Linux 4.18.10
[linux/fpc-iii.git] / drivers / char / xillybus / xillybus_core.c
bloba11af94e2e6507480ae17d7ec1ebc96458701073
1 /*
2 * linux/drivers/misc/xillybus_core.c
4 * Copyright 2011 Xillybus Ltd, http://xillybus.com
6 * Driver for the Xillybus FPGA/host framework.
8 * This driver interfaces with a special IP core in an FPGA, setting up
9 * a pipe between a hardware FIFO in the programmable logic and a device
10 * file in the host. The number of such pipes and their attributes are
11 * set up on the logic. This driver detects these automatically and
12 * creates the device files accordingly.
14 * This program is free software; you can redistribute it and/or modify
15 * it under the smems of the GNU General Public License as published by
16 * the Free Software Foundation; version 2 of the License.
19 #include <linux/list.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
22 #include <linux/io.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/fs.h>
27 #include <linux/cdev.h>
28 #include <linux/spinlock.h>
29 #include <linux/mutex.h>
30 #include <linux/crc32.h>
31 #include <linux/poll.h>
32 #include <linux/delay.h>
33 #include <linux/slab.h>
34 #include <linux/workqueue.h>
35 #include "xillybus.h"
37 MODULE_DESCRIPTION("Xillybus core functions");
38 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
39 MODULE_VERSION("1.07");
40 MODULE_ALIAS("xillybus_core");
41 MODULE_LICENSE("GPL v2");
43 /* General timeout is 100 ms, rx timeout is 10 ms */
44 #define XILLY_RX_TIMEOUT (10*HZ/1000)
45 #define XILLY_TIMEOUT (100*HZ/1000)
47 #define fpga_msg_ctrl_reg 0x0008
48 #define fpga_dma_control_reg 0x0020
49 #define fpga_dma_bufno_reg 0x0024
50 #define fpga_dma_bufaddr_lowaddr_reg 0x0028
51 #define fpga_dma_bufaddr_highaddr_reg 0x002c
52 #define fpga_buf_ctrl_reg 0x0030
53 #define fpga_buf_offset_reg 0x0034
54 #define fpga_endian_reg 0x0040
56 #define XILLYMSG_OPCODE_RELEASEBUF 1
57 #define XILLYMSG_OPCODE_QUIESCEACK 2
58 #define XILLYMSG_OPCODE_FIFOEOF 3
59 #define XILLYMSG_OPCODE_FATAL_ERROR 4
60 #define XILLYMSG_OPCODE_NONEMPTY 5
62 static const char xillyname[] = "xillybus";
64 static struct class *xillybus_class;
67 * ep_list_lock is the last lock to be taken; No other lock requests are
68 * allowed while holding it. It merely protects list_of_endpoints, and not
69 * the endpoints listed in it.
72 static LIST_HEAD(list_of_endpoints);
73 static struct mutex ep_list_lock;
74 static struct workqueue_struct *xillybus_wq;
77 * Locking scheme: Mutexes protect invocations of character device methods.
78 * If both locks are taken, wr_mutex is taken first, rd_mutex second.
80 * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
81 * buffers' end_offset fields against changes made by IRQ handler (and in
82 * theory, other file request handlers, but the mutex handles that). Nothing
83 * else.
84 * They are held for short direct memory manipulations. Needless to say,
85 * no mutex locking is allowed when a spinlock is held.
87 * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
89 * register_mutex is endpoint-specific, and is held when non-atomic
90 * register operations are performed. wr_mutex and rd_mutex may be
91 * held when register_mutex is taken, but none of the spinlocks. Note that
92 * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
93 * which are unrelated to buf_offset_reg, since they are harmless.
95 * Blocking on the wait queues is allowed with mutexes held, but not with
96 * spinlocks.
98 * Only interruptible blocking is allowed on mutexes and wait queues.
100 * All in all, the locking order goes (with skips allowed, of course):
101 * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
104 static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
106 int opcode;
107 int msg_channel, msg_bufno, msg_data, msg_dir;
109 opcode = (buf[0] >> 24) & 0xff;
110 msg_dir = buf[0] & 1;
111 msg_channel = (buf[0] >> 1) & 0x7ff;
112 msg_bufno = (buf[0] >> 12) & 0x3ff;
113 msg_data = buf[1] & 0xfffffff;
115 dev_warn(endpoint->dev,
116 "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
117 opcode, msg_channel, msg_dir, msg_bufno, msg_data);
121 * xillybus_isr assumes the interrupt is allocated exclusively to it,
122 * which is the natural case MSI and several other hardware-oriented
123 * interrupts. Sharing is not allowed.
126 irqreturn_t xillybus_isr(int irq, void *data)
128 struct xilly_endpoint *ep = data;
129 u32 *buf;
130 unsigned int buf_size;
131 int i;
132 int opcode;
133 unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
134 struct xilly_channel *channel;
136 buf = ep->msgbuf_addr;
137 buf_size = ep->msg_buf_size/sizeof(u32);
139 ep->ephw->hw_sync_sgl_for_cpu(ep,
140 ep->msgbuf_dma_addr,
141 ep->msg_buf_size,
142 DMA_FROM_DEVICE);
144 for (i = 0; i < buf_size; i += 2) {
145 if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
146 malformed_message(ep, &buf[i]);
147 dev_warn(ep->dev,
148 "Sending a NACK on counter %x (instead of %x) on entry %d\n",
149 ((buf[i+1] >> 28) & 0xf),
150 ep->msg_counter,
151 i/2);
153 if (++ep->failed_messages > 10) {
154 dev_err(ep->dev,
155 "Lost sync with interrupt messages. Stopping.\n");
156 } else {
157 ep->ephw->hw_sync_sgl_for_device(
159 ep->msgbuf_dma_addr,
160 ep->msg_buf_size,
161 DMA_FROM_DEVICE);
163 iowrite32(0x01, /* Message NACK */
164 ep->registers + fpga_msg_ctrl_reg);
166 return IRQ_HANDLED;
167 } else if (buf[i] & (1 << 22)) /* Last message */
168 break;
171 if (i >= buf_size) {
172 dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
173 return IRQ_HANDLED;
176 buf_size = i + 2;
178 for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
179 opcode = (buf[i] >> 24) & 0xff;
181 msg_dir = buf[i] & 1;
182 msg_channel = (buf[i] >> 1) & 0x7ff;
183 msg_bufno = (buf[i] >> 12) & 0x3ff;
184 msg_data = buf[i+1] & 0xfffffff;
186 switch (opcode) {
187 case XILLYMSG_OPCODE_RELEASEBUF:
188 if ((msg_channel > ep->num_channels) ||
189 (msg_channel == 0)) {
190 malformed_message(ep, &buf[i]);
191 break;
194 channel = ep->channels[msg_channel];
196 if (msg_dir) { /* Write channel */
197 if (msg_bufno >= channel->num_wr_buffers) {
198 malformed_message(ep, &buf[i]);
199 break;
201 spin_lock(&channel->wr_spinlock);
202 channel->wr_buffers[msg_bufno]->end_offset =
203 msg_data;
204 channel->wr_fpga_buf_idx = msg_bufno;
205 channel->wr_empty = 0;
206 channel->wr_sleepy = 0;
207 spin_unlock(&channel->wr_spinlock);
209 wake_up_interruptible(&channel->wr_wait);
211 } else {
212 /* Read channel */
214 if (msg_bufno >= channel->num_rd_buffers) {
215 malformed_message(ep, &buf[i]);
216 break;
219 spin_lock(&channel->rd_spinlock);
220 channel->rd_fpga_buf_idx = msg_bufno;
221 channel->rd_full = 0;
222 spin_unlock(&channel->rd_spinlock);
224 wake_up_interruptible(&channel->rd_wait);
225 if (!channel->rd_synchronous)
226 queue_delayed_work(
227 xillybus_wq,
228 &channel->rd_workitem,
229 XILLY_RX_TIMEOUT);
232 break;
233 case XILLYMSG_OPCODE_NONEMPTY:
234 if ((msg_channel > ep->num_channels) ||
235 (msg_channel == 0) || (!msg_dir) ||
236 !ep->channels[msg_channel]->wr_supports_nonempty) {
237 malformed_message(ep, &buf[i]);
238 break;
241 channel = ep->channels[msg_channel];
243 if (msg_bufno >= channel->num_wr_buffers) {
244 malformed_message(ep, &buf[i]);
245 break;
247 spin_lock(&channel->wr_spinlock);
248 if (msg_bufno == channel->wr_host_buf_idx)
249 channel->wr_ready = 1;
250 spin_unlock(&channel->wr_spinlock);
252 wake_up_interruptible(&channel->wr_ready_wait);
254 break;
255 case XILLYMSG_OPCODE_QUIESCEACK:
256 ep->idtlen = msg_data;
257 wake_up_interruptible(&ep->ep_wait);
259 break;
260 case XILLYMSG_OPCODE_FIFOEOF:
261 if ((msg_channel > ep->num_channels) ||
262 (msg_channel == 0) || (!msg_dir) ||
263 !ep->channels[msg_channel]->num_wr_buffers) {
264 malformed_message(ep, &buf[i]);
265 break;
267 channel = ep->channels[msg_channel];
268 spin_lock(&channel->wr_spinlock);
269 channel->wr_eof = msg_bufno;
270 channel->wr_sleepy = 0;
272 channel->wr_hangup = channel->wr_empty &&
273 (channel->wr_host_buf_idx == msg_bufno);
275 spin_unlock(&channel->wr_spinlock);
277 wake_up_interruptible(&channel->wr_wait);
279 break;
280 case XILLYMSG_OPCODE_FATAL_ERROR:
281 ep->fatal_error = 1;
282 wake_up_interruptible(&ep->ep_wait); /* For select() */
283 dev_err(ep->dev,
284 "FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
285 break;
286 default:
287 malformed_message(ep, &buf[i]);
288 break;
292 ep->ephw->hw_sync_sgl_for_device(ep,
293 ep->msgbuf_dma_addr,
294 ep->msg_buf_size,
295 DMA_FROM_DEVICE);
297 ep->msg_counter = (ep->msg_counter + 1) & 0xf;
298 ep->failed_messages = 0;
299 iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */
301 return IRQ_HANDLED;
303 EXPORT_SYMBOL(xillybus_isr);
306 * A few trivial memory management functions.
307 * NOTE: These functions are used only on probe and remove, and therefore
308 * no locks are applied!
311 static void xillybus_autoflush(struct work_struct *work);
313 struct xilly_alloc_state {
314 void *salami;
315 int left_of_salami;
316 int nbuffer;
317 enum dma_data_direction direction;
318 u32 regdirection;
321 static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
322 struct xilly_alloc_state *s,
323 struct xilly_buffer **buffers,
324 int bufnum, int bytebufsize)
326 int i, rc;
327 dma_addr_t dma_addr;
328 struct device *dev = ep->dev;
329 struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */
331 if (buffers) { /* Not the message buffer */
332 this_buffer = devm_kcalloc(dev, bufnum,
333 sizeof(struct xilly_buffer),
334 GFP_KERNEL);
335 if (!this_buffer)
336 return -ENOMEM;
339 for (i = 0; i < bufnum; i++) {
341 * Buffers are expected in descending size order, so there
342 * is either enough space for this buffer or none at all.
345 if ((s->left_of_salami < bytebufsize) &&
346 (s->left_of_salami > 0)) {
347 dev_err(ep->dev,
348 "Corrupt buffer allocation in IDT. Aborting.\n");
349 return -ENODEV;
352 if (s->left_of_salami == 0) {
353 int allocorder, allocsize;
355 allocsize = PAGE_SIZE;
356 allocorder = 0;
357 while (bytebufsize > allocsize) {
358 allocsize *= 2;
359 allocorder++;
362 s->salami = (void *) devm_get_free_pages(
363 dev,
364 GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
365 allocorder);
366 if (!s->salami)
367 return -ENOMEM;
369 s->left_of_salami = allocsize;
372 rc = ep->ephw->map_single(ep, s->salami,
373 bytebufsize, s->direction,
374 &dma_addr);
375 if (rc)
376 return rc;
378 iowrite32((u32) (dma_addr & 0xffffffff),
379 ep->registers + fpga_dma_bufaddr_lowaddr_reg);
380 iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
381 ep->registers + fpga_dma_bufaddr_highaddr_reg);
383 if (buffers) { /* Not the message buffer */
384 this_buffer->addr = s->salami;
385 this_buffer->dma_addr = dma_addr;
386 buffers[i] = this_buffer++;
388 iowrite32(s->regdirection | s->nbuffer++,
389 ep->registers + fpga_dma_bufno_reg);
390 } else {
391 ep->msgbuf_addr = s->salami;
392 ep->msgbuf_dma_addr = dma_addr;
393 ep->msg_buf_size = bytebufsize;
395 iowrite32(s->regdirection,
396 ep->registers + fpga_dma_bufno_reg);
399 s->left_of_salami -= bytebufsize;
400 s->salami += bytebufsize;
402 return 0;
405 static int xilly_setupchannels(struct xilly_endpoint *ep,
406 unsigned char *chandesc,
407 int entries)
409 struct device *dev = ep->dev;
410 int i, entry, rc;
411 struct xilly_channel *channel;
412 int channelnum, bufnum, bufsize, format, is_writebuf;
413 int bytebufsize;
414 int synchronous, allowpartial, exclusive_open, seekable;
415 int supports_nonempty;
416 int msg_buf_done = 0;
418 struct xilly_alloc_state rd_alloc = {
419 .salami = NULL,
420 .left_of_salami = 0,
421 .nbuffer = 1,
422 .direction = DMA_TO_DEVICE,
423 .regdirection = 0,
426 struct xilly_alloc_state wr_alloc = {
427 .salami = NULL,
428 .left_of_salami = 0,
429 .nbuffer = 1,
430 .direction = DMA_FROM_DEVICE,
431 .regdirection = 0x80000000,
434 channel = devm_kcalloc(dev, ep->num_channels,
435 sizeof(struct xilly_channel), GFP_KERNEL);
436 if (!channel)
437 return -ENOMEM;
439 ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
440 sizeof(struct xilly_channel *),
441 GFP_KERNEL);
442 if (!ep->channels)
443 return -ENOMEM;
445 ep->channels[0] = NULL; /* Channel 0 is message buf. */
447 /* Initialize all channels with defaults */
449 for (i = 1; i <= ep->num_channels; i++) {
450 channel->wr_buffers = NULL;
451 channel->rd_buffers = NULL;
452 channel->num_wr_buffers = 0;
453 channel->num_rd_buffers = 0;
454 channel->wr_fpga_buf_idx = -1;
455 channel->wr_host_buf_idx = 0;
456 channel->wr_host_buf_pos = 0;
457 channel->wr_empty = 1;
458 channel->wr_ready = 0;
459 channel->wr_sleepy = 1;
460 channel->rd_fpga_buf_idx = 0;
461 channel->rd_host_buf_idx = 0;
462 channel->rd_host_buf_pos = 0;
463 channel->rd_full = 0;
464 channel->wr_ref_count = 0;
465 channel->rd_ref_count = 0;
467 spin_lock_init(&channel->wr_spinlock);
468 spin_lock_init(&channel->rd_spinlock);
469 mutex_init(&channel->wr_mutex);
470 mutex_init(&channel->rd_mutex);
471 init_waitqueue_head(&channel->rd_wait);
472 init_waitqueue_head(&channel->wr_wait);
473 init_waitqueue_head(&channel->wr_ready_wait);
475 INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);
477 channel->endpoint = ep;
478 channel->chan_num = i;
480 channel->log2_element_size = 0;
482 ep->channels[i] = channel++;
485 for (entry = 0; entry < entries; entry++, chandesc += 4) {
486 struct xilly_buffer **buffers = NULL;
488 is_writebuf = chandesc[0] & 0x01;
489 channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
490 format = (chandesc[1] >> 4) & 0x03;
491 allowpartial = (chandesc[1] >> 6) & 0x01;
492 synchronous = (chandesc[1] >> 7) & 0x01;
493 bufsize = 1 << (chandesc[2] & 0x1f);
494 bufnum = 1 << (chandesc[3] & 0x0f);
495 exclusive_open = (chandesc[2] >> 7) & 0x01;
496 seekable = (chandesc[2] >> 6) & 0x01;
497 supports_nonempty = (chandesc[2] >> 5) & 0x01;
499 if ((channelnum > ep->num_channels) ||
500 ((channelnum == 0) && !is_writebuf)) {
501 dev_err(ep->dev,
502 "IDT requests channel out of range. Aborting.\n");
503 return -ENODEV;
506 channel = ep->channels[channelnum]; /* NULL for msg channel */
508 if (!is_writebuf || channelnum > 0) {
509 channel->log2_element_size = ((format > 2) ?
510 2 : format);
512 bytebufsize = bufsize *
513 (1 << channel->log2_element_size);
515 buffers = devm_kcalloc(dev, bufnum,
516 sizeof(struct xilly_buffer *),
517 GFP_KERNEL);
518 if (!buffers)
519 return -ENOMEM;
520 } else {
521 bytebufsize = bufsize << 2;
524 if (!is_writebuf) {
525 channel->num_rd_buffers = bufnum;
526 channel->rd_buf_size = bytebufsize;
527 channel->rd_allow_partial = allowpartial;
528 channel->rd_synchronous = synchronous;
529 channel->rd_exclusive_open = exclusive_open;
530 channel->seekable = seekable;
532 channel->rd_buffers = buffers;
533 rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
534 bufnum, bytebufsize);
535 } else if (channelnum > 0) {
536 channel->num_wr_buffers = bufnum;
537 channel->wr_buf_size = bytebufsize;
539 channel->seekable = seekable;
540 channel->wr_supports_nonempty = supports_nonempty;
542 channel->wr_allow_partial = allowpartial;
543 channel->wr_synchronous = synchronous;
544 channel->wr_exclusive_open = exclusive_open;
546 channel->wr_buffers = buffers;
547 rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
548 bufnum, bytebufsize);
549 } else {
550 rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
551 bufnum, bytebufsize);
552 msg_buf_done++;
555 if (rc)
556 return -ENOMEM;
559 if (!msg_buf_done) {
560 dev_err(ep->dev,
561 "Corrupt IDT: No message buffer. Aborting.\n");
562 return -ENODEV;
564 return 0;
567 static int xilly_scan_idt(struct xilly_endpoint *endpoint,
568 struct xilly_idt_handle *idt_handle)
570 int count = 0;
571 unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
572 unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
573 unsigned char *scan;
574 int len;
576 scan = idt;
577 idt_handle->idt = idt;
579 scan++; /* Skip version number */
581 while ((scan <= end_of_idt) && *scan) {
582 while ((scan <= end_of_idt) && *scan++)
583 /* Do nothing, just scan thru string */;
584 count++;
587 scan++;
589 if (scan > end_of_idt) {
590 dev_err(endpoint->dev,
591 "IDT device name list overflow. Aborting.\n");
592 return -ENODEV;
594 idt_handle->chandesc = scan;
596 len = endpoint->idtlen - (3 + ((int) (scan - idt)));
598 if (len & 0x03) {
599 dev_err(endpoint->dev,
600 "Corrupt IDT device name list. Aborting.\n");
601 return -ENODEV;
604 idt_handle->entries = len >> 2;
605 endpoint->num_channels = count;
607 return 0;
610 static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
612 struct xilly_channel *channel;
613 unsigned char *version;
614 long t;
616 channel = endpoint->channels[1]; /* This should be generated ad-hoc */
618 channel->wr_sleepy = 1;
620 iowrite32(1 |
621 (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
622 endpoint->registers + fpga_buf_ctrl_reg);
624 t = wait_event_interruptible_timeout(channel->wr_wait,
625 (!channel->wr_sleepy),
626 XILLY_TIMEOUT);
628 if (t <= 0) {
629 dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");
631 if (endpoint->fatal_error)
632 return -EIO;
634 return -ENODEV;
637 endpoint->ephw->hw_sync_sgl_for_cpu(
638 channel->endpoint,
639 channel->wr_buffers[0]->dma_addr,
640 channel->wr_buf_size,
641 DMA_FROM_DEVICE);
643 if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
644 dev_err(endpoint->dev,
645 "IDT length mismatch (%d != %d). Aborting.\n",
646 channel->wr_buffers[0]->end_offset, endpoint->idtlen);
647 return -ENODEV;
650 if (crc32_le(~0, channel->wr_buffers[0]->addr,
651 endpoint->idtlen+1) != 0) {
652 dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
653 return -ENODEV;
656 version = channel->wr_buffers[0]->addr;
658 /* Check version number. Reject anything above 0x82. */
659 if (*version > 0x82) {
660 dev_err(endpoint->dev,
661 "No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgrade. Aborting.\n",
662 *version);
663 return -ENODEV;
666 return 0;
669 static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
670 size_t count, loff_t *f_pos)
672 ssize_t rc;
673 unsigned long flags;
674 int bytes_done = 0;
675 int no_time_left = 0;
676 long deadline, left_to_sleep;
677 struct xilly_channel *channel = filp->private_data;
679 int empty, reached_eof, exhausted, ready;
680 /* Initializations are there only to silence warnings */
682 int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
683 int waiting_bufidx;
685 if (channel->endpoint->fatal_error)
686 return -EIO;
688 deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
690 rc = mutex_lock_interruptible(&channel->wr_mutex);
691 if (rc)
692 return rc;
694 while (1) { /* Note that we may drop mutex within this loop */
695 int bytes_to_do = count - bytes_done;
697 spin_lock_irqsave(&channel->wr_spinlock, flags);
699 empty = channel->wr_empty;
700 ready = !empty || channel->wr_ready;
702 if (!empty) {
703 bufidx = channel->wr_host_buf_idx;
704 bufpos = channel->wr_host_buf_pos;
705 howmany = ((channel->wr_buffers[bufidx]->end_offset
706 + 1) << channel->log2_element_size)
707 - bufpos;
709 /* Update wr_host_* to its post-operation state */
710 if (howmany > bytes_to_do) {
711 bufferdone = 0;
713 howmany = bytes_to_do;
714 channel->wr_host_buf_pos += howmany;
715 } else {
716 bufferdone = 1;
718 channel->wr_host_buf_pos = 0;
720 if (bufidx == channel->wr_fpga_buf_idx) {
721 channel->wr_empty = 1;
722 channel->wr_sleepy = 1;
723 channel->wr_ready = 0;
726 if (bufidx >= (channel->num_wr_buffers - 1))
727 channel->wr_host_buf_idx = 0;
728 else
729 channel->wr_host_buf_idx++;
734 * Marking our situation after the possible changes above,
735 * for use after releasing the spinlock.
737 * empty = empty before change
738 * exhasted = empty after possible change
741 reached_eof = channel->wr_empty &&
742 (channel->wr_host_buf_idx == channel->wr_eof);
743 channel->wr_hangup = reached_eof;
744 exhausted = channel->wr_empty;
745 waiting_bufidx = channel->wr_host_buf_idx;
747 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
749 if (!empty) { /* Go on, now without the spinlock */
751 if (bufpos == 0) /* Position zero means it's virgin */
752 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
753 channel->endpoint,
754 channel->wr_buffers[bufidx]->dma_addr,
755 channel->wr_buf_size,
756 DMA_FROM_DEVICE);
758 if (copy_to_user(
759 userbuf,
760 channel->wr_buffers[bufidx]->addr
761 + bufpos, howmany))
762 rc = -EFAULT;
764 userbuf += howmany;
765 bytes_done += howmany;
767 if (bufferdone) {
768 channel->endpoint->ephw->hw_sync_sgl_for_device(
769 channel->endpoint,
770 channel->wr_buffers[bufidx]->dma_addr,
771 channel->wr_buf_size,
772 DMA_FROM_DEVICE);
775 * Tell FPGA the buffer is done with. It's an
776 * atomic operation to the FPGA, so what
777 * happens with other channels doesn't matter,
778 * and the certain channel is protected with
779 * the channel-specific mutex.
782 iowrite32(1 | (channel->chan_num << 1) |
783 (bufidx << 12),
784 channel->endpoint->registers +
785 fpga_buf_ctrl_reg);
788 if (rc) {
789 mutex_unlock(&channel->wr_mutex);
790 return rc;
794 /* This includes a zero-count return = EOF */
795 if ((bytes_done >= count) || reached_eof)
796 break;
798 if (!exhausted)
799 continue; /* More in RAM buffer(s)? Just go on. */
801 if ((bytes_done > 0) &&
802 (no_time_left ||
803 (channel->wr_synchronous && channel->wr_allow_partial)))
804 break;
807 * Nonblocking read: The "ready" flag tells us that the FPGA
808 * has data to send. In non-blocking mode, if it isn't on,
809 * just return. But if there is, we jump directly to the point
810 * where we ask for the FPGA to send all it has, and wait
811 * until that data arrives. So in a sense, we *do* block in
812 * nonblocking mode, but only for a very short time.
815 if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
816 if (bytes_done > 0)
817 break;
819 if (ready)
820 goto desperate;
822 rc = -EAGAIN;
823 break;
826 if (!no_time_left || (bytes_done > 0)) {
828 * Note that in case of an element-misaligned read
829 * request, offsetlimit will include the last element,
830 * which will be partially read from.
832 int offsetlimit = ((count - bytes_done) - 1) >>
833 channel->log2_element_size;
834 int buf_elements = channel->wr_buf_size >>
835 channel->log2_element_size;
838 * In synchronous mode, always send an offset limit.
839 * Just don't send a value too big.
842 if (channel->wr_synchronous) {
843 /* Don't request more than one buffer */
844 if (channel->wr_allow_partial &&
845 (offsetlimit >= buf_elements))
846 offsetlimit = buf_elements - 1;
848 /* Don't request more than all buffers */
849 if (!channel->wr_allow_partial &&
850 (offsetlimit >=
851 (buf_elements * channel->num_wr_buffers)))
852 offsetlimit = buf_elements *
853 channel->num_wr_buffers - 1;
857 * In asynchronous mode, force early flush of a buffer
858 * only if that will allow returning a full count. The
859 * "offsetlimit < ( ... )" rather than "<=" excludes
860 * requesting a full buffer, which would obviously
861 * cause a buffer transmission anyhow
864 if (channel->wr_synchronous ||
865 (offsetlimit < (buf_elements - 1))) {
866 mutex_lock(&channel->endpoint->register_mutex);
868 iowrite32(offsetlimit,
869 channel->endpoint->registers +
870 fpga_buf_offset_reg);
872 iowrite32(1 | (channel->chan_num << 1) |
873 (2 << 24) | /* 2 = offset limit */
874 (waiting_bufidx << 12),
875 channel->endpoint->registers +
876 fpga_buf_ctrl_reg);
878 mutex_unlock(&channel->endpoint->
879 register_mutex);
884 * If partial completion is disallowed, there is no point in
885 * timeout sleeping. Neither if no_time_left is set and
886 * there's no data.
889 if (!channel->wr_allow_partial ||
890 (no_time_left && (bytes_done == 0))) {
892 * This do-loop will run more than once if another
893 * thread reasserted wr_sleepy before we got the mutex
894 * back, so we try again.
897 do {
898 mutex_unlock(&channel->wr_mutex);
900 if (wait_event_interruptible(
901 channel->wr_wait,
902 (!channel->wr_sleepy)))
903 goto interrupted;
905 if (mutex_lock_interruptible(
906 &channel->wr_mutex))
907 goto interrupted;
908 } while (channel->wr_sleepy);
910 continue;
912 interrupted: /* Mutex is not held if got here */
913 if (channel->endpoint->fatal_error)
914 return -EIO;
915 if (bytes_done)
916 return bytes_done;
917 if (filp->f_flags & O_NONBLOCK)
918 return -EAGAIN; /* Don't admit snoozing */
919 return -EINTR;
922 left_to_sleep = deadline - ((long) jiffies);
925 * If our time is out, skip the waiting. We may miss wr_sleepy
926 * being deasserted but hey, almost missing the train is like
927 * missing it.
930 if (left_to_sleep > 0) {
931 left_to_sleep =
932 wait_event_interruptible_timeout(
933 channel->wr_wait,
934 (!channel->wr_sleepy),
935 left_to_sleep);
937 if (left_to_sleep > 0) /* wr_sleepy deasserted */
938 continue;
940 if (left_to_sleep < 0) { /* Interrupt */
941 mutex_unlock(&channel->wr_mutex);
942 if (channel->endpoint->fatal_error)
943 return -EIO;
944 if (bytes_done)
945 return bytes_done;
946 return -EINTR;
950 desperate:
951 no_time_left = 1; /* We're out of sleeping time. Desperate! */
953 if (bytes_done == 0) {
955 * Reaching here means that we allow partial return,
956 * that we've run out of time, and that we have
957 * nothing to return.
958 * So tell the FPGA to send anything it has or gets.
961 iowrite32(1 | (channel->chan_num << 1) |
962 (3 << 24) | /* Opcode 3, flush it all! */
963 (waiting_bufidx << 12),
964 channel->endpoint->registers +
965 fpga_buf_ctrl_reg);
969 * Reaching here means that we *do* have data in the buffer,
970 * but the "partial" flag disallows returning less than
971 * required. And we don't have as much. So loop again,
972 * which is likely to end up blocking indefinitely until
973 * enough data has arrived.
977 mutex_unlock(&channel->wr_mutex);
979 if (channel->endpoint->fatal_error)
980 return -EIO;
982 if (rc)
983 return rc;
985 return bytes_done;
989 * The timeout argument takes values as follows:
990 * >0 : Flush with timeout
991 * ==0 : Flush, and wait idefinitely for the flush to complete
992 * <0 : Autoflush: Flush only if there's a single buffer occupied
995 static int xillybus_myflush(struct xilly_channel *channel, long timeout)
997 int rc;
998 unsigned long flags;
1000 int end_offset_plus1;
1001 int bufidx, bufidx_minus1;
1002 int i;
1003 int empty;
1004 int new_rd_host_buf_pos;
1006 if (channel->endpoint->fatal_error)
1007 return -EIO;
1008 rc = mutex_lock_interruptible(&channel->rd_mutex);
1009 if (rc)
1010 return rc;
1013 * Don't flush a closed channel. This can happen when the work queued
1014 * autoflush thread fires off after the file has closed. This is not
1015 * an error, just something to dismiss.
1018 if (!channel->rd_ref_count)
1019 goto done;
1021 bufidx = channel->rd_host_buf_idx;
1023 bufidx_minus1 = (bufidx == 0) ?
1024 channel->num_rd_buffers - 1 :
1025 bufidx - 1;
1027 end_offset_plus1 = channel->rd_host_buf_pos >>
1028 channel->log2_element_size;
1030 new_rd_host_buf_pos = channel->rd_host_buf_pos -
1031 (end_offset_plus1 << channel->log2_element_size);
1033 /* Submit the current buffer if it's nonempty */
1034 if (end_offset_plus1) {
1035 unsigned char *tail = channel->rd_buffers[bufidx]->addr +
1036 (end_offset_plus1 << channel->log2_element_size);
1038 /* Copy unflushed data, so we can put it in next buffer */
1039 for (i = 0; i < new_rd_host_buf_pos; i++)
1040 channel->rd_leftovers[i] = *tail++;
1042 spin_lock_irqsave(&channel->rd_spinlock, flags);
1044 /* Autoflush only if a single buffer is occupied */
1046 if ((timeout < 0) &&
1047 (channel->rd_full ||
1048 (bufidx_minus1 != channel->rd_fpga_buf_idx))) {
1049 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1051 * A new work item may be queued by the ISR exactly
1052 * now, since the execution of a work item allows the
1053 * queuing of a new one while it's running.
1055 goto done;
1058 /* The 4th element is never needed for data, so it's a flag */
1059 channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);
1061 /* Set up rd_full to reflect a certain moment's state */
1063 if (bufidx == channel->rd_fpga_buf_idx)
1064 channel->rd_full = 1;
1065 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1067 if (bufidx >= (channel->num_rd_buffers - 1))
1068 channel->rd_host_buf_idx = 0;
1069 else
1070 channel->rd_host_buf_idx++;
1072 channel->endpoint->ephw->hw_sync_sgl_for_device(
1073 channel->endpoint,
1074 channel->rd_buffers[bufidx]->dma_addr,
1075 channel->rd_buf_size,
1076 DMA_TO_DEVICE);
1078 mutex_lock(&channel->endpoint->register_mutex);
1080 iowrite32(end_offset_plus1 - 1,
1081 channel->endpoint->registers + fpga_buf_offset_reg);
1083 iowrite32((channel->chan_num << 1) | /* Channel ID */
1084 (2 << 24) | /* Opcode 2, submit buffer */
1085 (bufidx << 12),
1086 channel->endpoint->registers + fpga_buf_ctrl_reg);
1088 mutex_unlock(&channel->endpoint->register_mutex);
1089 } else if (bufidx == 0) {
1090 bufidx = channel->num_rd_buffers - 1;
1091 } else {
1092 bufidx--;
1095 channel->rd_host_buf_pos = new_rd_host_buf_pos;
1097 if (timeout < 0)
1098 goto done; /* Autoflush */
1101 * bufidx is now the last buffer written to (or equal to
1102 * rd_fpga_buf_idx if buffer was never written to), and
1103 * channel->rd_host_buf_idx the one after it.
1105 * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
1108 while (1) { /* Loop waiting for draining of buffers */
1109 spin_lock_irqsave(&channel->rd_spinlock, flags);
1111 if (bufidx != channel->rd_fpga_buf_idx)
1112 channel->rd_full = 1; /*
1113 * Not really full,
1114 * but needs waiting.
1117 empty = !channel->rd_full;
1119 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1121 if (empty)
1122 break;
1125 * Indefinite sleep with mutex taken. With data waiting for
1126 * flushing user should not be surprised if open() for write
1127 * sleeps.
1129 if (timeout == 0)
1130 wait_event_interruptible(channel->rd_wait,
1131 (!channel->rd_full));
1133 else if (wait_event_interruptible_timeout(
1134 channel->rd_wait,
1135 (!channel->rd_full),
1136 timeout) == 0) {
1137 dev_warn(channel->endpoint->dev,
1138 "Timed out while flushing. Output data may be lost.\n");
1140 rc = -ETIMEDOUT;
1141 break;
1144 if (channel->rd_full) {
1145 rc = -EINTR;
1146 break;
1150 done:
1151 mutex_unlock(&channel->rd_mutex);
1153 if (channel->endpoint->fatal_error)
1154 return -EIO;
1156 return rc;
1159 static int xillybus_flush(struct file *filp, fl_owner_t id)
1161 if (!(filp->f_mode & FMODE_WRITE))
1162 return 0;
1164 return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
1167 static void xillybus_autoflush(struct work_struct *work)
1169 struct delayed_work *workitem = container_of(
1170 work, struct delayed_work, work);
1171 struct xilly_channel *channel = container_of(
1172 workitem, struct xilly_channel, rd_workitem);
1173 int rc;
1175 rc = xillybus_myflush(channel, -1);
1176 if (rc == -EINTR)
1177 dev_warn(channel->endpoint->dev,
1178 "Autoflush failed because work queue thread got a signal.\n");
1179 else if (rc)
1180 dev_err(channel->endpoint->dev,
1181 "Autoflush failed under weird circumstances.\n");
1184 static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
1185 size_t count, loff_t *f_pos)
1187 ssize_t rc;
1188 unsigned long flags;
1189 int bytes_done = 0;
1190 struct xilly_channel *channel = filp->private_data;
1192 int full, exhausted;
1193 /* Initializations are there only to silence warnings */
1195 int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
1196 int end_offset_plus1 = 0;
1198 if (channel->endpoint->fatal_error)
1199 return -EIO;
1201 rc = mutex_lock_interruptible(&channel->rd_mutex);
1202 if (rc)
1203 return rc;
1205 while (1) {
1206 int bytes_to_do = count - bytes_done;
1208 spin_lock_irqsave(&channel->rd_spinlock, flags);
1210 full = channel->rd_full;
1212 if (!full) {
1213 bufidx = channel->rd_host_buf_idx;
1214 bufpos = channel->rd_host_buf_pos;
1215 howmany = channel->rd_buf_size - bufpos;
1218 * Update rd_host_* to its state after this operation.
1219 * count=0 means committing the buffer immediately,
1220 * which is like flushing, but not necessarily block.
1223 if ((howmany > bytes_to_do) &&
1224 (count ||
1225 ((bufpos >> channel->log2_element_size) == 0))) {
1226 bufferdone = 0;
1228 howmany = bytes_to_do;
1229 channel->rd_host_buf_pos += howmany;
1230 } else {
1231 bufferdone = 1;
1233 if (count) {
1234 end_offset_plus1 =
1235 channel->rd_buf_size >>
1236 channel->log2_element_size;
1237 channel->rd_host_buf_pos = 0;
1238 } else {
1239 unsigned char *tail;
1240 int i;
1242 howmany = 0;
1244 end_offset_plus1 = bufpos >>
1245 channel->log2_element_size;
1247 channel->rd_host_buf_pos -=
1248 end_offset_plus1 <<
1249 channel->log2_element_size;
1251 tail = channel->
1252 rd_buffers[bufidx]->addr +
1253 (end_offset_plus1 <<
1254 channel->log2_element_size);
1256 for (i = 0;
1257 i < channel->rd_host_buf_pos;
1258 i++)
1259 channel->rd_leftovers[i] =
1260 *tail++;
1263 if (bufidx == channel->rd_fpga_buf_idx)
1264 channel->rd_full = 1;
1266 if (bufidx >= (channel->num_rd_buffers - 1))
1267 channel->rd_host_buf_idx = 0;
1268 else
1269 channel->rd_host_buf_idx++;
1274 * Marking our situation after the possible changes above,
1275 * for use after releasing the spinlock.
1277 * full = full before change
1278 * exhasted = full after possible change
1281 exhausted = channel->rd_full;
1283 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1285 if (!full) { /* Go on, now without the spinlock */
1286 unsigned char *head =
1287 channel->rd_buffers[bufidx]->addr;
1288 int i;
1290 if ((bufpos == 0) || /* Zero means it's virgin */
1291 (channel->rd_leftovers[3] != 0)) {
1292 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
1293 channel->endpoint,
1294 channel->rd_buffers[bufidx]->dma_addr,
1295 channel->rd_buf_size,
1296 DMA_TO_DEVICE);
1298 /* Virgin, but leftovers are due */
1299 for (i = 0; i < bufpos; i++)
1300 *head++ = channel->rd_leftovers[i];
1302 channel->rd_leftovers[3] = 0; /* Clear flag */
1305 if (copy_from_user(
1306 channel->rd_buffers[bufidx]->addr + bufpos,
1307 userbuf, howmany))
1308 rc = -EFAULT;
1310 userbuf += howmany;
1311 bytes_done += howmany;
1313 if (bufferdone) {
1314 channel->endpoint->ephw->hw_sync_sgl_for_device(
1315 channel->endpoint,
1316 channel->rd_buffers[bufidx]->dma_addr,
1317 channel->rd_buf_size,
1318 DMA_TO_DEVICE);
1320 mutex_lock(&channel->endpoint->register_mutex);
1322 iowrite32(end_offset_plus1 - 1,
1323 channel->endpoint->registers +
1324 fpga_buf_offset_reg);
1326 iowrite32((channel->chan_num << 1) |
1327 (2 << 24) | /* 2 = submit buffer */
1328 (bufidx << 12),
1329 channel->endpoint->registers +
1330 fpga_buf_ctrl_reg);
1332 mutex_unlock(&channel->endpoint->
1333 register_mutex);
1335 channel->rd_leftovers[3] =
1336 (channel->rd_host_buf_pos != 0);
1339 if (rc) {
1340 mutex_unlock(&channel->rd_mutex);
1342 if (channel->endpoint->fatal_error)
1343 return -EIO;
1345 if (!channel->rd_synchronous)
1346 queue_delayed_work(
1347 xillybus_wq,
1348 &channel->rd_workitem,
1349 XILLY_RX_TIMEOUT);
1351 return rc;
1355 if (bytes_done >= count)
1356 break;
1358 if (!exhausted)
1359 continue; /* If there's more space, just go on */
1361 if ((bytes_done > 0) && channel->rd_allow_partial)
1362 break;
1365 * Indefinite sleep with mutex taken. With data waiting for
1366 * flushing, user should not be surprised if open() for write
1367 * sleeps.
1370 if (filp->f_flags & O_NONBLOCK) {
1371 rc = -EAGAIN;
1372 break;
1375 if (wait_event_interruptible(channel->rd_wait,
1376 (!channel->rd_full))) {
1377 mutex_unlock(&channel->rd_mutex);
1379 if (channel->endpoint->fatal_error)
1380 return -EIO;
1382 if (bytes_done)
1383 return bytes_done;
1384 return -EINTR;
1388 mutex_unlock(&channel->rd_mutex);
1390 if (!channel->rd_synchronous)
1391 queue_delayed_work(xillybus_wq,
1392 &channel->rd_workitem,
1393 XILLY_RX_TIMEOUT);
1395 if (channel->endpoint->fatal_error)
1396 return -EIO;
1398 if (rc)
1399 return rc;
1401 if ((channel->rd_synchronous) && (bytes_done > 0)) {
1402 rc = xillybus_myflush(filp->private_data, 0); /* No timeout */
1404 if (rc && (rc != -EINTR))
1405 return rc;
1408 return bytes_done;
1411 static int xillybus_open(struct inode *inode, struct file *filp)
1413 int rc = 0;
1414 unsigned long flags;
1415 int minor = iminor(inode);
1416 int major = imajor(inode);
1417 struct xilly_endpoint *ep_iter, *endpoint = NULL;
1418 struct xilly_channel *channel;
1420 mutex_lock(&ep_list_lock);
1422 list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
1423 if ((ep_iter->major == major) &&
1424 (minor >= ep_iter->lowest_minor) &&
1425 (minor < (ep_iter->lowest_minor +
1426 ep_iter->num_channels))) {
1427 endpoint = ep_iter;
1428 break;
1431 mutex_unlock(&ep_list_lock);
1433 if (!endpoint) {
1434 pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
1435 major, minor);
1436 return -ENODEV;
1439 if (endpoint->fatal_error)
1440 return -EIO;
1442 channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
1443 filp->private_data = channel;
1446 * It gets complicated because:
1447 * 1. We don't want to take a mutex we don't have to
1448 * 2. We don't want to open one direction if the other will fail.
1451 if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
1452 return -ENODEV;
1454 if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
1455 return -ENODEV;
1457 if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
1458 (channel->wr_synchronous || !channel->wr_allow_partial ||
1459 !channel->wr_supports_nonempty)) {
1460 dev_err(endpoint->dev,
1461 "open() failed: O_NONBLOCK not allowed for read on this device\n");
1462 return -ENODEV;
1465 if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
1466 (channel->rd_synchronous || !channel->rd_allow_partial)) {
1467 dev_err(endpoint->dev,
1468 "open() failed: O_NONBLOCK not allowed for write on this device\n");
1469 return -ENODEV;
1473 * Note: open() may block on getting mutexes despite O_NONBLOCK.
1474 * This shouldn't occur normally, since multiple open of the same
1475 * file descriptor is almost always prohibited anyhow
1476 * (*_exclusive_open is normally set in real-life systems).
1479 if (filp->f_mode & FMODE_READ) {
1480 rc = mutex_lock_interruptible(&channel->wr_mutex);
1481 if (rc)
1482 return rc;
1485 if (filp->f_mode & FMODE_WRITE) {
1486 rc = mutex_lock_interruptible(&channel->rd_mutex);
1487 if (rc)
1488 goto unlock_wr;
1491 if ((filp->f_mode & FMODE_READ) &&
1492 (channel->wr_ref_count != 0) &&
1493 (channel->wr_exclusive_open)) {
1494 rc = -EBUSY;
1495 goto unlock;
1498 if ((filp->f_mode & FMODE_WRITE) &&
1499 (channel->rd_ref_count != 0) &&
1500 (channel->rd_exclusive_open)) {
1501 rc = -EBUSY;
1502 goto unlock;
1505 if (filp->f_mode & FMODE_READ) {
1506 if (channel->wr_ref_count == 0) { /* First open of file */
1507 /* Move the host to first buffer */
1508 spin_lock_irqsave(&channel->wr_spinlock, flags);
1509 channel->wr_host_buf_idx = 0;
1510 channel->wr_host_buf_pos = 0;
1511 channel->wr_fpga_buf_idx = -1;
1512 channel->wr_empty = 1;
1513 channel->wr_ready = 0;
1514 channel->wr_sleepy = 1;
1515 channel->wr_eof = -1;
1516 channel->wr_hangup = 0;
1518 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1520 iowrite32(1 | (channel->chan_num << 1) |
1521 (4 << 24) | /* Opcode 4, open channel */
1522 ((channel->wr_synchronous & 1) << 23),
1523 channel->endpoint->registers +
1524 fpga_buf_ctrl_reg);
1527 channel->wr_ref_count++;
1530 if (filp->f_mode & FMODE_WRITE) {
1531 if (channel->rd_ref_count == 0) { /* First open of file */
1532 /* Move the host to first buffer */
1533 spin_lock_irqsave(&channel->rd_spinlock, flags);
1534 channel->rd_host_buf_idx = 0;
1535 channel->rd_host_buf_pos = 0;
1536 channel->rd_leftovers[3] = 0; /* No leftovers. */
1537 channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
1538 channel->rd_full = 0;
1540 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1542 iowrite32((channel->chan_num << 1) |
1543 (4 << 24), /* Opcode 4, open channel */
1544 channel->endpoint->registers +
1545 fpga_buf_ctrl_reg);
1548 channel->rd_ref_count++;
1551 unlock:
1552 if (filp->f_mode & FMODE_WRITE)
1553 mutex_unlock(&channel->rd_mutex);
1554 unlock_wr:
1555 if (filp->f_mode & FMODE_READ)
1556 mutex_unlock(&channel->wr_mutex);
1558 if (!rc && (!channel->seekable))
1559 return nonseekable_open(inode, filp);
1561 return rc;
1564 static int xillybus_release(struct inode *inode, struct file *filp)
1566 unsigned long flags;
1567 struct xilly_channel *channel = filp->private_data;
1569 int buf_idx;
1570 int eof;
1572 if (channel->endpoint->fatal_error)
1573 return -EIO;
1575 if (filp->f_mode & FMODE_WRITE) {
1576 mutex_lock(&channel->rd_mutex);
1578 channel->rd_ref_count--;
1580 if (channel->rd_ref_count == 0) {
1582 * We rely on the kernel calling flush()
1583 * before we get here.
1586 iowrite32((channel->chan_num << 1) | /* Channel ID */
1587 (5 << 24), /* Opcode 5, close channel */
1588 channel->endpoint->registers +
1589 fpga_buf_ctrl_reg);
1591 mutex_unlock(&channel->rd_mutex);
1594 if (filp->f_mode & FMODE_READ) {
1595 mutex_lock(&channel->wr_mutex);
1597 channel->wr_ref_count--;
1599 if (channel->wr_ref_count == 0) {
1600 iowrite32(1 | (channel->chan_num << 1) |
1601 (5 << 24), /* Opcode 5, close channel */
1602 channel->endpoint->registers +
1603 fpga_buf_ctrl_reg);
1606 * This is crazily cautious: We make sure that not
1607 * only that we got an EOF (be it because we closed
1608 * the channel or because of a user's EOF), but verify
1609 * that it's one beyond the last buffer arrived, so
1610 * we have no leftover buffers pending before wrapping
1611 * up (which can only happen in asynchronous channels,
1612 * BTW)
1615 while (1) {
1616 spin_lock_irqsave(&channel->wr_spinlock,
1617 flags);
1618 buf_idx = channel->wr_fpga_buf_idx;
1619 eof = channel->wr_eof;
1620 channel->wr_sleepy = 1;
1621 spin_unlock_irqrestore(&channel->wr_spinlock,
1622 flags);
1625 * Check if eof points at the buffer after
1626 * the last one the FPGA submitted. Note that
1627 * no EOF is marked by negative eof.
1630 buf_idx++;
1631 if (buf_idx == channel->num_wr_buffers)
1632 buf_idx = 0;
1634 if (buf_idx == eof)
1635 break;
1638 * Steal extra 100 ms if awaken by interrupt.
1639 * This is a simple workaround for an
1640 * interrupt pending when entering, which would
1641 * otherwise result in declaring the hardware
1642 * non-responsive.
1645 if (wait_event_interruptible(
1646 channel->wr_wait,
1647 (!channel->wr_sleepy)))
1648 msleep(100);
1650 if (channel->wr_sleepy) {
1651 mutex_unlock(&channel->wr_mutex);
1652 dev_warn(channel->endpoint->dev,
1653 "Hardware failed to respond to close command, therefore left in messy state.\n");
1654 return -EINTR;
1659 mutex_unlock(&channel->wr_mutex);
1662 return 0;
1665 static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
1667 struct xilly_channel *channel = filp->private_data;
1668 loff_t pos = filp->f_pos;
1669 int rc = 0;
1672 * Take both mutexes not allowing interrupts, since it seems like
1673 * common applications don't expect an -EINTR here. Besides, multiple
1674 * access to a single file descriptor on seekable devices is a mess
1675 * anyhow.
1678 if (channel->endpoint->fatal_error)
1679 return -EIO;
1681 mutex_lock(&channel->wr_mutex);
1682 mutex_lock(&channel->rd_mutex);
1684 switch (whence) {
1685 case SEEK_SET:
1686 pos = offset;
1687 break;
1688 case SEEK_CUR:
1689 pos += offset;
1690 break;
1691 case SEEK_END:
1692 pos = offset; /* Going to the end => to the beginning */
1693 break;
1694 default:
1695 rc = -EINVAL;
1696 goto end;
1699 /* In any case, we must finish on an element boundary */
1700 if (pos & ((1 << channel->log2_element_size) - 1)) {
1701 rc = -EINVAL;
1702 goto end;
1705 mutex_lock(&channel->endpoint->register_mutex);
1707 iowrite32(pos >> channel->log2_element_size,
1708 channel->endpoint->registers + fpga_buf_offset_reg);
1710 iowrite32((channel->chan_num << 1) |
1711 (6 << 24), /* Opcode 6, set address */
1712 channel->endpoint->registers + fpga_buf_ctrl_reg);
1714 mutex_unlock(&channel->endpoint->register_mutex);
1716 end:
1717 mutex_unlock(&channel->rd_mutex);
1718 mutex_unlock(&channel->wr_mutex);
1720 if (rc) /* Return error after releasing mutexes */
1721 return rc;
1723 filp->f_pos = pos;
1726 * Since seekable devices are allowed only when the channel is
1727 * synchronous, we assume that there is no data pending in either
1728 * direction (which holds true as long as no concurrent access on the
1729 * file descriptor takes place).
1730 * The only thing we may need to throw away is leftovers from partial
1731 * write() flush.
1734 channel->rd_leftovers[3] = 0;
1736 return pos;
1739 static __poll_t xillybus_poll(struct file *filp, poll_table *wait)
1741 struct xilly_channel *channel = filp->private_data;
1742 __poll_t mask = 0;
1743 unsigned long flags;
1745 poll_wait(filp, &channel->endpoint->ep_wait, wait);
1748 * poll() won't play ball regarding read() channels which
1749 * aren't asynchronous and support the nonempty message. Allowing
1750 * that will create situations where data has been delivered at
1751 * the FPGA, and users expecting select() to wake up, which it may
1752 * not.
1755 if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
1756 poll_wait(filp, &channel->wr_wait, wait);
1757 poll_wait(filp, &channel->wr_ready_wait, wait);
1759 spin_lock_irqsave(&channel->wr_spinlock, flags);
1760 if (!channel->wr_empty || channel->wr_ready)
1761 mask |= EPOLLIN | EPOLLRDNORM;
1763 if (channel->wr_hangup)
1765 * Not EPOLLHUP, because its behavior is in the
1766 * mist, and EPOLLIN does what we want: Wake up
1767 * the read file descriptor so it sees EOF.
1769 mask |= EPOLLIN | EPOLLRDNORM;
1770 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1774 * If partial data write is disallowed on a write() channel,
1775 * it's pointless to ever signal OK to write, because is could
1776 * block despite some space being available.
1779 if (channel->rd_allow_partial) {
1780 poll_wait(filp, &channel->rd_wait, wait);
1782 spin_lock_irqsave(&channel->rd_spinlock, flags);
1783 if (!channel->rd_full)
1784 mask |= EPOLLOUT | EPOLLWRNORM;
1785 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1788 if (channel->endpoint->fatal_error)
1789 mask |= EPOLLERR;
1791 return mask;
1794 static const struct file_operations xillybus_fops = {
1795 .owner = THIS_MODULE,
1796 .read = xillybus_read,
1797 .write = xillybus_write,
1798 .open = xillybus_open,
1799 .flush = xillybus_flush,
1800 .release = xillybus_release,
1801 .llseek = xillybus_llseek,
1802 .poll = xillybus_poll,
1805 static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
1806 const unsigned char *idt)
1808 int rc;
1809 dev_t dev;
1810 int devnum, i, minor, major;
1811 char devname[48];
1812 struct device *device;
1814 rc = alloc_chrdev_region(&dev, 0, /* minor start */
1815 endpoint->num_channels,
1816 xillyname);
1817 if (rc) {
1818 dev_warn(endpoint->dev, "Failed to obtain major/minors");
1819 return rc;
1822 endpoint->major = major = MAJOR(dev);
1823 endpoint->lowest_minor = minor = MINOR(dev);
1825 cdev_init(&endpoint->cdev, &xillybus_fops);
1826 endpoint->cdev.owner = endpoint->ephw->owner;
1827 rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
1828 endpoint->num_channels);
1829 if (rc) {
1830 dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
1831 goto unregister_chrdev;
1834 idt++;
1836 for (i = minor, devnum = 0;
1837 devnum < endpoint->num_channels;
1838 devnum++, i++) {
1839 snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);
1841 devname[sizeof(devname)-1] = 0; /* Should never matter */
1843 while (*idt++)
1844 /* Skip to next */;
1846 device = device_create(xillybus_class,
1847 NULL,
1848 MKDEV(major, i),
1849 NULL,
1850 "%s", devname);
1852 if (IS_ERR(device)) {
1853 dev_warn(endpoint->dev,
1854 "Failed to create %s device. Aborting.\n",
1855 devname);
1856 rc = -ENODEV;
1857 goto unroll_device_create;
1861 dev_info(endpoint->dev, "Created %d device files.\n",
1862 endpoint->num_channels);
1863 return 0; /* succeed */
1865 unroll_device_create:
1866 devnum--; i--;
1867 for (; devnum >= 0; devnum--, i--)
1868 device_destroy(xillybus_class, MKDEV(major, i));
1870 cdev_del(&endpoint->cdev);
1871 unregister_chrdev:
1872 unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);
1874 return rc;
1877 static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
1879 int minor;
1881 for (minor = endpoint->lowest_minor;
1882 minor < (endpoint->lowest_minor + endpoint->num_channels);
1883 minor++)
1884 device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
1885 cdev_del(&endpoint->cdev);
1886 unregister_chrdev_region(MKDEV(endpoint->major,
1887 endpoint->lowest_minor),
1888 endpoint->num_channels);
1890 dev_info(endpoint->dev, "Removed %d device files.\n",
1891 endpoint->num_channels);
1894 struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
1895 struct device *dev,
1896 struct xilly_endpoint_hardware
1897 *ephw)
1899 struct xilly_endpoint *endpoint;
1901 endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
1902 if (!endpoint)
1903 return NULL;
1905 endpoint->pdev = pdev;
1906 endpoint->dev = dev;
1907 endpoint->ephw = ephw;
1908 endpoint->msg_counter = 0x0b;
1909 endpoint->failed_messages = 0;
1910 endpoint->fatal_error = 0;
1912 init_waitqueue_head(&endpoint->ep_wait);
1913 mutex_init(&endpoint->register_mutex);
1915 return endpoint;
1917 EXPORT_SYMBOL(xillybus_init_endpoint);
1919 static int xilly_quiesce(struct xilly_endpoint *endpoint)
1921 long t;
1923 endpoint->idtlen = -1;
1925 iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1926 endpoint->registers + fpga_dma_control_reg);
1928 t = wait_event_interruptible_timeout(endpoint->ep_wait,
1929 (endpoint->idtlen >= 0),
1930 XILLY_TIMEOUT);
1931 if (t <= 0) {
1932 dev_err(endpoint->dev,
1933 "Failed to quiesce the device on exit.\n");
1934 return -ENODEV;
1936 return 0;
1939 int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
1941 int rc;
1942 long t;
1944 void *bootstrap_resources;
1945 int idtbuffersize = (1 << PAGE_SHIFT);
1946 struct device *dev = endpoint->dev;
1949 * The bogus IDT is used during bootstrap for allocating the initial
1950 * message buffer, and then the message buffer and space for the IDT
1951 * itself. The initial message buffer is of a single page's size, but
1952 * it's soon replaced with a more modest one (and memory is freed).
1955 unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
1956 3, 192, PAGE_SHIFT, 0 };
1957 struct xilly_idt_handle idt_handle;
1960 * Writing the value 0x00000001 to Endianness register signals which
1961 * endianness this processor is using, so the FPGA can swap words as
1962 * necessary.
1965 iowrite32(1, endpoint->registers + fpga_endian_reg);
1967 /* Bootstrap phase I: Allocate temporary message buffer */
1969 bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
1970 if (!bootstrap_resources)
1971 return -ENOMEM;
1973 endpoint->num_channels = 0;
1975 rc = xilly_setupchannels(endpoint, bogus_idt, 1);
1976 if (rc)
1977 return rc;
1979 /* Clear the message subsystem (and counter in particular) */
1980 iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);
1982 endpoint->idtlen = -1;
1985 * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
1986 * buffer size.
1988 iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1989 endpoint->registers + fpga_dma_control_reg);
1991 t = wait_event_interruptible_timeout(endpoint->ep_wait,
1992 (endpoint->idtlen >= 0),
1993 XILLY_TIMEOUT);
1994 if (t <= 0) {
1995 dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
1996 return -ENODEV;
1999 /* Enable DMA */
2000 iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
2001 endpoint->registers + fpga_dma_control_reg);
2003 /* Bootstrap phase II: Allocate buffer for IDT and obtain it */
2004 while (endpoint->idtlen >= idtbuffersize) {
2005 idtbuffersize *= 2;
2006 bogus_idt[6]++;
2009 endpoint->num_channels = 1;
2011 rc = xilly_setupchannels(endpoint, bogus_idt, 2);
2012 if (rc)
2013 goto failed_idt;
2015 rc = xilly_obtain_idt(endpoint);
2016 if (rc)
2017 goto failed_idt;
2019 rc = xilly_scan_idt(endpoint, &idt_handle);
2020 if (rc)
2021 goto failed_idt;
2023 devres_close_group(dev, bootstrap_resources);
2025 /* Bootstrap phase III: Allocate buffers according to IDT */
2027 rc = xilly_setupchannels(endpoint,
2028 idt_handle.chandesc,
2029 idt_handle.entries);
2030 if (rc)
2031 goto failed_idt;
2034 * endpoint is now completely configured. We put it on the list
2035 * available to open() before registering the char device(s)
2038 mutex_lock(&ep_list_lock);
2039 list_add_tail(&endpoint->ep_list, &list_of_endpoints);
2040 mutex_unlock(&ep_list_lock);
2042 rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
2043 if (rc)
2044 goto failed_chrdevs;
2046 devres_release_group(dev, bootstrap_resources);
2048 return 0;
2050 failed_chrdevs:
2051 mutex_lock(&ep_list_lock);
2052 list_del(&endpoint->ep_list);
2053 mutex_unlock(&ep_list_lock);
2055 failed_idt:
2056 xilly_quiesce(endpoint);
2057 flush_workqueue(xillybus_wq);
2059 return rc;
2061 EXPORT_SYMBOL(xillybus_endpoint_discovery);
2063 void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
2065 xillybus_cleanup_chrdev(endpoint);
2067 mutex_lock(&ep_list_lock);
2068 list_del(&endpoint->ep_list);
2069 mutex_unlock(&ep_list_lock);
2071 xilly_quiesce(endpoint);
2074 * Flushing is done upon endpoint release to prevent access to memory
2075 * just about to be released. This makes the quiesce complete.
2077 flush_workqueue(xillybus_wq);
2079 EXPORT_SYMBOL(xillybus_endpoint_remove);
2081 static int __init xillybus_init(void)
2083 mutex_init(&ep_list_lock);
2085 xillybus_class = class_create(THIS_MODULE, xillyname);
2086 if (IS_ERR(xillybus_class))
2087 return PTR_ERR(xillybus_class);
2089 xillybus_wq = alloc_workqueue(xillyname, 0, 0);
2090 if (!xillybus_wq) {
2091 class_destroy(xillybus_class);
2092 return -ENOMEM;
2095 return 0;
2098 static void __exit xillybus_exit(void)
2100 /* flush_workqueue() was called for each endpoint released */
2101 destroy_workqueue(xillybus_wq);
2103 class_destroy(xillybus_class);
2106 module_init(xillybus_init);
2107 module_exit(xillybus_exit);