1 // SPDX-License-Identifier: GPL-2.0
3 * Setup routines for AGP 3.5 compliant bridges.
6 #include <linux/list.h>
8 #include <linux/agp_backend.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
14 /* Generic AGP 3.5 enabling routines */
17 struct list_head list
;
23 static void agp_3_5_dev_list_insert(struct list_head
*head
, struct list_head
*new)
25 struct agp_3_5_dev
*cur
, *n
= list_entry(new, struct agp_3_5_dev
, list
);
26 struct list_head
*pos
;
28 list_for_each(pos
, head
) {
29 cur
= list_entry(pos
, struct agp_3_5_dev
, list
);
30 if (cur
->maxbw
> n
->maxbw
)
33 list_add_tail(new, pos
);
36 static void agp_3_5_dev_list_sort(struct agp_3_5_dev
*list
, unsigned int ndevs
)
38 struct agp_3_5_dev
*cur
;
40 struct list_head
*pos
, *tmp
, *head
= &list
->list
, *start
= head
->next
;
45 for (pos
=start
; pos
!=head
; ) {
46 cur
= list_entry(pos
, struct agp_3_5_dev
, list
);
49 pci_read_config_dword(dev
, cur
->capndx
+AGPNISTAT
, &nistat
);
50 cur
->maxbw
= (nistat
>> 16) & 0xff;
54 agp_3_5_dev_list_insert(head
, tmp
);
59 * Initialize all isochronous transfer parameters for an AGP 3.0
60 * node (i.e. a host bridge in combination with the adapters
64 static int agp_3_5_isochronous_node_enable(struct agp_bridge_data
*bridge
,
65 struct agp_3_5_dev
*dev_list
, unsigned int ndevs
)
68 * Convenience structure to make the calculations clearer
69 * here. The field names come straight from the AGP 3.0 spec.
77 struct agp_3_5_dev
*dev
;
80 struct pci_dev
*td
= bridge
->dev
, *dev
;
81 struct list_head
*head
= &dev_list
->list
, *pos
;
82 struct agp_3_5_dev
*cur
;
83 struct isoch_data
*master
, target
;
84 unsigned int cdev
= 0;
85 u32 mnistat
, tnistat
, tstatus
, mcmd
;
88 u32 tot_bw
= 0, tot_n
= 0, tot_rq
= 0, y_max
, rq_isoch
, rq_async
;
89 u32 step
, rem
, rem_isoch
, rem_async
;
93 * We'll work with an array of isoch_data's (one for each
94 * device in dev_list) throughout this function.
96 master
= kmalloc_array(ndevs
, sizeof(*master
), GFP_KERNEL
);
103 * Sort the device list by maxbw. We need to do this because the
104 * spec suggests that the devices with the smallest requirements
105 * have their resources allocated first, with all remaining resources
106 * falling to the device with the largest requirement.
108 * We don't exactly do this, we divide target resources by ndevs
109 * and split them amongst the AGP 3.0 devices. The remainder of such
110 * division operations are dropped on the last device, sort of like
111 * the spec mentions it should be done.
113 * We can't do this sort when we initially construct the dev_list
114 * because we don't know until this function whether isochronous
115 * transfers are enabled and consequently whether maxbw will mean
118 agp_3_5_dev_list_sort(dev_list
, ndevs
);
120 pci_read_config_dword(td
, bridge
->capndx
+AGPNISTAT
, &tnistat
);
121 pci_read_config_dword(td
, bridge
->capndx
+AGPSTAT
, &tstatus
);
123 /* Extract power-on defaults from the target */
124 target
.maxbw
= (tnistat
>> 16) & 0xff;
125 target
.n
= (tnistat
>> 8) & 0xff;
126 target
.y
= (tnistat
>> 6) & 0x3;
127 target
.l
= (tnistat
>> 3) & 0x7;
128 target
.rq
= (tstatus
>> 24) & 0xff;
133 * Extract power-on defaults for each device in dev_list. Along
134 * the way, calculate the total isochronous bandwidth required
135 * by these devices and the largest requested payload size.
137 list_for_each(pos
, head
) {
138 cur
= list_entry(pos
, struct agp_3_5_dev
, list
);
141 mcapndx
= cur
->capndx
;
143 pci_read_config_dword(dev
, cur
->capndx
+AGPNISTAT
, &mnistat
);
145 master
[cdev
].maxbw
= (mnistat
>> 16) & 0xff;
146 master
[cdev
].n
= (mnistat
>> 8) & 0xff;
147 master
[cdev
].y
= (mnistat
>> 6) & 0x3;
148 master
[cdev
].dev
= cur
;
150 tot_bw
+= master
[cdev
].maxbw
;
151 y_max
= max(y_max
, master
[cdev
].y
);
156 /* Check if this configuration has any chance of working */
157 if (tot_bw
> target
.maxbw
) {
158 dev_err(&td
->dev
, "isochronous bandwidth required "
159 "by AGP 3.0 devices exceeds that which is supported by "
160 "the AGP 3.0 bridge!\n");
168 * Write the calculated payload size into the target's NICMD
169 * register. Doing this directly effects the ISOCH_N value
170 * in the target's NISTAT register, so we need to do this now
171 * to get an accurate value for ISOCH_N later.
173 pci_read_config_word(td
, bridge
->capndx
+AGPNICMD
, &tnicmd
);
174 tnicmd
&= ~(0x3 << 6);
175 tnicmd
|= target
.y
<< 6;
176 pci_write_config_word(td
, bridge
->capndx
+AGPNICMD
, tnicmd
);
178 /* Reread the target's ISOCH_N */
179 pci_read_config_dword(td
, bridge
->capndx
+AGPNISTAT
, &tnistat
);
180 target
.n
= (tnistat
>> 8) & 0xff;
182 /* Calculate the minimum ISOCH_N needed by each master */
183 for (cdev
=0; cdev
<ndevs
; cdev
++) {
184 master
[cdev
].y
= target
.y
;
185 master
[cdev
].n
= master
[cdev
].maxbw
/ (master
[cdev
].y
+ 1);
187 tot_n
+= master
[cdev
].n
;
190 /* Exit if the minimal ISOCH_N allocation among the masters is more
191 * than the target can handle. */
192 if (tot_n
> target
.n
) {
193 dev_err(&td
->dev
, "number of isochronous "
194 "transactions per period required by AGP 3.0 devices "
195 "exceeds that which is supported by the AGP 3.0 "
201 /* Calculate left over ISOCH_N capability in the target. We'll give
202 * this to the hungriest device (as per the spec) */
203 rem
= target
.n
- tot_n
;
206 * Calculate the minimum isochronous RQ depth needed by each master.
207 * Along the way, distribute the extra ISOCH_N capability calculated
210 for (cdev
=0; cdev
<ndevs
; cdev
++) {
212 * This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y
213 * byte isochronous writes will be broken into 64B pieces.
214 * This means we need to budget more RQ depth to account for
215 * these kind of writes (each isochronous write is actually
216 * many writes on the AGP bus).
218 master
[cdev
].rq
= master
[cdev
].n
;
219 if (master
[cdev
].y
> 0x1)
220 master
[cdev
].rq
*= (1 << (master
[cdev
].y
- 1));
222 tot_rq
+= master
[cdev
].rq
;
224 master
[ndevs
-1].n
+= rem
;
226 /* Figure the number of isochronous and asynchronous RQ slots the
227 * target is providing. */
228 rq_isoch
= (target
.y
> 0x1) ? target
.n
* (1 << (target
.y
- 1)) : target
.n
;
229 rq_async
= target
.rq
- rq_isoch
;
231 /* Exit if the minimal RQ needs of the masters exceeds what the target
233 if (tot_rq
> rq_isoch
) {
234 dev_err(&td
->dev
, "number of request queue slots "
235 "required by the isochronous bandwidth requested by "
236 "AGP 3.0 devices exceeds the number provided by the "
237 "AGP 3.0 bridge!\n");
242 /* Calculate asynchronous RQ capability in the target (per master) as
243 * well as the total number of leftover isochronous RQ slots. */
244 step
= rq_async
/ ndevs
;
245 rem_async
= step
+ (rq_async
% ndevs
);
246 rem_isoch
= rq_isoch
- tot_rq
;
248 /* Distribute the extra RQ slots calculated above and write our
249 * isochronous settings out to the actual devices. */
250 for (cdev
=0; cdev
<ndevs
; cdev
++) {
251 cur
= master
[cdev
].dev
;
254 mcapndx
= cur
->capndx
;
256 master
[cdev
].rq
+= (cdev
== ndevs
- 1)
257 ? (rem_async
+ rem_isoch
) : step
;
259 pci_read_config_word(dev
, cur
->capndx
+AGPNICMD
, &mnicmd
);
260 pci_read_config_dword(dev
, cur
->capndx
+AGPCMD
, &mcmd
);
262 mnicmd
&= ~(0xff << 8);
263 mnicmd
&= ~(0x3 << 6);
264 mcmd
&= ~(0xff << 24);
266 mnicmd
|= master
[cdev
].n
<< 8;
267 mnicmd
|= master
[cdev
].y
<< 6;
268 mcmd
|= master
[cdev
].rq
<< 24;
270 pci_write_config_dword(dev
, cur
->capndx
+AGPCMD
, mcmd
);
271 pci_write_config_word(dev
, cur
->capndx
+AGPNICMD
, mnicmd
);
282 * This function basically allocates request queue slots among the
283 * AGP 3.0 systems in nonisochronous nodes. The algorithm is
284 * pretty stupid, divide the total number of RQ slots provided by the
285 * target by ndevs. Distribute this many slots to each AGP 3.0 device,
286 * giving any left over slots to the last device in dev_list.
288 static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data
*bridge
,
289 struct agp_3_5_dev
*dev_list
, unsigned int ndevs
)
291 struct agp_3_5_dev
*cur
;
292 struct list_head
*head
= &dev_list
->list
, *pos
;
295 unsigned int cdev
= 0;
297 pci_read_config_dword(bridge
->dev
, bridge
->capndx
+AGPSTAT
, &tstatus
);
299 trq
= (tstatus
>> 24) & 0xff;
302 rem
= mrq
+ (trq
% ndevs
);
304 for (pos
=head
->next
; cdev
<ndevs
; cdev
++, pos
=pos
->next
) {
305 cur
= list_entry(pos
, struct agp_3_5_dev
, list
);
307 pci_read_config_dword(cur
->dev
, cur
->capndx
+AGPCMD
, &mcmd
);
308 mcmd
&= ~(0xff << 24);
309 mcmd
|= ((cdev
== ndevs
- 1) ? rem
: mrq
) << 24;
310 pci_write_config_dword(cur
->dev
, cur
->capndx
+AGPCMD
, mcmd
);
315 * Fully configure and enable an AGP 3.0 host bridge and all the devices
318 int agp_3_5_enable(struct agp_bridge_data
*bridge
)
320 struct pci_dev
*td
= bridge
->dev
, *dev
= NULL
;
323 u32 tstatus
, mstatus
, ncapid
;
326 struct agp_3_5_dev
*dev_list
, *cur
;
327 struct list_head
*head
, *pos
;
328 unsigned int ndevs
= 0;
331 /* Extract some power-on defaults from the target */
332 pci_read_config_dword(td
, bridge
->capndx
+AGPSTAT
, &tstatus
);
333 isoch
= (tstatus
>> 17) & 0x1;
334 if (isoch
== 0) /* isoch xfers not available, bail out. */
337 arqsz
= (tstatus
>> 13) & 0x7;
340 * Allocate a head for our AGP 3.5 device list
341 * (multiple AGP v3 devices are allowed behind a single bridge).
343 if ((dev_list
= kmalloc(sizeof(*dev_list
), GFP_KERNEL
)) == NULL
) {
347 head
= &dev_list
->list
;
348 INIT_LIST_HEAD(head
);
350 /* Find all AGP devices, and add them to dev_list. */
351 for_each_pci_dev(dev
) {
352 mcapndx
= pci_find_capability(dev
, PCI_CAP_ID_AGP
);
356 switch ((dev
->class >>8) & 0xff00) {
357 case 0x0600: /* Bridge */
358 /* Skip bridges. We should call this function for each one. */
361 case 0x0001: /* Unclassified device */
362 /* Don't know what this is, but log it for investigation. */
364 dev_info(&td
->dev
, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
366 dev
->vendor
, dev
->device
);
370 case 0x0300: /* Display controller */
371 case 0x0400: /* Multimedia controller */
372 if ((cur
= kmalloc(sizeof(*cur
), GFP_KERNEL
)) == NULL
) {
389 * Take an initial pass through the devices lying behind our host
390 * bridge. Make sure each one is actually an AGP 3.0 device, otherwise
391 * exit with an error message. Along the way store the AGP 3.0
392 * cap_ptr for each device
394 list_for_each(pos
, head
) {
395 cur
= list_entry(pos
, struct agp_3_5_dev
, list
);
398 pci_read_config_word(dev
, PCI_STATUS
, &mpstat
);
399 if ((mpstat
& PCI_STATUS_CAP_LIST
) == 0)
402 pci_read_config_byte(dev
, PCI_CAPABILITY_LIST
, &mcapndx
);
405 pci_read_config_dword(dev
, mcapndx
, &ncapid
);
406 if ((ncapid
& 0xff) != 2)
407 mcapndx
= (ncapid
>> 8) & 0xff;
409 while (((ncapid
& 0xff) != 2) && (mcapndx
!= 0));
413 dev_err(&td
->dev
, "woah! Non-AGP device %s on "
414 "secondary bus of AGP 3.5 bridge!\n",
420 mmajor
= (ncapid
>> AGP_MAJOR_VERSION_SHIFT
) & 0xf;
422 dev_err(&td
->dev
, "woah! AGP 2.0 device %s on "
423 "secondary bus of AGP 3.5 bridge operating "
424 "with AGP 3.0 electricals!\n", pci_name(dev
));
429 cur
->capndx
= mcapndx
;
431 pci_read_config_dword(dev
, cur
->capndx
+AGPSTAT
, &mstatus
);
433 if (((mstatus
>> 3) & 0x1) == 0) {
434 dev_err(&td
->dev
, "woah! AGP 3.x device %s not "
435 "operating in AGP 3.x mode on secondary bus "
436 "of AGP 3.5 bridge operating with AGP 3.0 "
437 "electricals!\n", pci_name(dev
));
444 * Call functions to divide target resources amongst the AGP 3.0
445 * masters. This process is dramatically different depending on
446 * whether isochronous transfers are supported.
449 ret
= agp_3_5_isochronous_node_enable(bridge
, dev_list
, ndevs
);
451 dev_info(&td
->dev
, "something bad happened setting "
452 "up isochronous xfers; falling back to "
453 "non-isochronous xfer mode\n");
458 agp_3_5_nonisochronous_node_enable(bridge
, dev_list
, ndevs
);
461 /* Be sure to free the dev_list */
462 for (pos
=head
->next
; pos
!=head
; ) {
463 cur
= list_entry(pos
, struct agp_3_5_dev
, list
);