Linux 4.18.10
[linux/fpc-iii.git] / arch / x86 / kernel / smpboot.c
blobf02ecaf97904bd2a1822cb242539ae3eeeefee20
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2 or
16 * later.
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/export.h>
47 #include <linux/sched.h>
48 #include <linux/sched/topology.h>
49 #include <linux/sched/hotplug.h>
50 #include <linux/sched/task_stack.h>
51 #include <linux/percpu.h>
52 #include <linux/bootmem.h>
53 #include <linux/err.h>
54 #include <linux/nmi.h>
55 #include <linux/tboot.h>
56 #include <linux/stackprotector.h>
57 #include <linux/gfp.h>
58 #include <linux/cpuidle.h>
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95 /* Per CPU bogomips and other parameters */
96 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
97 EXPORT_PER_CPU_SYMBOL(cpu_info);
99 /* Logical package management. We might want to allocate that dynamically */
100 unsigned int __max_logical_packages __read_mostly;
101 EXPORT_SYMBOL(__max_logical_packages);
102 static unsigned int logical_packages __read_mostly;
104 /* Maximum number of SMT threads on any online core */
105 int __read_mostly __max_smt_threads = 1;
107 /* Flag to indicate if a complete sched domain rebuild is required */
108 bool x86_topology_update;
110 int arch_update_cpu_topology(void)
112 int retval = x86_topology_update;
114 x86_topology_update = false;
115 return retval;
118 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
120 unsigned long flags;
122 spin_lock_irqsave(&rtc_lock, flags);
123 CMOS_WRITE(0xa, 0xf);
124 spin_unlock_irqrestore(&rtc_lock, flags);
125 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
126 start_eip >> 4;
127 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
128 start_eip & 0xf;
131 static inline void smpboot_restore_warm_reset_vector(void)
133 unsigned long flags;
136 * Paranoid: Set warm reset code and vector here back
137 * to default values.
139 spin_lock_irqsave(&rtc_lock, flags);
140 CMOS_WRITE(0, 0xf);
141 spin_unlock_irqrestore(&rtc_lock, flags);
143 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
147 * Report back to the Boot Processor during boot time or to the caller processor
148 * during CPU online.
150 static void smp_callin(void)
152 int cpuid, phys_id;
155 * If waken up by an INIT in an 82489DX configuration
156 * cpu_callout_mask guarantees we don't get here before
157 * an INIT_deassert IPI reaches our local APIC, so it is
158 * now safe to touch our local APIC.
160 cpuid = smp_processor_id();
163 * (This works even if the APIC is not enabled.)
165 phys_id = read_apic_id();
168 * the boot CPU has finished the init stage and is spinning
169 * on callin_map until we finish. We are free to set up this
170 * CPU, first the APIC. (this is probably redundant on most
171 * boards)
173 apic_ap_setup();
176 * Save our processor parameters. Note: this information
177 * is needed for clock calibration.
179 smp_store_cpu_info(cpuid);
182 * The topology information must be up to date before
183 * calibrate_delay() and notify_cpu_starting().
185 set_cpu_sibling_map(raw_smp_processor_id());
188 * Get our bogomips.
189 * Update loops_per_jiffy in cpu_data. Previous call to
190 * smp_store_cpu_info() stored a value that is close but not as
191 * accurate as the value just calculated.
193 calibrate_delay();
194 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
195 pr_debug("Stack at about %p\n", &cpuid);
197 wmb();
199 notify_cpu_starting(cpuid);
202 * Allow the master to continue.
204 cpumask_set_cpu(cpuid, cpu_callin_mask);
207 static int cpu0_logical_apicid;
208 static int enable_start_cpu0;
210 * Activate a secondary processor.
212 static void notrace start_secondary(void *unused)
215 * Don't put *anything* except direct CPU state initialization
216 * before cpu_init(), SMP booting is too fragile that we want to
217 * limit the things done here to the most necessary things.
219 if (boot_cpu_has(X86_FEATURE_PCID))
220 __write_cr4(__read_cr4() | X86_CR4_PCIDE);
222 #ifdef CONFIG_X86_32
223 /* switch away from the initial page table */
224 load_cr3(swapper_pg_dir);
226 * Initialize the CR4 shadow before doing anything that could
227 * try to read it.
229 cr4_init_shadow();
230 __flush_tlb_all();
231 #endif
232 load_current_idt();
233 cpu_init();
234 x86_cpuinit.early_percpu_clock_init();
235 preempt_disable();
236 smp_callin();
238 enable_start_cpu0 = 0;
240 /* otherwise gcc will move up smp_processor_id before the cpu_init */
241 barrier();
243 * Check TSC synchronization with the boot CPU:
245 check_tsc_sync_target();
247 speculative_store_bypass_ht_init();
250 * Lock vector_lock, set CPU online and bring the vector
251 * allocator online. Online must be set with vector_lock held
252 * to prevent a concurrent irq setup/teardown from seeing a
253 * half valid vector space.
255 lock_vector_lock();
256 set_cpu_online(smp_processor_id(), true);
257 lapic_online();
258 unlock_vector_lock();
259 cpu_set_state_online(smp_processor_id());
260 x86_platform.nmi_init();
262 /* enable local interrupts */
263 local_irq_enable();
265 /* to prevent fake stack check failure in clock setup */
266 boot_init_stack_canary();
268 x86_cpuinit.setup_percpu_clockev();
270 wmb();
271 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
275 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
276 * @cpu: CPU to check
278 bool topology_is_primary_thread(unsigned int cpu)
280 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
284 * topology_smt_supported - Check whether SMT is supported by the CPUs
286 bool topology_smt_supported(void)
288 return smp_num_siblings > 1;
292 * topology_phys_to_logical_pkg - Map a physical package id to a logical
294 * Returns logical package id or -1 if not found
296 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
298 int cpu;
300 for_each_possible_cpu(cpu) {
301 struct cpuinfo_x86 *c = &cpu_data(cpu);
303 if (c->initialized && c->phys_proc_id == phys_pkg)
304 return c->logical_proc_id;
306 return -1;
308 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
311 * topology_update_package_map - Update the physical to logical package map
312 * @pkg: The physical package id as retrieved via CPUID
313 * @cpu: The cpu for which this is updated
315 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
317 int new;
319 /* Already available somewhere? */
320 new = topology_phys_to_logical_pkg(pkg);
321 if (new >= 0)
322 goto found;
324 new = logical_packages++;
325 if (new != pkg) {
326 pr_info("CPU %u Converting physical %u to logical package %u\n",
327 cpu, pkg, new);
329 found:
330 cpu_data(cpu).logical_proc_id = new;
331 return 0;
334 void __init smp_store_boot_cpu_info(void)
336 int id = 0; /* CPU 0 */
337 struct cpuinfo_x86 *c = &cpu_data(id);
339 *c = boot_cpu_data;
340 c->cpu_index = id;
341 topology_update_package_map(c->phys_proc_id, id);
342 c->initialized = true;
346 * The bootstrap kernel entry code has set these up. Save them for
347 * a given CPU
349 void smp_store_cpu_info(int id)
351 struct cpuinfo_x86 *c = &cpu_data(id);
353 /* Copy boot_cpu_data only on the first bringup */
354 if (!c->initialized)
355 *c = boot_cpu_data;
356 c->cpu_index = id;
358 * During boot time, CPU0 has this setup already. Save the info when
359 * bringing up AP or offlined CPU0.
361 identify_secondary_cpu(c);
362 c->initialized = true;
365 static bool
366 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
368 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
370 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
373 static bool
374 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
376 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
378 return !WARN_ONCE(!topology_same_node(c, o),
379 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
380 "[node: %d != %d]. Ignoring dependency.\n",
381 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
384 #define link_mask(mfunc, c1, c2) \
385 do { \
386 cpumask_set_cpu((c1), mfunc(c2)); \
387 cpumask_set_cpu((c2), mfunc(c1)); \
388 } while (0)
390 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
392 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
393 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
395 if (c->phys_proc_id == o->phys_proc_id &&
396 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
397 if (c->cpu_core_id == o->cpu_core_id)
398 return topology_sane(c, o, "smt");
400 if ((c->cu_id != 0xff) &&
401 (o->cu_id != 0xff) &&
402 (c->cu_id == o->cu_id))
403 return topology_sane(c, o, "smt");
406 } else if (c->phys_proc_id == o->phys_proc_id &&
407 c->cpu_core_id == o->cpu_core_id) {
408 return topology_sane(c, o, "smt");
411 return false;
415 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
417 * These are Intel CPUs that enumerate an LLC that is shared by
418 * multiple NUMA nodes. The LLC on these systems is shared for
419 * off-package data access but private to the NUMA node (half
420 * of the package) for on-package access.
422 * CPUID (the source of the information about the LLC) can only
423 * enumerate the cache as being shared *or* unshared, but not
424 * this particular configuration. The CPU in this case enumerates
425 * the cache to be shared across the entire package (spanning both
426 * NUMA nodes).
429 static const struct x86_cpu_id snc_cpu[] = {
430 { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
434 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
436 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
438 /* Do not match if we do not have a valid APICID for cpu: */
439 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
440 return false;
442 /* Do not match if LLC id does not match: */
443 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
444 return false;
447 * Allow the SNC topology without warning. Return of false
448 * means 'c' does not share the LLC of 'o'. This will be
449 * reflected to userspace.
451 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
452 return false;
454 return topology_sane(c, o, "llc");
458 * Unlike the other levels, we do not enforce keeping a
459 * multicore group inside a NUMA node. If this happens, we will
460 * discard the MC level of the topology later.
462 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
464 if (c->phys_proc_id == o->phys_proc_id)
465 return true;
466 return false;
469 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
470 static inline int x86_sched_itmt_flags(void)
472 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
475 #ifdef CONFIG_SCHED_MC
476 static int x86_core_flags(void)
478 return cpu_core_flags() | x86_sched_itmt_flags();
480 #endif
481 #ifdef CONFIG_SCHED_SMT
482 static int x86_smt_flags(void)
484 return cpu_smt_flags() | x86_sched_itmt_flags();
486 #endif
487 #endif
489 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
490 #ifdef CONFIG_SCHED_SMT
491 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
492 #endif
493 #ifdef CONFIG_SCHED_MC
494 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
495 #endif
496 { NULL, },
499 static struct sched_domain_topology_level x86_topology[] = {
500 #ifdef CONFIG_SCHED_SMT
501 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
502 #endif
503 #ifdef CONFIG_SCHED_MC
504 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
505 #endif
506 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
507 { NULL, },
511 * Set if a package/die has multiple NUMA nodes inside.
512 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
513 * Sub-NUMA Clustering have this.
515 static bool x86_has_numa_in_package;
517 void set_cpu_sibling_map(int cpu)
519 bool has_smt = smp_num_siblings > 1;
520 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
521 struct cpuinfo_x86 *c = &cpu_data(cpu);
522 struct cpuinfo_x86 *o;
523 int i, threads;
525 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
527 if (!has_mp) {
528 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
529 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
530 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
531 c->booted_cores = 1;
532 return;
535 for_each_cpu(i, cpu_sibling_setup_mask) {
536 o = &cpu_data(i);
538 if ((i == cpu) || (has_smt && match_smt(c, o)))
539 link_mask(topology_sibling_cpumask, cpu, i);
541 if ((i == cpu) || (has_mp && match_llc(c, o)))
542 link_mask(cpu_llc_shared_mask, cpu, i);
547 * This needs a separate iteration over the cpus because we rely on all
548 * topology_sibling_cpumask links to be set-up.
550 for_each_cpu(i, cpu_sibling_setup_mask) {
551 o = &cpu_data(i);
553 if ((i == cpu) || (has_mp && match_die(c, o))) {
554 link_mask(topology_core_cpumask, cpu, i);
557 * Does this new cpu bringup a new core?
559 if (cpumask_weight(
560 topology_sibling_cpumask(cpu)) == 1) {
562 * for each core in package, increment
563 * the booted_cores for this new cpu
565 if (cpumask_first(
566 topology_sibling_cpumask(i)) == i)
567 c->booted_cores++;
569 * increment the core count for all
570 * the other cpus in this package
572 if (i != cpu)
573 cpu_data(i).booted_cores++;
574 } else if (i != cpu && !c->booted_cores)
575 c->booted_cores = cpu_data(i).booted_cores;
577 if (match_die(c, o) && !topology_same_node(c, o))
578 x86_has_numa_in_package = true;
581 threads = cpumask_weight(topology_sibling_cpumask(cpu));
582 if (threads > __max_smt_threads)
583 __max_smt_threads = threads;
586 /* maps the cpu to the sched domain representing multi-core */
587 const struct cpumask *cpu_coregroup_mask(int cpu)
589 return cpu_llc_shared_mask(cpu);
592 static void impress_friends(void)
594 int cpu;
595 unsigned long bogosum = 0;
597 * Allow the user to impress friends.
599 pr_debug("Before bogomips\n");
600 for_each_possible_cpu(cpu)
601 if (cpumask_test_cpu(cpu, cpu_callout_mask))
602 bogosum += cpu_data(cpu).loops_per_jiffy;
603 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
604 num_online_cpus(),
605 bogosum/(500000/HZ),
606 (bogosum/(5000/HZ))%100);
608 pr_debug("Before bogocount - setting activated=1\n");
611 void __inquire_remote_apic(int apicid)
613 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
614 const char * const names[] = { "ID", "VERSION", "SPIV" };
615 int timeout;
616 u32 status;
618 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
620 for (i = 0; i < ARRAY_SIZE(regs); i++) {
621 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
624 * Wait for idle.
626 status = safe_apic_wait_icr_idle();
627 if (status)
628 pr_cont("a previous APIC delivery may have failed\n");
630 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
632 timeout = 0;
633 do {
634 udelay(100);
635 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
636 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
638 switch (status) {
639 case APIC_ICR_RR_VALID:
640 status = apic_read(APIC_RRR);
641 pr_cont("%08x\n", status);
642 break;
643 default:
644 pr_cont("failed\n");
650 * The Multiprocessor Specification 1.4 (1997) example code suggests
651 * that there should be a 10ms delay between the BSP asserting INIT
652 * and de-asserting INIT, when starting a remote processor.
653 * But that slows boot and resume on modern processors, which include
654 * many cores and don't require that delay.
656 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
657 * Modern processor families are quirked to remove the delay entirely.
659 #define UDELAY_10MS_DEFAULT 10000
661 static unsigned int init_udelay = UINT_MAX;
663 static int __init cpu_init_udelay(char *str)
665 get_option(&str, &init_udelay);
667 return 0;
669 early_param("cpu_init_udelay", cpu_init_udelay);
671 static void __init smp_quirk_init_udelay(void)
673 /* if cmdline changed it from default, leave it alone */
674 if (init_udelay != UINT_MAX)
675 return;
677 /* if modern processor, use no delay */
678 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
679 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
680 init_udelay = 0;
681 return;
683 /* else, use legacy delay */
684 init_udelay = UDELAY_10MS_DEFAULT;
688 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
689 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
690 * won't ... remember to clear down the APIC, etc later.
693 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
695 unsigned long send_status, accept_status = 0;
696 int maxlvt;
698 /* Target chip */
699 /* Boot on the stack */
700 /* Kick the second */
701 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
703 pr_debug("Waiting for send to finish...\n");
704 send_status = safe_apic_wait_icr_idle();
707 * Give the other CPU some time to accept the IPI.
709 udelay(200);
710 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
711 maxlvt = lapic_get_maxlvt();
712 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
713 apic_write(APIC_ESR, 0);
714 accept_status = (apic_read(APIC_ESR) & 0xEF);
716 pr_debug("NMI sent\n");
718 if (send_status)
719 pr_err("APIC never delivered???\n");
720 if (accept_status)
721 pr_err("APIC delivery error (%lx)\n", accept_status);
723 return (send_status | accept_status);
726 static int
727 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
729 unsigned long send_status = 0, accept_status = 0;
730 int maxlvt, num_starts, j;
732 maxlvt = lapic_get_maxlvt();
735 * Be paranoid about clearing APIC errors.
737 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
738 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
739 apic_write(APIC_ESR, 0);
740 apic_read(APIC_ESR);
743 pr_debug("Asserting INIT\n");
746 * Turn INIT on target chip
749 * Send IPI
751 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
752 phys_apicid);
754 pr_debug("Waiting for send to finish...\n");
755 send_status = safe_apic_wait_icr_idle();
757 udelay(init_udelay);
759 pr_debug("Deasserting INIT\n");
761 /* Target chip */
762 /* Send IPI */
763 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
765 pr_debug("Waiting for send to finish...\n");
766 send_status = safe_apic_wait_icr_idle();
768 mb();
771 * Should we send STARTUP IPIs ?
773 * Determine this based on the APIC version.
774 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
776 if (APIC_INTEGRATED(boot_cpu_apic_version))
777 num_starts = 2;
778 else
779 num_starts = 0;
782 * Run STARTUP IPI loop.
784 pr_debug("#startup loops: %d\n", num_starts);
786 for (j = 1; j <= num_starts; j++) {
787 pr_debug("Sending STARTUP #%d\n", j);
788 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
789 apic_write(APIC_ESR, 0);
790 apic_read(APIC_ESR);
791 pr_debug("After apic_write\n");
794 * STARTUP IPI
797 /* Target chip */
798 /* Boot on the stack */
799 /* Kick the second */
800 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
801 phys_apicid);
804 * Give the other CPU some time to accept the IPI.
806 if (init_udelay == 0)
807 udelay(10);
808 else
809 udelay(300);
811 pr_debug("Startup point 1\n");
813 pr_debug("Waiting for send to finish...\n");
814 send_status = safe_apic_wait_icr_idle();
817 * Give the other CPU some time to accept the IPI.
819 if (init_udelay == 0)
820 udelay(10);
821 else
822 udelay(200);
824 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
825 apic_write(APIC_ESR, 0);
826 accept_status = (apic_read(APIC_ESR) & 0xEF);
827 if (send_status || accept_status)
828 break;
830 pr_debug("After Startup\n");
832 if (send_status)
833 pr_err("APIC never delivered???\n");
834 if (accept_status)
835 pr_err("APIC delivery error (%lx)\n", accept_status);
837 return (send_status | accept_status);
840 /* reduce the number of lines printed when booting a large cpu count system */
841 static void announce_cpu(int cpu, int apicid)
843 static int current_node = -1;
844 int node = early_cpu_to_node(cpu);
845 static int width, node_width;
847 if (!width)
848 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
850 if (!node_width)
851 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
853 if (cpu == 1)
854 printk(KERN_INFO "x86: Booting SMP configuration:\n");
856 if (system_state < SYSTEM_RUNNING) {
857 if (node != current_node) {
858 if (current_node > (-1))
859 pr_cont("\n");
860 current_node = node;
862 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
863 node_width - num_digits(node), " ", node);
866 /* Add padding for the BSP */
867 if (cpu == 1)
868 pr_cont("%*s", width + 1, " ");
870 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
872 } else
873 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
874 node, cpu, apicid);
877 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
879 int cpu;
881 cpu = smp_processor_id();
882 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
883 return NMI_HANDLED;
885 return NMI_DONE;
889 * Wake up AP by INIT, INIT, STARTUP sequence.
891 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
892 * boot-strap code which is not a desired behavior for waking up BSP. To
893 * void the boot-strap code, wake up CPU0 by NMI instead.
895 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
896 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
897 * We'll change this code in the future to wake up hard offlined CPU0 if
898 * real platform and request are available.
900 static int
901 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
902 int *cpu0_nmi_registered)
904 int id;
905 int boot_error;
907 preempt_disable();
910 * Wake up AP by INIT, INIT, STARTUP sequence.
912 if (cpu) {
913 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
914 goto out;
918 * Wake up BSP by nmi.
920 * Register a NMI handler to help wake up CPU0.
922 boot_error = register_nmi_handler(NMI_LOCAL,
923 wakeup_cpu0_nmi, 0, "wake_cpu0");
925 if (!boot_error) {
926 enable_start_cpu0 = 1;
927 *cpu0_nmi_registered = 1;
928 if (apic->dest_logical == APIC_DEST_LOGICAL)
929 id = cpu0_logical_apicid;
930 else
931 id = apicid;
932 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
935 out:
936 preempt_enable();
938 return boot_error;
941 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
943 /* Just in case we booted with a single CPU. */
944 alternatives_enable_smp();
946 per_cpu(current_task, cpu) = idle;
948 #ifdef CONFIG_X86_32
949 /* Stack for startup_32 can be just as for start_secondary onwards */
950 irq_ctx_init(cpu);
951 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
952 #else
953 initial_gs = per_cpu_offset(cpu);
954 #endif
958 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
959 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
960 * Returns zero if CPU booted OK, else error code from
961 * ->wakeup_secondary_cpu.
963 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
964 int *cpu0_nmi_registered)
966 volatile u32 *trampoline_status =
967 (volatile u32 *) __va(real_mode_header->trampoline_status);
968 /* start_ip had better be page-aligned! */
969 unsigned long start_ip = real_mode_header->trampoline_start;
971 unsigned long boot_error = 0;
972 unsigned long timeout;
974 idle->thread.sp = (unsigned long)task_pt_regs(idle);
975 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
976 initial_code = (unsigned long)start_secondary;
977 initial_stack = idle->thread.sp;
979 /* Enable the espfix hack for this CPU */
980 init_espfix_ap(cpu);
982 /* So we see what's up */
983 announce_cpu(cpu, apicid);
986 * This grunge runs the startup process for
987 * the targeted processor.
990 if (x86_platform.legacy.warm_reset) {
992 pr_debug("Setting warm reset code and vector.\n");
994 smpboot_setup_warm_reset_vector(start_ip);
996 * Be paranoid about clearing APIC errors.
998 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
999 apic_write(APIC_ESR, 0);
1000 apic_read(APIC_ESR);
1005 * AP might wait on cpu_callout_mask in cpu_init() with
1006 * cpu_initialized_mask set if previous attempt to online
1007 * it timed-out. Clear cpu_initialized_mask so that after
1008 * INIT/SIPI it could start with a clean state.
1010 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1011 smp_mb();
1014 * Wake up a CPU in difference cases:
1015 * - Use the method in the APIC driver if it's defined
1016 * Otherwise,
1017 * - Use an INIT boot APIC message for APs or NMI for BSP.
1019 if (apic->wakeup_secondary_cpu)
1020 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1021 else
1022 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1023 cpu0_nmi_registered);
1025 if (!boot_error) {
1027 * Wait 10s total for first sign of life from AP
1029 boot_error = -1;
1030 timeout = jiffies + 10*HZ;
1031 while (time_before(jiffies, timeout)) {
1032 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1034 * Tell AP to proceed with initialization
1036 cpumask_set_cpu(cpu, cpu_callout_mask);
1037 boot_error = 0;
1038 break;
1040 schedule();
1044 if (!boot_error) {
1046 * Wait till AP completes initial initialization
1048 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1050 * Allow other tasks to run while we wait for the
1051 * AP to come online. This also gives a chance
1052 * for the MTRR work(triggered by the AP coming online)
1053 * to be completed in the stop machine context.
1055 schedule();
1059 /* mark "stuck" area as not stuck */
1060 *trampoline_status = 0;
1062 if (x86_platform.legacy.warm_reset) {
1064 * Cleanup possible dangling ends...
1066 smpboot_restore_warm_reset_vector();
1069 return boot_error;
1072 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1074 int apicid = apic->cpu_present_to_apicid(cpu);
1075 int cpu0_nmi_registered = 0;
1076 unsigned long flags;
1077 int err, ret = 0;
1079 lockdep_assert_irqs_enabled();
1081 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1083 if (apicid == BAD_APICID ||
1084 !physid_isset(apicid, phys_cpu_present_map) ||
1085 !apic->apic_id_valid(apicid)) {
1086 pr_err("%s: bad cpu %d\n", __func__, cpu);
1087 return -EINVAL;
1091 * Already booted CPU?
1093 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1094 pr_debug("do_boot_cpu %d Already started\n", cpu);
1095 return -ENOSYS;
1099 * Save current MTRR state in case it was changed since early boot
1100 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1102 mtrr_save_state();
1104 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1105 err = cpu_check_up_prepare(cpu);
1106 if (err && err != -EBUSY)
1107 return err;
1109 /* the FPU context is blank, nobody can own it */
1110 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1112 common_cpu_up(cpu, tidle);
1114 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1115 if (err) {
1116 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1117 ret = -EIO;
1118 goto unreg_nmi;
1122 * Check TSC synchronization with the AP (keep irqs disabled
1123 * while doing so):
1125 local_irq_save(flags);
1126 check_tsc_sync_source(cpu);
1127 local_irq_restore(flags);
1129 while (!cpu_online(cpu)) {
1130 cpu_relax();
1131 touch_nmi_watchdog();
1134 unreg_nmi:
1136 * Clean up the nmi handler. Do this after the callin and callout sync
1137 * to avoid impact of possible long unregister time.
1139 if (cpu0_nmi_registered)
1140 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1142 return ret;
1146 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1148 void arch_disable_smp_support(void)
1150 disable_ioapic_support();
1154 * Fall back to non SMP mode after errors.
1156 * RED-PEN audit/test this more. I bet there is more state messed up here.
1158 static __init void disable_smp(void)
1160 pr_info("SMP disabled\n");
1162 disable_ioapic_support();
1164 init_cpu_present(cpumask_of(0));
1165 init_cpu_possible(cpumask_of(0));
1167 if (smp_found_config)
1168 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1169 else
1170 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1171 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1172 cpumask_set_cpu(0, topology_core_cpumask(0));
1176 * Various sanity checks.
1178 static void __init smp_sanity_check(void)
1180 preempt_disable();
1182 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1183 if (def_to_bigsmp && nr_cpu_ids > 8) {
1184 unsigned int cpu;
1185 unsigned nr;
1187 pr_warn("More than 8 CPUs detected - skipping them\n"
1188 "Use CONFIG_X86_BIGSMP\n");
1190 nr = 0;
1191 for_each_present_cpu(cpu) {
1192 if (nr >= 8)
1193 set_cpu_present(cpu, false);
1194 nr++;
1197 nr = 0;
1198 for_each_possible_cpu(cpu) {
1199 if (nr >= 8)
1200 set_cpu_possible(cpu, false);
1201 nr++;
1204 nr_cpu_ids = 8;
1206 #endif
1208 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1209 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1210 hard_smp_processor_id());
1212 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1216 * Should not be necessary because the MP table should list the boot
1217 * CPU too, but we do it for the sake of robustness anyway.
1219 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1220 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1221 boot_cpu_physical_apicid);
1222 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1224 preempt_enable();
1227 static void __init smp_cpu_index_default(void)
1229 int i;
1230 struct cpuinfo_x86 *c;
1232 for_each_possible_cpu(i) {
1233 c = &cpu_data(i);
1234 /* mark all to hotplug */
1235 c->cpu_index = nr_cpu_ids;
1239 static void __init smp_get_logical_apicid(void)
1241 if (x2apic_mode)
1242 cpu0_logical_apicid = apic_read(APIC_LDR);
1243 else
1244 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1248 * Prepare for SMP bootup.
1249 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1250 * for common interface support.
1252 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1254 unsigned int i;
1256 smp_cpu_index_default();
1259 * Setup boot CPU information
1261 smp_store_boot_cpu_info(); /* Final full version of the data */
1262 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1263 mb();
1265 for_each_possible_cpu(i) {
1266 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1267 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1268 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1272 * Set 'default' x86 topology, this matches default_topology() in that
1273 * it has NUMA nodes as a topology level. See also
1274 * native_smp_cpus_done().
1276 * Must be done before set_cpus_sibling_map() is ran.
1278 set_sched_topology(x86_topology);
1280 set_cpu_sibling_map(0);
1282 smp_sanity_check();
1284 switch (apic_intr_mode) {
1285 case APIC_PIC:
1286 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1287 disable_smp();
1288 return;
1289 case APIC_SYMMETRIC_IO_NO_ROUTING:
1290 disable_smp();
1291 /* Setup local timer */
1292 x86_init.timers.setup_percpu_clockev();
1293 return;
1294 case APIC_VIRTUAL_WIRE:
1295 case APIC_SYMMETRIC_IO:
1296 break;
1299 /* Setup local timer */
1300 x86_init.timers.setup_percpu_clockev();
1302 smp_get_logical_apicid();
1304 pr_info("CPU0: ");
1305 print_cpu_info(&cpu_data(0));
1307 native_pv_lock_init();
1309 uv_system_init();
1311 set_mtrr_aps_delayed_init();
1313 smp_quirk_init_udelay();
1315 speculative_store_bypass_ht_init();
1318 void arch_enable_nonboot_cpus_begin(void)
1320 set_mtrr_aps_delayed_init();
1323 void arch_enable_nonboot_cpus_end(void)
1325 mtrr_aps_init();
1329 * Early setup to make printk work.
1331 void __init native_smp_prepare_boot_cpu(void)
1333 int me = smp_processor_id();
1334 switch_to_new_gdt(me);
1335 /* already set me in cpu_online_mask in boot_cpu_init() */
1336 cpumask_set_cpu(me, cpu_callout_mask);
1337 cpu_set_state_online(me);
1340 void __init calculate_max_logical_packages(void)
1342 int ncpus;
1345 * Today neither Intel nor AMD support heterogenous systems so
1346 * extrapolate the boot cpu's data to all packages.
1348 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1349 __max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
1350 pr_info("Max logical packages: %u\n", __max_logical_packages);
1353 void __init native_smp_cpus_done(unsigned int max_cpus)
1355 pr_debug("Boot done\n");
1357 calculate_max_logical_packages();
1359 if (x86_has_numa_in_package)
1360 set_sched_topology(x86_numa_in_package_topology);
1362 nmi_selftest();
1363 impress_friends();
1364 mtrr_aps_init();
1367 static int __initdata setup_possible_cpus = -1;
1368 static int __init _setup_possible_cpus(char *str)
1370 get_option(&str, &setup_possible_cpus);
1371 return 0;
1373 early_param("possible_cpus", _setup_possible_cpus);
1377 * cpu_possible_mask should be static, it cannot change as cpu's
1378 * are onlined, or offlined. The reason is per-cpu data-structures
1379 * are allocated by some modules at init time, and dont expect to
1380 * do this dynamically on cpu arrival/departure.
1381 * cpu_present_mask on the other hand can change dynamically.
1382 * In case when cpu_hotplug is not compiled, then we resort to current
1383 * behaviour, which is cpu_possible == cpu_present.
1384 * - Ashok Raj
1386 * Three ways to find out the number of additional hotplug CPUs:
1387 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1388 * - The user can overwrite it with possible_cpus=NUM
1389 * - Otherwise don't reserve additional CPUs.
1390 * We do this because additional CPUs waste a lot of memory.
1391 * -AK
1393 __init void prefill_possible_map(void)
1395 int i, possible;
1397 /* No boot processor was found in mptable or ACPI MADT */
1398 if (!num_processors) {
1399 if (boot_cpu_has(X86_FEATURE_APIC)) {
1400 int apicid = boot_cpu_physical_apicid;
1401 int cpu = hard_smp_processor_id();
1403 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1405 /* Make sure boot cpu is enumerated */
1406 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1407 apic->apic_id_valid(apicid))
1408 generic_processor_info(apicid, boot_cpu_apic_version);
1411 if (!num_processors)
1412 num_processors = 1;
1415 i = setup_max_cpus ?: 1;
1416 if (setup_possible_cpus == -1) {
1417 possible = num_processors;
1418 #ifdef CONFIG_HOTPLUG_CPU
1419 if (setup_max_cpus)
1420 possible += disabled_cpus;
1421 #else
1422 if (possible > i)
1423 possible = i;
1424 #endif
1425 } else
1426 possible = setup_possible_cpus;
1428 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1430 /* nr_cpu_ids could be reduced via nr_cpus= */
1431 if (possible > nr_cpu_ids) {
1432 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1433 possible, nr_cpu_ids);
1434 possible = nr_cpu_ids;
1437 #ifdef CONFIG_HOTPLUG_CPU
1438 if (!setup_max_cpus)
1439 #endif
1440 if (possible > i) {
1441 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1442 possible, setup_max_cpus);
1443 possible = i;
1446 nr_cpu_ids = possible;
1448 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1449 possible, max_t(int, possible - num_processors, 0));
1451 reset_cpu_possible_mask();
1453 for (i = 0; i < possible; i++)
1454 set_cpu_possible(i, true);
1457 #ifdef CONFIG_HOTPLUG_CPU
1459 /* Recompute SMT state for all CPUs on offline */
1460 static void recompute_smt_state(void)
1462 int max_threads, cpu;
1464 max_threads = 0;
1465 for_each_online_cpu (cpu) {
1466 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1468 if (threads > max_threads)
1469 max_threads = threads;
1471 __max_smt_threads = max_threads;
1474 static void remove_siblinginfo(int cpu)
1476 int sibling;
1477 struct cpuinfo_x86 *c = &cpu_data(cpu);
1479 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1480 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1482 * last thread sibling in this cpu core going down
1484 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1485 cpu_data(sibling).booted_cores--;
1488 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1489 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1490 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1491 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1492 cpumask_clear(cpu_llc_shared_mask(cpu));
1493 cpumask_clear(topology_sibling_cpumask(cpu));
1494 cpumask_clear(topology_core_cpumask(cpu));
1495 c->cpu_core_id = 0;
1496 c->booted_cores = 0;
1497 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1498 recompute_smt_state();
1501 static void remove_cpu_from_maps(int cpu)
1503 set_cpu_online(cpu, false);
1504 cpumask_clear_cpu(cpu, cpu_callout_mask);
1505 cpumask_clear_cpu(cpu, cpu_callin_mask);
1506 /* was set by cpu_init() */
1507 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1508 numa_remove_cpu(cpu);
1511 void cpu_disable_common(void)
1513 int cpu = smp_processor_id();
1515 remove_siblinginfo(cpu);
1517 /* It's now safe to remove this processor from the online map */
1518 lock_vector_lock();
1519 remove_cpu_from_maps(cpu);
1520 unlock_vector_lock();
1521 fixup_irqs();
1522 lapic_offline();
1525 int native_cpu_disable(void)
1527 int ret;
1529 ret = lapic_can_unplug_cpu();
1530 if (ret)
1531 return ret;
1533 clear_local_APIC();
1534 cpu_disable_common();
1536 return 0;
1539 int common_cpu_die(unsigned int cpu)
1541 int ret = 0;
1543 /* We don't do anything here: idle task is faking death itself. */
1545 /* They ack this in play_dead() by setting CPU_DEAD */
1546 if (cpu_wait_death(cpu, 5)) {
1547 if (system_state == SYSTEM_RUNNING)
1548 pr_info("CPU %u is now offline\n", cpu);
1549 } else {
1550 pr_err("CPU %u didn't die...\n", cpu);
1551 ret = -1;
1554 return ret;
1557 void native_cpu_die(unsigned int cpu)
1559 common_cpu_die(cpu);
1562 void play_dead_common(void)
1564 idle_task_exit();
1566 /* Ack it */
1567 (void)cpu_report_death();
1570 * With physical CPU hotplug, we should halt the cpu
1572 local_irq_disable();
1575 static bool wakeup_cpu0(void)
1577 if (smp_processor_id() == 0 && enable_start_cpu0)
1578 return true;
1580 return false;
1584 * We need to flush the caches before going to sleep, lest we have
1585 * dirty data in our caches when we come back up.
1587 static inline void mwait_play_dead(void)
1589 unsigned int eax, ebx, ecx, edx;
1590 unsigned int highest_cstate = 0;
1591 unsigned int highest_subcstate = 0;
1592 void *mwait_ptr;
1593 int i;
1595 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1596 return;
1597 if (!this_cpu_has(X86_FEATURE_MWAIT))
1598 return;
1599 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1600 return;
1601 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1602 return;
1604 eax = CPUID_MWAIT_LEAF;
1605 ecx = 0;
1606 native_cpuid(&eax, &ebx, &ecx, &edx);
1609 * eax will be 0 if EDX enumeration is not valid.
1610 * Initialized below to cstate, sub_cstate value when EDX is valid.
1612 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1613 eax = 0;
1614 } else {
1615 edx >>= MWAIT_SUBSTATE_SIZE;
1616 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1617 if (edx & MWAIT_SUBSTATE_MASK) {
1618 highest_cstate = i;
1619 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1622 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1623 (highest_subcstate - 1);
1627 * This should be a memory location in a cache line which is
1628 * unlikely to be touched by other processors. The actual
1629 * content is immaterial as it is not actually modified in any way.
1631 mwait_ptr = &current_thread_info()->flags;
1633 wbinvd();
1635 while (1) {
1637 * The CLFLUSH is a workaround for erratum AAI65 for
1638 * the Xeon 7400 series. It's not clear it is actually
1639 * needed, but it should be harmless in either case.
1640 * The WBINVD is insufficient due to the spurious-wakeup
1641 * case where we return around the loop.
1643 mb();
1644 clflush(mwait_ptr);
1645 mb();
1646 __monitor(mwait_ptr, 0, 0);
1647 mb();
1648 __mwait(eax, 0);
1650 * If NMI wants to wake up CPU0, start CPU0.
1652 if (wakeup_cpu0())
1653 start_cpu0();
1657 void hlt_play_dead(void)
1659 if (__this_cpu_read(cpu_info.x86) >= 4)
1660 wbinvd();
1662 while (1) {
1663 native_halt();
1665 * If NMI wants to wake up CPU0, start CPU0.
1667 if (wakeup_cpu0())
1668 start_cpu0();
1672 void native_play_dead(void)
1674 play_dead_common();
1675 tboot_shutdown(TB_SHUTDOWN_WFS);
1677 mwait_play_dead(); /* Only returns on failure */
1678 if (cpuidle_play_dead())
1679 hlt_play_dead();
1682 #else /* ... !CONFIG_HOTPLUG_CPU */
1683 int native_cpu_disable(void)
1685 return -ENOSYS;
1688 void native_cpu_die(unsigned int cpu)
1690 /* We said "no" in __cpu_disable */
1691 BUG();
1694 void native_play_dead(void)
1696 BUG();
1699 #endif