4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 #include <linux/aio.h>
26 #include <asm/uaccess.h>
27 #include <asm/ioctls.h>
32 * The max size that a non-root user is allowed to grow the pipe. Can
33 * be set by root in /proc/sys/fs/pipe-max-size
35 unsigned int pipe_max_size
= 1048576;
38 * Minimum pipe size, as required by POSIX
40 unsigned int pipe_min_size
= PAGE_SIZE
;
43 * We use a start+len construction, which provides full use of the
45 * -- Florian Coosmann (FGC)
47 * Reads with count = 0 should always return 0.
48 * -- Julian Bradfield 1999-06-07.
50 * FIFOs and Pipes now generate SIGIO for both readers and writers.
51 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
53 * pipe_read & write cleanup
54 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
57 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
60 mutex_lock_nested(&pipe
->mutex
, subclass
);
63 void pipe_lock(struct pipe_inode_info
*pipe
)
66 * pipe_lock() nests non-pipe inode locks (for writing to a file)
68 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
70 EXPORT_SYMBOL(pipe_lock
);
72 void pipe_unlock(struct pipe_inode_info
*pipe
)
75 mutex_unlock(&pipe
->mutex
);
77 EXPORT_SYMBOL(pipe_unlock
);
79 static inline void __pipe_lock(struct pipe_inode_info
*pipe
)
81 mutex_lock_nested(&pipe
->mutex
, I_MUTEX_PARENT
);
84 static inline void __pipe_unlock(struct pipe_inode_info
*pipe
)
86 mutex_unlock(&pipe
->mutex
);
89 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
90 struct pipe_inode_info
*pipe2
)
92 BUG_ON(pipe1
== pipe2
);
95 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
96 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
98 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
99 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
103 /* Drop the inode semaphore and wait for a pipe event, atomically */
104 void pipe_wait(struct pipe_inode_info
*pipe
)
109 * Pipes are system-local resources, so sleeping on them
110 * is considered a noninteractive wait:
112 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
115 finish_wait(&pipe
->wait
, &wait
);
120 pipe_iov_copy_from_user(void *to
, struct iovec
*iov
, unsigned long len
,
126 while (!iov
->iov_len
)
128 copy
= min_t(unsigned long, len
, iov
->iov_len
);
131 if (__copy_from_user_inatomic(to
, iov
->iov_base
, copy
))
134 if (copy_from_user(to
, iov
->iov_base
, copy
))
139 iov
->iov_base
+= copy
;
140 iov
->iov_len
-= copy
;
146 pipe_iov_copy_to_user(struct iovec
*iov
, const void *from
, unsigned long len
,
152 while (!iov
->iov_len
)
154 copy
= min_t(unsigned long, len
, iov
->iov_len
);
157 if (__copy_to_user_inatomic(iov
->iov_base
, from
, copy
))
160 if (copy_to_user(iov
->iov_base
, from
, copy
))
165 iov
->iov_base
+= copy
;
166 iov
->iov_len
-= copy
;
172 * Attempt to pre-fault in the user memory, so we can use atomic copies.
173 * Returns the number of bytes not faulted in.
175 static int iov_fault_in_pages_write(struct iovec
*iov
, unsigned long len
)
177 while (!iov
->iov_len
)
181 unsigned long this_len
;
183 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
184 if (fault_in_pages_writeable(iov
->iov_base
, this_len
))
195 * Pre-fault in the user memory, so we can use atomic copies.
197 static void iov_fault_in_pages_read(struct iovec
*iov
, unsigned long len
)
199 while (!iov
->iov_len
)
203 unsigned long this_len
;
205 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
206 fault_in_pages_readable(iov
->iov_base
, this_len
);
212 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
213 struct pipe_buffer
*buf
)
215 struct page
*page
= buf
->page
;
218 * If nobody else uses this page, and we don't already have a
219 * temporary page, let's keep track of it as a one-deep
220 * allocation cache. (Otherwise just release our reference to it)
222 if (page_count(page
) == 1 && !pipe
->tmp_page
)
223 pipe
->tmp_page
= page
;
225 page_cache_release(page
);
229 * generic_pipe_buf_map - virtually map a pipe buffer
230 * @pipe: the pipe that the buffer belongs to
231 * @buf: the buffer that should be mapped
232 * @atomic: whether to use an atomic map
235 * This function returns a kernel virtual address mapping for the
236 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
237 * and the caller has to be careful not to fault before calling
238 * the unmap function.
240 * Note that this function calls kmap_atomic() if @atomic != 0.
242 void *generic_pipe_buf_map(struct pipe_inode_info
*pipe
,
243 struct pipe_buffer
*buf
, int atomic
)
246 buf
->flags
|= PIPE_BUF_FLAG_ATOMIC
;
247 return kmap_atomic(buf
->page
);
250 return kmap(buf
->page
);
252 EXPORT_SYMBOL(generic_pipe_buf_map
);
255 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
256 * @pipe: the pipe that the buffer belongs to
257 * @buf: the buffer that should be unmapped
258 * @map_data: the data that the mapping function returned
261 * This function undoes the mapping that ->map() provided.
263 void generic_pipe_buf_unmap(struct pipe_inode_info
*pipe
,
264 struct pipe_buffer
*buf
, void *map_data
)
266 if (buf
->flags
& PIPE_BUF_FLAG_ATOMIC
) {
267 buf
->flags
&= ~PIPE_BUF_FLAG_ATOMIC
;
268 kunmap_atomic(map_data
);
272 EXPORT_SYMBOL(generic_pipe_buf_unmap
);
275 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
276 * @pipe: the pipe that the buffer belongs to
277 * @buf: the buffer to attempt to steal
280 * This function attempts to steal the &struct page attached to
281 * @buf. If successful, this function returns 0 and returns with
282 * the page locked. The caller may then reuse the page for whatever
283 * he wishes; the typical use is insertion into a different file
286 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
287 struct pipe_buffer
*buf
)
289 struct page
*page
= buf
->page
;
292 * A reference of one is golden, that means that the owner of this
293 * page is the only one holding a reference to it. lock the page
296 if (page_count(page
) == 1) {
303 EXPORT_SYMBOL(generic_pipe_buf_steal
);
306 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
307 * @pipe: the pipe that the buffer belongs to
308 * @buf: the buffer to get a reference to
311 * This function grabs an extra reference to @buf. It's used in
312 * in the tee() system call, when we duplicate the buffers in one
315 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
317 page_cache_get(buf
->page
);
319 EXPORT_SYMBOL(generic_pipe_buf_get
);
322 * generic_pipe_buf_confirm - verify contents of the pipe buffer
323 * @info: the pipe that the buffer belongs to
324 * @buf: the buffer to confirm
327 * This function does nothing, because the generic pipe code uses
328 * pages that are always good when inserted into the pipe.
330 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
331 struct pipe_buffer
*buf
)
335 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
338 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
339 * @pipe: the pipe that the buffer belongs to
340 * @buf: the buffer to put a reference to
343 * This function releases a reference to @buf.
345 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
346 struct pipe_buffer
*buf
)
348 page_cache_release(buf
->page
);
350 EXPORT_SYMBOL(generic_pipe_buf_release
);
352 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
354 .map
= generic_pipe_buf_map
,
355 .unmap
= generic_pipe_buf_unmap
,
356 .confirm
= generic_pipe_buf_confirm
,
357 .release
= anon_pipe_buf_release
,
358 .steal
= generic_pipe_buf_steal
,
359 .get
= generic_pipe_buf_get
,
362 static const struct pipe_buf_operations packet_pipe_buf_ops
= {
364 .map
= generic_pipe_buf_map
,
365 .unmap
= generic_pipe_buf_unmap
,
366 .confirm
= generic_pipe_buf_confirm
,
367 .release
= anon_pipe_buf_release
,
368 .steal
= generic_pipe_buf_steal
,
369 .get
= generic_pipe_buf_get
,
373 pipe_read(struct kiocb
*iocb
, const struct iovec
*_iov
,
374 unsigned long nr_segs
, loff_t pos
)
376 struct file
*filp
= iocb
->ki_filp
;
377 struct pipe_inode_info
*pipe
= filp
->private_data
;
380 struct iovec
*iov
= (struct iovec
*)_iov
;
383 total_len
= iov_length(iov
, nr_segs
);
384 /* Null read succeeds. */
385 if (unlikely(total_len
== 0))
392 int bufs
= pipe
->nrbufs
;
394 int curbuf
= pipe
->curbuf
;
395 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
396 const struct pipe_buf_operations
*ops
= buf
->ops
;
398 size_t chars
= buf
->len
;
401 if (chars
> total_len
)
404 error
= ops
->confirm(pipe
, buf
);
411 atomic
= !iov_fault_in_pages_write(iov
, chars
);
413 addr
= ops
->map(pipe
, buf
, atomic
);
414 error
= pipe_iov_copy_to_user(iov
, addr
+ buf
->offset
, chars
, atomic
);
415 ops
->unmap(pipe
, buf
, addr
);
416 if (unlikely(error
)) {
418 * Just retry with the slow path if we failed.
429 buf
->offset
+= chars
;
432 /* Was it a packet buffer? Clean up and exit */
433 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
440 ops
->release(pipe
, buf
);
441 curbuf
= (curbuf
+ 1) & (pipe
->buffers
- 1);
442 pipe
->curbuf
= curbuf
;
443 pipe
->nrbufs
= --bufs
;
448 break; /* common path: read succeeded */
450 if (bufs
) /* More to do? */
454 if (!pipe
->waiting_writers
) {
455 /* syscall merging: Usually we must not sleep
456 * if O_NONBLOCK is set, or if we got some data.
457 * But if a writer sleeps in kernel space, then
458 * we can wait for that data without violating POSIX.
462 if (filp
->f_flags
& O_NONBLOCK
) {
467 if (signal_pending(current
)) {
473 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
474 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
480 /* Signal writers asynchronously that there is more room. */
482 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
483 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
490 static inline int is_packetized(struct file
*file
)
492 return (file
->f_flags
& O_DIRECT
) != 0;
496 pipe_write(struct kiocb
*iocb
, const struct iovec
*_iov
,
497 unsigned long nr_segs
, loff_t ppos
)
499 struct file
*filp
= iocb
->ki_filp
;
500 struct pipe_inode_info
*pipe
= filp
->private_data
;
503 struct iovec
*iov
= (struct iovec
*)_iov
;
507 total_len
= iov_length(iov
, nr_segs
);
508 /* Null write succeeds. */
509 if (unlikely(total_len
== 0))
516 if (!pipe
->readers
) {
517 send_sig(SIGPIPE
, current
, 0);
522 /* We try to merge small writes */
523 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
524 if (pipe
->nrbufs
&& chars
!= 0) {
525 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
527 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
528 const struct pipe_buf_operations
*ops
= buf
->ops
;
529 int offset
= buf
->offset
+ buf
->len
;
531 if (ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
532 int error
, atomic
= 1;
535 error
= ops
->confirm(pipe
, buf
);
539 iov_fault_in_pages_read(iov
, chars
);
541 addr
= ops
->map(pipe
, buf
, atomic
);
542 error
= pipe_iov_copy_from_user(offset
+ addr
, iov
,
544 ops
->unmap(pipe
, buf
, addr
);
565 if (!pipe
->readers
) {
566 send_sig(SIGPIPE
, current
, 0);
572 if (bufs
< pipe
->buffers
) {
573 int newbuf
= (pipe
->curbuf
+ bufs
) & (pipe
->buffers
-1);
574 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
575 struct page
*page
= pipe
->tmp_page
;
577 int error
, atomic
= 1;
580 page
= alloc_page(GFP_HIGHUSER
);
581 if (unlikely(!page
)) {
582 ret
= ret
? : -ENOMEM
;
585 pipe
->tmp_page
= page
;
587 /* Always wake up, even if the copy fails. Otherwise
588 * we lock up (O_NONBLOCK-)readers that sleep due to
590 * FIXME! Is this really true?
594 if (chars
> total_len
)
597 iov_fault_in_pages_read(iov
, chars
);
600 src
= kmap_atomic(page
);
604 error
= pipe_iov_copy_from_user(src
, iov
, chars
,
611 if (unlikely(error
)) {
622 /* Insert it into the buffer array */
624 buf
->ops
= &anon_pipe_buf_ops
;
628 if (is_packetized(filp
)) {
629 buf
->ops
= &packet_pipe_buf_ops
;
630 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
632 pipe
->nrbufs
= ++bufs
;
633 pipe
->tmp_page
= NULL
;
639 if (bufs
< pipe
->buffers
)
641 if (filp
->f_flags
& O_NONBLOCK
) {
646 if (signal_pending(current
)) {
652 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
653 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
656 pipe
->waiting_writers
++;
658 pipe
->waiting_writers
--;
663 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
664 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
666 if (ret
> 0 && sb_start_write_trylock(file_inode(filp
)->i_sb
)) {
667 int err
= file_update_time(filp
);
670 sb_end_write(file_inode(filp
)->i_sb
);
675 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
677 struct pipe_inode_info
*pipe
= filp
->private_data
;
678 int count
, buf
, nrbufs
;
685 nrbufs
= pipe
->nrbufs
;
686 while (--nrbufs
>= 0) {
687 count
+= pipe
->bufs
[buf
].len
;
688 buf
= (buf
+1) & (pipe
->buffers
- 1);
692 return put_user(count
, (int __user
*)arg
);
698 /* No kernel lock held - fine */
700 pipe_poll(struct file
*filp
, poll_table
*wait
)
703 struct pipe_inode_info
*pipe
= filp
->private_data
;
706 poll_wait(filp
, &pipe
->wait
, wait
);
708 /* Reading only -- no need for acquiring the semaphore. */
709 nrbufs
= pipe
->nrbufs
;
711 if (filp
->f_mode
& FMODE_READ
) {
712 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
713 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
717 if (filp
->f_mode
& FMODE_WRITE
) {
718 mask
|= (nrbufs
< pipe
->buffers
) ? POLLOUT
| POLLWRNORM
: 0;
720 * Most Unices do not set POLLERR for FIFOs but on Linux they
721 * behave exactly like pipes for poll().
730 static void put_pipe_info(struct inode
*inode
, struct pipe_inode_info
*pipe
)
734 spin_lock(&inode
->i_lock
);
735 if (!--pipe
->files
) {
736 inode
->i_pipe
= NULL
;
739 spin_unlock(&inode
->i_lock
);
742 free_pipe_info(pipe
);
746 pipe_release(struct inode
*inode
, struct file
*file
)
748 struct pipe_inode_info
*pipe
= file
->private_data
;
751 if (file
->f_mode
& FMODE_READ
)
753 if (file
->f_mode
& FMODE_WRITE
)
756 if (pipe
->readers
|| pipe
->writers
) {
757 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLOUT
| POLLRDNORM
| POLLWRNORM
| POLLERR
| POLLHUP
);
758 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
759 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
763 put_pipe_info(inode
, pipe
);
768 pipe_fasync(int fd
, struct file
*filp
, int on
)
770 struct pipe_inode_info
*pipe
= filp
->private_data
;
774 if (filp
->f_mode
& FMODE_READ
)
775 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
776 if ((filp
->f_mode
& FMODE_WRITE
) && retval
>= 0) {
777 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
778 if (retval
< 0 && (filp
->f_mode
& FMODE_READ
))
779 /* this can happen only if on == T */
780 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
786 struct pipe_inode_info
*alloc_pipe_info(void)
788 struct pipe_inode_info
*pipe
;
790 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL
);
792 pipe
->bufs
= kzalloc(sizeof(struct pipe_buffer
) * PIPE_DEF_BUFFERS
, GFP_KERNEL
);
794 init_waitqueue_head(&pipe
->wait
);
795 pipe
->r_counter
= pipe
->w_counter
= 1;
796 pipe
->buffers
= PIPE_DEF_BUFFERS
;
797 mutex_init(&pipe
->mutex
);
806 void free_pipe_info(struct pipe_inode_info
*pipe
)
810 for (i
= 0; i
< pipe
->buffers
; i
++) {
811 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
813 buf
->ops
->release(pipe
, buf
);
816 __free_page(pipe
->tmp_page
);
821 static struct vfsmount
*pipe_mnt __read_mostly
;
824 * pipefs_dname() is called from d_path().
826 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
828 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
829 dentry
->d_inode
->i_ino
);
832 static const struct dentry_operations pipefs_dentry_operations
= {
833 .d_dname
= pipefs_dname
,
836 static struct inode
* get_pipe_inode(void)
838 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
839 struct pipe_inode_info
*pipe
;
844 inode
->i_ino
= get_next_ino();
846 pipe
= alloc_pipe_info();
850 inode
->i_pipe
= pipe
;
852 pipe
->readers
= pipe
->writers
= 1;
853 inode
->i_fop
= &pipefifo_fops
;
856 * Mark the inode dirty from the very beginning,
857 * that way it will never be moved to the dirty
858 * list because "mark_inode_dirty()" will think
859 * that it already _is_ on the dirty list.
861 inode
->i_state
= I_DIRTY
;
862 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
863 inode
->i_uid
= current_fsuid();
864 inode
->i_gid
= current_fsgid();
865 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
876 int create_pipe_files(struct file
**res
, int flags
)
879 struct inode
*inode
= get_pipe_inode();
882 static struct qstr name
= { .name
= "" };
888 path
.dentry
= d_alloc_pseudo(pipe_mnt
->mnt_sb
, &name
);
891 path
.mnt
= mntget(pipe_mnt
);
893 d_instantiate(path
.dentry
, inode
);
896 f
= alloc_file(&path
, FMODE_WRITE
, &pipefifo_fops
);
900 f
->f_flags
= O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
));
901 f
->private_data
= inode
->i_pipe
;
903 res
[0] = alloc_file(&path
, FMODE_READ
, &pipefifo_fops
);
908 res
[0]->private_data
= inode
->i_pipe
;
909 res
[0]->f_flags
= O_RDONLY
| (flags
& O_NONBLOCK
);
916 free_pipe_info(inode
->i_pipe
);
921 free_pipe_info(inode
->i_pipe
);
926 static int __do_pipe_flags(int *fd
, struct file
**files
, int flags
)
931 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
))
934 error
= create_pipe_files(files
, flags
);
938 error
= get_unused_fd_flags(flags
);
943 error
= get_unused_fd_flags(flags
);
948 audit_fd_pair(fdr
, fdw
);
961 int do_pipe_flags(int *fd
, int flags
)
963 struct file
*files
[2];
964 int error
= __do_pipe_flags(fd
, files
, flags
);
966 fd_install(fd
[0], files
[0]);
967 fd_install(fd
[1], files
[1]);
973 * sys_pipe() is the normal C calling standard for creating
974 * a pipe. It's not the way Unix traditionally does this, though.
976 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
978 struct file
*files
[2];
982 error
= __do_pipe_flags(fd
, files
, flags
);
984 if (unlikely(copy_to_user(fildes
, fd
, sizeof(fd
)))) {
987 put_unused_fd(fd
[0]);
988 put_unused_fd(fd
[1]);
991 fd_install(fd
[0], files
[0]);
992 fd_install(fd
[1], files
[1]);
998 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
1000 return sys_pipe2(fildes
, 0);
1003 static int wait_for_partner(struct pipe_inode_info
*pipe
, unsigned int *cnt
)
1007 while (cur
== *cnt
) {
1009 if (signal_pending(current
))
1012 return cur
== *cnt
? -ERESTARTSYS
: 0;
1015 static void wake_up_partner(struct pipe_inode_info
*pipe
)
1017 wake_up_interruptible(&pipe
->wait
);
1020 static int fifo_open(struct inode
*inode
, struct file
*filp
)
1022 struct pipe_inode_info
*pipe
;
1023 bool is_pipe
= inode
->i_sb
->s_magic
== PIPEFS_MAGIC
;
1026 filp
->f_version
= 0;
1028 spin_lock(&inode
->i_lock
);
1029 if (inode
->i_pipe
) {
1030 pipe
= inode
->i_pipe
;
1032 spin_unlock(&inode
->i_lock
);
1034 spin_unlock(&inode
->i_lock
);
1035 pipe
= alloc_pipe_info();
1039 spin_lock(&inode
->i_lock
);
1040 if (unlikely(inode
->i_pipe
)) {
1041 inode
->i_pipe
->files
++;
1042 spin_unlock(&inode
->i_lock
);
1043 free_pipe_info(pipe
);
1044 pipe
= inode
->i_pipe
;
1046 inode
->i_pipe
= pipe
;
1047 spin_unlock(&inode
->i_lock
);
1050 filp
->private_data
= pipe
;
1051 /* OK, we have a pipe and it's pinned down */
1055 /* We can only do regular read/write on fifos */
1056 filp
->f_mode
&= (FMODE_READ
| FMODE_WRITE
);
1058 switch (filp
->f_mode
) {
1062 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1063 * opened, even when there is no process writing the FIFO.
1066 if (pipe
->readers
++ == 0)
1067 wake_up_partner(pipe
);
1069 if (!is_pipe
&& !pipe
->writers
) {
1070 if ((filp
->f_flags
& O_NONBLOCK
)) {
1071 /* suppress POLLHUP until we have
1073 filp
->f_version
= pipe
->w_counter
;
1075 if (wait_for_partner(pipe
, &pipe
->w_counter
))
1084 * POSIX.1 says that O_NONBLOCK means return -1 with
1085 * errno=ENXIO when there is no process reading the FIFO.
1088 if (!is_pipe
&& (filp
->f_flags
& O_NONBLOCK
) && !pipe
->readers
)
1092 if (!pipe
->writers
++)
1093 wake_up_partner(pipe
);
1095 if (!is_pipe
&& !pipe
->readers
) {
1096 if (wait_for_partner(pipe
, &pipe
->r_counter
))
1101 case FMODE_READ
| FMODE_WRITE
:
1104 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1105 * This implementation will NEVER block on a O_RDWR open, since
1106 * the process can at least talk to itself.
1113 if (pipe
->readers
== 1 || pipe
->writers
== 1)
1114 wake_up_partner(pipe
);
1123 __pipe_unlock(pipe
);
1127 if (!--pipe
->readers
)
1128 wake_up_interruptible(&pipe
->wait
);
1133 if (!--pipe
->writers
)
1134 wake_up_interruptible(&pipe
->wait
);
1139 __pipe_unlock(pipe
);
1141 put_pipe_info(inode
, pipe
);
1145 const struct file_operations pipefifo_fops
= {
1147 .llseek
= no_llseek
,
1148 .read
= do_sync_read
,
1149 .aio_read
= pipe_read
,
1150 .write
= do_sync_write
,
1151 .aio_write
= pipe_write
,
1153 .unlocked_ioctl
= pipe_ioctl
,
1154 .release
= pipe_release
,
1155 .fasync
= pipe_fasync
,
1159 * Allocate a new array of pipe buffers and copy the info over. Returns the
1160 * pipe size if successful, or return -ERROR on error.
1162 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long nr_pages
)
1164 struct pipe_buffer
*bufs
;
1167 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1168 * expect a lot of shrink+grow operations, just free and allocate
1169 * again like we would do for growing. If the pipe currently
1170 * contains more buffers than arg, then return busy.
1172 if (nr_pages
< pipe
->nrbufs
)
1175 bufs
= kcalloc(nr_pages
, sizeof(*bufs
), GFP_KERNEL
| __GFP_NOWARN
);
1176 if (unlikely(!bufs
))
1180 * The pipe array wraps around, so just start the new one at zero
1181 * and adjust the indexes.
1187 tail
= pipe
->curbuf
+ pipe
->nrbufs
;
1188 if (tail
< pipe
->buffers
)
1191 tail
&= (pipe
->buffers
- 1);
1193 head
= pipe
->nrbufs
- tail
;
1195 memcpy(bufs
, pipe
->bufs
+ pipe
->curbuf
, head
* sizeof(struct pipe_buffer
));
1197 memcpy(bufs
+ head
, pipe
->bufs
, tail
* sizeof(struct pipe_buffer
));
1203 pipe
->buffers
= nr_pages
;
1204 return nr_pages
* PAGE_SIZE
;
1208 * Currently we rely on the pipe array holding a power-of-2 number
1211 static inline unsigned int round_pipe_size(unsigned int size
)
1213 unsigned long nr_pages
;
1215 nr_pages
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1216 return roundup_pow_of_two(nr_pages
) << PAGE_SHIFT
;
1220 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1221 * will return an error.
1223 int pipe_proc_fn(struct ctl_table
*table
, int write
, void __user
*buf
,
1224 size_t *lenp
, loff_t
*ppos
)
1228 ret
= proc_dointvec_minmax(table
, write
, buf
, lenp
, ppos
);
1229 if (ret
< 0 || !write
)
1232 pipe_max_size
= round_pipe_size(pipe_max_size
);
1237 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1238 * location, so checking ->i_pipe is not enough to verify that this is a
1241 struct pipe_inode_info
*get_pipe_info(struct file
*file
)
1243 return file
->f_op
== &pipefifo_fops
? file
->private_data
: NULL
;
1246 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1248 struct pipe_inode_info
*pipe
;
1251 pipe
= get_pipe_info(file
);
1258 case F_SETPIPE_SZ
: {
1259 unsigned int size
, nr_pages
;
1261 size
= round_pipe_size(arg
);
1262 nr_pages
= size
>> PAGE_SHIFT
;
1268 if (!capable(CAP_SYS_RESOURCE
) && size
> pipe_max_size
) {
1272 ret
= pipe_set_size(pipe
, nr_pages
);
1276 ret
= pipe
->buffers
* PAGE_SIZE
;
1284 __pipe_unlock(pipe
);
1288 static const struct super_operations pipefs_ops
= {
1289 .destroy_inode
= free_inode_nonrcu
,
1290 .statfs
= simple_statfs
,
1294 * pipefs should _never_ be mounted by userland - too much of security hassle,
1295 * no real gain from having the whole whorehouse mounted. So we don't need
1296 * any operations on the root directory. However, we need a non-trivial
1297 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1299 static struct dentry
*pipefs_mount(struct file_system_type
*fs_type
,
1300 int flags
, const char *dev_name
, void *data
)
1302 return mount_pseudo(fs_type
, "pipe:", &pipefs_ops
,
1303 &pipefs_dentry_operations
, PIPEFS_MAGIC
);
1306 static struct file_system_type pipe_fs_type
= {
1308 .mount
= pipefs_mount
,
1309 .kill_sb
= kill_anon_super
,
1312 static int __init
init_pipe_fs(void)
1314 int err
= register_filesystem(&pipe_fs_type
);
1317 pipe_mnt
= kern_mount(&pipe_fs_type
);
1318 if (IS_ERR(pipe_mnt
)) {
1319 err
= PTR_ERR(pipe_mnt
);
1320 unregister_filesystem(&pipe_fs_type
);
1326 fs_initcall(init_pipe_fs
);