1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
30 unsigned int __read_mostly cpu_khz
; /* TSC clocks / usec, not used here */
31 EXPORT_SYMBOL(cpu_khz
);
33 unsigned int __read_mostly tsc_khz
;
34 EXPORT_SYMBOL(tsc_khz
);
37 * TSC can be unstable due to cpufreq or due to unsynced TSCs
39 static int __read_mostly tsc_unstable
;
41 /* native_sched_clock() is called before tsc_init(), so
42 we must start with the TSC soft disabled to prevent
43 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
44 static int __read_mostly tsc_disabled
= -1;
46 static DEFINE_STATIC_KEY_FALSE(__use_tsc
);
48 int tsc_clocksource_reliable
;
50 static u32 art_to_tsc_numerator
;
51 static u32 art_to_tsc_denominator
;
52 static u64 art_to_tsc_offset
;
53 struct clocksource
*art_related_clocksource
;
56 struct cyc2ns_data data
[2]; /* 0 + 2*16 = 32 */
57 seqcount_t seq
; /* 32 + 4 = 36 */
59 }; /* fits one cacheline */
61 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns
, cyc2ns
);
63 void cyc2ns_read_begin(struct cyc2ns_data
*data
)
67 preempt_disable_notrace();
70 seq
= this_cpu_read(cyc2ns
.seq
.sequence
);
73 data
->cyc2ns_offset
= this_cpu_read(cyc2ns
.data
[idx
].cyc2ns_offset
);
74 data
->cyc2ns_mul
= this_cpu_read(cyc2ns
.data
[idx
].cyc2ns_mul
);
75 data
->cyc2ns_shift
= this_cpu_read(cyc2ns
.data
[idx
].cyc2ns_shift
);
77 } while (unlikely(seq
!= this_cpu_read(cyc2ns
.seq
.sequence
)));
80 void cyc2ns_read_end(void)
82 preempt_enable_notrace();
86 * Accelerators for sched_clock()
87 * convert from cycles(64bits) => nanoseconds (64bits)
89 * ns = cycles / (freq / ns_per_sec)
90 * ns = cycles * (ns_per_sec / freq)
91 * ns = cycles * (10^9 / (cpu_khz * 10^3))
92 * ns = cycles * (10^6 / cpu_khz)
94 * Then we use scaling math (suggested by george@mvista.com) to get:
95 * ns = cycles * (10^6 * SC / cpu_khz) / SC
96 * ns = cycles * cyc2ns_scale / SC
98 * And since SC is a constant power of two, we can convert the div
99 * into a shift. The larger SC is, the more accurate the conversion, but
100 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
101 * (64-bit result) can be used.
103 * We can use khz divisor instead of mhz to keep a better precision.
104 * (mathieu.desnoyers@polymtl.ca)
106 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
109 static void cyc2ns_data_init(struct cyc2ns_data
*data
)
111 data
->cyc2ns_mul
= 0;
112 data
->cyc2ns_shift
= 0;
113 data
->cyc2ns_offset
= 0;
116 static void __init
cyc2ns_init(int cpu
)
118 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
120 cyc2ns_data_init(&c2n
->data
[0]);
121 cyc2ns_data_init(&c2n
->data
[1]);
123 seqcount_init(&c2n
->seq
);
126 static inline unsigned long long cycles_2_ns(unsigned long long cyc
)
128 struct cyc2ns_data data
;
129 unsigned long long ns
;
131 cyc2ns_read_begin(&data
);
133 ns
= data
.cyc2ns_offset
;
134 ns
+= mul_u64_u32_shr(cyc
, data
.cyc2ns_mul
, data
.cyc2ns_shift
);
141 static void set_cyc2ns_scale(unsigned long khz
, int cpu
, unsigned long long tsc_now
)
143 unsigned long long ns_now
;
144 struct cyc2ns_data data
;
148 local_irq_save(flags
);
149 sched_clock_idle_sleep_event();
154 ns_now
= cycles_2_ns(tsc_now
);
157 * Compute a new multiplier as per the above comment and ensure our
158 * time function is continuous; see the comment near struct
161 clocks_calc_mult_shift(&data
.cyc2ns_mul
, &data
.cyc2ns_shift
, khz
,
165 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
166 * not expected to be greater than 31 due to the original published
167 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
168 * value) - refer perf_event_mmap_page documentation in perf_event.h.
170 if (data
.cyc2ns_shift
== 32) {
171 data
.cyc2ns_shift
= 31;
172 data
.cyc2ns_mul
>>= 1;
175 data
.cyc2ns_offset
= ns_now
-
176 mul_u64_u32_shr(tsc_now
, data
.cyc2ns_mul
, data
.cyc2ns_shift
);
178 c2n
= per_cpu_ptr(&cyc2ns
, cpu
);
180 raw_write_seqcount_latch(&c2n
->seq
);
182 raw_write_seqcount_latch(&c2n
->seq
);
186 sched_clock_idle_wakeup_event();
187 local_irq_restore(flags
);
191 * Scheduler clock - returns current time in nanosec units.
193 u64
native_sched_clock(void)
195 if (static_branch_likely(&__use_tsc
)) {
196 u64 tsc_now
= rdtsc();
198 /* return the value in ns */
199 return cycles_2_ns(tsc_now
);
203 * Fall back to jiffies if there's no TSC available:
204 * ( But note that we still use it if the TSC is marked
205 * unstable. We do this because unlike Time Of Day,
206 * the scheduler clock tolerates small errors and it's
207 * very important for it to be as fast as the platform
211 /* No locking but a rare wrong value is not a big deal: */
212 return (jiffies_64
- INITIAL_JIFFIES
) * (1000000000 / HZ
);
216 * Generate a sched_clock if you already have a TSC value.
218 u64
native_sched_clock_from_tsc(u64 tsc
)
220 return cycles_2_ns(tsc
);
223 /* We need to define a real function for sched_clock, to override the
224 weak default version */
225 #ifdef CONFIG_PARAVIRT
226 unsigned long long sched_clock(void)
228 return paravirt_sched_clock();
231 bool using_native_sched_clock(void)
233 return pv_time_ops
.sched_clock
== native_sched_clock
;
237 sched_clock(void) __attribute__((alias("native_sched_clock")));
239 bool using_native_sched_clock(void) { return true; }
242 int check_tsc_unstable(void)
246 EXPORT_SYMBOL_GPL(check_tsc_unstable
);
248 #ifdef CONFIG_X86_TSC
249 int __init
notsc_setup(char *str
)
251 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
257 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
260 int __init
notsc_setup(char *str
)
262 setup_clear_cpu_cap(X86_FEATURE_TSC
);
267 __setup("notsc", notsc_setup
);
269 static int no_sched_irq_time
;
271 static int __init
tsc_setup(char *str
)
273 if (!strcmp(str
, "reliable"))
274 tsc_clocksource_reliable
= 1;
275 if (!strncmp(str
, "noirqtime", 9))
276 no_sched_irq_time
= 1;
277 if (!strcmp(str
, "unstable"))
278 mark_tsc_unstable("boot parameter");
282 __setup("tsc=", tsc_setup
);
284 #define MAX_RETRIES 5
285 #define SMI_TRESHOLD 50000
288 * Read TSC and the reference counters. Take care of SMI disturbance
290 static u64
tsc_read_refs(u64
*p
, int hpet
)
295 for (i
= 0; i
< MAX_RETRIES
; i
++) {
298 *p
= hpet_readl(HPET_COUNTER
) & 0xFFFFFFFF;
300 *p
= acpi_pm_read_early();
302 if ((t2
- t1
) < SMI_TRESHOLD
)
309 * Calculate the TSC frequency from HPET reference
311 static unsigned long calc_hpet_ref(u64 deltatsc
, u64 hpet1
, u64 hpet2
)
316 hpet2
+= 0x100000000ULL
;
318 tmp
= ((u64
)hpet2
* hpet_readl(HPET_PERIOD
));
319 do_div(tmp
, 1000000);
320 deltatsc
= div64_u64(deltatsc
, tmp
);
322 return (unsigned long) deltatsc
;
326 * Calculate the TSC frequency from PMTimer reference
328 static unsigned long calc_pmtimer_ref(u64 deltatsc
, u64 pm1
, u64 pm2
)
336 pm2
+= (u64
)ACPI_PM_OVRRUN
;
338 tmp
= pm2
* 1000000000LL;
339 do_div(tmp
, PMTMR_TICKS_PER_SEC
);
340 do_div(deltatsc
, tmp
);
342 return (unsigned long) deltatsc
;
346 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
347 #define CAL_PIT_LOOPS 1000
350 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
351 #define CAL2_PIT_LOOPS 5000
355 * Try to calibrate the TSC against the Programmable
356 * Interrupt Timer and return the frequency of the TSC
359 * Return ULONG_MAX on failure to calibrate.
361 static unsigned long pit_calibrate_tsc(u32 latch
, unsigned long ms
, int loopmin
)
363 u64 tsc
, t1
, t2
, delta
;
364 unsigned long tscmin
, tscmax
;
367 if (!has_legacy_pic()) {
369 * Relies on tsc_early_delay_calibrate() to have given us semi
370 * usable udelay(), wait for the same 50ms we would have with
371 * the PIT loop below.
373 udelay(10 * USEC_PER_MSEC
);
374 udelay(10 * USEC_PER_MSEC
);
375 udelay(10 * USEC_PER_MSEC
);
376 udelay(10 * USEC_PER_MSEC
);
377 udelay(10 * USEC_PER_MSEC
);
381 /* Set the Gate high, disable speaker */
382 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
385 * Setup CTC channel 2* for mode 0, (interrupt on terminal
386 * count mode), binary count. Set the latch register to 50ms
387 * (LSB then MSB) to begin countdown.
390 outb(latch
& 0xff, 0x42);
391 outb(latch
>> 8, 0x42);
393 tsc
= t1
= t2
= get_cycles();
398 while ((inb(0x61) & 0x20) == 0) {
402 if ((unsigned long) delta
< tscmin
)
403 tscmin
= (unsigned int) delta
;
404 if ((unsigned long) delta
> tscmax
)
405 tscmax
= (unsigned int) delta
;
412 * If we were not able to read the PIT more than loopmin
413 * times, then we have been hit by a massive SMI
415 * If the maximum is 10 times larger than the minimum,
416 * then we got hit by an SMI as well.
418 if (pitcnt
< loopmin
|| tscmax
> 10 * tscmin
)
421 /* Calculate the PIT value */
428 * This reads the current MSB of the PIT counter, and
429 * checks if we are running on sufficiently fast and
430 * non-virtualized hardware.
432 * Our expectations are:
434 * - the PIT is running at roughly 1.19MHz
436 * - each IO is going to take about 1us on real hardware,
437 * but we allow it to be much faster (by a factor of 10) or
438 * _slightly_ slower (ie we allow up to a 2us read+counter
439 * update - anything else implies a unacceptably slow CPU
440 * or PIT for the fast calibration to work.
442 * - with 256 PIT ticks to read the value, we have 214us to
443 * see the same MSB (and overhead like doing a single TSC
444 * read per MSB value etc).
446 * - We're doing 2 reads per loop (LSB, MSB), and we expect
447 * them each to take about a microsecond on real hardware.
448 * So we expect a count value of around 100. But we'll be
449 * generous, and accept anything over 50.
451 * - if the PIT is stuck, and we see *many* more reads, we
452 * return early (and the next caller of pit_expect_msb()
453 * then consider it a failure when they don't see the
454 * next expected value).
456 * These expectations mean that we know that we have seen the
457 * transition from one expected value to another with a fairly
458 * high accuracy, and we didn't miss any events. We can thus
459 * use the TSC value at the transitions to calculate a pretty
460 * good value for the TSC frequencty.
462 static inline int pit_verify_msb(unsigned char val
)
466 return inb(0x42) == val
;
469 static inline int pit_expect_msb(unsigned char val
, u64
*tscp
, unsigned long *deltap
)
472 u64 tsc
= 0, prev_tsc
= 0;
474 for (count
= 0; count
< 50000; count
++) {
475 if (!pit_verify_msb(val
))
480 *deltap
= get_cycles() - prev_tsc
;
484 * We require _some_ success, but the quality control
485 * will be based on the error terms on the TSC values.
491 * How many MSB values do we want to see? We aim for
492 * a maximum error rate of 500ppm (in practice the
493 * real error is much smaller), but refuse to spend
494 * more than 50ms on it.
496 #define MAX_QUICK_PIT_MS 50
497 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
499 static unsigned long quick_pit_calibrate(void)
503 unsigned long d1
, d2
;
505 if (!has_legacy_pic())
508 /* Set the Gate high, disable speaker */
509 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
512 * Counter 2, mode 0 (one-shot), binary count
514 * NOTE! Mode 2 decrements by two (and then the
515 * output is flipped each time, giving the same
516 * final output frequency as a decrement-by-one),
517 * so mode 0 is much better when looking at the
522 /* Start at 0xffff */
527 * The PIT starts counting at the next edge, so we
528 * need to delay for a microsecond. The easiest way
529 * to do that is to just read back the 16-bit counter
534 if (pit_expect_msb(0xff, &tsc
, &d1
)) {
535 for (i
= 1; i
<= MAX_QUICK_PIT_ITERATIONS
; i
++) {
536 if (!pit_expect_msb(0xff-i
, &delta
, &d2
))
542 * Extrapolate the error and fail fast if the error will
543 * never be below 500 ppm.
546 d1
+ d2
>= (delta
* MAX_QUICK_PIT_ITERATIONS
) >> 11)
550 * Iterate until the error is less than 500 ppm
552 if (d1
+d2
>= delta
>> 11)
556 * Check the PIT one more time to verify that
557 * all TSC reads were stable wrt the PIT.
559 * This also guarantees serialization of the
560 * last cycle read ('d2') in pit_expect_msb.
562 if (!pit_verify_msb(0xfe - i
))
567 pr_info("Fast TSC calibration failed\n");
572 * Ok, if we get here, then we've seen the
573 * MSB of the PIT decrement 'i' times, and the
574 * error has shrunk to less than 500 ppm.
576 * As a result, we can depend on there not being
577 * any odd delays anywhere, and the TSC reads are
578 * reliable (within the error).
580 * kHz = ticks / time-in-seconds / 1000;
581 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
582 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
584 delta
*= PIT_TICK_RATE
;
585 do_div(delta
, i
*256*1000);
586 pr_info("Fast TSC calibration using PIT\n");
591 * native_calibrate_tsc
592 * Determine TSC frequency via CPUID, else return 0.
594 unsigned long native_calibrate_tsc(void)
596 unsigned int eax_denominator
, ebx_numerator
, ecx_hz
, edx
;
597 unsigned int crystal_khz
;
599 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
602 if (boot_cpu_data
.cpuid_level
< 0x15)
605 eax_denominator
= ebx_numerator
= ecx_hz
= edx
= 0;
607 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
608 cpuid(0x15, &eax_denominator
, &ebx_numerator
, &ecx_hz
, &edx
);
610 if (ebx_numerator
== 0 || eax_denominator
== 0)
613 crystal_khz
= ecx_hz
/ 1000;
615 if (crystal_khz
== 0) {
616 switch (boot_cpu_data
.x86_model
) {
617 case INTEL_FAM6_SKYLAKE_MOBILE
:
618 case INTEL_FAM6_SKYLAKE_DESKTOP
:
619 case INTEL_FAM6_KABYLAKE_MOBILE
:
620 case INTEL_FAM6_KABYLAKE_DESKTOP
:
621 crystal_khz
= 24000; /* 24.0 MHz */
623 case INTEL_FAM6_ATOM_DENVERTON
:
624 crystal_khz
= 25000; /* 25.0 MHz */
626 case INTEL_FAM6_ATOM_GOLDMONT
:
627 crystal_khz
= 19200; /* 19.2 MHz */
632 if (crystal_khz
== 0)
635 * TSC frequency determined by CPUID is a "hardware reported"
636 * frequency and is the most accurate one so far we have. This
637 * is considered a known frequency.
639 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ
);
642 * For Atom SoCs TSC is the only reliable clocksource.
643 * Mark TSC reliable so no watchdog on it.
645 if (boot_cpu_data
.x86_model
== INTEL_FAM6_ATOM_GOLDMONT
)
646 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE
);
648 return crystal_khz
* ebx_numerator
/ eax_denominator
;
651 static unsigned long cpu_khz_from_cpuid(void)
653 unsigned int eax_base_mhz
, ebx_max_mhz
, ecx_bus_mhz
, edx
;
655 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
658 if (boot_cpu_data
.cpuid_level
< 0x16)
661 eax_base_mhz
= ebx_max_mhz
= ecx_bus_mhz
= edx
= 0;
663 cpuid(0x16, &eax_base_mhz
, &ebx_max_mhz
, &ecx_bus_mhz
, &edx
);
665 return eax_base_mhz
* 1000;
669 * native_calibrate_cpu - calibrate the cpu on boot
671 unsigned long native_calibrate_cpu(void)
673 u64 tsc1
, tsc2
, delta
, ref1
, ref2
;
674 unsigned long tsc_pit_min
= ULONG_MAX
, tsc_ref_min
= ULONG_MAX
;
675 unsigned long flags
, latch
, ms
, fast_calibrate
;
676 int hpet
= is_hpet_enabled(), i
, loopmin
;
678 fast_calibrate
= cpu_khz_from_cpuid();
680 return fast_calibrate
;
682 fast_calibrate
= cpu_khz_from_msr();
684 return fast_calibrate
;
686 local_irq_save(flags
);
687 fast_calibrate
= quick_pit_calibrate();
688 local_irq_restore(flags
);
690 return fast_calibrate
;
693 * Run 5 calibration loops to get the lowest frequency value
694 * (the best estimate). We use two different calibration modes
697 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
698 * load a timeout of 50ms. We read the time right after we
699 * started the timer and wait until the PIT count down reaches
700 * zero. In each wait loop iteration we read the TSC and check
701 * the delta to the previous read. We keep track of the min
702 * and max values of that delta. The delta is mostly defined
703 * by the IO time of the PIT access, so we can detect when a
704 * SMI/SMM disturbance happened between the two reads. If the
705 * maximum time is significantly larger than the minimum time,
706 * then we discard the result and have another try.
708 * 2) Reference counter. If available we use the HPET or the
709 * PMTIMER as a reference to check the sanity of that value.
710 * We use separate TSC readouts and check inside of the
711 * reference read for a SMI/SMM disturbance. We dicard
712 * disturbed values here as well. We do that around the PIT
713 * calibration delay loop as we have to wait for a certain
714 * amount of time anyway.
717 /* Preset PIT loop values */
720 loopmin
= CAL_PIT_LOOPS
;
722 for (i
= 0; i
< 3; i
++) {
723 unsigned long tsc_pit_khz
;
726 * Read the start value and the reference count of
727 * hpet/pmtimer when available. Then do the PIT
728 * calibration, which will take at least 50ms, and
729 * read the end value.
731 local_irq_save(flags
);
732 tsc1
= tsc_read_refs(&ref1
, hpet
);
733 tsc_pit_khz
= pit_calibrate_tsc(latch
, ms
, loopmin
);
734 tsc2
= tsc_read_refs(&ref2
, hpet
);
735 local_irq_restore(flags
);
737 /* Pick the lowest PIT TSC calibration so far */
738 tsc_pit_min
= min(tsc_pit_min
, tsc_pit_khz
);
740 /* hpet or pmtimer available ? */
744 /* Check, whether the sampling was disturbed by an SMI */
745 if (tsc1
== ULLONG_MAX
|| tsc2
== ULLONG_MAX
)
748 tsc2
= (tsc2
- tsc1
) * 1000000LL;
750 tsc2
= calc_hpet_ref(tsc2
, ref1
, ref2
);
752 tsc2
= calc_pmtimer_ref(tsc2
, ref1
, ref2
);
754 tsc_ref_min
= min(tsc_ref_min
, (unsigned long) tsc2
);
756 /* Check the reference deviation */
757 delta
= ((u64
) tsc_pit_min
) * 100;
758 do_div(delta
, tsc_ref_min
);
761 * If both calibration results are inside a 10% window
762 * then we can be sure, that the calibration
763 * succeeded. We break out of the loop right away. We
764 * use the reference value, as it is more precise.
766 if (delta
>= 90 && delta
<= 110) {
767 pr_info("PIT calibration matches %s. %d loops\n",
768 hpet
? "HPET" : "PMTIMER", i
+ 1);
773 * Check whether PIT failed more than once. This
774 * happens in virtualized environments. We need to
775 * give the virtual PC a slightly longer timeframe for
776 * the HPET/PMTIMER to make the result precise.
778 if (i
== 1 && tsc_pit_min
== ULONG_MAX
) {
781 loopmin
= CAL2_PIT_LOOPS
;
786 * Now check the results.
788 if (tsc_pit_min
== ULONG_MAX
) {
789 /* PIT gave no useful value */
790 pr_warn("Unable to calibrate against PIT\n");
792 /* We don't have an alternative source, disable TSC */
793 if (!hpet
&& !ref1
&& !ref2
) {
794 pr_notice("No reference (HPET/PMTIMER) available\n");
798 /* The alternative source failed as well, disable TSC */
799 if (tsc_ref_min
== ULONG_MAX
) {
800 pr_warn("HPET/PMTIMER calibration failed\n");
804 /* Use the alternative source */
805 pr_info("using %s reference calibration\n",
806 hpet
? "HPET" : "PMTIMER");
811 /* We don't have an alternative source, use the PIT calibration value */
812 if (!hpet
&& !ref1
&& !ref2
) {
813 pr_info("Using PIT calibration value\n");
817 /* The alternative source failed, use the PIT calibration value */
818 if (tsc_ref_min
== ULONG_MAX
) {
819 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
824 * The calibration values differ too much. In doubt, we use
825 * the PIT value as we know that there are PMTIMERs around
826 * running at double speed. At least we let the user know:
828 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
829 hpet
? "HPET" : "PMTIMER", tsc_pit_min
, tsc_ref_min
);
830 pr_info("Using PIT calibration value\n");
834 void recalibrate_cpu_khz(void)
837 unsigned long cpu_khz_old
= cpu_khz
;
839 if (!boot_cpu_has(X86_FEATURE_TSC
))
842 cpu_khz
= x86_platform
.calibrate_cpu();
843 tsc_khz
= x86_platform
.calibrate_tsc();
846 else if (abs(cpu_khz
- tsc_khz
) * 10 > tsc_khz
)
848 cpu_data(0).loops_per_jiffy
= cpufreq_scale(cpu_data(0).loops_per_jiffy
,
849 cpu_khz_old
, cpu_khz
);
853 EXPORT_SYMBOL(recalibrate_cpu_khz
);
856 static unsigned long long cyc2ns_suspend
;
858 void tsc_save_sched_clock_state(void)
860 if (!sched_clock_stable())
863 cyc2ns_suspend
= sched_clock();
867 * Even on processors with invariant TSC, TSC gets reset in some the
868 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
869 * arbitrary value (still sync'd across cpu's) during resume from such sleep
870 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
871 * that sched_clock() continues from the point where it was left off during
874 void tsc_restore_sched_clock_state(void)
876 unsigned long long offset
;
880 if (!sched_clock_stable())
883 local_irq_save(flags
);
886 * We're coming out of suspend, there's no concurrency yet; don't
887 * bother being nice about the RCU stuff, just write to both
891 this_cpu_write(cyc2ns
.data
[0].cyc2ns_offset
, 0);
892 this_cpu_write(cyc2ns
.data
[1].cyc2ns_offset
, 0);
894 offset
= cyc2ns_suspend
- sched_clock();
896 for_each_possible_cpu(cpu
) {
897 per_cpu(cyc2ns
.data
[0].cyc2ns_offset
, cpu
) = offset
;
898 per_cpu(cyc2ns
.data
[1].cyc2ns_offset
, cpu
) = offset
;
901 local_irq_restore(flags
);
904 #ifdef CONFIG_CPU_FREQ
905 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
908 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
909 * not that important because current Opteron setups do not support
910 * scaling on SMP anyroads.
912 * Should fix up last_tsc too. Currently gettimeofday in the
913 * first tick after the change will be slightly wrong.
916 static unsigned int ref_freq
;
917 static unsigned long loops_per_jiffy_ref
;
918 static unsigned long tsc_khz_ref
;
920 static int time_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
923 struct cpufreq_freqs
*freq
= data
;
926 lpj
= &boot_cpu_data
.loops_per_jiffy
;
928 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
929 lpj
= &cpu_data(freq
->cpu
).loops_per_jiffy
;
933 ref_freq
= freq
->old
;
934 loops_per_jiffy_ref
= *lpj
;
935 tsc_khz_ref
= tsc_khz
;
937 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
938 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new)) {
939 *lpj
= cpufreq_scale(loops_per_jiffy_ref
, ref_freq
, freq
->new);
941 tsc_khz
= cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
942 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
943 mark_tsc_unstable("cpufreq changes");
945 set_cyc2ns_scale(tsc_khz
, freq
->cpu
, rdtsc());
951 static struct notifier_block time_cpufreq_notifier_block
= {
952 .notifier_call
= time_cpufreq_notifier
955 static int __init
cpufreq_register_tsc_scaling(void)
957 if (!boot_cpu_has(X86_FEATURE_TSC
))
959 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
961 cpufreq_register_notifier(&time_cpufreq_notifier_block
,
962 CPUFREQ_TRANSITION_NOTIFIER
);
966 core_initcall(cpufreq_register_tsc_scaling
);
968 #endif /* CONFIG_CPU_FREQ */
970 #define ART_CPUID_LEAF (0x15)
971 #define ART_MIN_DENOMINATOR (1)
975 * If ART is present detect the numerator:denominator to convert to TSC
977 static void __init
detect_art(void)
979 unsigned int unused
[2];
981 if (boot_cpu_data
.cpuid_level
< ART_CPUID_LEAF
)
985 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
986 * and the TSC counter resets must not occur asynchronously.
988 if (boot_cpu_has(X86_FEATURE_HYPERVISOR
) ||
989 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC
) ||
990 !boot_cpu_has(X86_FEATURE_TSC_ADJUST
) ||
994 cpuid(ART_CPUID_LEAF
, &art_to_tsc_denominator
,
995 &art_to_tsc_numerator
, unused
, unused
+1);
997 if (art_to_tsc_denominator
< ART_MIN_DENOMINATOR
)
1000 rdmsrl(MSR_IA32_TSC_ADJUST
, art_to_tsc_offset
);
1002 /* Make this sticky over multiple CPU init calls */
1003 setup_force_cpu_cap(X86_FEATURE_ART
);
1007 /* clocksource code */
1009 static void tsc_resume(struct clocksource
*cs
)
1011 tsc_verify_tsc_adjust(true);
1015 * We used to compare the TSC to the cycle_last value in the clocksource
1016 * structure to avoid a nasty time-warp. This can be observed in a
1017 * very small window right after one CPU updated cycle_last under
1018 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1019 * is smaller than the cycle_last reference value due to a TSC which
1020 * is slighty behind. This delta is nowhere else observable, but in
1021 * that case it results in a forward time jump in the range of hours
1022 * due to the unsigned delta calculation of the time keeping core
1023 * code, which is necessary to support wrapping clocksources like pm
1026 * This sanity check is now done in the core timekeeping code.
1027 * checking the result of read_tsc() - cycle_last for being negative.
1028 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1030 static u64
read_tsc(struct clocksource
*cs
)
1032 return (u64
)rdtsc_ordered();
1035 static void tsc_cs_mark_unstable(struct clocksource
*cs
)
1041 if (using_native_sched_clock())
1042 clear_sched_clock_stable();
1043 disable_sched_clock_irqtime();
1044 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1047 static void tsc_cs_tick_stable(struct clocksource
*cs
)
1052 if (using_native_sched_clock())
1053 sched_clock_tick_stable();
1057 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1059 static struct clocksource clocksource_tsc_early
= {
1060 .name
= "tsc-early",
1063 .mask
= CLOCKSOURCE_MASK(64),
1064 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
1065 CLOCK_SOURCE_MUST_VERIFY
,
1066 .archdata
= { .vclock_mode
= VCLOCK_TSC
},
1067 .resume
= tsc_resume
,
1068 .mark_unstable
= tsc_cs_mark_unstable
,
1069 .tick_stable
= tsc_cs_tick_stable
,
1070 .list
= LIST_HEAD_INIT(clocksource_tsc_early
.list
),
1074 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1075 * this one will immediately take over. We will only register if TSC has
1078 static struct clocksource clocksource_tsc
= {
1082 .mask
= CLOCKSOURCE_MASK(64),
1083 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
1084 CLOCK_SOURCE_VALID_FOR_HRES
|
1085 CLOCK_SOURCE_MUST_VERIFY
,
1086 .archdata
= { .vclock_mode
= VCLOCK_TSC
},
1087 .resume
= tsc_resume
,
1088 .mark_unstable
= tsc_cs_mark_unstable
,
1089 .tick_stable
= tsc_cs_tick_stable
,
1090 .list
= LIST_HEAD_INIT(clocksource_tsc
.list
),
1093 void mark_tsc_unstable(char *reason
)
1099 if (using_native_sched_clock())
1100 clear_sched_clock_stable();
1101 disable_sched_clock_irqtime();
1102 pr_info("Marking TSC unstable due to %s\n", reason
);
1104 clocksource_mark_unstable(&clocksource_tsc_early
);
1105 clocksource_mark_unstable(&clocksource_tsc
);
1108 EXPORT_SYMBOL_GPL(mark_tsc_unstable
);
1110 static void __init
check_system_tsc_reliable(void)
1112 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1113 if (is_geode_lx()) {
1114 /* RTSC counts during suspend */
1115 #define RTSC_SUSP 0x100
1116 unsigned long res_low
, res_high
;
1118 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0
, &res_low
, &res_high
);
1119 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1120 if (res_low
& RTSC_SUSP
)
1121 tsc_clocksource_reliable
= 1;
1124 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
))
1125 tsc_clocksource_reliable
= 1;
1129 * Make an educated guess if the TSC is trustworthy and synchronized
1132 int unsynchronized_tsc(void)
1134 if (!boot_cpu_has(X86_FEATURE_TSC
) || tsc_unstable
)
1138 if (apic_is_clustered_box())
1142 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
1145 if (tsc_clocksource_reliable
)
1148 * Intel systems are normally all synchronized.
1149 * Exceptions must mark TSC as unstable:
1151 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
) {
1152 /* assume multi socket systems are not synchronized: */
1153 if (num_possible_cpus() > 1)
1161 * Convert ART to TSC given numerator/denominator found in detect_art()
1163 struct system_counterval_t
convert_art_to_tsc(u64 art
)
1167 rem
= do_div(art
, art_to_tsc_denominator
);
1169 res
= art
* art_to_tsc_numerator
;
1170 tmp
= rem
* art_to_tsc_numerator
;
1172 do_div(tmp
, art_to_tsc_denominator
);
1173 res
+= tmp
+ art_to_tsc_offset
;
1175 return (struct system_counterval_t
) {.cs
= art_related_clocksource
,
1178 EXPORT_SYMBOL(convert_art_to_tsc
);
1181 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1182 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1184 * PTM requires all timestamps to be in units of nanoseconds. When user
1185 * software requests a cross-timestamp, this function converts system timestamp
1188 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1189 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1190 * that this flag is set before conversion to TSC is attempted.
1193 * struct system_counterval_t - system counter value with the pointer to the
1194 * corresponding clocksource
1195 * @cycles: System counter value
1196 * @cs: Clocksource corresponding to system counter value. Used
1197 * by timekeeping code to verify comparibility of two cycle
1201 struct system_counterval_t
convert_art_ns_to_tsc(u64 art_ns
)
1205 rem
= do_div(art_ns
, USEC_PER_SEC
);
1207 res
= art_ns
* tsc_khz
;
1208 tmp
= rem
* tsc_khz
;
1210 do_div(tmp
, USEC_PER_SEC
);
1213 return (struct system_counterval_t
) { .cs
= art_related_clocksource
,
1216 EXPORT_SYMBOL(convert_art_ns_to_tsc
);
1219 static void tsc_refine_calibration_work(struct work_struct
*work
);
1220 static DECLARE_DELAYED_WORK(tsc_irqwork
, tsc_refine_calibration_work
);
1222 * tsc_refine_calibration_work - Further refine tsc freq calibration
1225 * This functions uses delayed work over a period of a
1226 * second to further refine the TSC freq value. Since this is
1227 * timer based, instead of loop based, we don't block the boot
1228 * process while this longer calibration is done.
1230 * If there are any calibration anomalies (too many SMIs, etc),
1231 * or the refined calibration is off by 1% of the fast early
1232 * calibration, we throw out the new calibration and use the
1233 * early calibration.
1235 static void tsc_refine_calibration_work(struct work_struct
*work
)
1237 static u64 tsc_start
= -1, ref_start
;
1239 u64 tsc_stop
, ref_stop
, delta
;
1243 /* Don't bother refining TSC on unstable systems */
1248 * Since the work is started early in boot, we may be
1249 * delayed the first time we expire. So set the workqueue
1250 * again once we know timers are working.
1252 if (tsc_start
== -1) {
1254 * Only set hpet once, to avoid mixing hardware
1255 * if the hpet becomes enabled later.
1257 hpet
= is_hpet_enabled();
1258 schedule_delayed_work(&tsc_irqwork
, HZ
);
1259 tsc_start
= tsc_read_refs(&ref_start
, hpet
);
1263 tsc_stop
= tsc_read_refs(&ref_stop
, hpet
);
1265 /* hpet or pmtimer available ? */
1266 if (ref_start
== ref_stop
)
1269 /* Check, whether the sampling was disturbed by an SMI */
1270 if (tsc_start
== ULLONG_MAX
|| tsc_stop
== ULLONG_MAX
)
1273 delta
= tsc_stop
- tsc_start
;
1276 freq
= calc_hpet_ref(delta
, ref_start
, ref_stop
);
1278 freq
= calc_pmtimer_ref(delta
, ref_start
, ref_stop
);
1280 /* Make sure we're within 1% */
1281 if (abs(tsc_khz
- freq
) > tsc_khz
/100)
1285 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1286 (unsigned long)tsc_khz
/ 1000,
1287 (unsigned long)tsc_khz
% 1000);
1289 /* Inform the TSC deadline clockevent devices about the recalibration */
1290 lapic_update_tsc_freq();
1292 /* Update the sched_clock() rate to match the clocksource one */
1293 for_each_possible_cpu(cpu
)
1294 set_cyc2ns_scale(tsc_khz
, cpu
, tsc_stop
);
1300 if (boot_cpu_has(X86_FEATURE_ART
))
1301 art_related_clocksource
= &clocksource_tsc
;
1302 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1304 clocksource_unregister(&clocksource_tsc_early
);
1308 static int __init
init_tsc_clocksource(void)
1310 if (!boot_cpu_has(X86_FEATURE_TSC
) || tsc_disabled
> 0 || !tsc_khz
)
1316 if (tsc_clocksource_reliable
)
1317 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_MUST_VERIFY
;
1319 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3
))
1320 clocksource_tsc
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
1323 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1324 * the refined calibration and directly register it as a clocksource.
1326 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ
)) {
1327 if (boot_cpu_has(X86_FEATURE_ART
))
1328 art_related_clocksource
= &clocksource_tsc
;
1329 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1331 clocksource_unregister(&clocksource_tsc_early
);
1335 schedule_delayed_work(&tsc_irqwork
, 0);
1339 * We use device_initcall here, to ensure we run after the hpet
1340 * is fully initialized, which may occur at fs_initcall time.
1342 device_initcall(init_tsc_clocksource
);
1344 void __init
tsc_early_delay_calibrate(void)
1348 if (!boot_cpu_has(X86_FEATURE_TSC
))
1351 cpu_khz
= x86_platform
.calibrate_cpu();
1352 tsc_khz
= x86_platform
.calibrate_tsc();
1354 tsc_khz
= tsc_khz
? : cpu_khz
;
1358 lpj
= (u64
)tsc_khz
* 1000;
1360 loops_per_jiffy
= lpj
;
1363 void __init
tsc_init(void)
1368 if (!boot_cpu_has(X86_FEATURE_TSC
)) {
1369 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1373 cpu_khz
= x86_platform
.calibrate_cpu();
1374 tsc_khz
= x86_platform
.calibrate_tsc();
1377 * Trust non-zero tsc_khz as authorative,
1378 * and use it to sanity check cpu_khz,
1379 * which will be off if system timer is off.
1383 else if (abs(cpu_khz
- tsc_khz
) * 10 > tsc_khz
)
1387 mark_tsc_unstable("could not calculate TSC khz");
1388 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1392 pr_info("Detected %lu.%03lu MHz processor\n",
1393 (unsigned long)cpu_khz
/ 1000,
1394 (unsigned long)cpu_khz
% 1000);
1396 if (cpu_khz
!= tsc_khz
) {
1397 pr_info("Detected %lu.%03lu MHz TSC",
1398 (unsigned long)tsc_khz
/ 1000,
1399 (unsigned long)tsc_khz
% 1000);
1402 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1403 tsc_store_and_check_tsc_adjust(true);
1406 * Secondary CPUs do not run through tsc_init(), so set up
1407 * all the scale factors for all CPUs, assuming the same
1408 * speed as the bootup CPU. (cpufreq notifiers will fix this
1409 * up if their speed diverges)
1412 for_each_possible_cpu(cpu
) {
1414 set_cyc2ns_scale(tsc_khz
, cpu
, cyc
);
1417 if (tsc_disabled
> 0)
1420 /* now allow native_sched_clock() to use rdtsc */
1423 static_branch_enable(&__use_tsc
);
1425 if (!no_sched_irq_time
)
1426 enable_sched_clock_irqtime();
1428 lpj
= ((u64
)tsc_khz
* 1000);
1434 check_system_tsc_reliable();
1436 if (unsynchronized_tsc()) {
1437 mark_tsc_unstable("TSCs unsynchronized");
1441 clocksource_register_khz(&clocksource_tsc_early
, tsc_khz
);
1447 * If we have a constant TSC and are using the TSC for the delay loop,
1448 * we can skip clock calibration if another cpu in the same socket has already
1449 * been calibrated. This assumes that CONSTANT_TSC applies to all
1450 * cpus in the socket - this should be a safe assumption.
1452 unsigned long calibrate_delay_is_known(void)
1454 int sibling
, cpu
= smp_processor_id();
1455 int constant_tsc
= cpu_has(&cpu_data(cpu
), X86_FEATURE_CONSTANT_TSC
);
1456 const struct cpumask
*mask
= topology_core_cpumask(cpu
);
1458 if (tsc_disabled
|| !constant_tsc
|| !mask
)
1461 sibling
= cpumask_any_but(mask
, cpu
);
1462 if (sibling
< nr_cpu_ids
)
1463 return cpu_data(sibling
).loops_per_jiffy
;