4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode
*, struct file
*);
51 static int nfs_closedir(struct inode
*, struct file
*);
52 static int nfs_readdir(struct file
*, struct dir_context
*);
53 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
54 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
55 static void nfs_readdir_clear_array(struct page
*);
57 const struct file_operations nfs_dir_operations
= {
58 .llseek
= nfs_llseek_dir
,
59 .read
= generic_read_dir
,
60 .iterate
= nfs_readdir
,
62 .release
= nfs_closedir
,
63 .fsync
= nfs_fsync_dir
,
66 const struct address_space_operations nfs_dir_aops
= {
67 .freepage
= nfs_readdir_clear_array
,
70 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, struct rpc_cred
*cred
)
72 struct nfs_open_dir_context
*ctx
;
73 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
76 ctx
->attr_gencount
= NFS_I(dir
)->attr_gencount
;
79 ctx
->cred
= get_rpccred(cred
);
82 return ERR_PTR(-ENOMEM
);
85 static void put_nfs_open_dir_context(struct nfs_open_dir_context
*ctx
)
87 put_rpccred(ctx
->cred
);
95 nfs_opendir(struct inode
*inode
, struct file
*filp
)
98 struct nfs_open_dir_context
*ctx
;
99 struct rpc_cred
*cred
;
101 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
103 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
105 cred
= rpc_lookup_cred();
107 return PTR_ERR(cred
);
108 ctx
= alloc_nfs_open_dir_context(inode
, cred
);
113 filp
->private_data
= ctx
;
114 if (filp
->f_path
.dentry
== filp
->f_path
.mnt
->mnt_root
) {
115 /* This is a mountpoint, so d_revalidate will never
116 * have been called, so we need to refresh the
117 * inode (for close-open consistency) ourselves.
119 __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
127 nfs_closedir(struct inode
*inode
, struct file
*filp
)
129 put_nfs_open_dir_context(filp
->private_data
);
133 struct nfs_cache_array_entry
{
137 unsigned char d_type
;
140 struct nfs_cache_array
{
144 struct nfs_cache_array_entry array
[0];
147 typedef int (*decode_dirent_t
)(struct xdr_stream
*, struct nfs_entry
*, int);
151 struct dir_context
*ctx
;
152 unsigned long page_index
;
155 loff_t current_index
;
156 decode_dirent_t decode
;
158 unsigned long timestamp
;
159 unsigned long gencount
;
160 unsigned int cache_entry_index
;
163 } nfs_readdir_descriptor_t
;
166 * The caller is responsible for calling nfs_readdir_release_array(page)
169 struct nfs_cache_array
*nfs_readdir_get_array(struct page
*page
)
173 return ERR_PTR(-EIO
);
176 return ERR_PTR(-ENOMEM
);
181 void nfs_readdir_release_array(struct page
*page
)
187 * we are freeing strings created by nfs_add_to_readdir_array()
190 void nfs_readdir_clear_array(struct page
*page
)
192 struct nfs_cache_array
*array
;
195 array
= kmap_atomic(page
);
196 for (i
= 0; i
< array
->size
; i
++)
197 kfree(array
->array
[i
].string
.name
);
198 kunmap_atomic(array
);
202 * the caller is responsible for freeing qstr.name
203 * when called by nfs_readdir_add_to_array, the strings will be freed in
204 * nfs_clear_readdir_array()
207 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
210 string
->name
= kmemdup(name
, len
, GFP_KERNEL
);
211 if (string
->name
== NULL
)
214 * Avoid a kmemleak false positive. The pointer to the name is stored
215 * in a page cache page which kmemleak does not scan.
217 kmemleak_not_leak(string
->name
);
218 string
->hash
= full_name_hash(name
, len
);
223 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
225 struct nfs_cache_array
*array
= nfs_readdir_get_array(page
);
226 struct nfs_cache_array_entry
*cache_entry
;
230 return PTR_ERR(array
);
232 cache_entry
= &array
->array
[array
->size
];
234 /* Check that this entry lies within the page bounds */
236 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
239 cache_entry
->cookie
= entry
->prev_cookie
;
240 cache_entry
->ino
= entry
->ino
;
241 cache_entry
->d_type
= entry
->d_type
;
242 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
245 array
->last_cookie
= entry
->cookie
;
248 array
->eof_index
= array
->size
;
250 nfs_readdir_release_array(page
);
255 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
257 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
262 if (diff
>= array
->size
) {
263 if (array
->eof_index
>= 0)
268 index
= (unsigned int)diff
;
269 *desc
->dir_cookie
= array
->array
[index
].cookie
;
270 desc
->cache_entry_index
= index
;
278 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
282 int status
= -EAGAIN
;
284 for (i
= 0; i
< array
->size
; i
++) {
285 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
286 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
287 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
289 new_pos
= desc
->current_index
+ i
;
290 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
291 || (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))) {
293 ctx
->attr_gencount
= nfsi
->attr_gencount
;
294 } else if (new_pos
< desc
->ctx
->pos
) {
296 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
297 if (printk_ratelimit()) {
298 pr_notice("NFS: directory %pD2 contains a readdir loop."
299 "Please contact your server vendor. "
300 "The file: %s has duplicate cookie %llu\n",
302 array
->array
[i
].string
.name
,
308 ctx
->dup_cookie
= *desc
->dir_cookie
;
311 desc
->ctx
->pos
= new_pos
;
312 desc
->cache_entry_index
= i
;
316 if (array
->eof_index
>= 0) {
317 status
= -EBADCOOKIE
;
318 if (*desc
->dir_cookie
== array
->last_cookie
)
326 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
328 struct nfs_cache_array
*array
;
331 array
= nfs_readdir_get_array(desc
->page
);
333 status
= PTR_ERR(array
);
337 if (*desc
->dir_cookie
== 0)
338 status
= nfs_readdir_search_for_pos(array
, desc
);
340 status
= nfs_readdir_search_for_cookie(array
, desc
);
342 if (status
== -EAGAIN
) {
343 desc
->last_cookie
= array
->last_cookie
;
344 desc
->current_index
+= array
->size
;
347 nfs_readdir_release_array(desc
->page
);
352 /* Fill a page with xdr information before transferring to the cache page */
354 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
355 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
357 struct nfs_open_dir_context
*ctx
= file
->private_data
;
358 struct rpc_cred
*cred
= ctx
->cred
;
359 unsigned long timestamp
, gencount
;
364 gencount
= nfs_inc_attr_generation_counter();
365 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, entry
->cookie
, pages
,
366 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
368 /* We requested READDIRPLUS, but the server doesn't grok it */
369 if (error
== -ENOTSUPP
&& desc
->plus
) {
370 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
371 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
377 desc
->timestamp
= timestamp
;
378 desc
->gencount
= gencount
;
383 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
384 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
388 error
= desc
->decode(xdr
, entry
, desc
->plus
);
391 entry
->fattr
->time_start
= desc
->timestamp
;
392 entry
->fattr
->gencount
= desc
->gencount
;
397 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
399 if (dentry
->d_inode
== NULL
)
401 if (nfs_compare_fh(entry
->fh
, NFS_FH(dentry
->d_inode
)) != 0)
409 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
411 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
413 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
421 * This function is called by the lookup code to request the use of
422 * readdirplus to accelerate any future lookups in the same
426 void nfs_advise_use_readdirplus(struct inode
*dir
)
428 set_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
);
432 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
)
434 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
435 struct dentry
*dentry
;
436 struct dentry
*alias
;
437 struct inode
*dir
= parent
->d_inode
;
441 if (filename
.name
[0] == '.') {
442 if (filename
.len
== 1)
444 if (filename
.len
== 2 && filename
.name
[1] == '.')
447 filename
.hash
= full_name_hash(filename
.name
, filename
.len
);
449 dentry
= d_lookup(parent
, &filename
);
450 if (dentry
!= NULL
) {
451 if (nfs_same_file(dentry
, entry
)) {
452 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
453 status
= nfs_refresh_inode(dentry
->d_inode
, entry
->fattr
);
455 nfs_setsecurity(dentry
->d_inode
, entry
->fattr
, entry
->label
);
458 if (d_invalidate(dentry
) != 0)
464 dentry
= d_alloc(parent
, &filename
);
468 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
472 alias
= d_materialise_unique(dentry
, inode
);
476 nfs_set_verifier(alias
, nfs_save_change_attribute(dir
));
479 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
485 /* Perform conversion from xdr to cache array */
487 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
488 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
490 struct xdr_stream stream
;
492 struct page
*scratch
;
493 struct nfs_cache_array
*array
;
494 unsigned int count
= 0;
497 scratch
= alloc_page(GFP_KERNEL
);
501 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
502 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
505 status
= xdr_decode(desc
, entry
, &stream
);
507 if (status
== -EAGAIN
)
515 nfs_prime_dcache(desc
->file
->f_path
.dentry
, entry
);
517 status
= nfs_readdir_add_to_array(entry
, page
);
520 } while (!entry
->eof
);
522 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
523 array
= nfs_readdir_get_array(page
);
524 if (!IS_ERR(array
)) {
525 array
->eof_index
= array
->size
;
527 nfs_readdir_release_array(page
);
529 status
= PTR_ERR(array
);
537 void nfs_readdir_free_pagearray(struct page
**pages
, unsigned int npages
)
540 for (i
= 0; i
< npages
; i
++)
545 void nfs_readdir_free_large_page(void *ptr
, struct page
**pages
,
548 nfs_readdir_free_pagearray(pages
, npages
);
552 * nfs_readdir_large_page will allocate pages that must be freed with a call
553 * to nfs_readdir_free_large_page
556 int nfs_readdir_large_page(struct page
**pages
, unsigned int npages
)
560 for (i
= 0; i
< npages
; i
++) {
561 struct page
*page
= alloc_page(GFP_KERNEL
);
569 nfs_readdir_free_pagearray(pages
, i
);
574 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
576 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
577 void *pages_ptr
= NULL
;
578 struct nfs_entry entry
;
579 struct file
*file
= desc
->file
;
580 struct nfs_cache_array
*array
;
581 int status
= -ENOMEM
;
582 unsigned int array_size
= ARRAY_SIZE(pages
);
584 entry
.prev_cookie
= 0;
585 entry
.cookie
= desc
->last_cookie
;
587 entry
.fh
= nfs_alloc_fhandle();
588 entry
.fattr
= nfs_alloc_fattr();
589 entry
.server
= NFS_SERVER(inode
);
590 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
593 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
594 if (IS_ERR(entry
.label
)) {
595 status
= PTR_ERR(entry
.label
);
599 array
= nfs_readdir_get_array(page
);
601 status
= PTR_ERR(array
);
604 memset(array
, 0, sizeof(struct nfs_cache_array
));
605 array
->eof_index
= -1;
607 status
= nfs_readdir_large_page(pages
, array_size
);
609 goto out_release_array
;
612 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
617 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
619 if (status
== -ENOSPC
)
623 } while (array
->eof_index
< 0);
625 nfs_readdir_free_large_page(pages_ptr
, pages
, array_size
);
627 nfs_readdir_release_array(page
);
629 nfs4_label_free(entry
.label
);
631 nfs_free_fattr(entry
.fattr
);
632 nfs_free_fhandle(entry
.fh
);
637 * Now we cache directories properly, by converting xdr information
638 * to an array that can be used for lookups later. This results in
639 * fewer cache pages, since we can store more information on each page.
640 * We only need to convert from xdr once so future lookups are much simpler
643 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
* page
)
645 struct inode
*inode
= file_inode(desc
->file
);
648 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
651 SetPageUptodate(page
);
653 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
654 /* Should never happen */
655 nfs_zap_mapping(inode
, inode
->i_mapping
);
665 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
667 if (!desc
->page
->mapping
)
668 nfs_readdir_clear_array(desc
->page
);
669 page_cache_release(desc
->page
);
674 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
676 return read_cache_page(file_inode(desc
->file
)->i_mapping
,
677 desc
->page_index
, (filler_t
*)nfs_readdir_filler
, desc
);
681 * Returns 0 if desc->dir_cookie was found on page desc->page_index
684 int find_cache_page(nfs_readdir_descriptor_t
*desc
)
688 desc
->page
= get_cache_page(desc
);
689 if (IS_ERR(desc
->page
))
690 return PTR_ERR(desc
->page
);
692 res
= nfs_readdir_search_array(desc
);
694 cache_page_release(desc
);
698 /* Search for desc->dir_cookie from the beginning of the page cache */
700 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
704 if (desc
->page_index
== 0) {
705 desc
->current_index
= 0;
706 desc
->last_cookie
= 0;
709 res
= find_cache_page(desc
);
710 } while (res
== -EAGAIN
);
715 * Once we've found the start of the dirent within a page: fill 'er up...
718 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
720 struct file
*file
= desc
->file
;
723 struct nfs_cache_array
*array
= NULL
;
724 struct nfs_open_dir_context
*ctx
= file
->private_data
;
726 array
= nfs_readdir_get_array(desc
->page
);
728 res
= PTR_ERR(array
);
732 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
733 struct nfs_cache_array_entry
*ent
;
735 ent
= &array
->array
[i
];
736 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
737 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
742 if (i
< (array
->size
-1))
743 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
745 *desc
->dir_cookie
= array
->last_cookie
;
749 if (array
->eof_index
>= 0)
752 nfs_readdir_release_array(desc
->page
);
754 cache_page_release(desc
);
755 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
756 (unsigned long long)*desc
->dir_cookie
, res
);
761 * If we cannot find a cookie in our cache, we suspect that this is
762 * because it points to a deleted file, so we ask the server to return
763 * whatever it thinks is the next entry. We then feed this to filldir.
764 * If all goes well, we should then be able to find our way round the
765 * cache on the next call to readdir_search_pagecache();
767 * NOTE: we cannot add the anonymous page to the pagecache because
768 * the data it contains might not be page aligned. Besides,
769 * we should already have a complete representation of the
770 * directory in the page cache by the time we get here.
773 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
775 struct page
*page
= NULL
;
777 struct inode
*inode
= file_inode(desc
->file
);
778 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
780 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
781 (unsigned long long)*desc
->dir_cookie
);
783 page
= alloc_page(GFP_HIGHUSER
);
789 desc
->page_index
= 0;
790 desc
->last_cookie
= *desc
->dir_cookie
;
794 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
798 status
= nfs_do_filldir(desc
);
801 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
805 cache_page_release(desc
);
809 /* The file offset position represents the dirent entry number. A
810 last cookie cache takes care of the common case of reading the
813 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
815 struct dentry
*dentry
= file
->f_path
.dentry
;
816 struct inode
*inode
= dentry
->d_inode
;
817 nfs_readdir_descriptor_t my_desc
,
819 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
822 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
823 file
, (long long)ctx
->pos
);
824 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
827 * ctx->pos points to the dirent entry number.
828 * *desc->dir_cookie has the cookie for the next entry. We have
829 * to either find the entry with the appropriate number or
830 * revalidate the cookie.
832 memset(desc
, 0, sizeof(*desc
));
836 desc
->dir_cookie
= &dir_ctx
->dir_cookie
;
837 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
838 desc
->plus
= nfs_use_readdirplus(inode
, ctx
) ? 1 : 0;
840 nfs_block_sillyrename(dentry
);
841 if (ctx
->pos
== 0 || nfs_attribute_cache_expired(inode
))
842 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
847 res
= readdir_search_pagecache(desc
);
849 if (res
== -EBADCOOKIE
) {
851 /* This means either end of directory */
852 if (*desc
->dir_cookie
&& desc
->eof
== 0) {
853 /* Or that the server has 'lost' a cookie */
854 res
= uncached_readdir(desc
);
860 if (res
== -ETOOSMALL
&& desc
->plus
) {
861 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
862 nfs_zap_caches(inode
);
863 desc
->page_index
= 0;
871 res
= nfs_do_filldir(desc
);
874 } while (!desc
->eof
);
876 nfs_unblock_sillyrename(dentry
);
879 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
883 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
885 struct inode
*inode
= file_inode(filp
);
886 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
888 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
889 filp
, offset
, whence
);
891 mutex_lock(&inode
->i_mutex
);
894 offset
+= filp
->f_pos
;
902 if (offset
!= filp
->f_pos
) {
903 filp
->f_pos
= offset
;
904 dir_ctx
->dir_cookie
= 0;
908 mutex_unlock(&inode
->i_mutex
);
913 * All directory operations under NFS are synchronous, so fsync()
914 * is a dummy operation.
916 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
919 struct inode
*inode
= file_inode(filp
);
921 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
923 mutex_lock(&inode
->i_mutex
);
924 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
925 mutex_unlock(&inode
->i_mutex
);
930 * nfs_force_lookup_revalidate - Mark the directory as having changed
931 * @dir - pointer to directory inode
933 * This forces the revalidation code in nfs_lookup_revalidate() to do a
934 * full lookup on all child dentries of 'dir' whenever a change occurs
935 * on the server that might have invalidated our dcache.
937 * The caller should be holding dir->i_lock
939 void nfs_force_lookup_revalidate(struct inode
*dir
)
941 NFS_I(dir
)->cache_change_attribute
++;
943 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
946 * A check for whether or not the parent directory has changed.
947 * In the case it has, we assume that the dentries are untrustworthy
948 * and may need to be looked up again.
950 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
954 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
956 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
958 /* Revalidate nfsi->cache_change_attribute before we declare a match */
959 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
961 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
967 * Use intent information to check whether or not we're going to do
968 * an O_EXCL create using this path component.
970 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
972 if (NFS_PROTO(dir
)->version
== 2)
974 return flags
& LOOKUP_EXCL
;
978 * Inode and filehandle revalidation for lookups.
980 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
981 * or if the intent information indicates that we're about to open this
982 * particular file and the "nocto" mount flag is not set.
986 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
988 struct nfs_server
*server
= NFS_SERVER(inode
);
991 if (IS_AUTOMOUNT(inode
))
993 /* VFS wants an on-the-wire revalidation */
994 if (flags
& LOOKUP_REVAL
)
996 /* This is an open(2) */
997 if ((flags
& LOOKUP_OPEN
) && !(server
->flags
& NFS_MOUNT_NOCTO
) &&
998 (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
)))
1001 return (inode
->i_nlink
== 0) ? -ENOENT
: 0;
1003 ret
= __nfs_revalidate_inode(server
, inode
);
1010 * We judge how long we want to trust negative
1011 * dentries by looking at the parent inode mtime.
1013 * If parent mtime has changed, we revalidate, else we wait for a
1014 * period corresponding to the parent's attribute cache timeout value.
1017 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1020 /* Don't revalidate a negative dentry if we're creating a new file */
1021 if (flags
& LOOKUP_CREATE
)
1023 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1025 return !nfs_check_verifier(dir
, dentry
);
1029 * This is called every time the dcache has a lookup hit,
1030 * and we should check whether we can really trust that
1033 * NOTE! The hit can be a negative hit too, don't assume
1036 * If the parent directory is seen to have changed, we throw out the
1037 * cached dentry and do a new lookup.
1039 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1042 struct inode
*inode
;
1043 struct dentry
*parent
;
1044 struct nfs_fh
*fhandle
= NULL
;
1045 struct nfs_fattr
*fattr
= NULL
;
1046 struct nfs4_label
*label
= NULL
;
1049 if (flags
& LOOKUP_RCU
)
1052 parent
= dget_parent(dentry
);
1053 dir
= parent
->d_inode
;
1054 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1055 inode
= dentry
->d_inode
;
1058 if (nfs_neg_need_reval(dir
, dentry
, flags
))
1060 goto out_valid_noent
;
1063 if (is_bad_inode(inode
)) {
1064 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1069 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1070 goto out_set_verifier
;
1072 /* Force a full look up iff the parent directory has changed */
1073 if (!nfs_is_exclusive_create(dir
, flags
) && nfs_check_verifier(dir
, dentry
)) {
1074 if (nfs_lookup_verify_inode(inode
, flags
))
1075 goto out_zap_parent
;
1079 if (NFS_STALE(inode
))
1083 fhandle
= nfs_alloc_fhandle();
1084 fattr
= nfs_alloc_fattr();
1085 if (fhandle
== NULL
|| fattr
== NULL
)
1088 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
1092 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1093 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1094 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1097 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1099 if ((error
= nfs_refresh_inode(inode
, fattr
)) != 0)
1102 nfs_setsecurity(inode
, fattr
, label
);
1104 nfs_free_fattr(fattr
);
1105 nfs_free_fhandle(fhandle
);
1106 nfs4_label_free(label
);
1109 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1111 /* Success: notify readdir to use READDIRPLUS */
1112 nfs_advise_use_readdirplus(dir
);
1115 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1119 nfs_zap_caches(dir
);
1121 nfs_free_fattr(fattr
);
1122 nfs_free_fhandle(fhandle
);
1123 nfs4_label_free(label
);
1124 nfs_mark_for_revalidate(dir
);
1125 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1126 /* Purge readdir caches. */
1127 nfs_zap_caches(inode
);
1129 * We can't d_drop the root of a disconnected tree:
1130 * its d_hash is on the s_anon list and d_drop() would hide
1131 * it from shrink_dcache_for_unmount(), leading to busy
1132 * inodes on unmount and further oopses.
1134 if (IS_ROOT(dentry
))
1137 /* If we have submounts, don't unhash ! */
1138 if (check_submounts_and_drop(dentry
) != 0)
1142 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1146 nfs_free_fattr(fattr
);
1147 nfs_free_fhandle(fhandle
);
1148 nfs4_label_free(label
);
1150 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1151 __func__
, dentry
, error
);
1156 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1157 * when we don't really care about the dentry name. This is called when a
1158 * pathwalk ends on a dentry that was not found via a normal lookup in the
1159 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1161 * In this situation, we just want to verify that the inode itself is OK
1162 * since the dentry might have changed on the server.
1164 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1167 struct inode
*inode
= dentry
->d_inode
;
1170 * I believe we can only get a negative dentry here in the case of a
1171 * procfs-style symlink. Just assume it's correct for now, but we may
1172 * eventually need to do something more here.
1175 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1180 if (is_bad_inode(inode
)) {
1181 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1186 error
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1187 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1188 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1193 * This is called from dput() when d_count is going to 0.
1195 static int nfs_dentry_delete(const struct dentry
*dentry
)
1197 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1198 dentry
, dentry
->d_flags
);
1200 /* Unhash any dentry with a stale inode */
1201 if (dentry
->d_inode
!= NULL
&& NFS_STALE(dentry
->d_inode
))
1204 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1205 /* Unhash it, so that ->d_iput() would be called */
1208 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
1209 /* Unhash it, so that ancestors of killed async unlink
1210 * files will be cleaned up during umount */
1217 /* Ensure that we revalidate inode->i_nlink */
1218 static void nfs_drop_nlink(struct inode
*inode
)
1220 spin_lock(&inode
->i_lock
);
1221 /* drop the inode if we're reasonably sure this is the last link */
1222 if (inode
->i_nlink
== 1)
1224 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATTR
;
1225 spin_unlock(&inode
->i_lock
);
1229 * Called when the dentry loses inode.
1230 * We use it to clean up silly-renamed files.
1232 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1234 if (S_ISDIR(inode
->i_mode
))
1235 /* drop any readdir cache as it could easily be old */
1236 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1238 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1239 nfs_complete_unlink(dentry
, inode
);
1240 nfs_drop_nlink(inode
);
1245 static void nfs_d_release(struct dentry
*dentry
)
1247 /* free cached devname value, if it survived that far */
1248 if (unlikely(dentry
->d_fsdata
)) {
1249 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1252 kfree(dentry
->d_fsdata
);
1256 const struct dentry_operations nfs_dentry_operations
= {
1257 .d_revalidate
= nfs_lookup_revalidate
,
1258 .d_weak_revalidate
= nfs_weak_revalidate
,
1259 .d_delete
= nfs_dentry_delete
,
1260 .d_iput
= nfs_dentry_iput
,
1261 .d_automount
= nfs_d_automount
,
1262 .d_release
= nfs_d_release
,
1264 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1266 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1269 struct dentry
*parent
;
1270 struct inode
*inode
= NULL
;
1271 struct nfs_fh
*fhandle
= NULL
;
1272 struct nfs_fattr
*fattr
= NULL
;
1273 struct nfs4_label
*label
= NULL
;
1276 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1277 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1279 res
= ERR_PTR(-ENAMETOOLONG
);
1280 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1284 * If we're doing an exclusive create, optimize away the lookup
1285 * but don't hash the dentry.
1287 if (nfs_is_exclusive_create(dir
, flags
)) {
1288 d_instantiate(dentry
, NULL
);
1293 res
= ERR_PTR(-ENOMEM
);
1294 fhandle
= nfs_alloc_fhandle();
1295 fattr
= nfs_alloc_fattr();
1296 if (fhandle
== NULL
|| fattr
== NULL
)
1299 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1303 parent
= dentry
->d_parent
;
1304 /* Protect against concurrent sillydeletes */
1305 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1306 nfs_block_sillyrename(parent
);
1307 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1308 if (error
== -ENOENT
)
1311 res
= ERR_PTR(error
);
1312 goto out_unblock_sillyrename
;
1314 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1315 res
= ERR_CAST(inode
);
1317 goto out_unblock_sillyrename
;
1319 /* Success: notify readdir to use READDIRPLUS */
1320 nfs_advise_use_readdirplus(dir
);
1323 res
= d_materialise_unique(dentry
, inode
);
1326 goto out_unblock_sillyrename
;
1329 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1330 out_unblock_sillyrename
:
1331 nfs_unblock_sillyrename(parent
);
1332 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1333 nfs4_label_free(label
);
1335 nfs_free_fattr(fattr
);
1336 nfs_free_fhandle(fhandle
);
1339 EXPORT_SYMBOL_GPL(nfs_lookup
);
1341 #if IS_ENABLED(CONFIG_NFS_V4)
1342 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1344 const struct dentry_operations nfs4_dentry_operations
= {
1345 .d_revalidate
= nfs4_lookup_revalidate
,
1346 .d_delete
= nfs_dentry_delete
,
1347 .d_iput
= nfs_dentry_iput
,
1348 .d_automount
= nfs_d_automount
,
1349 .d_release
= nfs_d_release
,
1351 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1353 static fmode_t
flags_to_mode(int flags
)
1355 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1356 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1358 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1363 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
)
1365 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
));
1368 static int do_open(struct inode
*inode
, struct file
*filp
)
1370 nfs_fscache_open_file(inode
, filp
);
1374 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1375 struct dentry
*dentry
,
1376 struct file
*file
, unsigned open_flags
,
1381 if ((open_flags
& (O_CREAT
| O_EXCL
)) == (O_CREAT
| O_EXCL
))
1382 *opened
|= FILE_CREATED
;
1384 err
= finish_open(file
, dentry
, do_open
, opened
);
1387 nfs_file_set_open_context(file
, ctx
);
1393 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1394 struct file
*file
, unsigned open_flags
,
1395 umode_t mode
, int *opened
)
1397 struct nfs_open_context
*ctx
;
1399 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1400 struct inode
*inode
;
1401 unsigned int lookup_flags
= 0;
1404 /* Expect a negative dentry */
1405 BUG_ON(dentry
->d_inode
);
1407 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1408 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1410 err
= nfs_check_flags(open_flags
);
1414 /* NFS only supports OPEN on regular files */
1415 if ((open_flags
& O_DIRECTORY
)) {
1416 if (!d_unhashed(dentry
)) {
1418 * Hashed negative dentry with O_DIRECTORY: dentry was
1419 * revalidated and is fine, no need to perform lookup
1424 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1428 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1429 return -ENAMETOOLONG
;
1431 if (open_flags
& O_CREAT
) {
1432 attr
.ia_valid
|= ATTR_MODE
;
1433 attr
.ia_mode
= mode
& ~current_umask();
1435 if (open_flags
& O_TRUNC
) {
1436 attr
.ia_valid
|= ATTR_SIZE
;
1440 ctx
= create_nfs_open_context(dentry
, open_flags
);
1445 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1446 nfs_block_sillyrename(dentry
->d_parent
);
1447 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, opened
);
1448 nfs_unblock_sillyrename(dentry
->d_parent
);
1449 if (IS_ERR(inode
)) {
1450 err
= PTR_ERR(inode
);
1451 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1452 put_nfs_open_context(ctx
);
1456 d_add(dentry
, NULL
);
1462 if (!(open_flags
& O_NOFOLLOW
))
1472 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
, opened
);
1473 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1474 put_nfs_open_context(ctx
);
1479 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1484 return finish_no_open(file
, res
);
1486 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1488 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1490 struct dentry
*parent
= NULL
;
1491 struct inode
*inode
;
1495 if (flags
& LOOKUP_RCU
)
1498 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1500 if (d_mountpoint(dentry
))
1502 if (NFS_SB(dentry
->d_sb
)->caps
& NFS_CAP_ATOMIC_OPEN_V1
)
1505 inode
= dentry
->d_inode
;
1506 parent
= dget_parent(dentry
);
1507 dir
= parent
->d_inode
;
1509 /* We can't create new files in nfs_open_revalidate(), so we
1510 * optimize away revalidation of negative dentries.
1512 if (inode
== NULL
) {
1513 if (!nfs_neg_need_reval(dir
, dentry
, flags
))
1518 /* NFS only supports OPEN on regular files */
1519 if (!S_ISREG(inode
->i_mode
))
1521 /* We cannot do exclusive creation on a positive dentry */
1522 if (flags
& LOOKUP_EXCL
)
1525 /* Let f_op->open() actually open (and revalidate) the file */
1535 return nfs_lookup_revalidate(dentry
, flags
);
1538 #endif /* CONFIG_NFSV4 */
1541 * Code common to create, mkdir, and mknod.
1543 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1544 struct nfs_fattr
*fattr
,
1545 struct nfs4_label
*label
)
1547 struct dentry
*parent
= dget_parent(dentry
);
1548 struct inode
*dir
= parent
->d_inode
;
1549 struct inode
*inode
;
1550 int error
= -EACCES
;
1554 /* We may have been initialized further down */
1555 if (dentry
->d_inode
)
1557 if (fhandle
->size
== 0) {
1558 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, NULL
);
1562 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1563 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1564 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1565 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
, NULL
);
1569 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1570 error
= PTR_ERR(inode
);
1573 d_add(dentry
, inode
);
1578 nfs_mark_for_revalidate(dir
);
1582 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1585 * Following a failed create operation, we drop the dentry rather
1586 * than retain a negative dentry. This avoids a problem in the event
1587 * that the operation succeeded on the server, but an error in the
1588 * reply path made it appear to have failed.
1590 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1591 umode_t mode
, bool excl
)
1594 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1597 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1598 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1600 attr
.ia_mode
= mode
;
1601 attr
.ia_valid
= ATTR_MODE
;
1603 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1604 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1605 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1613 EXPORT_SYMBOL_GPL(nfs_create
);
1616 * See comments for nfs_proc_create regarding failed operations.
1619 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1624 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1625 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1627 if (!new_valid_dev(rdev
))
1630 attr
.ia_mode
= mode
;
1631 attr
.ia_valid
= ATTR_MODE
;
1633 trace_nfs_mknod_enter(dir
, dentry
);
1634 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1635 trace_nfs_mknod_exit(dir
, dentry
, status
);
1643 EXPORT_SYMBOL_GPL(nfs_mknod
);
1646 * See comments for nfs_proc_create regarding failed operations.
1648 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1653 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1654 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1656 attr
.ia_valid
= ATTR_MODE
;
1657 attr
.ia_mode
= mode
| S_IFDIR
;
1659 trace_nfs_mkdir_enter(dir
, dentry
);
1660 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1661 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1669 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1671 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1673 if (dentry
->d_inode
!= NULL
&& !d_unhashed(dentry
))
1677 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1681 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1682 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1684 trace_nfs_rmdir_enter(dir
, dentry
);
1685 if (dentry
->d_inode
) {
1686 nfs_wait_on_sillyrename(dentry
);
1687 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1688 /* Ensure the VFS deletes this inode */
1691 clear_nlink(dentry
->d_inode
);
1694 nfs_dentry_handle_enoent(dentry
);
1697 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1698 trace_nfs_rmdir_exit(dir
, dentry
, error
);
1702 EXPORT_SYMBOL_GPL(nfs_rmdir
);
1705 * Remove a file after making sure there are no pending writes,
1706 * and after checking that the file has only one user.
1708 * We invalidate the attribute cache and free the inode prior to the operation
1709 * to avoid possible races if the server reuses the inode.
1711 static int nfs_safe_remove(struct dentry
*dentry
)
1713 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1714 struct inode
*inode
= dentry
->d_inode
;
1717 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
1719 /* If the dentry was sillyrenamed, we simply call d_delete() */
1720 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1725 trace_nfs_remove_enter(dir
, dentry
);
1726 if (inode
!= NULL
) {
1727 NFS_PROTO(inode
)->return_delegation(inode
);
1728 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1730 nfs_drop_nlink(inode
);
1732 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1733 if (error
== -ENOENT
)
1734 nfs_dentry_handle_enoent(dentry
);
1735 trace_nfs_remove_exit(dir
, dentry
, error
);
1740 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1741 * belongs to an active ".nfs..." file and we return -EBUSY.
1743 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1745 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1748 int need_rehash
= 0;
1750 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
1751 dir
->i_ino
, dentry
);
1753 trace_nfs_unlink_enter(dir
, dentry
);
1754 spin_lock(&dentry
->d_lock
);
1755 if (d_count(dentry
) > 1) {
1756 spin_unlock(&dentry
->d_lock
);
1757 /* Start asynchronous writeout of the inode */
1758 write_inode_now(dentry
->d_inode
, 0);
1759 error
= nfs_sillyrename(dir
, dentry
);
1762 if (!d_unhashed(dentry
)) {
1766 spin_unlock(&dentry
->d_lock
);
1767 error
= nfs_safe_remove(dentry
);
1768 if (!error
|| error
== -ENOENT
) {
1769 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1770 } else if (need_rehash
)
1773 trace_nfs_unlink_exit(dir
, dentry
, error
);
1776 EXPORT_SYMBOL_GPL(nfs_unlink
);
1779 * To create a symbolic link, most file systems instantiate a new inode,
1780 * add a page to it containing the path, then write it out to the disk
1781 * using prepare_write/commit_write.
1783 * Unfortunately the NFS client can't create the in-core inode first
1784 * because it needs a file handle to create an in-core inode (see
1785 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1786 * symlink request has completed on the server.
1788 * So instead we allocate a raw page, copy the symname into it, then do
1789 * the SYMLINK request with the page as the buffer. If it succeeds, we
1790 * now have a new file handle and can instantiate an in-core NFS inode
1791 * and move the raw page into its mapping.
1793 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1798 unsigned int pathlen
= strlen(symname
);
1801 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
1802 dir
->i_ino
, dentry
, symname
);
1804 if (pathlen
> PAGE_SIZE
)
1805 return -ENAMETOOLONG
;
1807 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1808 attr
.ia_valid
= ATTR_MODE
;
1810 page
= alloc_page(GFP_HIGHUSER
);
1814 kaddr
= kmap_atomic(page
);
1815 memcpy(kaddr
, symname
, pathlen
);
1816 if (pathlen
< PAGE_SIZE
)
1817 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1818 kunmap_atomic(kaddr
);
1820 trace_nfs_symlink_enter(dir
, dentry
);
1821 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1822 trace_nfs_symlink_exit(dir
, dentry
, error
);
1824 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1825 dir
->i_sb
->s_id
, dir
->i_ino
,
1826 dentry
, symname
, error
);
1833 * No big deal if we can't add this page to the page cache here.
1834 * READLINK will get the missing page from the server if needed.
1836 if (!add_to_page_cache_lru(page
, dentry
->d_inode
->i_mapping
, 0,
1838 SetPageUptodate(page
);
1845 EXPORT_SYMBOL_GPL(nfs_symlink
);
1848 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1850 struct inode
*inode
= old_dentry
->d_inode
;
1853 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
1854 old_dentry
, dentry
);
1856 trace_nfs_link_enter(inode
, dir
, dentry
);
1857 NFS_PROTO(inode
)->return_delegation(inode
);
1860 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1863 d_add(dentry
, inode
);
1865 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
1868 EXPORT_SYMBOL_GPL(nfs_link
);
1872 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1873 * different file handle for the same inode after a rename (e.g. when
1874 * moving to a different directory). A fail-safe method to do so would
1875 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1876 * rename the old file using the sillyrename stuff. This way, the original
1877 * file in old_dir will go away when the last process iput()s the inode.
1881 * It actually works quite well. One needs to have the possibility for
1882 * at least one ".nfs..." file in each directory the file ever gets
1883 * moved or linked to which happens automagically with the new
1884 * implementation that only depends on the dcache stuff instead of
1885 * using the inode layer
1887 * Unfortunately, things are a little more complicated than indicated
1888 * above. For a cross-directory move, we want to make sure we can get
1889 * rid of the old inode after the operation. This means there must be
1890 * no pending writes (if it's a file), and the use count must be 1.
1891 * If these conditions are met, we can drop the dentries before doing
1894 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1895 struct inode
*new_dir
, struct dentry
*new_dentry
)
1897 struct inode
*old_inode
= old_dentry
->d_inode
;
1898 struct inode
*new_inode
= new_dentry
->d_inode
;
1899 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1902 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1903 old_dentry
, new_dentry
,
1904 d_count(new_dentry
));
1906 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
1908 * For non-directories, check whether the target is busy and if so,
1909 * make a copy of the dentry and then do a silly-rename. If the
1910 * silly-rename succeeds, the copied dentry is hashed and becomes
1913 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
1915 * To prevent any new references to the target during the
1916 * rename, we unhash the dentry in advance.
1918 if (!d_unhashed(new_dentry
)) {
1920 rehash
= new_dentry
;
1923 if (d_count(new_dentry
) > 2) {
1926 /* copy the target dentry's name */
1927 dentry
= d_alloc(new_dentry
->d_parent
,
1928 &new_dentry
->d_name
);
1932 /* silly-rename the existing target ... */
1933 err
= nfs_sillyrename(new_dir
, new_dentry
);
1937 new_dentry
= dentry
;
1943 NFS_PROTO(old_inode
)->return_delegation(old_inode
);
1944 if (new_inode
!= NULL
)
1945 NFS_PROTO(new_inode
)->return_delegation(new_inode
);
1947 error
= NFS_PROTO(old_dir
)->rename(old_dir
, &old_dentry
->d_name
,
1948 new_dir
, &new_dentry
->d_name
);
1949 nfs_mark_for_revalidate(old_inode
);
1953 trace_nfs_rename_exit(old_dir
, old_dentry
,
1954 new_dir
, new_dentry
, error
);
1956 if (new_inode
!= NULL
)
1957 nfs_drop_nlink(new_inode
);
1958 d_move(old_dentry
, new_dentry
);
1959 nfs_set_verifier(new_dentry
,
1960 nfs_save_change_attribute(new_dir
));
1961 } else if (error
== -ENOENT
)
1962 nfs_dentry_handle_enoent(old_dentry
);
1964 /* new dentry created? */
1969 EXPORT_SYMBOL_GPL(nfs_rename
);
1971 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
1972 static LIST_HEAD(nfs_access_lru_list
);
1973 static atomic_long_t nfs_access_nr_entries
;
1975 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
1977 put_rpccred(entry
->cred
);
1979 smp_mb__before_atomic_dec();
1980 atomic_long_dec(&nfs_access_nr_entries
);
1981 smp_mb__after_atomic_dec();
1984 static void nfs_access_free_list(struct list_head
*head
)
1986 struct nfs_access_entry
*cache
;
1988 while (!list_empty(head
)) {
1989 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
1990 list_del(&cache
->lru
);
1991 nfs_access_free_entry(cache
);
1996 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
1999 struct nfs_inode
*nfsi
, *next
;
2000 struct nfs_access_entry
*cache
;
2001 int nr_to_scan
= sc
->nr_to_scan
;
2002 gfp_t gfp_mask
= sc
->gfp_mask
;
2005 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2008 spin_lock(&nfs_access_lru_lock
);
2009 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2010 struct inode
*inode
;
2012 if (nr_to_scan
-- == 0)
2014 inode
= &nfsi
->vfs_inode
;
2015 spin_lock(&inode
->i_lock
);
2016 if (list_empty(&nfsi
->access_cache_entry_lru
))
2017 goto remove_lru_entry
;
2018 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2019 struct nfs_access_entry
, lru
);
2020 list_move(&cache
->lru
, &head
);
2021 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2023 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2024 list_move_tail(&nfsi
->access_cache_inode_lru
,
2025 &nfs_access_lru_list
);
2028 list_del_init(&nfsi
->access_cache_inode_lru
);
2029 smp_mb__before_clear_bit();
2030 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2031 smp_mb__after_clear_bit();
2033 spin_unlock(&inode
->i_lock
);
2035 spin_unlock(&nfs_access_lru_lock
);
2036 nfs_access_free_list(&head
);
2041 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2043 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2046 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2048 struct rb_root
*root_node
= &nfsi
->access_cache
;
2050 struct nfs_access_entry
*entry
;
2052 /* Unhook entries from the cache */
2053 while ((n
= rb_first(root_node
)) != NULL
) {
2054 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2055 rb_erase(n
, root_node
);
2056 list_move(&entry
->lru
, head
);
2058 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2061 void nfs_access_zap_cache(struct inode
*inode
)
2065 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2067 /* Remove from global LRU init */
2068 spin_lock(&nfs_access_lru_lock
);
2069 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2070 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2072 spin_lock(&inode
->i_lock
);
2073 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2074 spin_unlock(&inode
->i_lock
);
2075 spin_unlock(&nfs_access_lru_lock
);
2076 nfs_access_free_list(&head
);
2078 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2080 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
2082 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2083 struct nfs_access_entry
*entry
;
2086 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2088 if (cred
< entry
->cred
)
2090 else if (cred
> entry
->cred
)
2098 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
2100 struct nfs_inode
*nfsi
= NFS_I(inode
);
2101 struct nfs_access_entry
*cache
;
2104 spin_lock(&inode
->i_lock
);
2105 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2107 cache
= nfs_access_search_rbtree(inode
, cred
);
2110 if (!nfs_have_delegated_attributes(inode
) &&
2111 !time_in_range_open(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
2113 res
->jiffies
= cache
->jiffies
;
2114 res
->cred
= cache
->cred
;
2115 res
->mask
= cache
->mask
;
2116 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2119 spin_unlock(&inode
->i_lock
);
2122 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2123 list_del(&cache
->lru
);
2124 spin_unlock(&inode
->i_lock
);
2125 nfs_access_free_entry(cache
);
2128 spin_unlock(&inode
->i_lock
);
2129 nfs_access_zap_cache(inode
);
2133 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2135 struct nfs_inode
*nfsi
= NFS_I(inode
);
2136 struct rb_root
*root_node
= &nfsi
->access_cache
;
2137 struct rb_node
**p
= &root_node
->rb_node
;
2138 struct rb_node
*parent
= NULL
;
2139 struct nfs_access_entry
*entry
;
2141 spin_lock(&inode
->i_lock
);
2142 while (*p
!= NULL
) {
2144 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2146 if (set
->cred
< entry
->cred
)
2147 p
= &parent
->rb_left
;
2148 else if (set
->cred
> entry
->cred
)
2149 p
= &parent
->rb_right
;
2153 rb_link_node(&set
->rb_node
, parent
, p
);
2154 rb_insert_color(&set
->rb_node
, root_node
);
2155 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2156 spin_unlock(&inode
->i_lock
);
2159 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2160 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2161 list_del(&entry
->lru
);
2162 spin_unlock(&inode
->i_lock
);
2163 nfs_access_free_entry(entry
);
2166 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2168 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2171 RB_CLEAR_NODE(&cache
->rb_node
);
2172 cache
->jiffies
= set
->jiffies
;
2173 cache
->cred
= get_rpccred(set
->cred
);
2174 cache
->mask
= set
->mask
;
2176 nfs_access_add_rbtree(inode
, cache
);
2178 /* Update accounting */
2179 smp_mb__before_atomic_inc();
2180 atomic_long_inc(&nfs_access_nr_entries
);
2181 smp_mb__after_atomic_inc();
2183 /* Add inode to global LRU list */
2184 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2185 spin_lock(&nfs_access_lru_lock
);
2186 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2187 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2188 &nfs_access_lru_list
);
2189 spin_unlock(&nfs_access_lru_lock
);
2192 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2194 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2197 if (access_result
& NFS4_ACCESS_READ
)
2198 entry
->mask
|= MAY_READ
;
2200 (NFS4_ACCESS_MODIFY
| NFS4_ACCESS_EXTEND
| NFS4_ACCESS_DELETE
))
2201 entry
->mask
|= MAY_WRITE
;
2202 if (access_result
& (NFS4_ACCESS_LOOKUP
|NFS4_ACCESS_EXECUTE
))
2203 entry
->mask
|= MAY_EXEC
;
2205 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2207 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
2209 struct nfs_access_entry cache
;
2212 trace_nfs_access_enter(inode
);
2214 status
= nfs_access_get_cached(inode
, cred
, &cache
);
2218 /* Be clever: ask server to check for all possible rights */
2219 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
2221 cache
.jiffies
= jiffies
;
2222 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2224 if (status
== -ESTALE
) {
2225 nfs_zap_caches(inode
);
2226 if (!S_ISDIR(inode
->i_mode
))
2227 set_bit(NFS_INO_STALE
, &NFS_I(inode
)->flags
);
2231 nfs_access_add_cache(inode
, &cache
);
2233 if ((mask
& ~cache
.mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2236 trace_nfs_access_exit(inode
, status
);
2240 static int nfs_open_permission_mask(int openflags
)
2244 if (openflags
& __FMODE_EXEC
) {
2245 /* ONLY check exec rights */
2248 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2250 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2257 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
2259 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2261 EXPORT_SYMBOL_GPL(nfs_may_open
);
2263 int nfs_permission(struct inode
*inode
, int mask
)
2265 struct rpc_cred
*cred
;
2268 if (mask
& MAY_NOT_BLOCK
)
2271 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2273 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2275 /* Is this sys_access() ? */
2276 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2279 switch (inode
->i_mode
& S_IFMT
) {
2286 * Optimize away all write operations, since the server
2287 * will check permissions when we perform the op.
2289 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2294 if (!NFS_PROTO(inode
)->access
)
2297 cred
= rpc_lookup_cred();
2298 if (!IS_ERR(cred
)) {
2299 res
= nfs_do_access(inode
, cred
, mask
);
2302 res
= PTR_ERR(cred
);
2304 if (!res
&& (mask
& MAY_EXEC
) && !execute_ok(inode
))
2307 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2308 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2311 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2313 res
= generic_permission(inode
, mask
);
2316 EXPORT_SYMBOL_GPL(nfs_permission
);
2320 * version-control: t
2321 * kept-new-versions: 5