Linux 4.18.10
[linux/fpc-iii.git] / drivers / scsi / libfc / fc_exch.c
blob42bcf7f3a0f90bf5a8778e21cfe0b5c20f6e6a87
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * Maintained at www.Open-FCoE.org
23 * Fibre Channel exchange and sequence handling.
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 #include <linux/log2.h>
32 #include <scsi/fc/fc_fc2.h>
34 #include <scsi/libfc.h>
35 #include <scsi/fc_encode.h>
37 #include "fc_libfc.h"
39 u16 fc_cpu_mask; /* cpu mask for possible cpus */
40 EXPORT_SYMBOL(fc_cpu_mask);
41 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
42 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
43 static struct workqueue_struct *fc_exch_workqueue;
46 * Structure and function definitions for managing Fibre Channel Exchanges
47 * and Sequences.
49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
51 * fc_exch_mgr holds the exchange state for an N port
53 * fc_exch holds state for one exchange and links to its active sequence.
55 * fc_seq holds the state for an individual sequence.
58 /**
59 * struct fc_exch_pool - Per cpu exchange pool
60 * @next_index: Next possible free exchange index
61 * @total_exches: Total allocated exchanges
62 * @lock: Exch pool lock
63 * @ex_list: List of exchanges
65 * This structure manages per cpu exchanges in array of exchange pointers.
66 * This array is allocated followed by struct fc_exch_pool memory for
67 * assigned range of exchanges to per cpu pool.
69 struct fc_exch_pool {
70 spinlock_t lock;
71 struct list_head ex_list;
72 u16 next_index;
73 u16 total_exches;
75 /* two cache of free slot in exch array */
76 u16 left;
77 u16 right;
78 } ____cacheline_aligned_in_smp;
80 /**
81 * struct fc_exch_mgr - The Exchange Manager (EM).
82 * @class: Default class for new sequences
83 * @kref: Reference counter
84 * @min_xid: Minimum exchange ID
85 * @max_xid: Maximum exchange ID
86 * @ep_pool: Reserved exchange pointers
87 * @pool_max_index: Max exch array index in exch pool
88 * @pool: Per cpu exch pool
89 * @stats: Statistics structure
91 * This structure is the center for creating exchanges and sequences.
92 * It manages the allocation of exchange IDs.
94 struct fc_exch_mgr {
95 struct fc_exch_pool __percpu *pool;
96 mempool_t *ep_pool;
97 struct fc_lport *lport;
98 enum fc_class class;
99 struct kref kref;
100 u16 min_xid;
101 u16 max_xid;
102 u16 pool_max_index;
104 struct {
105 atomic_t no_free_exch;
106 atomic_t no_free_exch_xid;
107 atomic_t xid_not_found;
108 atomic_t xid_busy;
109 atomic_t seq_not_found;
110 atomic_t non_bls_resp;
111 } stats;
115 * struct fc_exch_mgr_anchor - primary structure for list of EMs
116 * @ema_list: Exchange Manager Anchor list
117 * @mp: Exchange Manager associated with this anchor
118 * @match: Routine to determine if this anchor's EM should be used
120 * When walking the list of anchors the match routine will be called
121 * for each anchor to determine if that EM should be used. The last
122 * anchor in the list will always match to handle any exchanges not
123 * handled by other EMs. The non-default EMs would be added to the
124 * anchor list by HW that provides offloads.
126 struct fc_exch_mgr_anchor {
127 struct list_head ema_list;
128 struct fc_exch_mgr *mp;
129 bool (*match)(struct fc_frame *);
132 static void fc_exch_rrq(struct fc_exch *);
133 static void fc_seq_ls_acc(struct fc_frame *);
134 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
135 enum fc_els_rjt_explan);
136 static void fc_exch_els_rec(struct fc_frame *);
137 static void fc_exch_els_rrq(struct fc_frame *);
140 * Internal implementation notes.
142 * The exchange manager is one by default in libfc but LLD may choose
143 * to have one per CPU. The sequence manager is one per exchange manager
144 * and currently never separated.
146 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
147 * assigned by the Sequence Initiator that shall be unique for a specific
148 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
149 * qualified by exchange ID, which one might think it would be.
150 * In practice this limits the number of open sequences and exchanges to 256
151 * per session. For most targets we could treat this limit as per exchange.
153 * The exchange and its sequence are freed when the last sequence is received.
154 * It's possible for the remote port to leave an exchange open without
155 * sending any sequences.
157 * Notes on reference counts:
159 * Exchanges are reference counted and exchange gets freed when the reference
160 * count becomes zero.
162 * Timeouts:
163 * Sequences are timed out for E_D_TOV and R_A_TOV.
165 * Sequence event handling:
167 * The following events may occur on initiator sequences:
169 * Send.
170 * For now, the whole thing is sent.
171 * Receive ACK
172 * This applies only to class F.
173 * The sequence is marked complete.
174 * ULP completion.
175 * The upper layer calls fc_exch_done() when done
176 * with exchange and sequence tuple.
177 * RX-inferred completion.
178 * When we receive the next sequence on the same exchange, we can
179 * retire the previous sequence ID. (XXX not implemented).
180 * Timeout.
181 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
182 * E_D_TOV causes abort and calls upper layer response handler
183 * with FC_EX_TIMEOUT error.
184 * Receive RJT
185 * XXX defer.
186 * Send ABTS
187 * On timeout.
189 * The following events may occur on recipient sequences:
191 * Receive
192 * Allocate sequence for first frame received.
193 * Hold during receive handler.
194 * Release when final frame received.
195 * Keep status of last N of these for the ELS RES command. XXX TBD.
196 * Receive ABTS
197 * Deallocate sequence
198 * Send RJT
199 * Deallocate
201 * For now, we neglect conditions where only part of a sequence was
202 * received or transmitted, or where out-of-order receipt is detected.
206 * Locking notes:
208 * The EM code run in a per-CPU worker thread.
210 * To protect against concurrency between a worker thread code and timers,
211 * sequence allocation and deallocation must be locked.
212 * - exchange refcnt can be done atomicly without locks.
213 * - sequence allocation must be locked by exch lock.
214 * - If the EM pool lock and ex_lock must be taken at the same time, then the
215 * EM pool lock must be taken before the ex_lock.
219 * opcode names for debugging.
221 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
224 * fc_exch_name_lookup() - Lookup name by opcode
225 * @op: Opcode to be looked up
226 * @table: Opcode/name table
227 * @max_index: Index not to be exceeded
229 * This routine is used to determine a human-readable string identifying
230 * a R_CTL opcode.
232 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
233 unsigned int max_index)
235 const char *name = NULL;
237 if (op < max_index)
238 name = table[op];
239 if (!name)
240 name = "unknown";
241 return name;
245 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
246 * @op: The opcode to be looked up
248 static const char *fc_exch_rctl_name(unsigned int op)
250 return fc_exch_name_lookup(op, fc_exch_rctl_names,
251 ARRAY_SIZE(fc_exch_rctl_names));
255 * fc_exch_hold() - Increment an exchange's reference count
256 * @ep: Echange to be held
258 static inline void fc_exch_hold(struct fc_exch *ep)
260 atomic_inc(&ep->ex_refcnt);
264 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
265 * and determine SOF and EOF.
266 * @ep: The exchange to that will use the header
267 * @fp: The frame whose header is to be modified
268 * @f_ctl: F_CTL bits that will be used for the frame header
270 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
271 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
273 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
274 u32 f_ctl)
276 struct fc_frame_header *fh = fc_frame_header_get(fp);
277 u16 fill;
279 fr_sof(fp) = ep->class;
280 if (ep->seq.cnt)
281 fr_sof(fp) = fc_sof_normal(ep->class);
283 if (f_ctl & FC_FC_END_SEQ) {
284 fr_eof(fp) = FC_EOF_T;
285 if (fc_sof_needs_ack(ep->class))
286 fr_eof(fp) = FC_EOF_N;
288 * From F_CTL.
289 * The number of fill bytes to make the length a 4-byte
290 * multiple is the low order 2-bits of the f_ctl.
291 * The fill itself will have been cleared by the frame
292 * allocation.
293 * After this, the length will be even, as expected by
294 * the transport.
296 fill = fr_len(fp) & 3;
297 if (fill) {
298 fill = 4 - fill;
299 /* TODO, this may be a problem with fragmented skb */
300 skb_put(fp_skb(fp), fill);
301 hton24(fh->fh_f_ctl, f_ctl | fill);
303 } else {
304 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
305 fr_eof(fp) = FC_EOF_N;
308 /* Initialize remaining fh fields from fc_fill_fc_hdr */
309 fh->fh_ox_id = htons(ep->oxid);
310 fh->fh_rx_id = htons(ep->rxid);
311 fh->fh_seq_id = ep->seq.id;
312 fh->fh_seq_cnt = htons(ep->seq.cnt);
316 * fc_exch_release() - Decrement an exchange's reference count
317 * @ep: Exchange to be released
319 * If the reference count reaches zero and the exchange is complete,
320 * it is freed.
322 static void fc_exch_release(struct fc_exch *ep)
324 struct fc_exch_mgr *mp;
326 if (atomic_dec_and_test(&ep->ex_refcnt)) {
327 mp = ep->em;
328 if (ep->destructor)
329 ep->destructor(&ep->seq, ep->arg);
330 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
331 mempool_free(ep, mp->ep_pool);
336 * fc_exch_timer_cancel() - cancel exch timer
337 * @ep: The exchange whose timer to be canceled
339 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
341 if (cancel_delayed_work(&ep->timeout_work)) {
342 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
343 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
348 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
349 * the exchange lock held
350 * @ep: The exchange whose timer will start
351 * @timer_msec: The timeout period
353 * Used for upper level protocols to time out the exchange.
354 * The timer is cancelled when it fires or when the exchange completes.
356 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
357 unsigned int timer_msec)
359 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
360 return;
362 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
364 fc_exch_hold(ep); /* hold for timer */
365 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
366 msecs_to_jiffies(timer_msec))) {
367 FC_EXCH_DBG(ep, "Exchange already queued\n");
368 fc_exch_release(ep);
373 * fc_exch_timer_set() - Lock the exchange and set the timer
374 * @ep: The exchange whose timer will start
375 * @timer_msec: The timeout period
377 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
379 spin_lock_bh(&ep->ex_lock);
380 fc_exch_timer_set_locked(ep, timer_msec);
381 spin_unlock_bh(&ep->ex_lock);
385 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
386 * @ep: The exchange that is complete
388 * Note: May sleep if invoked from outside a response handler.
390 static int fc_exch_done_locked(struct fc_exch *ep)
392 int rc = 1;
395 * We must check for completion in case there are two threads
396 * tyring to complete this. But the rrq code will reuse the
397 * ep, and in that case we only clear the resp and set it as
398 * complete, so it can be reused by the timer to send the rrq.
400 if (ep->state & FC_EX_DONE)
401 return rc;
402 ep->esb_stat |= ESB_ST_COMPLETE;
404 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
405 ep->state |= FC_EX_DONE;
406 fc_exch_timer_cancel(ep);
407 rc = 0;
409 return rc;
412 static struct fc_exch fc_quarantine_exch;
415 * fc_exch_ptr_get() - Return an exchange from an exchange pool
416 * @pool: Exchange Pool to get an exchange from
417 * @index: Index of the exchange within the pool
419 * Use the index to get an exchange from within an exchange pool. exches
420 * will point to an array of exchange pointers. The index will select
421 * the exchange within the array.
423 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
424 u16 index)
426 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
427 return exches[index];
431 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
432 * @pool: The pool to assign the exchange to
433 * @index: The index in the pool where the exchange will be assigned
434 * @ep: The exchange to assign to the pool
436 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
437 struct fc_exch *ep)
439 ((struct fc_exch **)(pool + 1))[index] = ep;
443 * fc_exch_delete() - Delete an exchange
444 * @ep: The exchange to be deleted
446 static void fc_exch_delete(struct fc_exch *ep)
448 struct fc_exch_pool *pool;
449 u16 index;
451 pool = ep->pool;
452 spin_lock_bh(&pool->lock);
453 WARN_ON(pool->total_exches <= 0);
454 pool->total_exches--;
456 /* update cache of free slot */
457 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
458 if (!(ep->state & FC_EX_QUARANTINE)) {
459 if (pool->left == FC_XID_UNKNOWN)
460 pool->left = index;
461 else if (pool->right == FC_XID_UNKNOWN)
462 pool->right = index;
463 else
464 pool->next_index = index;
465 fc_exch_ptr_set(pool, index, NULL);
466 } else {
467 fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
469 list_del(&ep->ex_list);
470 spin_unlock_bh(&pool->lock);
471 fc_exch_release(ep); /* drop hold for exch in mp */
474 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
475 struct fc_frame *fp)
477 struct fc_exch *ep;
478 struct fc_frame_header *fh = fc_frame_header_get(fp);
479 int error = -ENXIO;
480 u32 f_ctl;
481 u8 fh_type = fh->fh_type;
483 ep = fc_seq_exch(sp);
485 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
486 fc_frame_free(fp);
487 goto out;
490 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
492 f_ctl = ntoh24(fh->fh_f_ctl);
493 fc_exch_setup_hdr(ep, fp, f_ctl);
494 fr_encaps(fp) = ep->encaps;
497 * update sequence count if this frame is carrying
498 * multiple FC frames when sequence offload is enabled
499 * by LLD.
501 if (fr_max_payload(fp))
502 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
503 fr_max_payload(fp));
504 else
505 sp->cnt++;
508 * Send the frame.
510 error = lport->tt.frame_send(lport, fp);
512 if (fh_type == FC_TYPE_BLS)
513 goto out;
516 * Update the exchange and sequence flags,
517 * assuming all frames for the sequence have been sent.
518 * We can only be called to send once for each sequence.
520 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
521 if (f_ctl & FC_FC_SEQ_INIT)
522 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
523 out:
524 return error;
528 * fc_seq_send() - Send a frame using existing sequence/exchange pair
529 * @lport: The local port that the exchange will be sent on
530 * @sp: The sequence to be sent
531 * @fp: The frame to be sent on the exchange
533 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
534 * or indirectly by calling libfc_function_template.frame_send().
536 int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
538 struct fc_exch *ep;
539 int error;
540 ep = fc_seq_exch(sp);
541 spin_lock_bh(&ep->ex_lock);
542 error = fc_seq_send_locked(lport, sp, fp);
543 spin_unlock_bh(&ep->ex_lock);
544 return error;
546 EXPORT_SYMBOL(fc_seq_send);
549 * fc_seq_alloc() - Allocate a sequence for a given exchange
550 * @ep: The exchange to allocate a new sequence for
551 * @seq_id: The sequence ID to be used
553 * We don't support multiple originated sequences on the same exchange.
554 * By implication, any previously originated sequence on this exchange
555 * is complete, and we reallocate the same sequence.
557 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
559 struct fc_seq *sp;
561 sp = &ep->seq;
562 sp->ssb_stat = 0;
563 sp->cnt = 0;
564 sp->id = seq_id;
565 return sp;
569 * fc_seq_start_next_locked() - Allocate a new sequence on the same
570 * exchange as the supplied sequence
571 * @sp: The sequence/exchange to get a new sequence for
573 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
575 struct fc_exch *ep = fc_seq_exch(sp);
577 sp = fc_seq_alloc(ep, ep->seq_id++);
578 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
579 ep->f_ctl, sp->id);
580 return sp;
584 * fc_seq_start_next() - Lock the exchange and get a new sequence
585 * for a given sequence/exchange pair
586 * @sp: The sequence/exchange to get a new exchange for
588 struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
590 struct fc_exch *ep = fc_seq_exch(sp);
592 spin_lock_bh(&ep->ex_lock);
593 sp = fc_seq_start_next_locked(sp);
594 spin_unlock_bh(&ep->ex_lock);
596 return sp;
598 EXPORT_SYMBOL(fc_seq_start_next);
601 * Set the response handler for the exchange associated with a sequence.
603 * Note: May sleep if invoked from outside a response handler.
605 void fc_seq_set_resp(struct fc_seq *sp,
606 void (*resp)(struct fc_seq *, struct fc_frame *, void *),
607 void *arg)
609 struct fc_exch *ep = fc_seq_exch(sp);
610 DEFINE_WAIT(wait);
612 spin_lock_bh(&ep->ex_lock);
613 while (ep->resp_active && ep->resp_task != current) {
614 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
615 spin_unlock_bh(&ep->ex_lock);
617 schedule();
619 spin_lock_bh(&ep->ex_lock);
621 finish_wait(&ep->resp_wq, &wait);
622 ep->resp = resp;
623 ep->arg = arg;
624 spin_unlock_bh(&ep->ex_lock);
626 EXPORT_SYMBOL(fc_seq_set_resp);
629 * fc_exch_abort_locked() - Abort an exchange
630 * @ep: The exchange to be aborted
631 * @timer_msec: The period of time to wait before aborting
633 * Abort an exchange and sequence. Generally called because of a
634 * exchange timeout or an abort from the upper layer.
636 * A timer_msec can be specified for abort timeout, if non-zero
637 * timer_msec value is specified then exchange resp handler
638 * will be called with timeout error if no response to abort.
640 * Locking notes: Called with exch lock held
642 * Return value: 0 on success else error code
644 static int fc_exch_abort_locked(struct fc_exch *ep,
645 unsigned int timer_msec)
647 struct fc_seq *sp;
648 struct fc_frame *fp;
649 int error;
651 FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
652 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
653 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
654 FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
655 ep->esb_stat, ep->state);
656 return -ENXIO;
660 * Send the abort on a new sequence if possible.
662 sp = fc_seq_start_next_locked(&ep->seq);
663 if (!sp)
664 return -ENOMEM;
666 if (timer_msec)
667 fc_exch_timer_set_locked(ep, timer_msec);
669 if (ep->sid) {
671 * Send an abort for the sequence that timed out.
673 fp = fc_frame_alloc(ep->lp, 0);
674 if (fp) {
675 ep->esb_stat |= ESB_ST_SEQ_INIT;
676 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
677 FC_TYPE_BLS, FC_FC_END_SEQ |
678 FC_FC_SEQ_INIT, 0);
679 error = fc_seq_send_locked(ep->lp, sp, fp);
680 } else {
681 error = -ENOBUFS;
683 } else {
685 * If not logged into the fabric, don't send ABTS but leave
686 * sequence active until next timeout.
688 error = 0;
690 ep->esb_stat |= ESB_ST_ABNORMAL;
691 return error;
695 * fc_seq_exch_abort() - Abort an exchange and sequence
696 * @req_sp: The sequence to be aborted
697 * @timer_msec: The period of time to wait before aborting
699 * Generally called because of a timeout or an abort from the upper layer.
701 * Return value: 0 on success else error code
703 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
705 struct fc_exch *ep;
706 int error;
708 ep = fc_seq_exch(req_sp);
709 spin_lock_bh(&ep->ex_lock);
710 error = fc_exch_abort_locked(ep, timer_msec);
711 spin_unlock_bh(&ep->ex_lock);
712 return error;
716 * fc_invoke_resp() - invoke ep->resp()
718 * Notes:
719 * It is assumed that after initialization finished (this means the
720 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
721 * modified only via fc_seq_set_resp(). This guarantees that none of these
722 * two variables changes if ep->resp_active > 0.
724 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
725 * this function is invoked, the first spin_lock_bh() call in this function
726 * will wait until fc_seq_set_resp() has finished modifying these variables.
728 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
729 * ep->resp() won't be invoked after fc_exch_done() has returned.
731 * The response handler itself may invoke fc_exch_done(), which will clear the
732 * ep->resp pointer.
734 * Return value:
735 * Returns true if and only if ep->resp has been invoked.
737 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
738 struct fc_frame *fp)
740 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
741 void *arg;
742 bool res = false;
744 spin_lock_bh(&ep->ex_lock);
745 ep->resp_active++;
746 if (ep->resp_task != current)
747 ep->resp_task = !ep->resp_task ? current : NULL;
748 resp = ep->resp;
749 arg = ep->arg;
750 spin_unlock_bh(&ep->ex_lock);
752 if (resp) {
753 resp(sp, fp, arg);
754 res = true;
757 spin_lock_bh(&ep->ex_lock);
758 if (--ep->resp_active == 0)
759 ep->resp_task = NULL;
760 spin_unlock_bh(&ep->ex_lock);
762 if (ep->resp_active == 0)
763 wake_up(&ep->resp_wq);
765 return res;
769 * fc_exch_timeout() - Handle exchange timer expiration
770 * @work: The work_struct identifying the exchange that timed out
772 static void fc_exch_timeout(struct work_struct *work)
774 struct fc_exch *ep = container_of(work, struct fc_exch,
775 timeout_work.work);
776 struct fc_seq *sp = &ep->seq;
777 u32 e_stat;
778 int rc = 1;
780 FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
782 spin_lock_bh(&ep->ex_lock);
783 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
784 goto unlock;
786 e_stat = ep->esb_stat;
787 if (e_stat & ESB_ST_COMPLETE) {
788 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
789 spin_unlock_bh(&ep->ex_lock);
790 if (e_stat & ESB_ST_REC_QUAL)
791 fc_exch_rrq(ep);
792 goto done;
793 } else {
794 if (e_stat & ESB_ST_ABNORMAL)
795 rc = fc_exch_done_locked(ep);
796 spin_unlock_bh(&ep->ex_lock);
797 if (!rc)
798 fc_exch_delete(ep);
799 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
800 fc_seq_set_resp(sp, NULL, ep->arg);
801 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
802 goto done;
804 unlock:
805 spin_unlock_bh(&ep->ex_lock);
806 done:
808 * This release matches the hold taken when the timer was set.
810 fc_exch_release(ep);
814 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
815 * @lport: The local port that the exchange is for
816 * @mp: The exchange manager that will allocate the exchange
818 * Returns pointer to allocated fc_exch with exch lock held.
820 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
821 struct fc_exch_mgr *mp)
823 struct fc_exch *ep;
824 unsigned int cpu;
825 u16 index;
826 struct fc_exch_pool *pool;
828 /* allocate memory for exchange */
829 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
830 if (!ep) {
831 atomic_inc(&mp->stats.no_free_exch);
832 goto out;
834 memset(ep, 0, sizeof(*ep));
836 cpu = get_cpu();
837 pool = per_cpu_ptr(mp->pool, cpu);
838 spin_lock_bh(&pool->lock);
839 put_cpu();
841 /* peek cache of free slot */
842 if (pool->left != FC_XID_UNKNOWN) {
843 if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
844 index = pool->left;
845 pool->left = FC_XID_UNKNOWN;
846 goto hit;
849 if (pool->right != FC_XID_UNKNOWN) {
850 if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
851 index = pool->right;
852 pool->right = FC_XID_UNKNOWN;
853 goto hit;
857 index = pool->next_index;
858 /* allocate new exch from pool */
859 while (fc_exch_ptr_get(pool, index)) {
860 index = index == mp->pool_max_index ? 0 : index + 1;
861 if (index == pool->next_index)
862 goto err;
864 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
865 hit:
866 fc_exch_hold(ep); /* hold for exch in mp */
867 spin_lock_init(&ep->ex_lock);
869 * Hold exch lock for caller to prevent fc_exch_reset()
870 * from releasing exch while fc_exch_alloc() caller is
871 * still working on exch.
873 spin_lock_bh(&ep->ex_lock);
875 fc_exch_ptr_set(pool, index, ep);
876 list_add_tail(&ep->ex_list, &pool->ex_list);
877 fc_seq_alloc(ep, ep->seq_id++);
878 pool->total_exches++;
879 spin_unlock_bh(&pool->lock);
882 * update exchange
884 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
885 ep->em = mp;
886 ep->pool = pool;
887 ep->lp = lport;
888 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
889 ep->rxid = FC_XID_UNKNOWN;
890 ep->class = mp->class;
891 ep->resp_active = 0;
892 init_waitqueue_head(&ep->resp_wq);
893 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
894 out:
895 return ep;
896 err:
897 spin_unlock_bh(&pool->lock);
898 atomic_inc(&mp->stats.no_free_exch_xid);
899 mempool_free(ep, mp->ep_pool);
900 return NULL;
904 * fc_exch_alloc() - Allocate an exchange from an EM on a
905 * local port's list of EMs.
906 * @lport: The local port that will own the exchange
907 * @fp: The FC frame that the exchange will be for
909 * This function walks the list of exchange manager(EM)
910 * anchors to select an EM for a new exchange allocation. The
911 * EM is selected when a NULL match function pointer is encountered
912 * or when a call to a match function returns true.
914 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
915 struct fc_frame *fp)
917 struct fc_exch_mgr_anchor *ema;
918 struct fc_exch *ep;
920 list_for_each_entry(ema, &lport->ema_list, ema_list) {
921 if (!ema->match || ema->match(fp)) {
922 ep = fc_exch_em_alloc(lport, ema->mp);
923 if (ep)
924 return ep;
927 return NULL;
931 * fc_exch_find() - Lookup and hold an exchange
932 * @mp: The exchange manager to lookup the exchange from
933 * @xid: The XID of the exchange to look up
935 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
937 struct fc_lport *lport = mp->lport;
938 struct fc_exch_pool *pool;
939 struct fc_exch *ep = NULL;
940 u16 cpu = xid & fc_cpu_mask;
942 if (xid == FC_XID_UNKNOWN)
943 return NULL;
945 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
946 pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
947 lport->host->host_no, lport->port_id, xid, cpu);
948 return NULL;
951 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
952 pool = per_cpu_ptr(mp->pool, cpu);
953 spin_lock_bh(&pool->lock);
954 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
955 if (ep == &fc_quarantine_exch) {
956 FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
957 ep = NULL;
959 if (ep) {
960 WARN_ON(ep->xid != xid);
961 fc_exch_hold(ep);
963 spin_unlock_bh(&pool->lock);
965 return ep;
970 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
971 * the memory allocated for the related objects may be freed.
972 * @sp: The sequence that has completed
974 * Note: May sleep if invoked from outside a response handler.
976 void fc_exch_done(struct fc_seq *sp)
978 struct fc_exch *ep = fc_seq_exch(sp);
979 int rc;
981 spin_lock_bh(&ep->ex_lock);
982 rc = fc_exch_done_locked(ep);
983 spin_unlock_bh(&ep->ex_lock);
985 fc_seq_set_resp(sp, NULL, ep->arg);
986 if (!rc)
987 fc_exch_delete(ep);
989 EXPORT_SYMBOL(fc_exch_done);
992 * fc_exch_resp() - Allocate a new exchange for a response frame
993 * @lport: The local port that the exchange was for
994 * @mp: The exchange manager to allocate the exchange from
995 * @fp: The response frame
997 * Sets the responder ID in the frame header.
999 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
1000 struct fc_exch_mgr *mp,
1001 struct fc_frame *fp)
1003 struct fc_exch *ep;
1004 struct fc_frame_header *fh;
1006 ep = fc_exch_alloc(lport, fp);
1007 if (ep) {
1008 ep->class = fc_frame_class(fp);
1011 * Set EX_CTX indicating we're responding on this exchange.
1013 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
1014 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
1015 fh = fc_frame_header_get(fp);
1016 ep->sid = ntoh24(fh->fh_d_id);
1017 ep->did = ntoh24(fh->fh_s_id);
1018 ep->oid = ep->did;
1021 * Allocated exchange has placed the XID in the
1022 * originator field. Move it to the responder field,
1023 * and set the originator XID from the frame.
1025 ep->rxid = ep->xid;
1026 ep->oxid = ntohs(fh->fh_ox_id);
1027 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1028 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1029 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1031 fc_exch_hold(ep); /* hold for caller */
1032 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
1034 return ep;
1038 * fc_seq_lookup_recip() - Find a sequence where the other end
1039 * originated the sequence
1040 * @lport: The local port that the frame was sent to
1041 * @mp: The Exchange Manager to lookup the exchange from
1042 * @fp: The frame associated with the sequence we're looking for
1044 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1045 * on the ep that should be released by the caller.
1047 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1048 struct fc_exch_mgr *mp,
1049 struct fc_frame *fp)
1051 struct fc_frame_header *fh = fc_frame_header_get(fp);
1052 struct fc_exch *ep = NULL;
1053 struct fc_seq *sp = NULL;
1054 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1055 u32 f_ctl;
1056 u16 xid;
1058 f_ctl = ntoh24(fh->fh_f_ctl);
1059 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1062 * Lookup or create the exchange if we will be creating the sequence.
1064 if (f_ctl & FC_FC_EX_CTX) {
1065 xid = ntohs(fh->fh_ox_id); /* we originated exch */
1066 ep = fc_exch_find(mp, xid);
1067 if (!ep) {
1068 atomic_inc(&mp->stats.xid_not_found);
1069 reject = FC_RJT_OX_ID;
1070 goto out;
1072 if (ep->rxid == FC_XID_UNKNOWN)
1073 ep->rxid = ntohs(fh->fh_rx_id);
1074 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1075 reject = FC_RJT_OX_ID;
1076 goto rel;
1078 } else {
1079 xid = ntohs(fh->fh_rx_id); /* we are the responder */
1082 * Special case for MDS issuing an ELS TEST with a
1083 * bad rxid of 0.
1084 * XXX take this out once we do the proper reject.
1086 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1087 fc_frame_payload_op(fp) == ELS_TEST) {
1088 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1089 xid = FC_XID_UNKNOWN;
1093 * new sequence - find the exchange
1095 ep = fc_exch_find(mp, xid);
1096 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1097 if (ep) {
1098 atomic_inc(&mp->stats.xid_busy);
1099 reject = FC_RJT_RX_ID;
1100 goto rel;
1102 ep = fc_exch_resp(lport, mp, fp);
1103 if (!ep) {
1104 reject = FC_RJT_EXCH_EST; /* XXX */
1105 goto out;
1107 xid = ep->xid; /* get our XID */
1108 } else if (!ep) {
1109 atomic_inc(&mp->stats.xid_not_found);
1110 reject = FC_RJT_RX_ID; /* XID not found */
1111 goto out;
1115 spin_lock_bh(&ep->ex_lock);
1117 * At this point, we have the exchange held.
1118 * Find or create the sequence.
1120 if (fc_sof_is_init(fr_sof(fp))) {
1121 sp = &ep->seq;
1122 sp->ssb_stat |= SSB_ST_RESP;
1123 sp->id = fh->fh_seq_id;
1124 } else {
1125 sp = &ep->seq;
1126 if (sp->id != fh->fh_seq_id) {
1127 atomic_inc(&mp->stats.seq_not_found);
1128 if (f_ctl & FC_FC_END_SEQ) {
1130 * Update sequence_id based on incoming last
1131 * frame of sequence exchange. This is needed
1132 * for FC target where DDP has been used
1133 * on target where, stack is indicated only
1134 * about last frame's (payload _header) header.
1135 * Whereas "seq_id" which is part of
1136 * frame_header is allocated by initiator
1137 * which is totally different from "seq_id"
1138 * allocated when XFER_RDY was sent by target.
1139 * To avoid false -ve which results into not
1140 * sending RSP, hence write request on other
1141 * end never finishes.
1143 sp->ssb_stat |= SSB_ST_RESP;
1144 sp->id = fh->fh_seq_id;
1145 } else {
1146 spin_unlock_bh(&ep->ex_lock);
1148 /* sequence/exch should exist */
1149 reject = FC_RJT_SEQ_ID;
1150 goto rel;
1154 WARN_ON(ep != fc_seq_exch(sp));
1156 if (f_ctl & FC_FC_SEQ_INIT)
1157 ep->esb_stat |= ESB_ST_SEQ_INIT;
1158 spin_unlock_bh(&ep->ex_lock);
1160 fr_seq(fp) = sp;
1161 out:
1162 return reject;
1163 rel:
1164 fc_exch_done(&ep->seq);
1165 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1166 return reject;
1170 * fc_seq_lookup_orig() - Find a sequence where this end
1171 * originated the sequence
1172 * @mp: The Exchange Manager to lookup the exchange from
1173 * @fp: The frame associated with the sequence we're looking for
1175 * Does not hold the sequence for the caller.
1177 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1178 struct fc_frame *fp)
1180 struct fc_frame_header *fh = fc_frame_header_get(fp);
1181 struct fc_exch *ep;
1182 struct fc_seq *sp = NULL;
1183 u32 f_ctl;
1184 u16 xid;
1186 f_ctl = ntoh24(fh->fh_f_ctl);
1187 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1188 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1189 ep = fc_exch_find(mp, xid);
1190 if (!ep)
1191 return NULL;
1192 if (ep->seq.id == fh->fh_seq_id) {
1194 * Save the RX_ID if we didn't previously know it.
1196 sp = &ep->seq;
1197 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1198 ep->rxid == FC_XID_UNKNOWN) {
1199 ep->rxid = ntohs(fh->fh_rx_id);
1202 fc_exch_release(ep);
1203 return sp;
1207 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1208 * @ep: The exchange to set the addresses for
1209 * @orig_id: The originator's ID
1210 * @resp_id: The responder's ID
1212 * Note this must be done before the first sequence of the exchange is sent.
1214 static void fc_exch_set_addr(struct fc_exch *ep,
1215 u32 orig_id, u32 resp_id)
1217 ep->oid = orig_id;
1218 if (ep->esb_stat & ESB_ST_RESP) {
1219 ep->sid = resp_id;
1220 ep->did = orig_id;
1221 } else {
1222 ep->sid = orig_id;
1223 ep->did = resp_id;
1228 * fc_seq_els_rsp_send() - Send an ELS response using information from
1229 * the existing sequence/exchange.
1230 * @fp: The received frame
1231 * @els_cmd: The ELS command to be sent
1232 * @els_data: The ELS data to be sent
1234 * The received frame is not freed.
1236 void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1237 struct fc_seq_els_data *els_data)
1239 switch (els_cmd) {
1240 case ELS_LS_RJT:
1241 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1242 break;
1243 case ELS_LS_ACC:
1244 fc_seq_ls_acc(fp);
1245 break;
1246 case ELS_RRQ:
1247 fc_exch_els_rrq(fp);
1248 break;
1249 case ELS_REC:
1250 fc_exch_els_rec(fp);
1251 break;
1252 default:
1253 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1256 EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1259 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1260 * @sp: The sequence that is to be sent
1261 * @fp: The frame that will be sent on the sequence
1262 * @rctl: The R_CTL information to be sent
1263 * @fh_type: The frame header type
1265 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1266 enum fc_rctl rctl, enum fc_fh_type fh_type)
1268 u32 f_ctl;
1269 struct fc_exch *ep = fc_seq_exch(sp);
1271 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1272 f_ctl |= ep->f_ctl;
1273 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1274 fc_seq_send_locked(ep->lp, sp, fp);
1278 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1279 * @sp: The sequence to send the ACK on
1280 * @rx_fp: The received frame that is being acknoledged
1282 * Send ACK_1 (or equiv.) indicating we received something.
1284 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1286 struct fc_frame *fp;
1287 struct fc_frame_header *rx_fh;
1288 struct fc_frame_header *fh;
1289 struct fc_exch *ep = fc_seq_exch(sp);
1290 struct fc_lport *lport = ep->lp;
1291 unsigned int f_ctl;
1294 * Don't send ACKs for class 3.
1296 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1297 fp = fc_frame_alloc(lport, 0);
1298 if (!fp) {
1299 FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1300 return;
1303 fh = fc_frame_header_get(fp);
1304 fh->fh_r_ctl = FC_RCTL_ACK_1;
1305 fh->fh_type = FC_TYPE_BLS;
1308 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1309 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1310 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1311 * Last ACK uses bits 7-6 (continue sequence),
1312 * bits 5-4 are meaningful (what kind of ACK to use).
1314 rx_fh = fc_frame_header_get(rx_fp);
1315 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1316 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1317 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1318 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1319 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1320 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1321 hton24(fh->fh_f_ctl, f_ctl);
1323 fc_exch_setup_hdr(ep, fp, f_ctl);
1324 fh->fh_seq_id = rx_fh->fh_seq_id;
1325 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1326 fh->fh_parm_offset = htonl(1); /* ack single frame */
1328 fr_sof(fp) = fr_sof(rx_fp);
1329 if (f_ctl & FC_FC_END_SEQ)
1330 fr_eof(fp) = FC_EOF_T;
1331 else
1332 fr_eof(fp) = FC_EOF_N;
1334 lport->tt.frame_send(lport, fp);
1339 * fc_exch_send_ba_rjt() - Send BLS Reject
1340 * @rx_fp: The frame being rejected
1341 * @reason: The reason the frame is being rejected
1342 * @explan: The explanation for the rejection
1344 * This is for rejecting BA_ABTS only.
1346 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1347 enum fc_ba_rjt_reason reason,
1348 enum fc_ba_rjt_explan explan)
1350 struct fc_frame *fp;
1351 struct fc_frame_header *rx_fh;
1352 struct fc_frame_header *fh;
1353 struct fc_ba_rjt *rp;
1354 struct fc_seq *sp;
1355 struct fc_lport *lport;
1356 unsigned int f_ctl;
1358 lport = fr_dev(rx_fp);
1359 sp = fr_seq(rx_fp);
1360 fp = fc_frame_alloc(lport, sizeof(*rp));
1361 if (!fp) {
1362 FC_EXCH_DBG(fc_seq_exch(sp),
1363 "Drop BA_RJT request, out of memory\n");
1364 return;
1366 fh = fc_frame_header_get(fp);
1367 rx_fh = fc_frame_header_get(rx_fp);
1369 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1371 rp = fc_frame_payload_get(fp, sizeof(*rp));
1372 rp->br_reason = reason;
1373 rp->br_explan = explan;
1376 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1378 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1379 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1380 fh->fh_ox_id = rx_fh->fh_ox_id;
1381 fh->fh_rx_id = rx_fh->fh_rx_id;
1382 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1383 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1384 fh->fh_type = FC_TYPE_BLS;
1387 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1388 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1389 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1390 * Last ACK uses bits 7-6 (continue sequence),
1391 * bits 5-4 are meaningful (what kind of ACK to use).
1392 * Always set LAST_SEQ, END_SEQ.
1394 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1395 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1396 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1397 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1398 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1399 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1400 f_ctl &= ~FC_FC_FIRST_SEQ;
1401 hton24(fh->fh_f_ctl, f_ctl);
1403 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1404 fr_eof(fp) = FC_EOF_T;
1405 if (fc_sof_needs_ack(fr_sof(fp)))
1406 fr_eof(fp) = FC_EOF_N;
1408 lport->tt.frame_send(lport, fp);
1412 * fc_exch_recv_abts() - Handle an incoming ABTS
1413 * @ep: The exchange the abort was on
1414 * @rx_fp: The ABTS frame
1416 * This would be for target mode usually, but could be due to lost
1417 * FCP transfer ready, confirm or RRQ. We always handle this as an
1418 * exchange abort, ignoring the parameter.
1420 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1422 struct fc_frame *fp;
1423 struct fc_ba_acc *ap;
1424 struct fc_frame_header *fh;
1425 struct fc_seq *sp;
1427 if (!ep)
1428 goto reject;
1430 FC_EXCH_DBG(ep, "exch: ABTS received\n");
1431 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1432 if (!fp) {
1433 FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1434 goto free;
1437 spin_lock_bh(&ep->ex_lock);
1438 if (ep->esb_stat & ESB_ST_COMPLETE) {
1439 spin_unlock_bh(&ep->ex_lock);
1440 FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1441 fc_frame_free(fp);
1442 goto reject;
1444 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1445 ep->esb_stat |= ESB_ST_REC_QUAL;
1446 fc_exch_hold(ep); /* hold for REC_QUAL */
1448 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1449 fh = fc_frame_header_get(fp);
1450 ap = fc_frame_payload_get(fp, sizeof(*ap));
1451 memset(ap, 0, sizeof(*ap));
1452 sp = &ep->seq;
1453 ap->ba_high_seq_cnt = htons(0xffff);
1454 if (sp->ssb_stat & SSB_ST_RESP) {
1455 ap->ba_seq_id = sp->id;
1456 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1457 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1458 ap->ba_low_seq_cnt = htons(sp->cnt);
1460 sp = fc_seq_start_next_locked(sp);
1461 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1462 ep->esb_stat |= ESB_ST_ABNORMAL;
1463 spin_unlock_bh(&ep->ex_lock);
1465 free:
1466 fc_frame_free(rx_fp);
1467 return;
1469 reject:
1470 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1471 goto free;
1475 * fc_seq_assign() - Assign exchange and sequence for incoming request
1476 * @lport: The local port that received the request
1477 * @fp: The request frame
1479 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1480 * A reference will be held on the exchange/sequence for the caller, which
1481 * must call fc_seq_release().
1483 struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1485 struct fc_exch_mgr_anchor *ema;
1487 WARN_ON(lport != fr_dev(fp));
1488 WARN_ON(fr_seq(fp));
1489 fr_seq(fp) = NULL;
1491 list_for_each_entry(ema, &lport->ema_list, ema_list)
1492 if ((!ema->match || ema->match(fp)) &&
1493 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1494 break;
1495 return fr_seq(fp);
1497 EXPORT_SYMBOL(fc_seq_assign);
1500 * fc_seq_release() - Release the hold
1501 * @sp: The sequence.
1503 void fc_seq_release(struct fc_seq *sp)
1505 fc_exch_release(fc_seq_exch(sp));
1507 EXPORT_SYMBOL(fc_seq_release);
1510 * fc_exch_recv_req() - Handler for an incoming request
1511 * @lport: The local port that received the request
1512 * @mp: The EM that the exchange is on
1513 * @fp: The request frame
1515 * This is used when the other end is originating the exchange
1516 * and the sequence.
1518 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1519 struct fc_frame *fp)
1521 struct fc_frame_header *fh = fc_frame_header_get(fp);
1522 struct fc_seq *sp = NULL;
1523 struct fc_exch *ep = NULL;
1524 enum fc_pf_rjt_reason reject;
1526 /* We can have the wrong fc_lport at this point with NPIV, which is a
1527 * problem now that we know a new exchange needs to be allocated
1529 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1530 if (!lport) {
1531 fc_frame_free(fp);
1532 return;
1534 fr_dev(fp) = lport;
1536 BUG_ON(fr_seq(fp)); /* XXX remove later */
1539 * If the RX_ID is 0xffff, don't allocate an exchange.
1540 * The upper-level protocol may request one later, if needed.
1542 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1543 return fc_lport_recv(lport, fp);
1545 reject = fc_seq_lookup_recip(lport, mp, fp);
1546 if (reject == FC_RJT_NONE) {
1547 sp = fr_seq(fp); /* sequence will be held */
1548 ep = fc_seq_exch(sp);
1549 fc_seq_send_ack(sp, fp);
1550 ep->encaps = fr_encaps(fp);
1553 * Call the receive function.
1555 * The receive function may allocate a new sequence
1556 * over the old one, so we shouldn't change the
1557 * sequence after this.
1559 * The frame will be freed by the receive function.
1560 * If new exch resp handler is valid then call that
1561 * first.
1563 if (!fc_invoke_resp(ep, sp, fp))
1564 fc_lport_recv(lport, fp);
1565 fc_exch_release(ep); /* release from lookup */
1566 } else {
1567 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1568 reject);
1569 fc_frame_free(fp);
1574 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1575 * end is the originator of the sequence that is a
1576 * response to our initial exchange
1577 * @mp: The EM that the exchange is on
1578 * @fp: The response frame
1580 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1582 struct fc_frame_header *fh = fc_frame_header_get(fp);
1583 struct fc_seq *sp;
1584 struct fc_exch *ep;
1585 enum fc_sof sof;
1586 u32 f_ctl;
1587 int rc;
1589 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1590 if (!ep) {
1591 atomic_inc(&mp->stats.xid_not_found);
1592 goto out;
1594 if (ep->esb_stat & ESB_ST_COMPLETE) {
1595 atomic_inc(&mp->stats.xid_not_found);
1596 goto rel;
1598 if (ep->rxid == FC_XID_UNKNOWN)
1599 ep->rxid = ntohs(fh->fh_rx_id);
1600 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1601 atomic_inc(&mp->stats.xid_not_found);
1602 goto rel;
1604 if (ep->did != ntoh24(fh->fh_s_id) &&
1605 ep->did != FC_FID_FLOGI) {
1606 atomic_inc(&mp->stats.xid_not_found);
1607 goto rel;
1609 sof = fr_sof(fp);
1610 sp = &ep->seq;
1611 if (fc_sof_is_init(sof)) {
1612 sp->ssb_stat |= SSB_ST_RESP;
1613 sp->id = fh->fh_seq_id;
1616 f_ctl = ntoh24(fh->fh_f_ctl);
1617 fr_seq(fp) = sp;
1619 spin_lock_bh(&ep->ex_lock);
1620 if (f_ctl & FC_FC_SEQ_INIT)
1621 ep->esb_stat |= ESB_ST_SEQ_INIT;
1622 spin_unlock_bh(&ep->ex_lock);
1624 if (fc_sof_needs_ack(sof))
1625 fc_seq_send_ack(sp, fp);
1627 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1628 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1629 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1630 spin_lock_bh(&ep->ex_lock);
1631 rc = fc_exch_done_locked(ep);
1632 WARN_ON(fc_seq_exch(sp) != ep);
1633 spin_unlock_bh(&ep->ex_lock);
1634 if (!rc)
1635 fc_exch_delete(ep);
1639 * Call the receive function.
1640 * The sequence is held (has a refcnt) for us,
1641 * but not for the receive function.
1643 * The receive function may allocate a new sequence
1644 * over the old one, so we shouldn't change the
1645 * sequence after this.
1647 * The frame will be freed by the receive function.
1648 * If new exch resp handler is valid then call that
1649 * first.
1651 if (!fc_invoke_resp(ep, sp, fp))
1652 fc_frame_free(fp);
1654 fc_exch_release(ep);
1655 return;
1656 rel:
1657 fc_exch_release(ep);
1658 out:
1659 fc_frame_free(fp);
1663 * fc_exch_recv_resp() - Handler for a sequence where other end is
1664 * responding to our sequence
1665 * @mp: The EM that the exchange is on
1666 * @fp: The response frame
1668 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1670 struct fc_seq *sp;
1672 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1674 if (!sp)
1675 atomic_inc(&mp->stats.xid_not_found);
1676 else
1677 atomic_inc(&mp->stats.non_bls_resp);
1679 fc_frame_free(fp);
1683 * fc_exch_abts_resp() - Handler for a response to an ABT
1684 * @ep: The exchange that the frame is on
1685 * @fp: The response frame
1687 * This response would be to an ABTS cancelling an exchange or sequence.
1688 * The response can be either BA_ACC or BA_RJT
1690 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1692 struct fc_frame_header *fh;
1693 struct fc_ba_acc *ap;
1694 struct fc_seq *sp;
1695 u16 low;
1696 u16 high;
1697 int rc = 1, has_rec = 0;
1699 fh = fc_frame_header_get(fp);
1700 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1701 fc_exch_rctl_name(fh->fh_r_ctl));
1703 if (cancel_delayed_work_sync(&ep->timeout_work)) {
1704 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1705 fc_exch_release(ep); /* release from pending timer hold */
1708 spin_lock_bh(&ep->ex_lock);
1709 switch (fh->fh_r_ctl) {
1710 case FC_RCTL_BA_ACC:
1711 ap = fc_frame_payload_get(fp, sizeof(*ap));
1712 if (!ap)
1713 break;
1716 * Decide whether to establish a Recovery Qualifier.
1717 * We do this if there is a non-empty SEQ_CNT range and
1718 * SEQ_ID is the same as the one we aborted.
1720 low = ntohs(ap->ba_low_seq_cnt);
1721 high = ntohs(ap->ba_high_seq_cnt);
1722 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1723 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1724 ap->ba_seq_id == ep->seq_id) && low != high) {
1725 ep->esb_stat |= ESB_ST_REC_QUAL;
1726 fc_exch_hold(ep); /* hold for recovery qualifier */
1727 has_rec = 1;
1729 break;
1730 case FC_RCTL_BA_RJT:
1731 break;
1732 default:
1733 break;
1736 /* do we need to do some other checks here. Can we reuse more of
1737 * fc_exch_recv_seq_resp
1739 sp = &ep->seq;
1741 * do we want to check END_SEQ as well as LAST_SEQ here?
1743 if (ep->fh_type != FC_TYPE_FCP &&
1744 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1745 rc = fc_exch_done_locked(ep);
1746 spin_unlock_bh(&ep->ex_lock);
1748 fc_exch_hold(ep);
1749 if (!rc)
1750 fc_exch_delete(ep);
1751 if (!fc_invoke_resp(ep, sp, fp))
1752 fc_frame_free(fp);
1753 if (has_rec)
1754 fc_exch_timer_set(ep, ep->r_a_tov);
1755 fc_exch_release(ep);
1759 * fc_exch_recv_bls() - Handler for a BLS sequence
1760 * @mp: The EM that the exchange is on
1761 * @fp: The request frame
1763 * The BLS frame is always a sequence initiated by the remote side.
1764 * We may be either the originator or recipient of the exchange.
1766 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1768 struct fc_frame_header *fh;
1769 struct fc_exch *ep;
1770 u32 f_ctl;
1772 fh = fc_frame_header_get(fp);
1773 f_ctl = ntoh24(fh->fh_f_ctl);
1774 fr_seq(fp) = NULL;
1776 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1777 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1778 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1779 spin_lock_bh(&ep->ex_lock);
1780 ep->esb_stat |= ESB_ST_SEQ_INIT;
1781 spin_unlock_bh(&ep->ex_lock);
1783 if (f_ctl & FC_FC_SEQ_CTX) {
1785 * A response to a sequence we initiated.
1786 * This should only be ACKs for class 2 or F.
1788 switch (fh->fh_r_ctl) {
1789 case FC_RCTL_ACK_1:
1790 case FC_RCTL_ACK_0:
1791 break;
1792 default:
1793 if (ep)
1794 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1795 fh->fh_r_ctl,
1796 fc_exch_rctl_name(fh->fh_r_ctl));
1797 break;
1799 fc_frame_free(fp);
1800 } else {
1801 switch (fh->fh_r_ctl) {
1802 case FC_RCTL_BA_RJT:
1803 case FC_RCTL_BA_ACC:
1804 if (ep)
1805 fc_exch_abts_resp(ep, fp);
1806 else
1807 fc_frame_free(fp);
1808 break;
1809 case FC_RCTL_BA_ABTS:
1810 if (ep)
1811 fc_exch_recv_abts(ep, fp);
1812 else
1813 fc_frame_free(fp);
1814 break;
1815 default: /* ignore junk */
1816 fc_frame_free(fp);
1817 break;
1820 if (ep)
1821 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1825 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1826 * @rx_fp: The received frame, not freed here.
1828 * If this fails due to allocation or transmit congestion, assume the
1829 * originator will repeat the sequence.
1831 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1833 struct fc_lport *lport;
1834 struct fc_els_ls_acc *acc;
1835 struct fc_frame *fp;
1836 struct fc_seq *sp;
1838 lport = fr_dev(rx_fp);
1839 sp = fr_seq(rx_fp);
1840 fp = fc_frame_alloc(lport, sizeof(*acc));
1841 if (!fp) {
1842 FC_EXCH_DBG(fc_seq_exch(sp),
1843 "exch: drop LS_ACC, out of memory\n");
1844 return;
1846 acc = fc_frame_payload_get(fp, sizeof(*acc));
1847 memset(acc, 0, sizeof(*acc));
1848 acc->la_cmd = ELS_LS_ACC;
1849 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1850 lport->tt.frame_send(lport, fp);
1854 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1855 * @rx_fp: The received frame, not freed here.
1856 * @reason: The reason the sequence is being rejected
1857 * @explan: The explanation for the rejection
1859 * If this fails due to allocation or transmit congestion, assume the
1860 * originator will repeat the sequence.
1862 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1863 enum fc_els_rjt_explan explan)
1865 struct fc_lport *lport;
1866 struct fc_els_ls_rjt *rjt;
1867 struct fc_frame *fp;
1868 struct fc_seq *sp;
1870 lport = fr_dev(rx_fp);
1871 sp = fr_seq(rx_fp);
1872 fp = fc_frame_alloc(lport, sizeof(*rjt));
1873 if (!fp) {
1874 FC_EXCH_DBG(fc_seq_exch(sp),
1875 "exch: drop LS_ACC, out of memory\n");
1876 return;
1878 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1879 memset(rjt, 0, sizeof(*rjt));
1880 rjt->er_cmd = ELS_LS_RJT;
1881 rjt->er_reason = reason;
1882 rjt->er_explan = explan;
1883 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1884 lport->tt.frame_send(lport, fp);
1888 * fc_exch_reset() - Reset an exchange
1889 * @ep: The exchange to be reset
1891 * Note: May sleep if invoked from outside a response handler.
1893 static void fc_exch_reset(struct fc_exch *ep)
1895 struct fc_seq *sp;
1896 int rc = 1;
1898 spin_lock_bh(&ep->ex_lock);
1899 ep->state |= FC_EX_RST_CLEANUP;
1900 fc_exch_timer_cancel(ep);
1901 if (ep->esb_stat & ESB_ST_REC_QUAL)
1902 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1903 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1904 sp = &ep->seq;
1905 rc = fc_exch_done_locked(ep);
1906 spin_unlock_bh(&ep->ex_lock);
1908 fc_exch_hold(ep);
1910 if (!rc)
1911 fc_exch_delete(ep);
1913 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1914 fc_seq_set_resp(sp, NULL, ep->arg);
1915 fc_exch_release(ep);
1919 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1920 * @lport: The local port that the exchange pool is on
1921 * @pool: The exchange pool to be reset
1922 * @sid: The source ID
1923 * @did: The destination ID
1925 * Resets a per cpu exches pool, releasing all of its sequences
1926 * and exchanges. If sid is non-zero then reset only exchanges
1927 * we sourced from the local port's FID. If did is non-zero then
1928 * only reset exchanges destined for the local port's FID.
1930 static void fc_exch_pool_reset(struct fc_lport *lport,
1931 struct fc_exch_pool *pool,
1932 u32 sid, u32 did)
1934 struct fc_exch *ep;
1935 struct fc_exch *next;
1937 spin_lock_bh(&pool->lock);
1938 restart:
1939 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1940 if ((lport == ep->lp) &&
1941 (sid == 0 || sid == ep->sid) &&
1942 (did == 0 || did == ep->did)) {
1943 fc_exch_hold(ep);
1944 spin_unlock_bh(&pool->lock);
1946 fc_exch_reset(ep);
1948 fc_exch_release(ep);
1949 spin_lock_bh(&pool->lock);
1952 * must restart loop incase while lock
1953 * was down multiple eps were released.
1955 goto restart;
1958 pool->next_index = 0;
1959 pool->left = FC_XID_UNKNOWN;
1960 pool->right = FC_XID_UNKNOWN;
1961 spin_unlock_bh(&pool->lock);
1965 * fc_exch_mgr_reset() - Reset all EMs of a local port
1966 * @lport: The local port whose EMs are to be reset
1967 * @sid: The source ID
1968 * @did: The destination ID
1970 * Reset all EMs associated with a given local port. Release all
1971 * sequences and exchanges. If sid is non-zero then reset only the
1972 * exchanges sent from the local port's FID. If did is non-zero then
1973 * reset only exchanges destined for the local port's FID.
1975 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1977 struct fc_exch_mgr_anchor *ema;
1978 unsigned int cpu;
1980 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1981 for_each_possible_cpu(cpu)
1982 fc_exch_pool_reset(lport,
1983 per_cpu_ptr(ema->mp->pool, cpu),
1984 sid, did);
1987 EXPORT_SYMBOL(fc_exch_mgr_reset);
1990 * fc_exch_lookup() - find an exchange
1991 * @lport: The local port
1992 * @xid: The exchange ID
1994 * Returns exchange pointer with hold for caller, or NULL if not found.
1996 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1998 struct fc_exch_mgr_anchor *ema;
2000 list_for_each_entry(ema, &lport->ema_list, ema_list)
2001 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2002 return fc_exch_find(ema->mp, xid);
2003 return NULL;
2007 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2008 * @rfp: The REC frame, not freed here.
2010 * Note that the requesting port may be different than the S_ID in the request.
2012 static void fc_exch_els_rec(struct fc_frame *rfp)
2014 struct fc_lport *lport;
2015 struct fc_frame *fp;
2016 struct fc_exch *ep;
2017 struct fc_els_rec *rp;
2018 struct fc_els_rec_acc *acc;
2019 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2020 enum fc_els_rjt_explan explan;
2021 u32 sid;
2022 u16 xid, rxid, oxid;
2024 lport = fr_dev(rfp);
2025 rp = fc_frame_payload_get(rfp, sizeof(*rp));
2026 explan = ELS_EXPL_INV_LEN;
2027 if (!rp)
2028 goto reject;
2029 sid = ntoh24(rp->rec_s_id);
2030 rxid = ntohs(rp->rec_rx_id);
2031 oxid = ntohs(rp->rec_ox_id);
2033 explan = ELS_EXPL_OXID_RXID;
2034 if (sid == fc_host_port_id(lport->host))
2035 xid = oxid;
2036 else
2037 xid = rxid;
2038 if (xid == FC_XID_UNKNOWN) {
2039 FC_LPORT_DBG(lport,
2040 "REC request from %x: invalid rxid %x oxid %x\n",
2041 sid, rxid, oxid);
2042 goto reject;
2044 ep = fc_exch_lookup(lport, xid);
2045 if (!ep) {
2046 FC_LPORT_DBG(lport,
2047 "REC request from %x: rxid %x oxid %x not found\n",
2048 sid, rxid, oxid);
2049 goto reject;
2051 FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2052 sid, rxid, oxid);
2053 if (ep->oid != sid || oxid != ep->oxid)
2054 goto rel;
2055 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2056 goto rel;
2057 fp = fc_frame_alloc(lport, sizeof(*acc));
2058 if (!fp) {
2059 FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2060 goto out;
2063 acc = fc_frame_payload_get(fp, sizeof(*acc));
2064 memset(acc, 0, sizeof(*acc));
2065 acc->reca_cmd = ELS_LS_ACC;
2066 acc->reca_ox_id = rp->rec_ox_id;
2067 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2068 acc->reca_rx_id = htons(ep->rxid);
2069 if (ep->sid == ep->oid)
2070 hton24(acc->reca_rfid, ep->did);
2071 else
2072 hton24(acc->reca_rfid, ep->sid);
2073 acc->reca_fc4value = htonl(ep->seq.rec_data);
2074 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2075 ESB_ST_SEQ_INIT |
2076 ESB_ST_COMPLETE));
2077 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2078 lport->tt.frame_send(lport, fp);
2079 out:
2080 fc_exch_release(ep);
2081 return;
2083 rel:
2084 fc_exch_release(ep);
2085 reject:
2086 fc_seq_ls_rjt(rfp, reason, explan);
2090 * fc_exch_rrq_resp() - Handler for RRQ responses
2091 * @sp: The sequence that the RRQ is on
2092 * @fp: The RRQ frame
2093 * @arg: The exchange that the RRQ is on
2095 * TODO: fix error handler.
2097 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2099 struct fc_exch *aborted_ep = arg;
2100 unsigned int op;
2102 if (IS_ERR(fp)) {
2103 int err = PTR_ERR(fp);
2105 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2106 goto cleanup;
2107 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2108 "frame error %d\n", err);
2109 return;
2112 op = fc_frame_payload_op(fp);
2113 fc_frame_free(fp);
2115 switch (op) {
2116 case ELS_LS_RJT:
2117 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2118 /* fall through */
2119 case ELS_LS_ACC:
2120 goto cleanup;
2121 default:
2122 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2123 op);
2124 return;
2127 cleanup:
2128 fc_exch_done(&aborted_ep->seq);
2129 /* drop hold for rec qual */
2130 fc_exch_release(aborted_ep);
2135 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2136 * @lport: The local port to send the frame on
2137 * @fp: The frame to be sent
2138 * @resp: The response handler for this request
2139 * @destructor: The destructor for the exchange
2140 * @arg: The argument to be passed to the response handler
2141 * @timer_msec: The timeout period for the exchange
2143 * The exchange response handler is set in this routine to resp()
2144 * function pointer. It can be called in two scenarios: if a timeout
2145 * occurs or if a response frame is received for the exchange. The
2146 * fc_frame pointer in response handler will also indicate timeout
2147 * as error using IS_ERR related macros.
2149 * The exchange destructor handler is also set in this routine.
2150 * The destructor handler is invoked by EM layer when exchange
2151 * is about to free, this can be used by caller to free its
2152 * resources along with exchange free.
2154 * The arg is passed back to resp and destructor handler.
2156 * The timeout value (in msec) for an exchange is set if non zero
2157 * timer_msec argument is specified. The timer is canceled when
2158 * it fires or when the exchange is done. The exchange timeout handler
2159 * is registered by EM layer.
2161 * The frame pointer with some of the header's fields must be
2162 * filled before calling this routine, those fields are:
2164 * - routing control
2165 * - FC port did
2166 * - FC port sid
2167 * - FC header type
2168 * - frame control
2169 * - parameter or relative offset
2171 struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2172 struct fc_frame *fp,
2173 void (*resp)(struct fc_seq *,
2174 struct fc_frame *fp,
2175 void *arg),
2176 void (*destructor)(struct fc_seq *, void *),
2177 void *arg, u32 timer_msec)
2179 struct fc_exch *ep;
2180 struct fc_seq *sp = NULL;
2181 struct fc_frame_header *fh;
2182 struct fc_fcp_pkt *fsp = NULL;
2183 int rc = 1;
2185 ep = fc_exch_alloc(lport, fp);
2186 if (!ep) {
2187 fc_frame_free(fp);
2188 return NULL;
2190 ep->esb_stat |= ESB_ST_SEQ_INIT;
2191 fh = fc_frame_header_get(fp);
2192 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2193 ep->resp = resp;
2194 ep->destructor = destructor;
2195 ep->arg = arg;
2196 ep->r_a_tov = lport->r_a_tov;
2197 ep->lp = lport;
2198 sp = &ep->seq;
2200 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2201 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2202 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2203 sp->cnt++;
2205 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2206 fsp = fr_fsp(fp);
2207 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2210 if (unlikely(lport->tt.frame_send(lport, fp)))
2211 goto err;
2213 if (timer_msec)
2214 fc_exch_timer_set_locked(ep, timer_msec);
2215 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2217 if (ep->f_ctl & FC_FC_SEQ_INIT)
2218 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2219 spin_unlock_bh(&ep->ex_lock);
2220 return sp;
2221 err:
2222 if (fsp)
2223 fc_fcp_ddp_done(fsp);
2224 rc = fc_exch_done_locked(ep);
2225 spin_unlock_bh(&ep->ex_lock);
2226 if (!rc)
2227 fc_exch_delete(ep);
2228 return NULL;
2230 EXPORT_SYMBOL(fc_exch_seq_send);
2233 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2234 * @ep: The exchange to send the RRQ on
2236 * This tells the remote port to stop blocking the use of
2237 * the exchange and the seq_cnt range.
2239 static void fc_exch_rrq(struct fc_exch *ep)
2241 struct fc_lport *lport;
2242 struct fc_els_rrq *rrq;
2243 struct fc_frame *fp;
2244 u32 did;
2246 lport = ep->lp;
2248 fp = fc_frame_alloc(lport, sizeof(*rrq));
2249 if (!fp)
2250 goto retry;
2252 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2253 memset(rrq, 0, sizeof(*rrq));
2254 rrq->rrq_cmd = ELS_RRQ;
2255 hton24(rrq->rrq_s_id, ep->sid);
2256 rrq->rrq_ox_id = htons(ep->oxid);
2257 rrq->rrq_rx_id = htons(ep->rxid);
2259 did = ep->did;
2260 if (ep->esb_stat & ESB_ST_RESP)
2261 did = ep->sid;
2263 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2264 lport->port_id, FC_TYPE_ELS,
2265 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2267 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2268 lport->e_d_tov))
2269 return;
2271 retry:
2272 FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2273 spin_lock_bh(&ep->ex_lock);
2274 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2275 spin_unlock_bh(&ep->ex_lock);
2276 /* drop hold for rec qual */
2277 fc_exch_release(ep);
2278 return;
2280 ep->esb_stat |= ESB_ST_REC_QUAL;
2281 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2282 spin_unlock_bh(&ep->ex_lock);
2286 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2287 * @fp: The RRQ frame, not freed here.
2289 static void fc_exch_els_rrq(struct fc_frame *fp)
2291 struct fc_lport *lport;
2292 struct fc_exch *ep = NULL; /* request or subject exchange */
2293 struct fc_els_rrq *rp;
2294 u32 sid;
2295 u16 xid;
2296 enum fc_els_rjt_explan explan;
2298 lport = fr_dev(fp);
2299 rp = fc_frame_payload_get(fp, sizeof(*rp));
2300 explan = ELS_EXPL_INV_LEN;
2301 if (!rp)
2302 goto reject;
2305 * lookup subject exchange.
2307 sid = ntoh24(rp->rrq_s_id); /* subject source */
2308 xid = fc_host_port_id(lport->host) == sid ?
2309 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2310 ep = fc_exch_lookup(lport, xid);
2311 explan = ELS_EXPL_OXID_RXID;
2312 if (!ep)
2313 goto reject;
2314 spin_lock_bh(&ep->ex_lock);
2315 FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2316 sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2317 if (ep->oxid != ntohs(rp->rrq_ox_id))
2318 goto unlock_reject;
2319 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2320 ep->rxid != FC_XID_UNKNOWN)
2321 goto unlock_reject;
2322 explan = ELS_EXPL_SID;
2323 if (ep->sid != sid)
2324 goto unlock_reject;
2327 * Clear Recovery Qualifier state, and cancel timer if complete.
2329 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2330 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2331 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2333 if (ep->esb_stat & ESB_ST_COMPLETE)
2334 fc_exch_timer_cancel(ep);
2336 spin_unlock_bh(&ep->ex_lock);
2339 * Send LS_ACC.
2341 fc_seq_ls_acc(fp);
2342 goto out;
2344 unlock_reject:
2345 spin_unlock_bh(&ep->ex_lock);
2346 reject:
2347 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2348 out:
2349 if (ep)
2350 fc_exch_release(ep); /* drop hold from fc_exch_find */
2354 * fc_exch_update_stats() - update exches stats to lport
2355 * @lport: The local port to update exchange manager stats
2357 void fc_exch_update_stats(struct fc_lport *lport)
2359 struct fc_host_statistics *st;
2360 struct fc_exch_mgr_anchor *ema;
2361 struct fc_exch_mgr *mp;
2363 st = &lport->host_stats;
2365 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2366 mp = ema->mp;
2367 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2368 st->fc_no_free_exch_xid +=
2369 atomic_read(&mp->stats.no_free_exch_xid);
2370 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2371 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2372 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2373 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2376 EXPORT_SYMBOL(fc_exch_update_stats);
2379 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2380 * @lport: The local port to add the exchange manager to
2381 * @mp: The exchange manager to be added to the local port
2382 * @match: The match routine that indicates when this EM should be used
2384 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2385 struct fc_exch_mgr *mp,
2386 bool (*match)(struct fc_frame *))
2388 struct fc_exch_mgr_anchor *ema;
2390 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2391 if (!ema)
2392 return ema;
2394 ema->mp = mp;
2395 ema->match = match;
2396 /* add EM anchor to EM anchors list */
2397 list_add_tail(&ema->ema_list, &lport->ema_list);
2398 kref_get(&mp->kref);
2399 return ema;
2401 EXPORT_SYMBOL(fc_exch_mgr_add);
2404 * fc_exch_mgr_destroy() - Destroy an exchange manager
2405 * @kref: The reference to the EM to be destroyed
2407 static void fc_exch_mgr_destroy(struct kref *kref)
2409 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2411 mempool_destroy(mp->ep_pool);
2412 free_percpu(mp->pool);
2413 kfree(mp);
2417 * fc_exch_mgr_del() - Delete an EM from a local port's list
2418 * @ema: The exchange manager anchor identifying the EM to be deleted
2420 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2422 /* remove EM anchor from EM anchors list */
2423 list_del(&ema->ema_list);
2424 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2425 kfree(ema);
2427 EXPORT_SYMBOL(fc_exch_mgr_del);
2430 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2431 * @src: Source lport to clone exchange managers from
2432 * @dst: New lport that takes references to all the exchange managers
2434 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2436 struct fc_exch_mgr_anchor *ema, *tmp;
2438 list_for_each_entry(ema, &src->ema_list, ema_list) {
2439 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2440 goto err;
2442 return 0;
2443 err:
2444 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2445 fc_exch_mgr_del(ema);
2446 return -ENOMEM;
2448 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2451 * fc_exch_mgr_alloc() - Allocate an exchange manager
2452 * @lport: The local port that the new EM will be associated with
2453 * @class: The default FC class for new exchanges
2454 * @min_xid: The minimum XID for exchanges from the new EM
2455 * @max_xid: The maximum XID for exchanges from the new EM
2456 * @match: The match routine for the new EM
2458 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2459 enum fc_class class,
2460 u16 min_xid, u16 max_xid,
2461 bool (*match)(struct fc_frame *))
2463 struct fc_exch_mgr *mp;
2464 u16 pool_exch_range;
2465 size_t pool_size;
2466 unsigned int cpu;
2467 struct fc_exch_pool *pool;
2469 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2470 (min_xid & fc_cpu_mask) != 0) {
2471 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2472 min_xid, max_xid);
2473 return NULL;
2477 * allocate memory for EM
2479 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2480 if (!mp)
2481 return NULL;
2483 mp->class = class;
2484 mp->lport = lport;
2485 /* adjust em exch xid range for offload */
2486 mp->min_xid = min_xid;
2488 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2489 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2490 sizeof(struct fc_exch *);
2491 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2492 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2493 min_xid - 1;
2494 } else {
2495 mp->max_xid = max_xid;
2496 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2497 (fc_cpu_mask + 1);
2500 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2501 if (!mp->ep_pool)
2502 goto free_mp;
2505 * Setup per cpu exch pool with entire exchange id range equally
2506 * divided across all cpus. The exch pointers array memory is
2507 * allocated for exch range per pool.
2509 mp->pool_max_index = pool_exch_range - 1;
2512 * Allocate and initialize per cpu exch pool
2514 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2515 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2516 if (!mp->pool)
2517 goto free_mempool;
2518 for_each_possible_cpu(cpu) {
2519 pool = per_cpu_ptr(mp->pool, cpu);
2520 pool->next_index = 0;
2521 pool->left = FC_XID_UNKNOWN;
2522 pool->right = FC_XID_UNKNOWN;
2523 spin_lock_init(&pool->lock);
2524 INIT_LIST_HEAD(&pool->ex_list);
2527 kref_init(&mp->kref);
2528 if (!fc_exch_mgr_add(lport, mp, match)) {
2529 free_percpu(mp->pool);
2530 goto free_mempool;
2534 * Above kref_init() sets mp->kref to 1 and then
2535 * call to fc_exch_mgr_add incremented mp->kref again,
2536 * so adjust that extra increment.
2538 kref_put(&mp->kref, fc_exch_mgr_destroy);
2539 return mp;
2541 free_mempool:
2542 mempool_destroy(mp->ep_pool);
2543 free_mp:
2544 kfree(mp);
2545 return NULL;
2547 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2550 * fc_exch_mgr_free() - Free all exchange managers on a local port
2551 * @lport: The local port whose EMs are to be freed
2553 void fc_exch_mgr_free(struct fc_lport *lport)
2555 struct fc_exch_mgr_anchor *ema, *next;
2557 flush_workqueue(fc_exch_workqueue);
2558 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2559 fc_exch_mgr_del(ema);
2561 EXPORT_SYMBOL(fc_exch_mgr_free);
2564 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2565 * upon 'xid'.
2566 * @f_ctl: f_ctl
2567 * @lport: The local port the frame was received on
2568 * @fh: The received frame header
2570 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2571 struct fc_lport *lport,
2572 struct fc_frame_header *fh)
2574 struct fc_exch_mgr_anchor *ema;
2575 u16 xid;
2577 if (f_ctl & FC_FC_EX_CTX)
2578 xid = ntohs(fh->fh_ox_id);
2579 else {
2580 xid = ntohs(fh->fh_rx_id);
2581 if (xid == FC_XID_UNKNOWN)
2582 return list_entry(lport->ema_list.prev,
2583 typeof(*ema), ema_list);
2586 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2587 if ((xid >= ema->mp->min_xid) &&
2588 (xid <= ema->mp->max_xid))
2589 return ema;
2591 return NULL;
2594 * fc_exch_recv() - Handler for received frames
2595 * @lport: The local port the frame was received on
2596 * @fp: The received frame
2598 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2600 struct fc_frame_header *fh = fc_frame_header_get(fp);
2601 struct fc_exch_mgr_anchor *ema;
2602 u32 f_ctl;
2604 /* lport lock ? */
2605 if (!lport || lport->state == LPORT_ST_DISABLED) {
2606 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2607 "has not been initialized correctly\n");
2608 fc_frame_free(fp);
2609 return;
2612 f_ctl = ntoh24(fh->fh_f_ctl);
2613 ema = fc_find_ema(f_ctl, lport, fh);
2614 if (!ema) {
2615 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2616 "fc_ctl <0x%x>, xid <0x%x>\n",
2617 f_ctl,
2618 (f_ctl & FC_FC_EX_CTX) ?
2619 ntohs(fh->fh_ox_id) :
2620 ntohs(fh->fh_rx_id));
2621 fc_frame_free(fp);
2622 return;
2626 * If frame is marked invalid, just drop it.
2628 switch (fr_eof(fp)) {
2629 case FC_EOF_T:
2630 if (f_ctl & FC_FC_END_SEQ)
2631 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2632 /* fall through */
2633 case FC_EOF_N:
2634 if (fh->fh_type == FC_TYPE_BLS)
2635 fc_exch_recv_bls(ema->mp, fp);
2636 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2637 FC_FC_EX_CTX)
2638 fc_exch_recv_seq_resp(ema->mp, fp);
2639 else if (f_ctl & FC_FC_SEQ_CTX)
2640 fc_exch_recv_resp(ema->mp, fp);
2641 else /* no EX_CTX and no SEQ_CTX */
2642 fc_exch_recv_req(lport, ema->mp, fp);
2643 break;
2644 default:
2645 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2646 fr_eof(fp));
2647 fc_frame_free(fp);
2650 EXPORT_SYMBOL(fc_exch_recv);
2653 * fc_exch_init() - Initialize the exchange layer for a local port
2654 * @lport: The local port to initialize the exchange layer for
2656 int fc_exch_init(struct fc_lport *lport)
2658 if (!lport->tt.exch_mgr_reset)
2659 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2661 return 0;
2663 EXPORT_SYMBOL(fc_exch_init);
2666 * fc_setup_exch_mgr() - Setup an exchange manager
2668 int fc_setup_exch_mgr(void)
2670 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2671 0, SLAB_HWCACHE_ALIGN, NULL);
2672 if (!fc_em_cachep)
2673 return -ENOMEM;
2676 * Initialize fc_cpu_mask and fc_cpu_order. The
2677 * fc_cpu_mask is set for nr_cpu_ids rounded up
2678 * to order of 2's * power and order is stored
2679 * in fc_cpu_order as this is later required in
2680 * mapping between an exch id and exch array index
2681 * in per cpu exch pool.
2683 * This round up is required to align fc_cpu_mask
2684 * to exchange id's lower bits such that all incoming
2685 * frames of an exchange gets delivered to the same
2686 * cpu on which exchange originated by simple bitwise
2687 * AND operation between fc_cpu_mask and exchange id.
2689 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2690 fc_cpu_mask = (1 << fc_cpu_order) - 1;
2692 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2693 if (!fc_exch_workqueue)
2694 goto err;
2695 return 0;
2696 err:
2697 kmem_cache_destroy(fc_em_cachep);
2698 return -ENOMEM;
2702 * fc_destroy_exch_mgr() - Destroy an exchange manager
2704 void fc_destroy_exch_mgr(void)
2706 destroy_workqueue(fc_exch_workqueue);
2707 kmem_cache_destroy(fc_em_cachep);