2 * Octeon Watchdog driver
4 * Copyright (C) 2007-2017 Cavium, Inc.
6 * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
8 * Some parts derived from wdt.c
10 * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
11 * All Rights Reserved.
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
18 * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
19 * warranty for any of this software. This material is provided
20 * "AS-IS" and at no charge.
22 * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file "COPYING" in the main directory of this archive
29 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
30 * For most systems this is less than 10 seconds, so to allow for
31 * software to request longer watchdog heartbeats, we maintain software
32 * counters to count multiples of the base rate. If the system locks
33 * up in such a manner that we can not run the software counters, the
34 * only result is a watchdog reset sooner than was requested. But
35 * that is OK, because in this case userspace would likely not be able
36 * to do anything anyhow.
38 * The hardware watchdog interval we call the period. The OCTEON
39 * watchdog goes through several stages, after the first period an
40 * irq is asserted, then if it is not reset, after the next period NMI
41 * is asserted, then after an additional period a chip wide soft reset.
42 * So for the software counters, we reset watchdog after each period
43 * and decrement the counter. But for the last two periods we need to
44 * let the watchdog progress to the NMI stage so we disable the irq
45 * and let it proceed. Once in the NMI, we print the register state
46 * to the serial port and then wait for the reset.
48 * A watchdog is maintained for each CPU in the system, that way if
49 * one CPU suffers a lockup, we also get a register dump and reset.
50 * The userspace ping resets the watchdog on all CPUs.
52 * Before userspace opens the watchdog device, we still run the
53 * watchdogs to catch any lockups that may be kernel related.
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 #include <linux/interrupt.h>
60 #include <linux/watchdog.h>
61 #include <linux/cpumask.h>
62 #include <linux/module.h>
63 #include <linux/delay.h>
64 #include <linux/cpu.h>
65 #include <linux/irq.h>
67 #include <asm/mipsregs.h>
70 #include <asm/octeon/octeon.h>
71 #include <asm/octeon/cvmx-boot-vector.h>
72 #include <asm/octeon/cvmx-ciu2-defs.h>
73 #include <asm/octeon/cvmx-rst-defs.h>
75 /* Watchdog interrupt major block number (8 MSBs of intsn) */
76 #define WD_BLOCK_NUMBER 0x01
80 /* The count needed to achieve timeout_sec. */
81 static unsigned int timeout_cnt
;
83 /* The maximum period supported. */
84 static unsigned int max_timeout_sec
;
86 /* The current period. */
87 static unsigned int timeout_sec
;
89 /* Set to non-zero when userspace countdown mode active */
90 static bool do_countdown
;
91 static unsigned int countdown_reset
;
92 static unsigned int per_cpu_countdown
[NR_CPUS
];
94 static cpumask_t irq_enabled_cpus
;
96 #define WD_TIMO 60 /* Default heartbeat = 60 seconds */
98 #define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
100 static int heartbeat
= WD_TIMO
;
101 module_param(heartbeat
, int, 0444);
102 MODULE_PARM_DESC(heartbeat
,
103 "Watchdog heartbeat in seconds. (0 < heartbeat, default="
104 __MODULE_STRING(WD_TIMO
) ")");
106 static bool nowayout
= WATCHDOG_NOWAYOUT
;
107 module_param(nowayout
, bool, 0444);
108 MODULE_PARM_DESC(nowayout
,
109 "Watchdog cannot be stopped once started (default="
110 __MODULE_STRING(WATCHDOG_NOWAYOUT
) ")");
113 module_param(disable
, int, 0444);
114 MODULE_PARM_DESC(disable
,
115 "Disable the watchdog entirely (default=0)");
117 static struct cvmx_boot_vector_element
*octeon_wdt_bootvector
;
119 void octeon_wdt_nmi_stage2(void);
121 static int cpu2core(int cpu
)
124 return cpu_logical_map(cpu
) & 0x3f;
126 return cvmx_get_core_num();
131 * Poke the watchdog when an interrupt is received
138 static irqreturn_t
octeon_wdt_poke_irq(int cpl
, void *dev_id
)
140 int cpu
= raw_smp_processor_id();
141 unsigned int core
= cpu2core(cpu
);
142 int node
= cpu_to_node(cpu
);
145 if (per_cpu_countdown
[cpu
] > 0) {
146 /* We're alive, poke the watchdog */
147 cvmx_write_csr_node(node
, CVMX_CIU_PP_POKEX(core
), 1);
148 per_cpu_countdown
[cpu
]--;
150 /* Bad news, you are about to reboot. */
151 disable_irq_nosync(cpl
);
152 cpumask_clear_cpu(cpu
, &irq_enabled_cpus
);
155 /* Not open, just ping away... */
156 cvmx_write_csr_node(node
, CVMX_CIU_PP_POKEX(core
), 1);
162 extern int prom_putchar(char c
);
165 * Write a string to the uart
167 * @str: String to write
169 static void octeon_wdt_write_string(const char *str
)
171 /* Just loop writing one byte at a time */
173 prom_putchar(*str
++);
177 * Write a hex number out of the uart
179 * @value: Number to display
180 * @digits: Number of digits to print (1 to 16)
182 static void octeon_wdt_write_hex(u64 value
, int digits
)
187 for (d
= 0; d
< digits
; d
++) {
188 v
= (value
>> ((digits
- d
- 1) * 4)) & 0xf;
190 prom_putchar('a' + v
- 10);
192 prom_putchar('0' + v
);
196 static const char reg_name
[][3] = {
197 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
198 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
199 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
200 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
204 * NMI stage 3 handler. NMIs are handled in the following manner:
205 * 1) The first NMI handler enables CVMSEG and transfers from
206 * the bootbus region into normal memory. It is careful to not
207 * destroy any registers.
208 * 2) The second stage handler uses CVMSEG to save the registers
209 * and create a stack for C code. It then calls the third level
210 * handler with one argument, a pointer to the register values.
211 * 3) The third, and final, level handler is the following C
212 * function that prints out some useful infomration.
214 * @reg: Pointer to register state before the NMI
216 void octeon_wdt_nmi_stage3(u64 reg
[32])
220 unsigned int coreid
= cvmx_get_core_num();
222 * Save status and cause early to get them before any changes
225 u64 cp0_cause
= read_c0_cause();
226 u64 cp0_status
= read_c0_status();
227 u64 cp0_error_epc
= read_c0_errorepc();
228 u64 cp0_epc
= read_c0_epc();
230 /* Delay so output from all cores output is not jumbled together. */
231 udelay(85000 * coreid
);
233 octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
234 octeon_wdt_write_hex(coreid
, 2);
235 octeon_wdt_write_string(" ***\r\n");
236 for (i
= 0; i
< 32; i
++) {
237 octeon_wdt_write_string("\t");
238 octeon_wdt_write_string(reg_name
[i
]);
239 octeon_wdt_write_string("\t0x");
240 octeon_wdt_write_hex(reg
[i
], 16);
242 octeon_wdt_write_string("\r\n");
244 octeon_wdt_write_string("\terr_epc\t0x");
245 octeon_wdt_write_hex(cp0_error_epc
, 16);
247 octeon_wdt_write_string("\tepc\t0x");
248 octeon_wdt_write_hex(cp0_epc
, 16);
249 octeon_wdt_write_string("\r\n");
251 octeon_wdt_write_string("\tstatus\t0x");
252 octeon_wdt_write_hex(cp0_status
, 16);
253 octeon_wdt_write_string("\tcause\t0x");
254 octeon_wdt_write_hex(cp0_cause
, 16);
255 octeon_wdt_write_string("\r\n");
257 /* The CIU register is different for each Octeon model. */
258 if (OCTEON_IS_MODEL(OCTEON_CN68XX
)) {
259 octeon_wdt_write_string("\tsrc_wd\t0x");
260 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid
)), 16);
261 octeon_wdt_write_string("\ten_wd\t0x");
262 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid
)), 16);
263 octeon_wdt_write_string("\r\n");
264 octeon_wdt_write_string("\tsrc_rml\t0x");
265 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid
)), 16);
266 octeon_wdt_write_string("\ten_rml\t0x");
267 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid
)), 16);
268 octeon_wdt_write_string("\r\n");
269 octeon_wdt_write_string("\tsum\t0x");
270 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid
)), 16);
271 octeon_wdt_write_string("\r\n");
272 } else if (!octeon_has_feature(OCTEON_FEATURE_CIU3
)) {
273 octeon_wdt_write_string("\tsum0\t0x");
274 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid
* 2)), 16);
275 octeon_wdt_write_string("\ten0\t0x");
276 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid
* 2)), 16);
277 octeon_wdt_write_string("\r\n");
280 octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
283 * G-30204: We must trigger a soft reset before watchdog
284 * does an incomplete job of doing it.
286 if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX
)) {
288 unsigned int node
= cvmx_get_node_num();
289 unsigned int lcore
= cvmx_get_local_core_num();
290 union cvmx_ciu_wdogx ciu_wdog
;
293 * Wait for other cores to print out information, but
294 * not too long. Do the soft reset before watchdog
298 ciu_wdog
.u64
= cvmx_read_csr_node(node
, CVMX_CIU_WDOGX(lcore
));
299 } while (ciu_wdog
.s
.cnt
> 0x10000);
301 scr
= cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
302 scr
|= 1 << 11; /* Indicate watchdog in bit 11 */
303 cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr
);
304 cvmx_write_csr_node(0, CVMX_RST_SOFT_RST
, 1);
308 static int octeon_wdt_cpu_to_irq(int cpu
)
314 coreid
= cpu2core(cpu
);
315 node
= cpu_to_node(cpu
);
317 if (octeon_has_feature(OCTEON_FEATURE_CIU3
)) {
318 struct irq_domain
*domain
;
321 domain
= octeon_irq_get_block_domain(node
,
323 hwirq
= WD_BLOCK_NUMBER
<< 12 | 0x200 | coreid
;
324 irq
= irq_find_mapping(domain
, hwirq
);
326 irq
= OCTEON_IRQ_WDOG0
+ coreid
;
331 static int octeon_wdt_cpu_pre_down(unsigned int cpu
)
335 union cvmx_ciu_wdogx ciu_wdog
;
337 core
= cpu2core(cpu
);
339 node
= cpu_to_node(cpu
);
341 /* Poke the watchdog to clear out its state */
342 cvmx_write_csr_node(node
, CVMX_CIU_PP_POKEX(core
), 1);
344 /* Disable the hardware. */
346 cvmx_write_csr_node(node
, CVMX_CIU_WDOGX(core
), ciu_wdog
.u64
);
348 free_irq(octeon_wdt_cpu_to_irq(cpu
), octeon_wdt_poke_irq
);
352 static int octeon_wdt_cpu_online(unsigned int cpu
)
356 union cvmx_ciu_wdogx ciu_wdog
;
358 struct irq_domain
*domain
;
361 core
= cpu2core(cpu
);
362 node
= cpu_to_node(cpu
);
364 octeon_wdt_bootvector
[core
].target_ptr
= (u64
)octeon_wdt_nmi_stage2
;
366 /* Disable it before doing anything with the interrupts. */
368 cvmx_write_csr_node(node
, CVMX_CIU_WDOGX(core
), ciu_wdog
.u64
);
370 per_cpu_countdown
[cpu
] = countdown_reset
;
372 if (octeon_has_feature(OCTEON_FEATURE_CIU3
)) {
373 /* Must get the domain for the watchdog block */
374 domain
= octeon_irq_get_block_domain(node
, WD_BLOCK_NUMBER
);
376 /* Get a irq for the wd intsn (hardware interrupt) */
377 hwirq
= WD_BLOCK_NUMBER
<< 12 | 0x200 | core
;
378 irq
= irq_create_mapping(domain
, hwirq
);
379 irqd_set_trigger_type(irq_get_irq_data(irq
),
380 IRQ_TYPE_EDGE_RISING
);
382 irq
= OCTEON_IRQ_WDOG0
+ core
;
384 if (request_irq(irq
, octeon_wdt_poke_irq
,
385 IRQF_NO_THREAD
, "octeon_wdt", octeon_wdt_poke_irq
))
386 panic("octeon_wdt: Couldn't obtain irq %d", irq
);
388 /* Must set the irq affinity here */
389 if (octeon_has_feature(OCTEON_FEATURE_CIU3
)) {
392 cpumask_clear(&mask
);
393 cpumask_set_cpu(cpu
, &mask
);
394 irq_set_affinity(irq
, &mask
);
397 cpumask_set_cpu(cpu
, &irq_enabled_cpus
);
399 /* Poke the watchdog to clear out its state */
400 cvmx_write_csr_node(node
, CVMX_CIU_PP_POKEX(core
), 1);
402 /* Finally enable the watchdog now that all handlers are installed */
404 ciu_wdog
.s
.len
= timeout_cnt
;
405 ciu_wdog
.s
.mode
= 3; /* 3 = Interrupt + NMI + Soft-Reset */
406 cvmx_write_csr_node(node
, CVMX_CIU_WDOGX(core
), ciu_wdog
.u64
);
411 static int octeon_wdt_ping(struct watchdog_device __always_unused
*wdog
)
420 for_each_online_cpu(cpu
) {
421 coreid
= cpu2core(cpu
);
422 node
= cpu_to_node(cpu
);
423 cvmx_write_csr_node(node
, CVMX_CIU_PP_POKEX(coreid
), 1);
424 per_cpu_countdown
[cpu
] = countdown_reset
;
425 if ((countdown_reset
|| !do_countdown
) &&
426 !cpumask_test_cpu(cpu
, &irq_enabled_cpus
)) {
427 /* We have to enable the irq */
428 enable_irq(octeon_wdt_cpu_to_irq(cpu
));
429 cpumask_set_cpu(cpu
, &irq_enabled_cpus
);
435 static void octeon_wdt_calc_parameters(int t
)
437 unsigned int periods
;
439 timeout_sec
= max_timeout_sec
;
443 * Find the largest interrupt period, that can evenly divide
444 * the requested heartbeat time.
446 while ((t
% timeout_sec
) != 0)
449 periods
= t
/ timeout_sec
;
452 * The last two periods are after the irq is disabled, and
453 * then to the nmi, so we subtract them off.
456 countdown_reset
= periods
> 2 ? periods
- 2 : 0;
458 timeout_cnt
= ((octeon_get_io_clock_rate() / divisor
) * timeout_sec
) >> 8;
461 static int octeon_wdt_set_timeout(struct watchdog_device
*wdog
,
466 union cvmx_ciu_wdogx ciu_wdog
;
472 octeon_wdt_calc_parameters(t
);
477 for_each_online_cpu(cpu
) {
478 coreid
= cpu2core(cpu
);
479 node
= cpu_to_node(cpu
);
480 cvmx_write_csr_node(node
, CVMX_CIU_PP_POKEX(coreid
), 1);
482 ciu_wdog
.s
.len
= timeout_cnt
;
483 ciu_wdog
.s
.mode
= 3; /* 3 = Interrupt + NMI + Soft-Reset */
484 cvmx_write_csr_node(node
, CVMX_CIU_WDOGX(coreid
), ciu_wdog
.u64
);
485 cvmx_write_csr_node(node
, CVMX_CIU_PP_POKEX(coreid
), 1);
487 octeon_wdt_ping(wdog
); /* Get the irqs back on. */
491 static int octeon_wdt_start(struct watchdog_device
*wdog
)
493 octeon_wdt_ping(wdog
);
498 static int octeon_wdt_stop(struct watchdog_device
*wdog
)
501 octeon_wdt_ping(wdog
);
505 static const struct watchdog_info octeon_wdt_info
= {
506 .options
= WDIOF_SETTIMEOUT
| WDIOF_MAGICCLOSE
| WDIOF_KEEPALIVEPING
,
507 .identity
= "OCTEON",
510 static const struct watchdog_ops octeon_wdt_ops
= {
511 .owner
= THIS_MODULE
,
512 .start
= octeon_wdt_start
,
513 .stop
= octeon_wdt_stop
,
514 .ping
= octeon_wdt_ping
,
515 .set_timeout
= octeon_wdt_set_timeout
,
518 static struct watchdog_device octeon_wdt
= {
519 .info
= &octeon_wdt_info
,
520 .ops
= &octeon_wdt_ops
,
523 static enum cpuhp_state octeon_wdt_online
;
525 * Module/ driver initialization.
527 * Returns Zero on success
529 static int __init
octeon_wdt_init(void)
533 octeon_wdt_bootvector
= cvmx_boot_vector_get();
534 if (!octeon_wdt_bootvector
) {
535 pr_err("Error: Cannot allocate boot vector.\n");
539 if (OCTEON_IS_MODEL(OCTEON_CN68XX
))
541 else if (OCTEON_IS_MODEL(OCTEON_CN78XX
))
547 * Watchdog time expiration length = The 16 bits of LEN
548 * represent the most significant bits of a 24 bit decrementer
549 * that decrements every divisor cycle.
551 * Try for a timeout of 5 sec, if that fails a smaller number
557 timeout_cnt
= ((octeon_get_io_clock_rate() / divisor
) * max_timeout_sec
) >> 8;
558 } while (timeout_cnt
> 65535);
560 BUG_ON(timeout_cnt
== 0);
562 octeon_wdt_calc_parameters(heartbeat
);
564 pr_info("Initial granularity %d Sec\n", timeout_sec
);
566 octeon_wdt
.timeout
= timeout_sec
;
567 octeon_wdt
.max_timeout
= UINT_MAX
;
569 watchdog_set_nowayout(&octeon_wdt
, nowayout
);
571 ret
= watchdog_register_device(&octeon_wdt
);
573 pr_err("watchdog_register_device() failed: %d\n", ret
);
578 pr_notice("disabled\n");
582 cpumask_clear(&irq_enabled_cpus
);
584 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "watchdog/octeon:online",
585 octeon_wdt_cpu_online
, octeon_wdt_cpu_pre_down
);
588 octeon_wdt_online
= ret
;
591 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
592 watchdog_unregister_device(&octeon_wdt
);
597 * Module / driver shutdown
599 static void __exit
octeon_wdt_cleanup(void)
601 watchdog_unregister_device(&octeon_wdt
);
606 cpuhp_remove_state(octeon_wdt_online
);
609 * Disable the boot-bus memory, the code it points to is soon
612 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
615 MODULE_LICENSE("GPL");
616 MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
617 MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
618 module_init(octeon_wdt_init
);
619 module_exit(octeon_wdt_cleanup
);