs (any thing over two is dropped
324 * due to NMI being edge-triggered). If this is the second half
325 * of the back-to-back NMI, assume we dropped things and process
326 * more handlers. Otherwise reset the 'swallow' NMI behaviour
328 if (regs
->ip
== __this_cpu_read(last_nmi_rip
))
331 __this_cpu_write(swallow_nmi
, false);
333 __this_cpu_write(last_nmi_rip
, regs
->ip
);
335 handled
= nmi_handle(NMI_LOCAL
, regs
);
336 __this_cpu_add(nmi_stats
.normal
, handled
);
339 * There are cases when a NMI handler handles multiple
340 * events in the current NMI. One of these events may
341 * be queued for in the next NMI. Because the event is
342 * already handled, the next NMI will result in an unknown
343 * NMI. Instead lets flag this for a potential NMI to
347 __this_cpu_write(swallow_nmi
, true);
352 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
354 * Another CPU may be processing panic routines while holding
355 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
356 * and if so, call its callback directly. If there is no CPU preparing
357 * crash dump, we simply loop here.
359 while (!raw_spin_trylock(&nmi_reason_lock
)) {
360 run_crash_ipi_callback(regs
);
364 reason
= x86_platform
.get_nmi_reason();
366 if (reason
& NMI_REASON_MASK
) {
367 if (reason
& NMI_REASON_SERR
)
368 pci_serr_error(reason
, regs
);
369 else if (reason
& NMI_REASON_IOCHK
)
370 io_check_error(reason
, regs
);
373 * Reassert NMI in case it became active
374 * meanwhile as it's edge-triggered:
378 __this_cpu_add(nmi_stats
.external
, 1);
379 raw_spin_unlock(&nmi_reason_lock
);
382 raw_spin_unlock(&nmi_reason_lock
);
385 * Only one NMI can be latched at a time. To handle
386 * this we may process multiple nmi handlers at once to
387 * cover the case where an NMI is dropped. The downside
388 * to this approach is we may process an NMI prematurely,
389 * while its real NMI is sitting latched. This will cause
390 * an unknown NMI on the next run of the NMI processing.
392 * We tried to flag that condition above, by setting the
393 * swallow_nmi flag when we process more than one event.
394 * This condition is also only present on the second half
395 * of a back-to-back NMI, so we flag that condition too.
397 * If both are true, we assume we already processed this
398 * NMI previously and we swallow it. Otherwise we reset
401 * There are scenarios where we may accidentally swallow
402 * a 'real' unknown NMI. For example, while processing
403 * a perf NMI another perf NMI comes in along with a
404 * 'real' unknown NMI. These two NMIs get combined into
405 * one (as descibed above). When the next NMI gets
406 * processed, it will be flagged by perf as handled, but
407 * noone will know that there was a 'real' unknown NMI sent
408 * also. As a result it gets swallowed. Or if the first
409 * perf NMI returns two events handled then the second
410 * NMI will get eaten by the logic below, again losing a
411 * 'real' unknown NMI. But this is the best we can do
414 if (b2b
&& __this_cpu_read(swallow_nmi
))
415 __this_cpu_add(nmi_stats
.swallow
, 1);
417 unknown_nmi_error(reason
, regs
);
419 NOKPROBE_SYMBOL(default_do_nmi
);
422 * NMIs can page fault or hit breakpoints which will cause it to lose
423 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
425 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
426 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
427 * if the outer NMI came from kernel mode, but we can still nest if the
428 * outer NMI came from user mode.
430 * To handle these nested NMIs, we have three states:
436 * When no NMI is in progress, it is in the "not running" state.
437 * When an NMI comes in, it goes into the "executing" state.
438 * Normally, if another NMI is triggered, it does not interrupt
439 * the running NMI and the HW will simply latch it so that when
440 * the first NMI finishes, it will restart the second NMI.
441 * (Note, the latch is binary, thus multiple NMIs triggering,
442 * when one is running, are ignored. Only one NMI is restarted.)
444 * If an NMI executes an iret, another NMI can preempt it. We do not
445 * want to allow this new NMI to run, but we want to execute it when the
446 * first one finishes. We set the state to "latched", and the exit of
447 * the first NMI will perform a dec_return, if the result is zero
448 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
449 * dec_return would have set the state to NMI_EXECUTING (what we want it
450 * to be when we are running). In this case, we simply jump back to
451 * rerun the NMI handler again, and restart the 'latched' NMI.
453 * No trap (breakpoint or page fault) should be hit before nmi_restart,
454 * thus there is no race between the first check of state for NOT_RUNNING
455 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
458 * In case the NMI takes a page fault, we need to save off the CR2
459 * because the NMI could have preempted another page fault and corrupt
460 * the CR2 that is about to be read. As nested NMIs must be restarted
461 * and they can not take breakpoints or page faults, the update of the
462 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
463 * Otherwise, there would be a race of another nested NMI coming in
464 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
471 static DEFINE_PER_CPU(enum nmi_states
, nmi_state
);
472 static DEFINE_PER_CPU(unsigned long, nmi_cr2
);
476 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
477 * some care, the inner breakpoint will clobber the outer breakpoint's
480 * If a breakpoint is being processed, and the debug stack is being
481 * used, if an NMI comes in and also hits a breakpoint, the stack
482 * pointer will be set to the same fixed address as the breakpoint that
483 * was interrupted, causing that stack to be corrupted. To handle this
484 * case, check if the stack that was interrupted is the debug stack, and
485 * if so, change the IDT so that new breakpoints will use the current
486 * stack and not switch to the fixed address. On return of the NMI,
487 * switch back to the original IDT.
489 static DEFINE_PER_CPU(int, update_debug_stack
);
492 dotraplinkage notrace
void
493 do_nmi(struct pt_regs
*regs
, long error_code
)
495 if (this_cpu_read(nmi_state
) != NMI_NOT_RUNNING
) {
496 this_cpu_write(nmi_state
, NMI_LATCHED
);
499 this_cpu_write(nmi_state
, NMI_EXECUTING
);
500 this_cpu_write(nmi_cr2
, read_cr2());
505 * If we interrupted a breakpoint, it is possible that
506 * the nmi handler will have breakpoints too. We need to
507 * change the IDT such that breakpoints that happen here
508 * continue to use the NMI stack.
510 if (unlikely(is_debug_stack(regs
->sp
))) {
511 debug_stack_set_zero();
512 this_cpu_write(update_debug_stack
, 1);
518 inc_irq_stat(__nmi_count
);
521 default_do_nmi(regs
);
526 if (unlikely(this_cpu_read(update_debug_stack
))) {
528 this_cpu_write(update_debug_stack
, 0);
532 if (unlikely(this_cpu_read(nmi_cr2
) != read_cr2()))
533 write_cr2(this_cpu_read(nmi_cr2
));
534 if (this_cpu_dec_return(nmi_state
))
537 NOKPROBE_SYMBOL(do_nmi
);
544 void restart_nmi(void)
549 /* reset the back-to-back NMI logic */
550 void local_touch_nmi(void)
552 __this_cpu_write(last_nmi_rip
, 0);
554 EXPORT_SYMBOL_GPL(local_touch_nmi
);