4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
102 #include <trace/events/sched.h>
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
108 * Minimum number of threads to boot the kernel
110 #define MIN_THREADS 20
113 * Maximum number of threads
115 #define MAX_THREADS FUTEX_TID_MASK
118 * Protected counters by write_lock_irq(&tasklist_lock)
120 unsigned long total_forks
; /* Handle normal Linux uptimes. */
121 int nr_threads
; /* The idle threads do not count.. */
123 int max_threads
; /* tunable limit on nr_threads */
125 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
127 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
132 return lockdep_is_held(&tasklist_lock
);
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
137 int nr_processes(void)
142 for_each_possible_cpu(cpu
)
143 total
+= per_cpu(process_counts
, cpu
);
148 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache
*task_struct_cachep
;
155 static inline struct task_struct
*alloc_task_struct_node(int node
)
157 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
160 static inline void free_task_struct(struct task_struct
*tsk
)
162 kmem_cache_free(task_struct_cachep
, tsk
);
166 void __weak
arch_release_thread_stack(unsigned long *stack
)
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
178 #ifdef CONFIG_VMAP_STACK
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct
*, cached_stacks
[NR_CACHED_STACKS
]);
186 static int free_vm_stack_cache(unsigned int cpu
)
188 struct vm_struct
**cached_vm_stacks
= per_cpu_ptr(cached_stacks
, cpu
);
191 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
192 struct vm_struct
*vm_stack
= cached_vm_stacks
[i
];
197 vfree(vm_stack
->addr
);
198 cached_vm_stacks
[i
] = NULL
;
205 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
, int node
)
207 #ifdef CONFIG_VMAP_STACK
211 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
214 s
= this_cpu_xchg(cached_stacks
[i
], NULL
);
219 /* Clear stale pointers from reused stack. */
220 memset(s
->addr
, 0, THREAD_SIZE
);
222 tsk
->stack_vm_area
= s
;
226 stack
= __vmalloc_node_range(THREAD_SIZE
, THREAD_ALIGN
,
227 VMALLOC_START
, VMALLOC_END
,
230 0, node
, __builtin_return_address(0));
233 * We can't call find_vm_area() in interrupt context, and
234 * free_thread_stack() can be called in interrupt context,
235 * so cache the vm_struct.
238 tsk
->stack_vm_area
= find_vm_area(stack
);
241 struct page
*page
= alloc_pages_node(node
, THREADINFO_GFP
,
244 return page
? page_address(page
) : NULL
;
248 static inline void free_thread_stack(struct task_struct
*tsk
)
250 #ifdef CONFIG_VMAP_STACK
251 if (task_stack_vm_area(tsk
)) {
254 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
255 if (this_cpu_cmpxchg(cached_stacks
[i
],
256 NULL
, tsk
->stack_vm_area
) != NULL
)
262 vfree_atomic(tsk
->stack
);
267 __free_pages(virt_to_page(tsk
->stack
), THREAD_SIZE_ORDER
);
270 static struct kmem_cache
*thread_stack_cache
;
272 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
,
275 return kmem_cache_alloc_node(thread_stack_cache
, THREADINFO_GFP
, node
);
278 static void free_thread_stack(struct task_struct
*tsk
)
280 kmem_cache_free(thread_stack_cache
, tsk
->stack
);
283 void thread_stack_cache_init(void)
285 thread_stack_cache
= kmem_cache_create_usercopy("thread_stack",
286 THREAD_SIZE
, THREAD_SIZE
, 0, 0,
288 BUG_ON(thread_stack_cache
== NULL
);
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache
*signal_cachep
;
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache
*sighand_cachep
;
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache
*files_cachep
;
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache
*fs_cachep
;
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache
*vm_area_cachep
;
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache
*mm_cachep
;
311 struct vm_area_struct
*vm_area_alloc(struct mm_struct
*mm
)
313 struct vm_area_struct
*vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
320 struct vm_area_struct
*vm_area_dup(struct vm_area_struct
*orig
)
322 struct vm_area_struct
*new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
326 INIT_LIST_HEAD(&new->anon_vma_chain
);
331 void vm_area_free(struct vm_area_struct
*vma
)
333 kmem_cache_free(vm_area_cachep
, vma
);
336 static void account_kernel_stack(struct task_struct
*tsk
, int account
)
338 void *stack
= task_stack_page(tsk
);
339 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
341 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK
) && PAGE_SIZE
% 1024 != 0);
346 BUG_ON(vm
->nr_pages
!= THREAD_SIZE
/ PAGE_SIZE
);
348 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
349 mod_zone_page_state(page_zone(vm
->pages
[i
]),
351 PAGE_SIZE
/ 1024 * account
);
354 /* All stack pages belong to the same memcg. */
355 mod_memcg_page_state(vm
->pages
[0], MEMCG_KERNEL_STACK_KB
,
356 account
* (THREAD_SIZE
/ 1024));
359 * All stack pages are in the same zone and belong to the
362 struct page
*first_page
= virt_to_page(stack
);
364 mod_zone_page_state(page_zone(first_page
), NR_KERNEL_STACK_KB
,
365 THREAD_SIZE
/ 1024 * account
);
367 mod_memcg_page_state(first_page
, MEMCG_KERNEL_STACK_KB
,
368 account
* (THREAD_SIZE
/ 1024));
372 static void release_task_stack(struct task_struct
*tsk
)
374 if (WARN_ON(tsk
->state
!= TASK_DEAD
))
375 return; /* Better to leak the stack than to free prematurely */
377 account_kernel_stack(tsk
, -1);
378 arch_release_thread_stack(tsk
->stack
);
379 free_thread_stack(tsk
);
381 #ifdef CONFIG_VMAP_STACK
382 tsk
->stack_vm_area
= NULL
;
386 #ifdef CONFIG_THREAD_INFO_IN_TASK
387 void put_task_stack(struct task_struct
*tsk
)
389 if (atomic_dec_and_test(&tsk
->stack_refcount
))
390 release_task_stack(tsk
);
394 void free_task(struct task_struct
*tsk
)
396 #ifndef CONFIG_THREAD_INFO_IN_TASK
398 * The task is finally done with both the stack and thread_info,
401 release_task_stack(tsk
);
404 * If the task had a separate stack allocation, it should be gone
407 WARN_ON_ONCE(atomic_read(&tsk
->stack_refcount
) != 0);
409 rt_mutex_debug_task_free(tsk
);
410 ftrace_graph_exit_task(tsk
);
411 put_seccomp_filter(tsk
);
412 arch_release_task_struct(tsk
);
413 if (tsk
->flags
& PF_KTHREAD
)
414 free_kthread_struct(tsk
);
415 free_task_struct(tsk
);
417 EXPORT_SYMBOL(free_task
);
420 static __latent_entropy
int dup_mmap(struct mm_struct
*mm
,
421 struct mm_struct
*oldmm
)
423 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
424 struct rb_node
**rb_link
, *rb_parent
;
426 unsigned long charge
;
429 uprobe_start_dup_mmap();
430 if (down_write_killable(&oldmm
->mmap_sem
)) {
432 goto fail_uprobe_end
;
434 flush_cache_dup_mm(oldmm
);
435 uprobe_dup_mmap(oldmm
, mm
);
437 * Not linked in yet - no deadlock potential:
439 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
441 /* No ordering required: file already has been exposed. */
442 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
444 mm
->total_vm
= oldmm
->total_vm
;
445 mm
->data_vm
= oldmm
->data_vm
;
446 mm
->exec_vm
= oldmm
->exec_vm
;
447 mm
->stack_vm
= oldmm
->stack_vm
;
449 rb_link
= &mm
->mm_rb
.rb_node
;
452 retval
= ksm_fork(mm
, oldmm
);
455 retval
= khugepaged_fork(mm
, oldmm
);
460 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
463 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
464 vm_stat_account(mm
, mpnt
->vm_flags
, -vma_pages(mpnt
));
469 * Don't duplicate many vmas if we've been oom-killed (for
472 if (fatal_signal_pending(current
)) {
476 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
477 unsigned long len
= vma_pages(mpnt
);
479 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
483 tmp
= vm_area_dup(mpnt
);
486 retval
= vma_dup_policy(mpnt
, tmp
);
488 goto fail_nomem_policy
;
490 retval
= dup_userfaultfd(tmp
, &uf
);
492 goto fail_nomem_anon_vma_fork
;
493 if (tmp
->vm_flags
& VM_WIPEONFORK
) {
494 /* VM_WIPEONFORK gets a clean slate in the child. */
495 tmp
->anon_vma
= NULL
;
496 if (anon_vma_prepare(tmp
))
497 goto fail_nomem_anon_vma_fork
;
498 } else if (anon_vma_fork(tmp
, mpnt
))
499 goto fail_nomem_anon_vma_fork
;
500 tmp
->vm_flags
&= ~(VM_LOCKED
| VM_LOCKONFAULT
);
501 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
504 struct inode
*inode
= file_inode(file
);
505 struct address_space
*mapping
= file
->f_mapping
;
508 if (tmp
->vm_flags
& VM_DENYWRITE
)
509 atomic_dec(&inode
->i_writecount
);
510 i_mmap_lock_write(mapping
);
511 if (tmp
->vm_flags
& VM_SHARED
)
512 atomic_inc(&mapping
->i_mmap_writable
);
513 flush_dcache_mmap_lock(mapping
);
514 /* insert tmp into the share list, just after mpnt */
515 vma_interval_tree_insert_after(tmp
, mpnt
,
517 flush_dcache_mmap_unlock(mapping
);
518 i_mmap_unlock_write(mapping
);
522 * Clear hugetlb-related page reserves for children. This only
523 * affects MAP_PRIVATE mappings. Faults generated by the child
524 * are not guaranteed to succeed, even if read-only
526 if (is_vm_hugetlb_page(tmp
))
527 reset_vma_resv_huge_pages(tmp
);
530 * Link in the new vma and copy the page table entries.
533 pprev
= &tmp
->vm_next
;
537 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
538 rb_link
= &tmp
->vm_rb
.rb_right
;
539 rb_parent
= &tmp
->vm_rb
;
542 if (!(tmp
->vm_flags
& VM_WIPEONFORK
))
543 retval
= copy_page_range(mm
, oldmm
, mpnt
);
545 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
546 tmp
->vm_ops
->open(tmp
);
551 /* a new mm has just been created */
552 arch_dup_mmap(oldmm
, mm
);
555 up_write(&mm
->mmap_sem
);
557 up_write(&oldmm
->mmap_sem
);
558 dup_userfaultfd_complete(&uf
);
560 uprobe_end_dup_mmap();
562 fail_nomem_anon_vma_fork
:
563 mpol_put(vma_policy(tmp
));
568 vm_unacct_memory(charge
);
572 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
574 mm
->pgd
= pgd_alloc(mm
);
575 if (unlikely(!mm
->pgd
))
580 static inline void mm_free_pgd(struct mm_struct
*mm
)
582 pgd_free(mm
, mm
->pgd
);
585 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
587 down_write(&oldmm
->mmap_sem
);
588 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
589 up_write(&oldmm
->mmap_sem
);
592 #define mm_alloc_pgd(mm) (0)
593 #define mm_free_pgd(mm)
594 #endif /* CONFIG_MMU */
596 static void check_mm(struct mm_struct
*mm
)
600 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
601 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
604 printk(KERN_ALERT
"BUG: Bad rss-counter state "
605 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
608 if (mm_pgtables_bytes(mm
))
609 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
610 mm_pgtables_bytes(mm
));
612 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
613 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
617 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
618 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
621 * Called when the last reference to the mm
622 * is dropped: either by a lazy thread or by
623 * mmput. Free the page directory and the mm.
625 void __mmdrop(struct mm_struct
*mm
)
627 BUG_ON(mm
== &init_mm
);
628 WARN_ON_ONCE(mm
== current
->mm
);
629 WARN_ON_ONCE(mm
== current
->active_mm
);
633 mmu_notifier_mm_destroy(mm
);
635 put_user_ns(mm
->user_ns
);
638 EXPORT_SYMBOL_GPL(__mmdrop
);
640 static void mmdrop_async_fn(struct work_struct
*work
)
642 struct mm_struct
*mm
;
644 mm
= container_of(work
, struct mm_struct
, async_put_work
);
648 static void mmdrop_async(struct mm_struct
*mm
)
650 if (unlikely(atomic_dec_and_test(&mm
->mm_count
))) {
651 INIT_WORK(&mm
->async_put_work
, mmdrop_async_fn
);
652 schedule_work(&mm
->async_put_work
);
656 static inline void free_signal_struct(struct signal_struct
*sig
)
658 taskstats_tgid_free(sig
);
659 sched_autogroup_exit(sig
);
661 * __mmdrop is not safe to call from softirq context on x86 due to
662 * pgd_dtor so postpone it to the async context
665 mmdrop_async(sig
->oom_mm
);
666 kmem_cache_free(signal_cachep
, sig
);
669 static inline void put_signal_struct(struct signal_struct
*sig
)
671 if (atomic_dec_and_test(&sig
->sigcnt
))
672 free_signal_struct(sig
);
675 void __put_task_struct(struct task_struct
*tsk
)
677 WARN_ON(!tsk
->exit_state
);
678 WARN_ON(atomic_read(&tsk
->usage
));
679 WARN_ON(tsk
== current
);
683 security_task_free(tsk
);
685 delayacct_tsk_free(tsk
);
686 put_signal_struct(tsk
->signal
);
688 if (!profile_handoff_task(tsk
))
691 EXPORT_SYMBOL_GPL(__put_task_struct
);
693 void __init __weak
arch_task_cache_init(void) { }
698 static void set_max_threads(unsigned int max_threads_suggested
)
703 * The number of threads shall be limited such that the thread
704 * structures may only consume a small part of the available memory.
706 if (fls64(totalram_pages
) + fls64(PAGE_SIZE
) > 64)
707 threads
= MAX_THREADS
;
709 threads
= div64_u64((u64
) totalram_pages
* (u64
) PAGE_SIZE
,
710 (u64
) THREAD_SIZE
* 8UL);
712 if (threads
> max_threads_suggested
)
713 threads
= max_threads_suggested
;
715 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
718 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
719 /* Initialized by the architecture: */
720 int arch_task_struct_size __read_mostly
;
723 static void task_struct_whitelist(unsigned long *offset
, unsigned long *size
)
725 /* Fetch thread_struct whitelist for the architecture. */
726 arch_thread_struct_whitelist(offset
, size
);
729 * Handle zero-sized whitelist or empty thread_struct, otherwise
730 * adjust offset to position of thread_struct in task_struct.
732 if (unlikely(*size
== 0))
735 *offset
+= offsetof(struct task_struct
, thread
);
738 void __init
fork_init(void)
741 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
742 #ifndef ARCH_MIN_TASKALIGN
743 #define ARCH_MIN_TASKALIGN 0
745 int align
= max_t(int, L1_CACHE_BYTES
, ARCH_MIN_TASKALIGN
);
746 unsigned long useroffset
, usersize
;
748 /* create a slab on which task_structs can be allocated */
749 task_struct_whitelist(&useroffset
, &usersize
);
750 task_struct_cachep
= kmem_cache_create_usercopy("task_struct",
751 arch_task_struct_size
, align
,
752 SLAB_PANIC
|SLAB_ACCOUNT
,
753 useroffset
, usersize
, NULL
);
756 /* do the arch specific task caches init */
757 arch_task_cache_init();
759 set_max_threads(MAX_THREADS
);
761 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
762 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
763 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
764 init_task
.signal
->rlim
[RLIMIT_NPROC
];
766 for (i
= 0; i
< UCOUNT_COUNTS
; i
++) {
767 init_user_ns
.ucount_max
[i
] = max_threads
/2;
770 #ifdef CONFIG_VMAP_STACK
771 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN
, "fork:vm_stack_cache",
772 NULL
, free_vm_stack_cache
);
775 lockdep_init_task(&init_task
);
778 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
779 struct task_struct
*src
)
785 void set_task_stack_end_magic(struct task_struct
*tsk
)
787 unsigned long *stackend
;
789 stackend
= end_of_stack(tsk
);
790 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
793 static struct task_struct
*dup_task_struct(struct task_struct
*orig
, int node
)
795 struct task_struct
*tsk
;
796 unsigned long *stack
;
797 struct vm_struct
*stack_vm_area
;
800 if (node
== NUMA_NO_NODE
)
801 node
= tsk_fork_get_node(orig
);
802 tsk
= alloc_task_struct_node(node
);
806 stack
= alloc_thread_stack_node(tsk
, node
);
810 stack_vm_area
= task_stack_vm_area(tsk
);
812 err
= arch_dup_task_struct(tsk
, orig
);
815 * arch_dup_task_struct() clobbers the stack-related fields. Make
816 * sure they're properly initialized before using any stack-related
820 #ifdef CONFIG_VMAP_STACK
821 tsk
->stack_vm_area
= stack_vm_area
;
823 #ifdef CONFIG_THREAD_INFO_IN_TASK
824 atomic_set(&tsk
->stack_refcount
, 1);
830 #ifdef CONFIG_SECCOMP
832 * We must handle setting up seccomp filters once we're under
833 * the sighand lock in case orig has changed between now and
834 * then. Until then, filter must be NULL to avoid messing up
835 * the usage counts on the error path calling free_task.
837 tsk
->seccomp
.filter
= NULL
;
840 setup_thread_stack(tsk
, orig
);
841 clear_user_return_notifier(tsk
);
842 clear_tsk_need_resched(tsk
);
843 set_task_stack_end_magic(tsk
);
845 #ifdef CONFIG_STACKPROTECTOR
846 tsk
->stack_canary
= get_random_canary();
850 * One for us, one for whoever does the "release_task()" (usually
853 atomic_set(&tsk
->usage
, 2);
854 #ifdef CONFIG_BLK_DEV_IO_TRACE
857 tsk
->splice_pipe
= NULL
;
858 tsk
->task_frag
.page
= NULL
;
859 tsk
->wake_q
.next
= NULL
;
861 account_kernel_stack(tsk
, 1);
865 #ifdef CONFIG_FAULT_INJECTION
872 free_thread_stack(tsk
);
874 free_task_struct(tsk
);
878 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
880 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
882 static int __init
coredump_filter_setup(char *s
)
884 default_dump_filter
=
885 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
886 MMF_DUMP_FILTER_MASK
;
890 __setup("coredump_filter=", coredump_filter_setup
);
892 #include <linux/init_task.h>
894 static void mm_init_aio(struct mm_struct
*mm
)
897 spin_lock_init(&mm
->ioctx_lock
);
898 mm
->ioctx_table
= NULL
;
902 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
909 static void mm_init_uprobes_state(struct mm_struct
*mm
)
911 #ifdef CONFIG_UPROBES
912 mm
->uprobes_state
.xol_area
= NULL
;
916 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
,
917 struct user_namespace
*user_ns
)
921 mm
->vmacache_seqnum
= 0;
922 atomic_set(&mm
->mm_users
, 1);
923 atomic_set(&mm
->mm_count
, 1);
924 init_rwsem(&mm
->mmap_sem
);
925 INIT_LIST_HEAD(&mm
->mmlist
);
926 mm
->core_state
= NULL
;
927 mm_pgtables_bytes_init(mm
);
931 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
932 spin_lock_init(&mm
->page_table_lock
);
933 spin_lock_init(&mm
->arg_lock
);
936 mm_init_owner(mm
, p
);
937 RCU_INIT_POINTER(mm
->exe_file
, NULL
);
938 mmu_notifier_mm_init(mm
);
940 init_tlb_flush_pending(mm
);
941 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
942 mm
->pmd_huge_pte
= NULL
;
944 mm_init_uprobes_state(mm
);
947 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
948 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
950 mm
->flags
= default_dump_filter
;
954 if (mm_alloc_pgd(mm
))
957 if (init_new_context(p
, mm
))
960 mm
->user_ns
= get_user_ns(user_ns
);
971 * Allocate and initialize an mm_struct.
973 struct mm_struct
*mm_alloc(void)
975 struct mm_struct
*mm
;
981 memset(mm
, 0, sizeof(*mm
));
982 return mm_init(mm
, current
, current_user_ns());
985 static inline void __mmput(struct mm_struct
*mm
)
987 VM_BUG_ON(atomic_read(&mm
->mm_users
));
989 uprobe_clear_state(mm
);
992 khugepaged_exit(mm
); /* must run before exit_mmap */
994 mm_put_huge_zero_page(mm
);
995 set_mm_exe_file(mm
, NULL
);
996 if (!list_empty(&mm
->mmlist
)) {
997 spin_lock(&mmlist_lock
);
998 list_del(&mm
->mmlist
);
999 spin_unlock(&mmlist_lock
);
1002 module_put(mm
->binfmt
->module
);
1007 * Decrement the use count and release all resources for an mm.
1009 void mmput(struct mm_struct
*mm
)
1013 if (atomic_dec_and_test(&mm
->mm_users
))
1016 EXPORT_SYMBOL_GPL(mmput
);
1019 static void mmput_async_fn(struct work_struct
*work
)
1021 struct mm_struct
*mm
= container_of(work
, struct mm_struct
,
1027 void mmput_async(struct mm_struct
*mm
)
1029 if (atomic_dec_and_test(&mm
->mm_users
)) {
1030 INIT_WORK(&mm
->async_put_work
, mmput_async_fn
);
1031 schedule_work(&mm
->async_put_work
);
1037 * set_mm_exe_file - change a reference to the mm's executable file
1039 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1041 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1042 * invocations: in mmput() nobody alive left, in execve task is single
1043 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1044 * mm->exe_file, but does so without using set_mm_exe_file() in order
1045 * to do avoid the need for any locks.
1047 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
1049 struct file
*old_exe_file
;
1052 * It is safe to dereference the exe_file without RCU as
1053 * this function is only called if nobody else can access
1054 * this mm -- see comment above for justification.
1056 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
1059 get_file(new_exe_file
);
1060 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
1066 * get_mm_exe_file - acquire a reference to the mm's executable file
1068 * Returns %NULL if mm has no associated executable file.
1069 * User must release file via fput().
1071 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
1073 struct file
*exe_file
;
1076 exe_file
= rcu_dereference(mm
->exe_file
);
1077 if (exe_file
&& !get_file_rcu(exe_file
))
1082 EXPORT_SYMBOL(get_mm_exe_file
);
1085 * get_task_exe_file - acquire a reference to the task's executable file
1087 * Returns %NULL if task's mm (if any) has no associated executable file or
1088 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1089 * User must release file via fput().
1091 struct file
*get_task_exe_file(struct task_struct
*task
)
1093 struct file
*exe_file
= NULL
;
1094 struct mm_struct
*mm
;
1099 if (!(task
->flags
& PF_KTHREAD
))
1100 exe_file
= get_mm_exe_file(mm
);
1105 EXPORT_SYMBOL(get_task_exe_file
);
1108 * get_task_mm - acquire a reference to the task's mm
1110 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1111 * this kernel workthread has transiently adopted a user mm with use_mm,
1112 * to do its AIO) is not set and if so returns a reference to it, after
1113 * bumping up the use count. User must release the mm via mmput()
1114 * after use. Typically used by /proc and ptrace.
1116 struct mm_struct
*get_task_mm(struct task_struct
*task
)
1118 struct mm_struct
*mm
;
1123 if (task
->flags
& PF_KTHREAD
)
1131 EXPORT_SYMBOL_GPL(get_task_mm
);
1133 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
1135 struct mm_struct
*mm
;
1138 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
1140 return ERR_PTR(err
);
1142 mm
= get_task_mm(task
);
1143 if (mm
&& mm
!= current
->mm
&&
1144 !ptrace_may_access(task
, mode
)) {
1146 mm
= ERR_PTR(-EACCES
);
1148 mutex_unlock(&task
->signal
->cred_guard_mutex
);
1153 static void complete_vfork_done(struct task_struct
*tsk
)
1155 struct completion
*vfork
;
1158 vfork
= tsk
->vfork_done
;
1159 if (likely(vfork
)) {
1160 tsk
->vfork_done
= NULL
;
1166 static int wait_for_vfork_done(struct task_struct
*child
,
1167 struct completion
*vfork
)
1171 freezer_do_not_count();
1172 killed
= wait_for_completion_killable(vfork
);
1177 child
->vfork_done
= NULL
;
1181 put_task_struct(child
);
1185 /* Please note the differences between mmput and mm_release.
1186 * mmput is called whenever we stop holding onto a mm_struct,
1187 * error success whatever.
1189 * mm_release is called after a mm_struct has been removed
1190 * from the current process.
1192 * This difference is important for error handling, when we
1193 * only half set up a mm_struct for a new process and need to restore
1194 * the old one. Because we mmput the new mm_struct before
1195 * restoring the old one. . .
1196 * Eric Biederman 10 January 1998
1198 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
1200 /* Get rid of any futexes when releasing the mm */
1202 if (unlikely(tsk
->robust_list
)) {
1203 exit_robust_list(tsk
);
1204 tsk
->robust_list
= NULL
;
1206 #ifdef CONFIG_COMPAT
1207 if (unlikely(tsk
->compat_robust_list
)) {
1208 compat_exit_robust_list(tsk
);
1209 tsk
->compat_robust_list
= NULL
;
1212 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1213 exit_pi_state_list(tsk
);
1216 uprobe_free_utask(tsk
);
1218 /* Get rid of any cached register state */
1219 deactivate_mm(tsk
, mm
);
1222 * Signal userspace if we're not exiting with a core dump
1223 * because we want to leave the value intact for debugging
1226 if (tsk
->clear_child_tid
) {
1227 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
1228 atomic_read(&mm
->mm_users
) > 1) {
1230 * We don't check the error code - if userspace has
1231 * not set up a proper pointer then tough luck.
1233 put_user(0, tsk
->clear_child_tid
);
1234 do_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
1235 1, NULL
, NULL
, 0, 0);
1237 tsk
->clear_child_tid
= NULL
;
1241 * All done, finally we can wake up parent and return this mm to him.
1242 * Also kthread_stop() uses this completion for synchronization.
1244 if (tsk
->vfork_done
)
1245 complete_vfork_done(tsk
);
1249 * Allocate a new mm structure and copy contents from the
1250 * mm structure of the passed in task structure.
1252 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
1254 struct mm_struct
*mm
, *oldmm
= current
->mm
;
1261 memcpy(mm
, oldmm
, sizeof(*mm
));
1263 if (!mm_init(mm
, tsk
, mm
->user_ns
))
1266 err
= dup_mmap(mm
, oldmm
);
1270 mm
->hiwater_rss
= get_mm_rss(mm
);
1271 mm
->hiwater_vm
= mm
->total_vm
;
1273 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
1279 /* don't put binfmt in mmput, we haven't got module yet */
1287 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
1289 struct mm_struct
*mm
, *oldmm
;
1292 tsk
->min_flt
= tsk
->maj_flt
= 0;
1293 tsk
->nvcsw
= tsk
->nivcsw
= 0;
1294 #ifdef CONFIG_DETECT_HUNG_TASK
1295 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
1299 tsk
->active_mm
= NULL
;
1302 * Are we cloning a kernel thread?
1304 * We need to steal a active VM for that..
1306 oldmm
= current
->mm
;
1310 /* initialize the new vmacache entries */
1311 vmacache_flush(tsk
);
1313 if (clone_flags
& CLONE_VM
) {
1326 tsk
->active_mm
= mm
;
1333 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
1335 struct fs_struct
*fs
= current
->fs
;
1336 if (clone_flags
& CLONE_FS
) {
1337 /* tsk->fs is already what we want */
1338 spin_lock(&fs
->lock
);
1340 spin_unlock(&fs
->lock
);
1344 spin_unlock(&fs
->lock
);
1347 tsk
->fs
= copy_fs_struct(fs
);
1353 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1355 struct files_struct
*oldf
, *newf
;
1359 * A background process may not have any files ...
1361 oldf
= current
->files
;
1365 if (clone_flags
& CLONE_FILES
) {
1366 atomic_inc(&oldf
->count
);
1370 newf
= dup_fd(oldf
, &error
);
1380 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1383 struct io_context
*ioc
= current
->io_context
;
1384 struct io_context
*new_ioc
;
1389 * Share io context with parent, if CLONE_IO is set
1391 if (clone_flags
& CLONE_IO
) {
1393 tsk
->io_context
= ioc
;
1394 } else if (ioprio_valid(ioc
->ioprio
)) {
1395 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1396 if (unlikely(!new_ioc
))
1399 new_ioc
->ioprio
= ioc
->ioprio
;
1400 put_io_context(new_ioc
);
1406 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1408 struct sighand_struct
*sig
;
1410 if (clone_flags
& CLONE_SIGHAND
) {
1411 atomic_inc(¤t
->sighand
->count
);
1414 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1415 rcu_assign_pointer(tsk
->sighand
, sig
);
1419 atomic_set(&sig
->count
, 1);
1420 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1424 void __cleanup_sighand(struct sighand_struct
*sighand
)
1426 if (atomic_dec_and_test(&sighand
->count
)) {
1427 signalfd_cleanup(sighand
);
1429 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1430 * without an RCU grace period, see __lock_task_sighand().
1432 kmem_cache_free(sighand_cachep
, sighand
);
1436 #ifdef CONFIG_POSIX_TIMERS
1438 * Initialize POSIX timer handling for a thread group.
1440 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1442 unsigned long cpu_limit
;
1444 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1445 if (cpu_limit
!= RLIM_INFINITY
) {
1446 sig
->cputime_expires
.prof_exp
= cpu_limit
* NSEC_PER_SEC
;
1447 sig
->cputimer
.running
= true;
1450 /* The timer lists. */
1451 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1452 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1453 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1456 static inline void posix_cpu_timers_init_group(struct signal_struct
*sig
) { }
1459 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1461 struct signal_struct
*sig
;
1463 if (clone_flags
& CLONE_THREAD
)
1466 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1471 sig
->nr_threads
= 1;
1472 atomic_set(&sig
->live
, 1);
1473 atomic_set(&sig
->sigcnt
, 1);
1475 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1476 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1477 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1479 init_waitqueue_head(&sig
->wait_chldexit
);
1480 sig
->curr_target
= tsk
;
1481 init_sigpending(&sig
->shared_pending
);
1482 seqlock_init(&sig
->stats_lock
);
1483 prev_cputime_init(&sig
->prev_cputime
);
1485 #ifdef CONFIG_POSIX_TIMERS
1486 INIT_LIST_HEAD(&sig
->posix_timers
);
1487 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1488 sig
->real_timer
.function
= it_real_fn
;
1491 task_lock(current
->group_leader
);
1492 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1493 task_unlock(current
->group_leader
);
1495 posix_cpu_timers_init_group(sig
);
1497 tty_audit_fork(sig
);
1498 sched_autogroup_fork(sig
);
1500 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1501 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1503 mutex_init(&sig
->cred_guard_mutex
);
1508 static void copy_seccomp(struct task_struct
*p
)
1510 #ifdef CONFIG_SECCOMP
1512 * Must be called with sighand->lock held, which is common to
1513 * all threads in the group. Holding cred_guard_mutex is not
1514 * needed because this new task is not yet running and cannot
1517 assert_spin_locked(¤t
->sighand
->siglock
);
1519 /* Ref-count the new filter user, and assign it. */
1520 get_seccomp_filter(current
);
1521 p
->seccomp
= current
->seccomp
;
1524 * Explicitly enable no_new_privs here in case it got set
1525 * between the task_struct being duplicated and holding the
1526 * sighand lock. The seccomp state and nnp must be in sync.
1528 if (task_no_new_privs(current
))
1529 task_set_no_new_privs(p
);
1532 * If the parent gained a seccomp mode after copying thread
1533 * flags and between before we held the sighand lock, we have
1534 * to manually enable the seccomp thread flag here.
1536 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1537 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1541 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1543 current
->clear_child_tid
= tidptr
;
1545 return task_pid_vnr(current
);
1548 static void rt_mutex_init_task(struct task_struct
*p
)
1550 raw_spin_lock_init(&p
->pi_lock
);
1551 #ifdef CONFIG_RT_MUTEXES
1552 p
->pi_waiters
= RB_ROOT_CACHED
;
1553 p
->pi_top_task
= NULL
;
1554 p
->pi_blocked_on
= NULL
;
1558 #ifdef CONFIG_POSIX_TIMERS
1560 * Initialize POSIX timer handling for a single task.
1562 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1564 tsk
->cputime_expires
.prof_exp
= 0;
1565 tsk
->cputime_expires
.virt_exp
= 0;
1566 tsk
->cputime_expires
.sched_exp
= 0;
1567 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1568 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1569 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1572 static inline void posix_cpu_timers_init(struct task_struct
*tsk
) { }
1576 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1578 task
->pids
[type
].pid
= pid
;
1581 static inline void rcu_copy_process(struct task_struct
*p
)
1583 #ifdef CONFIG_PREEMPT_RCU
1584 p
->rcu_read_lock_nesting
= 0;
1585 p
->rcu_read_unlock_special
.s
= 0;
1586 p
->rcu_blocked_node
= NULL
;
1587 INIT_LIST_HEAD(&p
->rcu_node_entry
);
1588 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1589 #ifdef CONFIG_TASKS_RCU
1590 p
->rcu_tasks_holdout
= false;
1591 INIT_LIST_HEAD(&p
->rcu_tasks_holdout_list
);
1592 p
->rcu_tasks_idle_cpu
= -1;
1593 #endif /* #ifdef CONFIG_TASKS_RCU */
1597 * This creates a new process as a copy of the old one,
1598 * but does not actually start it yet.
1600 * It copies the registers, and all the appropriate
1601 * parts of the process environment (as per the clone
1602 * flags). The actual kick-off is left to the caller.
1604 static __latent_entropy
struct task_struct
*copy_process(
1605 unsigned long clone_flags
,
1606 unsigned long stack_start
,
1607 unsigned long stack_size
,
1608 int __user
*child_tidptr
,
1615 struct task_struct
*p
;
1618 * Don't allow sharing the root directory with processes in a different
1621 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1622 return ERR_PTR(-EINVAL
);
1624 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1625 return ERR_PTR(-EINVAL
);
1628 * Thread groups must share signals as well, and detached threads
1629 * can only be started up within the thread group.
1631 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1632 return ERR_PTR(-EINVAL
);
1635 * Shared signal handlers imply shared VM. By way of the above,
1636 * thread groups also imply shared VM. Blocking this case allows
1637 * for various simplifications in other code.
1639 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1640 return ERR_PTR(-EINVAL
);
1643 * Siblings of global init remain as zombies on exit since they are
1644 * not reaped by their parent (swapper). To solve this and to avoid
1645 * multi-rooted process trees, prevent global and container-inits
1646 * from creating siblings.
1648 if ((clone_flags
& CLONE_PARENT
) &&
1649 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1650 return ERR_PTR(-EINVAL
);
1653 * If the new process will be in a different pid or user namespace
1654 * do not allow it to share a thread group with the forking task.
1656 if (clone_flags
& CLONE_THREAD
) {
1657 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1658 (task_active_pid_ns(current
) !=
1659 current
->nsproxy
->pid_ns_for_children
))
1660 return ERR_PTR(-EINVAL
);
1664 p
= dup_task_struct(current
, node
);
1669 * This _must_ happen before we call free_task(), i.e. before we jump
1670 * to any of the bad_fork_* labels. This is to avoid freeing
1671 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1672 * kernel threads (PF_KTHREAD).
1674 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1676 * Clear TID on mm_release()?
1678 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1680 ftrace_graph_init_task(p
);
1682 rt_mutex_init_task(p
);
1684 #ifdef CONFIG_PROVE_LOCKING
1685 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1686 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1689 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1690 task_rlimit(p
, RLIMIT_NPROC
)) {
1691 if (p
->real_cred
->user
!= INIT_USER
&&
1692 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1695 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1697 retval
= copy_creds(p
, clone_flags
);
1702 * If multiple threads are within copy_process(), then this check
1703 * triggers too late. This doesn't hurt, the check is only there
1704 * to stop root fork bombs.
1707 if (nr_threads
>= max_threads
)
1708 goto bad_fork_cleanup_count
;
1710 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1711 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
| PF_IDLE
);
1712 p
->flags
|= PF_FORKNOEXEC
;
1713 INIT_LIST_HEAD(&p
->children
);
1714 INIT_LIST_HEAD(&p
->sibling
);
1715 rcu_copy_process(p
);
1716 p
->vfork_done
= NULL
;
1717 spin_lock_init(&p
->alloc_lock
);
1719 init_sigpending(&p
->pending
);
1721 p
->utime
= p
->stime
= p
->gtime
= 0;
1722 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1723 p
->utimescaled
= p
->stimescaled
= 0;
1725 prev_cputime_init(&p
->prev_cputime
);
1727 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1728 seqcount_init(&p
->vtime
.seqcount
);
1729 p
->vtime
.starttime
= 0;
1730 p
->vtime
.state
= VTIME_INACTIVE
;
1733 #if defined(SPLIT_RSS_COUNTING)
1734 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1737 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1739 task_io_accounting_init(&p
->ioac
);
1740 acct_clear_integrals(p
);
1742 posix_cpu_timers_init(p
);
1744 p
->start_time
= ktime_get_ns();
1745 p
->real_start_time
= ktime_get_boot_ns();
1746 p
->io_context
= NULL
;
1747 audit_set_context(p
, NULL
);
1750 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1751 if (IS_ERR(p
->mempolicy
)) {
1752 retval
= PTR_ERR(p
->mempolicy
);
1753 p
->mempolicy
= NULL
;
1754 goto bad_fork_cleanup_threadgroup_lock
;
1757 #ifdef CONFIG_CPUSETS
1758 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1759 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1760 seqcount_init(&p
->mems_allowed_seq
);
1762 #ifdef CONFIG_TRACE_IRQFLAGS
1764 p
->hardirqs_enabled
= 0;
1765 p
->hardirq_enable_ip
= 0;
1766 p
->hardirq_enable_event
= 0;
1767 p
->hardirq_disable_ip
= _THIS_IP_
;
1768 p
->hardirq_disable_event
= 0;
1769 p
->softirqs_enabled
= 1;
1770 p
->softirq_enable_ip
= _THIS_IP_
;
1771 p
->softirq_enable_event
= 0;
1772 p
->softirq_disable_ip
= 0;
1773 p
->softirq_disable_event
= 0;
1774 p
->hardirq_context
= 0;
1775 p
->softirq_context
= 0;
1778 p
->pagefault_disabled
= 0;
1780 #ifdef CONFIG_LOCKDEP
1781 p
->lockdep_depth
= 0; /* no locks held yet */
1782 p
->curr_chain_key
= 0;
1783 p
->lockdep_recursion
= 0;
1784 lockdep_init_task(p
);
1787 #ifdef CONFIG_DEBUG_MUTEXES
1788 p
->blocked_on
= NULL
; /* not blocked yet */
1790 #ifdef CONFIG_BCACHE
1791 p
->sequential_io
= 0;
1792 p
->sequential_io_avg
= 0;
1795 /* Perform scheduler related setup. Assign this task to a CPU. */
1796 retval
= sched_fork(clone_flags
, p
);
1798 goto bad_fork_cleanup_policy
;
1800 retval
= perf_event_init_task(p
);
1802 goto bad_fork_cleanup_policy
;
1803 retval
= audit_alloc(p
);
1805 goto bad_fork_cleanup_perf
;
1806 /* copy all the process information */
1808 retval
= security_task_alloc(p
, clone_flags
);
1810 goto bad_fork_cleanup_audit
;
1811 retval
= copy_semundo(clone_flags
, p
);
1813 goto bad_fork_cleanup_security
;
1814 retval
= copy_files(clone_flags
, p
);
1816 goto bad_fork_cleanup_semundo
;
1817 retval
= copy_fs(clone_flags
, p
);
1819 goto bad_fork_cleanup_files
;
1820 retval
= copy_sighand(clone_flags
, p
);
1822 goto bad_fork_cleanup_fs
;
1823 retval
= copy_signal(clone_flags
, p
);
1825 goto bad_fork_cleanup_sighand
;
1826 retval
= copy_mm(clone_flags
, p
);
1828 goto bad_fork_cleanup_signal
;
1829 retval
= copy_namespaces(clone_flags
, p
);
1831 goto bad_fork_cleanup_mm
;
1832 retval
= copy_io(clone_flags
, p
);
1834 goto bad_fork_cleanup_namespaces
;
1835 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
1837 goto bad_fork_cleanup_io
;
1839 if (pid
!= &init_struct_pid
) {
1840 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1842 retval
= PTR_ERR(pid
);
1843 goto bad_fork_cleanup_thread
;
1851 p
->robust_list
= NULL
;
1852 #ifdef CONFIG_COMPAT
1853 p
->compat_robust_list
= NULL
;
1855 INIT_LIST_HEAD(&p
->pi_state_list
);
1856 p
->pi_state_cache
= NULL
;
1859 * sigaltstack should be cleared when sharing the same VM
1861 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1865 * Syscall tracing and stepping should be turned off in the
1866 * child regardless of CLONE_PTRACE.
1868 user_disable_single_step(p
);
1869 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1870 #ifdef TIF_SYSCALL_EMU
1871 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1873 clear_all_latency_tracing(p
);
1875 /* ok, now we should be set up.. */
1876 p
->pid
= pid_nr(pid
);
1877 if (clone_flags
& CLONE_THREAD
) {
1878 p
->exit_signal
= -1;
1879 p
->group_leader
= current
->group_leader
;
1880 p
->tgid
= current
->tgid
;
1882 if (clone_flags
& CLONE_PARENT
)
1883 p
->exit_signal
= current
->group_leader
->exit_signal
;
1885 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1886 p
->group_leader
= p
;
1891 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1892 p
->dirty_paused_when
= 0;
1894 p
->pdeath_signal
= 0;
1895 INIT_LIST_HEAD(&p
->thread_group
);
1896 p
->task_works
= NULL
;
1898 cgroup_threadgroup_change_begin(current
);
1900 * Ensure that the cgroup subsystem policies allow the new process to be
1901 * forked. It should be noted the the new process's css_set can be changed
1902 * between here and cgroup_post_fork() if an organisation operation is in
1905 retval
= cgroup_can_fork(p
);
1907 goto bad_fork_free_pid
;
1910 * Make it visible to the rest of the system, but dont wake it up yet.
1911 * Need tasklist lock for parent etc handling!
1913 write_lock_irq(&tasklist_lock
);
1915 /* CLONE_PARENT re-uses the old parent */
1916 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1917 p
->real_parent
= current
->real_parent
;
1918 p
->parent_exec_id
= current
->parent_exec_id
;
1920 p
->real_parent
= current
;
1921 p
->parent_exec_id
= current
->self_exec_id
;
1924 klp_copy_process(p
);
1926 spin_lock(¤t
->sighand
->siglock
);
1929 * Copy seccomp details explicitly here, in case they were changed
1930 * before holding sighand lock.
1934 rseq_fork(p
, clone_flags
);
1937 * Process group and session signals need to be delivered to just the
1938 * parent before the fork or both the parent and the child after the
1939 * fork. Restart if a signal comes in before we add the new process to
1940 * it's process group.
1941 * A fatal signal pending means that current will exit, so the new
1942 * thread can't slip out of an OOM kill (or normal SIGKILL).
1944 recalc_sigpending();
1945 if (signal_pending(current
)) {
1946 retval
= -ERESTARTNOINTR
;
1947 goto bad_fork_cancel_cgroup
;
1949 if (unlikely(!(ns_of_pid(pid
)->pid_allocated
& PIDNS_ADDING
))) {
1951 goto bad_fork_cancel_cgroup
;
1954 if (likely(p
->pid
)) {
1955 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1957 init_task_pid(p
, PIDTYPE_PID
, pid
);
1958 if (thread_group_leader(p
)) {
1959 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1960 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
1962 if (is_child_reaper(pid
)) {
1963 ns_of_pid(pid
)->child_reaper
= p
;
1964 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
1967 p
->signal
->leader_pid
= pid
;
1968 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1970 * Inherit has_child_subreaper flag under the same
1971 * tasklist_lock with adding child to the process tree
1972 * for propagate_has_child_subreaper optimization.
1974 p
->signal
->has_child_subreaper
= p
->real_parent
->signal
->has_child_subreaper
||
1975 p
->real_parent
->signal
->is_child_subreaper
;
1976 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1977 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1978 attach_pid(p
, PIDTYPE_PGID
);
1979 attach_pid(p
, PIDTYPE_SID
);
1980 __this_cpu_inc(process_counts
);
1982 current
->signal
->nr_threads
++;
1983 atomic_inc(¤t
->signal
->live
);
1984 atomic_inc(¤t
->signal
->sigcnt
);
1985 list_add_tail_rcu(&p
->thread_group
,
1986 &p
->group_leader
->thread_group
);
1987 list_add_tail_rcu(&p
->thread_node
,
1988 &p
->signal
->thread_head
);
1990 attach_pid(p
, PIDTYPE_PID
);
1995 spin_unlock(¤t
->sighand
->siglock
);
1996 syscall_tracepoint_update(p
);
1997 write_unlock_irq(&tasklist_lock
);
1999 proc_fork_connector(p
);
2000 cgroup_post_fork(p
);
2001 cgroup_threadgroup_change_end(current
);
2004 trace_task_newtask(p
, clone_flags
);
2005 uprobe_copy_process(p
, clone_flags
);
2009 bad_fork_cancel_cgroup
:
2010 spin_unlock(¤t
->sighand
->siglock
);
2011 write_unlock_irq(&tasklist_lock
);
2012 cgroup_cancel_fork(p
);
2014 cgroup_threadgroup_change_end(current
);
2015 if (pid
!= &init_struct_pid
)
2017 bad_fork_cleanup_thread
:
2019 bad_fork_cleanup_io
:
2022 bad_fork_cleanup_namespaces
:
2023 exit_task_namespaces(p
);
2024 bad_fork_cleanup_mm
:
2027 bad_fork_cleanup_signal
:
2028 if (!(clone_flags
& CLONE_THREAD
))
2029 free_signal_struct(p
->signal
);
2030 bad_fork_cleanup_sighand
:
2031 __cleanup_sighand(p
->sighand
);
2032 bad_fork_cleanup_fs
:
2033 exit_fs(p
); /* blocking */
2034 bad_fork_cleanup_files
:
2035 exit_files(p
); /* blocking */
2036 bad_fork_cleanup_semundo
:
2038 bad_fork_cleanup_security
:
2039 security_task_free(p
);
2040 bad_fork_cleanup_audit
:
2042 bad_fork_cleanup_perf
:
2043 perf_event_free_task(p
);
2044 bad_fork_cleanup_policy
:
2045 lockdep_free_task(p
);
2047 mpol_put(p
->mempolicy
);
2048 bad_fork_cleanup_threadgroup_lock
:
2050 delayacct_tsk_free(p
);
2051 bad_fork_cleanup_count
:
2052 atomic_dec(&p
->cred
->user
->processes
);
2055 p
->state
= TASK_DEAD
;
2059 return ERR_PTR(retval
);
2062 static inline void init_idle_pids(struct pid_link
*links
)
2066 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
2067 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
2068 links
[type
].pid
= &init_struct_pid
;
2072 struct task_struct
*fork_idle(int cpu
)
2074 struct task_struct
*task
;
2075 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0, 0,
2077 if (!IS_ERR(task
)) {
2078 init_idle_pids(task
->pids
);
2079 init_idle(task
, cpu
);
2086 * Ok, this is the main fork-routine.
2088 * It copies the process, and if successful kick-starts
2089 * it and waits for it to finish using the VM if required.
2091 long _do_fork(unsigned long clone_flags
,
2092 unsigned long stack_start
,
2093 unsigned long stack_size
,
2094 int __user
*parent_tidptr
,
2095 int __user
*child_tidptr
,
2098 struct completion vfork
;
2100 struct task_struct
*p
;
2105 * Determine whether and which event to report to ptracer. When
2106 * called from kernel_thread or CLONE_UNTRACED is explicitly
2107 * requested, no event is reported; otherwise, report if the event
2108 * for the type of forking is enabled.
2110 if (!(clone_flags
& CLONE_UNTRACED
)) {
2111 if (clone_flags
& CLONE_VFORK
)
2112 trace
= PTRACE_EVENT_VFORK
;
2113 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
2114 trace
= PTRACE_EVENT_CLONE
;
2116 trace
= PTRACE_EVENT_FORK
;
2118 if (likely(!ptrace_event_enabled(current
, trace
)))
2122 p
= copy_process(clone_flags
, stack_start
, stack_size
,
2123 child_tidptr
, NULL
, trace
, tls
, NUMA_NO_NODE
);
2124 add_latent_entropy();
2130 * Do this prior waking up the new thread - the thread pointer
2131 * might get invalid after that point, if the thread exits quickly.
2133 trace_sched_process_fork(current
, p
);
2135 pid
= get_task_pid(p
, PIDTYPE_PID
);
2138 if (clone_flags
& CLONE_PARENT_SETTID
)
2139 put_user(nr
, parent_tidptr
);
2141 if (clone_flags
& CLONE_VFORK
) {
2142 p
->vfork_done
= &vfork
;
2143 init_completion(&vfork
);
2147 wake_up_new_task(p
);
2149 /* forking complete and child started to run, tell ptracer */
2150 if (unlikely(trace
))
2151 ptrace_event_pid(trace
, pid
);
2153 if (clone_flags
& CLONE_VFORK
) {
2154 if (!wait_for_vfork_done(p
, &vfork
))
2155 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
2162 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2163 /* For compatibility with architectures that call do_fork directly rather than
2164 * using the syscall entry points below. */
2165 long do_fork(unsigned long clone_flags
,
2166 unsigned long stack_start
,
2167 unsigned long stack_size
,
2168 int __user
*parent_tidptr
,
2169 int __user
*child_tidptr
)
2171 return _do_fork(clone_flags
, stack_start
, stack_size
,
2172 parent_tidptr
, child_tidptr
, 0);
2177 * Create a kernel thread.
2179 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
2181 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
2182 (unsigned long)arg
, NULL
, NULL
, 0);
2185 #ifdef __ARCH_WANT_SYS_FORK
2186 SYSCALL_DEFINE0(fork
)
2189 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
2191 /* can not support in nommu mode */
2197 #ifdef __ARCH_WANT_SYS_VFORK
2198 SYSCALL_DEFINE0(vfork
)
2200 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
2205 #ifdef __ARCH_WANT_SYS_CLONE
2206 #ifdef CONFIG_CLONE_BACKWARDS
2207 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2208 int __user
*, parent_tidptr
,
2210 int __user
*, child_tidptr
)
2211 #elif defined(CONFIG_CLONE_BACKWARDS2)
2212 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
2213 int __user
*, parent_tidptr
,
2214 int __user
*, child_tidptr
,
2216 #elif defined(CONFIG_CLONE_BACKWARDS3)
2217 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2219 int __user
*, parent_tidptr
,
2220 int __user
*, child_tidptr
,
2223 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2224 int __user
*, parent_tidptr
,
2225 int __user
*, child_tidptr
,
2229 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
2233 void walk_process_tree(struct task_struct
*top
, proc_visitor visitor
, void *data
)
2235 struct task_struct
*leader
, *parent
, *child
;
2238 read_lock(&tasklist_lock
);
2239 leader
= top
= top
->group_leader
;
2241 for_each_thread(leader
, parent
) {
2242 list_for_each_entry(child
, &parent
->children
, sibling
) {
2243 res
= visitor(child
, data
);
2255 if (leader
!= top
) {
2257 parent
= child
->real_parent
;
2258 leader
= parent
->group_leader
;
2262 read_unlock(&tasklist_lock
);
2265 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2266 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2269 static void sighand_ctor(void *data
)
2271 struct sighand_struct
*sighand
= data
;
2273 spin_lock_init(&sighand
->siglock
);
2274 init_waitqueue_head(&sighand
->signalfd_wqh
);
2277 void __init
proc_caches_init(void)
2279 sighand_cachep
= kmem_cache_create("sighand_cache",
2280 sizeof(struct sighand_struct
), 0,
2281 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_TYPESAFE_BY_RCU
|
2282 SLAB_ACCOUNT
, sighand_ctor
);
2283 signal_cachep
= kmem_cache_create("signal_cache",
2284 sizeof(struct signal_struct
), 0,
2285 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2287 files_cachep
= kmem_cache_create("files_cache",
2288 sizeof(struct files_struct
), 0,
2289 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2291 fs_cachep
= kmem_cache_create("fs_cache",
2292 sizeof(struct fs_struct
), 0,
2293 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2296 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2297 * whole struct cpumask for the OFFSTACK case. We could change
2298 * this to *only* allocate as much of it as required by the
2299 * maximum number of CPU's we can ever have. The cpumask_allocation
2300 * is at the end of the structure, exactly for that reason.
2302 mm_cachep
= kmem_cache_create_usercopy("mm_struct",
2303 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
2304 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2305 offsetof(struct mm_struct
, saved_auxv
),
2306 sizeof_field(struct mm_struct
, saved_auxv
),
2308 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
|SLAB_ACCOUNT
);
2310 nsproxy_cache_init();
2314 * Check constraints on flags passed to the unshare system call.
2316 static int check_unshare_flags(unsigned long unshare_flags
)
2318 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
2319 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
2320 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
2321 CLONE_NEWUSER
|CLONE_NEWPID
|CLONE_NEWCGROUP
))
2324 * Not implemented, but pretend it works if there is nothing
2325 * to unshare. Note that unsharing the address space or the
2326 * signal handlers also need to unshare the signal queues (aka
2329 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
2330 if (!thread_group_empty(current
))
2333 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
2334 if (atomic_read(¤t
->sighand
->count
) > 1)
2337 if (unshare_flags
& CLONE_VM
) {
2338 if (!current_is_single_threaded())
2346 * Unshare the filesystem structure if it is being shared
2348 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
2350 struct fs_struct
*fs
= current
->fs
;
2352 if (!(unshare_flags
& CLONE_FS
) || !fs
)
2355 /* don't need lock here; in the worst case we'll do useless copy */
2359 *new_fsp
= copy_fs_struct(fs
);
2367 * Unshare file descriptor table if it is being shared
2369 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
2371 struct files_struct
*fd
= current
->files
;
2374 if ((unshare_flags
& CLONE_FILES
) &&
2375 (fd
&& atomic_read(&fd
->count
) > 1)) {
2376 *new_fdp
= dup_fd(fd
, &error
);
2385 * unshare allows a process to 'unshare' part of the process
2386 * context which was originally shared using clone. copy_*
2387 * functions used by do_fork() cannot be used here directly
2388 * because they modify an inactive task_struct that is being
2389 * constructed. Here we are modifying the current, active,
2392 int ksys_unshare(unsigned long unshare_flags
)
2394 struct fs_struct
*fs
, *new_fs
= NULL
;
2395 struct files_struct
*fd
, *new_fd
= NULL
;
2396 struct cred
*new_cred
= NULL
;
2397 struct nsproxy
*new_nsproxy
= NULL
;
2402 * If unsharing a user namespace must also unshare the thread group
2403 * and unshare the filesystem root and working directories.
2405 if (unshare_flags
& CLONE_NEWUSER
)
2406 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
2408 * If unsharing vm, must also unshare signal handlers.
2410 if (unshare_flags
& CLONE_VM
)
2411 unshare_flags
|= CLONE_SIGHAND
;
2413 * If unsharing a signal handlers, must also unshare the signal queues.
2415 if (unshare_flags
& CLONE_SIGHAND
)
2416 unshare_flags
|= CLONE_THREAD
;
2418 * If unsharing namespace, must also unshare filesystem information.
2420 if (unshare_flags
& CLONE_NEWNS
)
2421 unshare_flags
|= CLONE_FS
;
2423 err
= check_unshare_flags(unshare_flags
);
2425 goto bad_unshare_out
;
2427 * CLONE_NEWIPC must also detach from the undolist: after switching
2428 * to a new ipc namespace, the semaphore arrays from the old
2429 * namespace are unreachable.
2431 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
2433 err
= unshare_fs(unshare_flags
, &new_fs
);
2435 goto bad_unshare_out
;
2436 err
= unshare_fd(unshare_flags
, &new_fd
);
2438 goto bad_unshare_cleanup_fs
;
2439 err
= unshare_userns(unshare_flags
, &new_cred
);
2441 goto bad_unshare_cleanup_fd
;
2442 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2445 goto bad_unshare_cleanup_cred
;
2447 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2450 * CLONE_SYSVSEM is equivalent to sys_exit().
2454 if (unshare_flags
& CLONE_NEWIPC
) {
2455 /* Orphan segments in old ns (see sem above). */
2457 shm_init_task(current
);
2461 switch_task_namespaces(current
, new_nsproxy
);
2467 spin_lock(&fs
->lock
);
2468 current
->fs
= new_fs
;
2473 spin_unlock(&fs
->lock
);
2477 fd
= current
->files
;
2478 current
->files
= new_fd
;
2482 task_unlock(current
);
2485 /* Install the new user namespace */
2486 commit_creds(new_cred
);
2491 perf_event_namespaces(current
);
2493 bad_unshare_cleanup_cred
:
2496 bad_unshare_cleanup_fd
:
2498 put_files_struct(new_fd
);
2500 bad_unshare_cleanup_fs
:
2502 free_fs_struct(new_fs
);
2508 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
2510 return ksys_unshare(unshare_flags
);
2514 * Helper to unshare the files of the current task.
2515 * We don't want to expose copy_files internals to
2516 * the exec layer of the kernel.
2519 int unshare_files(struct files_struct
**displaced
)
2521 struct task_struct
*task
= current
;
2522 struct files_struct
*copy
= NULL
;
2525 error
= unshare_fd(CLONE_FILES
, ©
);
2526 if (error
|| !copy
) {
2530 *displaced
= task
->files
;
2537 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2538 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2542 int threads
= max_threads
;
2543 int min
= MIN_THREADS
;
2544 int max
= MAX_THREADS
;
2551 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2555 set_max_threads(threads
);