2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
29 #include <asm/pgtable.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
38 int hugepages_treat_as_movable
;
40 int hugetlb_max_hstate __read_mostly
;
41 unsigned int default_hstate_idx
;
42 struct hstate hstates
[HUGE_MAX_HSTATE
];
44 __initdata
LIST_HEAD(huge_boot_pages
);
46 /* for command line parsing */
47 static struct hstate
* __initdata parsed_hstate
;
48 static unsigned long __initdata default_hstate_max_huge_pages
;
49 static unsigned long __initdata default_hstate_size
;
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
55 DEFINE_SPINLOCK(hugetlb_lock
);
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 static int num_fault_mutexes
;
62 static struct mutex
*htlb_fault_mutex_table ____cacheline_aligned_in_smp
;
64 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
66 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
68 spin_unlock(&spool
->lock
);
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
76 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
78 struct hugepage_subpool
*spool
;
80 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
84 spin_lock_init(&spool
->lock
);
86 spool
->max_hpages
= nr_blocks
;
87 spool
->used_hpages
= 0;
92 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
94 spin_lock(&spool
->lock
);
95 BUG_ON(!spool
->count
);
97 unlock_or_release_subpool(spool
);
100 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
108 spin_lock(&spool
->lock
);
109 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
110 spool
->used_hpages
+= delta
;
114 spin_unlock(&spool
->lock
);
119 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
125 spin_lock(&spool
->lock
);
126 spool
->used_hpages
-= delta
;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool
);
132 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
134 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
137 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
139 return subpool_inode(file_inode(vma
->vm_file
));
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
150 struct list_head link
;
155 static long region_add(struct resv_map
*resv
, long f
, long t
)
157 struct list_head
*head
= &resv
->regions
;
158 struct file_region
*rg
, *nrg
, *trg
;
160 spin_lock(&resv
->lock
);
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg
, head
, link
)
166 /* Round our left edge to the current segment if it encloses us. */
170 /* Check for and consume any regions we now overlap with. */
172 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
173 if (&rg
->link
== head
)
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
190 spin_unlock(&resv
->lock
);
194 static long region_chg(struct resv_map
*resv
, long f
, long t
)
196 struct list_head
*head
= &resv
->regions
;
197 struct file_region
*rg
, *nrg
= NULL
;
201 spin_lock(&resv
->lock
);
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg
, head
, link
)
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg
->link
== head
|| t
< rg
->from
) {
212 spin_unlock(&resv
->lock
);
213 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
219 INIT_LIST_HEAD(&nrg
->link
);
223 list_add(&nrg
->link
, rg
->link
.prev
);
228 /* Round our left edge to the current segment if it encloses us. */
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
235 if (&rg
->link
== head
)
240 /* We overlap with this area, if it extends further than
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
247 chg
-= rg
->to
- rg
->from
;
251 spin_unlock(&resv
->lock
);
252 /* We already know we raced and no longer need the new region */
256 spin_unlock(&resv
->lock
);
260 static long region_truncate(struct resv_map
*resv
, long end
)
262 struct list_head
*head
= &resv
->regions
;
263 struct file_region
*rg
, *trg
;
266 spin_lock(&resv
->lock
);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg
, head
, link
)
271 if (&rg
->link
== head
)
274 /* If we are in the middle of a region then adjust it. */
275 if (end
> rg
->from
) {
278 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
283 if (&rg
->link
== head
)
285 chg
+= rg
->to
- rg
->from
;
291 spin_unlock(&resv
->lock
);
295 static long region_count(struct resv_map
*resv
, long f
, long t
)
297 struct list_head
*head
= &resv
->regions
;
298 struct file_region
*rg
;
301 spin_lock(&resv
->lock
);
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg
, head
, link
) {
312 seg_from
= max(rg
->from
, f
);
313 seg_to
= min(rg
->to
, t
);
315 chg
+= seg_to
- seg_from
;
317 spin_unlock(&resv
->lock
);
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
326 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
327 struct vm_area_struct
*vma
, unsigned long address
)
329 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
330 (vma
->vm_pgoff
>> huge_page_order(h
));
333 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
334 unsigned long address
)
336 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
343 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
345 struct hstate
*hstate
;
347 if (!is_vm_hugetlb_page(vma
))
350 hstate
= hstate_vma(vma
);
352 return 1UL << huge_page_shift(hstate
);
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
362 #ifndef vma_mmu_pagesize
363 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
365 return vma_kernel_pagesize(vma
);
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
374 #define HPAGE_RESV_OWNER (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
397 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
399 return (unsigned long)vma
->vm_private_data
;
402 static void set_vma_private_data(struct vm_area_struct
*vma
,
405 vma
->vm_private_data
= (void *)value
;
408 struct resv_map
*resv_map_alloc(void)
410 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
414 kref_init(&resv_map
->refs
);
415 spin_lock_init(&resv_map
->lock
);
416 INIT_LIST_HEAD(&resv_map
->regions
);
421 void resv_map_release(struct kref
*ref
)
423 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
425 /* Clear out any active regions before we release the map. */
426 region_truncate(resv_map
, 0);
430 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
432 return inode
->i_mapping
->private_data
;
435 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
437 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
438 if (vma
->vm_flags
& VM_MAYSHARE
) {
439 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
440 struct inode
*inode
= mapping
->host
;
442 return inode_resv_map(inode
);
445 return (struct resv_map
*)(get_vma_private_data(vma
) &
450 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
452 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
453 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
455 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
456 HPAGE_RESV_MASK
) | (unsigned long)map
);
459 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
461 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
462 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
464 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
467 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
469 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
471 return (get_vma_private_data(vma
) & flag
) != 0;
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
477 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
478 if (!(vma
->vm_flags
& VM_MAYSHARE
))
479 vma
->vm_private_data
= (void *)0;
482 /* Returns true if the VMA has associated reserve pages */
483 static int vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
485 if (vma
->vm_flags
& VM_NORESERVE
) {
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
495 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
501 /* Shared mappings always use reserves */
502 if (vma
->vm_flags
& VM_MAYSHARE
)
506 * Only the process that called mmap() has reserves for
509 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
515 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
517 int nid
= page_to_nid(page
);
518 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
519 h
->free_huge_pages
++;
520 h
->free_huge_pages_node
[nid
]++;
523 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
527 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
528 if (!is_migrate_isolate_page(page
))
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
534 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
536 list_move(&page
->lru
, &h
->hugepage_activelist
);
537 set_page_refcounted(page
);
538 h
->free_huge_pages
--;
539 h
->free_huge_pages_node
[nid
]--;
543 /* Movability of hugepages depends on migration support. */
544 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
546 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
547 return GFP_HIGHUSER_MOVABLE
;
552 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
553 struct vm_area_struct
*vma
,
554 unsigned long address
, int avoid_reserve
,
557 struct page
*page
= NULL
;
558 struct mempolicy
*mpol
;
559 nodemask_t
*nodemask
;
560 struct zonelist
*zonelist
;
563 unsigned int cpuset_mems_cookie
;
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
570 if (!vma_has_reserves(vma
, chg
) &&
571 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
574 /* If reserves cannot be used, ensure enough pages are in the pool */
575 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
579 cpuset_mems_cookie
= read_mems_allowed_begin();
580 zonelist
= huge_zonelist(vma
, address
,
581 htlb_alloc_mask(h
), &mpol
, &nodemask
);
583 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
584 MAX_NR_ZONES
- 1, nodemask
) {
585 if (cpuset_zone_allowed(zone
, htlb_alloc_mask(h
))) {
586 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
590 if (!vma_has_reserves(vma
, chg
))
593 SetPagePrivate(page
);
594 h
->resv_huge_pages
--;
601 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
610 * common helper functions for hstate_next_node_to_{alloc|free}.
611 * We may have allocated or freed a huge page based on a different
612 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613 * be outside of *nodes_allowed. Ensure that we use an allowed
614 * node for alloc or free.
616 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
618 nid
= next_node(nid
, *nodes_allowed
);
619 if (nid
== MAX_NUMNODES
)
620 nid
= first_node(*nodes_allowed
);
621 VM_BUG_ON(nid
>= MAX_NUMNODES
);
626 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
628 if (!node_isset(nid
, *nodes_allowed
))
629 nid
= next_node_allowed(nid
, nodes_allowed
);
634 * returns the previously saved node ["this node"] from which to
635 * allocate a persistent huge page for the pool and advance the
636 * next node from which to allocate, handling wrap at end of node
639 static int hstate_next_node_to_alloc(struct hstate
*h
,
640 nodemask_t
*nodes_allowed
)
644 VM_BUG_ON(!nodes_allowed
);
646 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
647 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
653 * helper for free_pool_huge_page() - return the previously saved
654 * node ["this node"] from which to free a huge page. Advance the
655 * next node id whether or not we find a free huge page to free so
656 * that the next attempt to free addresses the next node.
658 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
662 VM_BUG_ON(!nodes_allowed
);
664 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
665 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
670 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
671 for (nr_nodes = nodes_weight(*mask); \
673 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
676 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
677 for (nr_nodes = nodes_weight(*mask); \
679 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
682 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
683 static void destroy_compound_gigantic_page(struct page
*page
,
687 int nr_pages
= 1 << order
;
688 struct page
*p
= page
+ 1;
690 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
692 set_page_refcounted(p
);
693 p
->first_page
= NULL
;
696 set_compound_order(page
, 0);
697 __ClearPageHead(page
);
700 static void free_gigantic_page(struct page
*page
, unsigned order
)
702 free_contig_range(page_to_pfn(page
), 1 << order
);
705 static int __alloc_gigantic_page(unsigned long start_pfn
,
706 unsigned long nr_pages
)
708 unsigned long end_pfn
= start_pfn
+ nr_pages
;
709 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
712 static bool pfn_range_valid_gigantic(unsigned long start_pfn
,
713 unsigned long nr_pages
)
715 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
718 for (i
= start_pfn
; i
< end_pfn
; i
++) {
722 page
= pfn_to_page(i
);
724 if (PageReserved(page
))
727 if (page_count(page
) > 0)
737 static bool zone_spans_last_pfn(const struct zone
*zone
,
738 unsigned long start_pfn
, unsigned long nr_pages
)
740 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
741 return zone_spans_pfn(zone
, last_pfn
);
744 static struct page
*alloc_gigantic_page(int nid
, unsigned order
)
746 unsigned long nr_pages
= 1 << order
;
747 unsigned long ret
, pfn
, flags
;
750 z
= NODE_DATA(nid
)->node_zones
;
751 for (; z
- NODE_DATA(nid
)->node_zones
< MAX_NR_ZONES
; z
++) {
752 spin_lock_irqsave(&z
->lock
, flags
);
754 pfn
= ALIGN(z
->zone_start_pfn
, nr_pages
);
755 while (zone_spans_last_pfn(z
, pfn
, nr_pages
)) {
756 if (pfn_range_valid_gigantic(pfn
, nr_pages
)) {
758 * We release the zone lock here because
759 * alloc_contig_range() will also lock the zone
760 * at some point. If there's an allocation
761 * spinning on this lock, it may win the race
762 * and cause alloc_contig_range() to fail...
764 spin_unlock_irqrestore(&z
->lock
, flags
);
765 ret
= __alloc_gigantic_page(pfn
, nr_pages
);
767 return pfn_to_page(pfn
);
768 spin_lock_irqsave(&z
->lock
, flags
);
773 spin_unlock_irqrestore(&z
->lock
, flags
);
779 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
780 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
);
782 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
786 page
= alloc_gigantic_page(nid
, huge_page_order(h
));
788 prep_compound_gigantic_page(page
, huge_page_order(h
));
789 prep_new_huge_page(h
, page
, nid
);
795 static int alloc_fresh_gigantic_page(struct hstate
*h
,
796 nodemask_t
*nodes_allowed
)
798 struct page
*page
= NULL
;
801 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
802 page
= alloc_fresh_gigantic_page_node(h
, node
);
810 static inline bool gigantic_page_supported(void) { return true; }
812 static inline bool gigantic_page_supported(void) { return false; }
813 static inline void free_gigantic_page(struct page
*page
, unsigned order
) { }
814 static inline void destroy_compound_gigantic_page(struct page
*page
,
815 unsigned long order
) { }
816 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
817 nodemask_t
*nodes_allowed
) { return 0; }
820 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
824 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
828 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
829 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
830 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
831 1 << PG_referenced
| 1 << PG_dirty
|
832 1 << PG_active
| 1 << PG_private
|
835 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
836 set_compound_page_dtor(page
, NULL
);
837 set_page_refcounted(page
);
838 if (hstate_is_gigantic(h
)) {
839 destroy_compound_gigantic_page(page
, huge_page_order(h
));
840 free_gigantic_page(page
, huge_page_order(h
));
842 arch_release_hugepage(page
);
843 __free_pages(page
, huge_page_order(h
));
847 struct hstate
*size_to_hstate(unsigned long size
)
852 if (huge_page_size(h
) == size
)
858 void free_huge_page(struct page
*page
)
861 * Can't pass hstate in here because it is called from the
862 * compound page destructor.
864 struct hstate
*h
= page_hstate(page
);
865 int nid
= page_to_nid(page
);
866 struct hugepage_subpool
*spool
=
867 (struct hugepage_subpool
*)page_private(page
);
868 bool restore_reserve
;
870 set_page_private(page
, 0);
871 page
->mapping
= NULL
;
872 BUG_ON(page_count(page
));
873 BUG_ON(page_mapcount(page
));
874 restore_reserve
= PagePrivate(page
);
875 ClearPagePrivate(page
);
877 spin_lock(&hugetlb_lock
);
878 hugetlb_cgroup_uncharge_page(hstate_index(h
),
879 pages_per_huge_page(h
), page
);
881 h
->resv_huge_pages
++;
883 if (h
->surplus_huge_pages_node
[nid
]) {
884 /* remove the page from active list */
885 list_del(&page
->lru
);
886 update_and_free_page(h
, page
);
887 h
->surplus_huge_pages
--;
888 h
->surplus_huge_pages_node
[nid
]--;
890 arch_clear_hugepage_flags(page
);
891 enqueue_huge_page(h
, page
);
893 spin_unlock(&hugetlb_lock
);
894 hugepage_subpool_put_pages(spool
, 1);
897 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
899 INIT_LIST_HEAD(&page
->lru
);
900 set_compound_page_dtor(page
, free_huge_page
);
901 spin_lock(&hugetlb_lock
);
902 set_hugetlb_cgroup(page
, NULL
);
904 h
->nr_huge_pages_node
[nid
]++;
905 spin_unlock(&hugetlb_lock
);
906 put_page(page
); /* free it into the hugepage allocator */
909 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
912 int nr_pages
= 1 << order
;
913 struct page
*p
= page
+ 1;
915 /* we rely on prep_new_huge_page to set the destructor */
916 set_compound_order(page
, order
);
918 __ClearPageReserved(page
);
919 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
921 * For gigantic hugepages allocated through bootmem at
922 * boot, it's safer to be consistent with the not-gigantic
923 * hugepages and clear the PG_reserved bit from all tail pages
924 * too. Otherwse drivers using get_user_pages() to access tail
925 * pages may get the reference counting wrong if they see
926 * PG_reserved set on a tail page (despite the head page not
927 * having PG_reserved set). Enforcing this consistency between
928 * head and tail pages allows drivers to optimize away a check
929 * on the head page when they need know if put_page() is needed
930 * after get_user_pages().
932 __ClearPageReserved(p
);
933 set_page_count(p
, 0);
934 p
->first_page
= page
;
935 /* Make sure p->first_page is always valid for PageTail() */
942 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
943 * transparent huge pages. See the PageTransHuge() documentation for more
946 int PageHuge(struct page
*page
)
948 if (!PageCompound(page
))
951 page
= compound_head(page
);
952 return get_compound_page_dtor(page
) == free_huge_page
;
954 EXPORT_SYMBOL_GPL(PageHuge
);
957 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
958 * normal or transparent huge pages.
960 int PageHeadHuge(struct page
*page_head
)
962 if (!PageHead(page_head
))
965 return get_compound_page_dtor(page_head
) == free_huge_page
;
968 pgoff_t
__basepage_index(struct page
*page
)
970 struct page
*page_head
= compound_head(page
);
971 pgoff_t index
= page_index(page_head
);
972 unsigned long compound_idx
;
974 if (!PageHuge(page_head
))
975 return page_index(page
);
977 if (compound_order(page_head
) >= MAX_ORDER
)
978 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
980 compound_idx
= page
- page_head
;
982 return (index
<< compound_order(page_head
)) + compound_idx
;
985 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
989 page
= alloc_pages_exact_node(nid
,
990 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
991 __GFP_REPEAT
|__GFP_NOWARN
,
994 if (arch_prepare_hugepage(page
)) {
995 __free_pages(page
, huge_page_order(h
));
998 prep_new_huge_page(h
, page
, nid
);
1004 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1010 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1011 page
= alloc_fresh_huge_page_node(h
, node
);
1019 count_vm_event(HTLB_BUDDY_PGALLOC
);
1021 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1027 * Free huge page from pool from next node to free.
1028 * Attempt to keep persistent huge pages more or less
1029 * balanced over allowed nodes.
1030 * Called with hugetlb_lock locked.
1032 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1038 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1040 * If we're returning unused surplus pages, only examine
1041 * nodes with surplus pages.
1043 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1044 !list_empty(&h
->hugepage_freelists
[node
])) {
1046 list_entry(h
->hugepage_freelists
[node
].next
,
1048 list_del(&page
->lru
);
1049 h
->free_huge_pages
--;
1050 h
->free_huge_pages_node
[node
]--;
1052 h
->surplus_huge_pages
--;
1053 h
->surplus_huge_pages_node
[node
]--;
1055 update_and_free_page(h
, page
);
1065 * Dissolve a given free hugepage into free buddy pages. This function does
1066 * nothing for in-use (including surplus) hugepages.
1068 static void dissolve_free_huge_page(struct page
*page
)
1070 spin_lock(&hugetlb_lock
);
1071 if (PageHuge(page
) && !page_count(page
)) {
1072 struct hstate
*h
= page_hstate(page
);
1073 int nid
= page_to_nid(page
);
1074 list_del(&page
->lru
);
1075 h
->free_huge_pages
--;
1076 h
->free_huge_pages_node
[nid
]--;
1077 update_and_free_page(h
, page
);
1079 spin_unlock(&hugetlb_lock
);
1083 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1084 * make specified memory blocks removable from the system.
1085 * Note that start_pfn should aligned with (minimum) hugepage size.
1087 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1089 unsigned int order
= 8 * sizeof(void *);
1093 if (!hugepages_supported())
1096 /* Set scan step to minimum hugepage size */
1098 if (order
> huge_page_order(h
))
1099 order
= huge_page_order(h
);
1100 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << order
));
1101 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << order
)
1102 dissolve_free_huge_page(pfn_to_page(pfn
));
1105 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
1110 if (hstate_is_gigantic(h
))
1114 * Assume we will successfully allocate the surplus page to
1115 * prevent racing processes from causing the surplus to exceed
1118 * This however introduces a different race, where a process B
1119 * tries to grow the static hugepage pool while alloc_pages() is
1120 * called by process A. B will only examine the per-node
1121 * counters in determining if surplus huge pages can be
1122 * converted to normal huge pages in adjust_pool_surplus(). A
1123 * won't be able to increment the per-node counter, until the
1124 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1125 * no more huge pages can be converted from surplus to normal
1126 * state (and doesn't try to convert again). Thus, we have a
1127 * case where a surplus huge page exists, the pool is grown, and
1128 * the surplus huge page still exists after, even though it
1129 * should just have been converted to a normal huge page. This
1130 * does not leak memory, though, as the hugepage will be freed
1131 * once it is out of use. It also does not allow the counters to
1132 * go out of whack in adjust_pool_surplus() as we don't modify
1133 * the node values until we've gotten the hugepage and only the
1134 * per-node value is checked there.
1136 spin_lock(&hugetlb_lock
);
1137 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1138 spin_unlock(&hugetlb_lock
);
1142 h
->surplus_huge_pages
++;
1144 spin_unlock(&hugetlb_lock
);
1146 if (nid
== NUMA_NO_NODE
)
1147 page
= alloc_pages(htlb_alloc_mask(h
)|__GFP_COMP
|
1148 __GFP_REPEAT
|__GFP_NOWARN
,
1149 huge_page_order(h
));
1151 page
= alloc_pages_exact_node(nid
,
1152 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1153 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
1155 if (page
&& arch_prepare_hugepage(page
)) {
1156 __free_pages(page
, huge_page_order(h
));
1160 spin_lock(&hugetlb_lock
);
1162 INIT_LIST_HEAD(&page
->lru
);
1163 r_nid
= page_to_nid(page
);
1164 set_compound_page_dtor(page
, free_huge_page
);
1165 set_hugetlb_cgroup(page
, NULL
);
1167 * We incremented the global counters already
1169 h
->nr_huge_pages_node
[r_nid
]++;
1170 h
->surplus_huge_pages_node
[r_nid
]++;
1171 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1174 h
->surplus_huge_pages
--;
1175 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1177 spin_unlock(&hugetlb_lock
);
1183 * This allocation function is useful in the context where vma is irrelevant.
1184 * E.g. soft-offlining uses this function because it only cares physical
1185 * address of error page.
1187 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1189 struct page
*page
= NULL
;
1191 spin_lock(&hugetlb_lock
);
1192 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1193 page
= dequeue_huge_page_node(h
, nid
);
1194 spin_unlock(&hugetlb_lock
);
1197 page
= alloc_buddy_huge_page(h
, nid
);
1203 * Increase the hugetlb pool such that it can accommodate a reservation
1206 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1208 struct list_head surplus_list
;
1209 struct page
*page
, *tmp
;
1211 int needed
, allocated
;
1212 bool alloc_ok
= true;
1214 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1216 h
->resv_huge_pages
+= delta
;
1221 INIT_LIST_HEAD(&surplus_list
);
1225 spin_unlock(&hugetlb_lock
);
1226 for (i
= 0; i
< needed
; i
++) {
1227 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1232 list_add(&page
->lru
, &surplus_list
);
1237 * After retaking hugetlb_lock, we need to recalculate 'needed'
1238 * because either resv_huge_pages or free_huge_pages may have changed.
1240 spin_lock(&hugetlb_lock
);
1241 needed
= (h
->resv_huge_pages
+ delta
) -
1242 (h
->free_huge_pages
+ allocated
);
1247 * We were not able to allocate enough pages to
1248 * satisfy the entire reservation so we free what
1249 * we've allocated so far.
1254 * The surplus_list now contains _at_least_ the number of extra pages
1255 * needed to accommodate the reservation. Add the appropriate number
1256 * of pages to the hugetlb pool and free the extras back to the buddy
1257 * allocator. Commit the entire reservation here to prevent another
1258 * process from stealing the pages as they are added to the pool but
1259 * before they are reserved.
1261 needed
+= allocated
;
1262 h
->resv_huge_pages
+= delta
;
1265 /* Free the needed pages to the hugetlb pool */
1266 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1270 * This page is now managed by the hugetlb allocator and has
1271 * no users -- drop the buddy allocator's reference.
1273 put_page_testzero(page
);
1274 VM_BUG_ON_PAGE(page_count(page
), page
);
1275 enqueue_huge_page(h
, page
);
1278 spin_unlock(&hugetlb_lock
);
1280 /* Free unnecessary surplus pages to the buddy allocator */
1281 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1283 spin_lock(&hugetlb_lock
);
1289 * When releasing a hugetlb pool reservation, any surplus pages that were
1290 * allocated to satisfy the reservation must be explicitly freed if they were
1292 * Called with hugetlb_lock held.
1294 static void return_unused_surplus_pages(struct hstate
*h
,
1295 unsigned long unused_resv_pages
)
1297 unsigned long nr_pages
;
1299 /* Uncommit the reservation */
1300 h
->resv_huge_pages
-= unused_resv_pages
;
1302 /* Cannot return gigantic pages currently */
1303 if (hstate_is_gigantic(h
))
1306 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1309 * We want to release as many surplus pages as possible, spread
1310 * evenly across all nodes with memory. Iterate across these nodes
1311 * until we can no longer free unreserved surplus pages. This occurs
1312 * when the nodes with surplus pages have no free pages.
1313 * free_pool_huge_page() will balance the the freed pages across the
1314 * on-line nodes with memory and will handle the hstate accounting.
1316 while (nr_pages
--) {
1317 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1319 cond_resched_lock(&hugetlb_lock
);
1324 * Determine if the huge page at addr within the vma has an associated
1325 * reservation. Where it does not we will need to logically increase
1326 * reservation and actually increase subpool usage before an allocation
1327 * can occur. Where any new reservation would be required the
1328 * reservation change is prepared, but not committed. Once the page
1329 * has been allocated from the subpool and instantiated the change should
1330 * be committed via vma_commit_reservation. No action is required on
1333 static long vma_needs_reservation(struct hstate
*h
,
1334 struct vm_area_struct
*vma
, unsigned long addr
)
1336 struct resv_map
*resv
;
1340 resv
= vma_resv_map(vma
);
1344 idx
= vma_hugecache_offset(h
, vma
, addr
);
1345 chg
= region_chg(resv
, idx
, idx
+ 1);
1347 if (vma
->vm_flags
& VM_MAYSHARE
)
1350 return chg
< 0 ? chg
: 0;
1352 static void vma_commit_reservation(struct hstate
*h
,
1353 struct vm_area_struct
*vma
, unsigned long addr
)
1355 struct resv_map
*resv
;
1358 resv
= vma_resv_map(vma
);
1362 idx
= vma_hugecache_offset(h
, vma
, addr
);
1363 region_add(resv
, idx
, idx
+ 1);
1366 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1367 unsigned long addr
, int avoid_reserve
)
1369 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1370 struct hstate
*h
= hstate_vma(vma
);
1374 struct hugetlb_cgroup
*h_cg
;
1376 idx
= hstate_index(h
);
1378 * Processes that did not create the mapping will have no
1379 * reserves and will not have accounted against subpool
1380 * limit. Check that the subpool limit can be made before
1381 * satisfying the allocation MAP_NORESERVE mappings may also
1382 * need pages and subpool limit allocated allocated if no reserve
1385 chg
= vma_needs_reservation(h
, vma
, addr
);
1387 return ERR_PTR(-ENOMEM
);
1388 if (chg
|| avoid_reserve
)
1389 if (hugepage_subpool_get_pages(spool
, 1))
1390 return ERR_PTR(-ENOSPC
);
1392 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1394 goto out_subpool_put
;
1396 spin_lock(&hugetlb_lock
);
1397 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, chg
);
1399 spin_unlock(&hugetlb_lock
);
1400 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1402 goto out_uncharge_cgroup
;
1404 spin_lock(&hugetlb_lock
);
1405 list_move(&page
->lru
, &h
->hugepage_activelist
);
1408 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1409 spin_unlock(&hugetlb_lock
);
1411 set_page_private(page
, (unsigned long)spool
);
1413 vma_commit_reservation(h
, vma
, addr
);
1416 out_uncharge_cgroup
:
1417 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
1419 if (chg
|| avoid_reserve
)
1420 hugepage_subpool_put_pages(spool
, 1);
1421 return ERR_PTR(-ENOSPC
);
1425 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1426 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1427 * where no ERR_VALUE is expected to be returned.
1429 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1430 unsigned long addr
, int avoid_reserve
)
1432 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1438 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1440 struct huge_bootmem_page
*m
;
1443 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1446 addr
= memblock_virt_alloc_try_nid_nopanic(
1447 huge_page_size(h
), huge_page_size(h
),
1448 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
1451 * Use the beginning of the huge page to store the
1452 * huge_bootmem_page struct (until gather_bootmem
1453 * puts them into the mem_map).
1462 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
1463 /* Put them into a private list first because mem_map is not up yet */
1464 list_add(&m
->list
, &huge_boot_pages
);
1469 static void __init
prep_compound_huge_page(struct page
*page
, int order
)
1471 if (unlikely(order
> (MAX_ORDER
- 1)))
1472 prep_compound_gigantic_page(page
, order
);
1474 prep_compound_page(page
, order
);
1477 /* Put bootmem huge pages into the standard lists after mem_map is up */
1478 static void __init
gather_bootmem_prealloc(void)
1480 struct huge_bootmem_page
*m
;
1482 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1483 struct hstate
*h
= m
->hstate
;
1486 #ifdef CONFIG_HIGHMEM
1487 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1488 memblock_free_late(__pa(m
),
1489 sizeof(struct huge_bootmem_page
));
1491 page
= virt_to_page(m
);
1493 WARN_ON(page_count(page
) != 1);
1494 prep_compound_huge_page(page
, h
->order
);
1495 WARN_ON(PageReserved(page
));
1496 prep_new_huge_page(h
, page
, page_to_nid(page
));
1498 * If we had gigantic hugepages allocated at boot time, we need
1499 * to restore the 'stolen' pages to totalram_pages in order to
1500 * fix confusing memory reports from free(1) and another
1501 * side-effects, like CommitLimit going negative.
1503 if (hstate_is_gigantic(h
))
1504 adjust_managed_page_count(page
, 1 << h
->order
);
1508 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1512 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1513 if (hstate_is_gigantic(h
)) {
1514 if (!alloc_bootmem_huge_page(h
))
1516 } else if (!alloc_fresh_huge_page(h
,
1517 &node_states
[N_MEMORY
]))
1520 h
->max_huge_pages
= i
;
1523 static void __init
hugetlb_init_hstates(void)
1527 for_each_hstate(h
) {
1528 /* oversize hugepages were init'ed in early boot */
1529 if (!hstate_is_gigantic(h
))
1530 hugetlb_hstate_alloc_pages(h
);
1534 static char * __init
memfmt(char *buf
, unsigned long n
)
1536 if (n
>= (1UL << 30))
1537 sprintf(buf
, "%lu GB", n
>> 30);
1538 else if (n
>= (1UL << 20))
1539 sprintf(buf
, "%lu MB", n
>> 20);
1541 sprintf(buf
, "%lu KB", n
>> 10);
1545 static void __init
report_hugepages(void)
1549 for_each_hstate(h
) {
1551 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1552 memfmt(buf
, huge_page_size(h
)),
1553 h
->free_huge_pages
);
1557 #ifdef CONFIG_HIGHMEM
1558 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1559 nodemask_t
*nodes_allowed
)
1563 if (hstate_is_gigantic(h
))
1566 for_each_node_mask(i
, *nodes_allowed
) {
1567 struct page
*page
, *next
;
1568 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1569 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1570 if (count
>= h
->nr_huge_pages
)
1572 if (PageHighMem(page
))
1574 list_del(&page
->lru
);
1575 update_and_free_page(h
, page
);
1576 h
->free_huge_pages
--;
1577 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1582 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1583 nodemask_t
*nodes_allowed
)
1589 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1590 * balanced by operating on them in a round-robin fashion.
1591 * Returns 1 if an adjustment was made.
1593 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1598 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1601 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1602 if (h
->surplus_huge_pages_node
[node
])
1606 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1607 if (h
->surplus_huge_pages_node
[node
] <
1608 h
->nr_huge_pages_node
[node
])
1615 h
->surplus_huge_pages
+= delta
;
1616 h
->surplus_huge_pages_node
[node
] += delta
;
1620 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1621 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1622 nodemask_t
*nodes_allowed
)
1624 unsigned long min_count
, ret
;
1626 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1627 return h
->max_huge_pages
;
1630 * Increase the pool size
1631 * First take pages out of surplus state. Then make up the
1632 * remaining difference by allocating fresh huge pages.
1634 * We might race with alloc_buddy_huge_page() here and be unable
1635 * to convert a surplus huge page to a normal huge page. That is
1636 * not critical, though, it just means the overall size of the
1637 * pool might be one hugepage larger than it needs to be, but
1638 * within all the constraints specified by the sysctls.
1640 spin_lock(&hugetlb_lock
);
1641 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1642 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1646 while (count
> persistent_huge_pages(h
)) {
1648 * If this allocation races such that we no longer need the
1649 * page, free_huge_page will handle it by freeing the page
1650 * and reducing the surplus.
1652 spin_unlock(&hugetlb_lock
);
1653 if (hstate_is_gigantic(h
))
1654 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
1656 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1657 spin_lock(&hugetlb_lock
);
1661 /* Bail for signals. Probably ctrl-c from user */
1662 if (signal_pending(current
))
1667 * Decrease the pool size
1668 * First return free pages to the buddy allocator (being careful
1669 * to keep enough around to satisfy reservations). Then place
1670 * pages into surplus state as needed so the pool will shrink
1671 * to the desired size as pages become free.
1673 * By placing pages into the surplus state independent of the
1674 * overcommit value, we are allowing the surplus pool size to
1675 * exceed overcommit. There are few sane options here. Since
1676 * alloc_buddy_huge_page() is checking the global counter,
1677 * though, we'll note that we're not allowed to exceed surplus
1678 * and won't grow the pool anywhere else. Not until one of the
1679 * sysctls are changed, or the surplus pages go out of use.
1681 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1682 min_count
= max(count
, min_count
);
1683 try_to_free_low(h
, min_count
, nodes_allowed
);
1684 while (min_count
< persistent_huge_pages(h
)) {
1685 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1687 cond_resched_lock(&hugetlb_lock
);
1689 while (count
< persistent_huge_pages(h
)) {
1690 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1694 ret
= persistent_huge_pages(h
);
1695 spin_unlock(&hugetlb_lock
);
1699 #define HSTATE_ATTR_RO(_name) \
1700 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1702 #define HSTATE_ATTR(_name) \
1703 static struct kobj_attribute _name##_attr = \
1704 __ATTR(_name, 0644, _name##_show, _name##_store)
1706 static struct kobject
*hugepages_kobj
;
1707 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1709 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1711 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1715 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1716 if (hstate_kobjs
[i
] == kobj
) {
1718 *nidp
= NUMA_NO_NODE
;
1722 return kobj_to_node_hstate(kobj
, nidp
);
1725 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1726 struct kobj_attribute
*attr
, char *buf
)
1729 unsigned long nr_huge_pages
;
1732 h
= kobj_to_hstate(kobj
, &nid
);
1733 if (nid
== NUMA_NO_NODE
)
1734 nr_huge_pages
= h
->nr_huge_pages
;
1736 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1738 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1741 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
1742 struct hstate
*h
, int nid
,
1743 unsigned long count
, size_t len
)
1746 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1748 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
1753 if (nid
== NUMA_NO_NODE
) {
1755 * global hstate attribute
1757 if (!(obey_mempolicy
&&
1758 init_nodemask_of_mempolicy(nodes_allowed
))) {
1759 NODEMASK_FREE(nodes_allowed
);
1760 nodes_allowed
= &node_states
[N_MEMORY
];
1762 } else if (nodes_allowed
) {
1764 * per node hstate attribute: adjust count to global,
1765 * but restrict alloc/free to the specified node.
1767 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1768 init_nodemask_of_node(nodes_allowed
, nid
);
1770 nodes_allowed
= &node_states
[N_MEMORY
];
1772 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1774 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1775 NODEMASK_FREE(nodes_allowed
);
1779 NODEMASK_FREE(nodes_allowed
);
1783 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1784 struct kobject
*kobj
, const char *buf
,
1788 unsigned long count
;
1792 err
= kstrtoul(buf
, 10, &count
);
1796 h
= kobj_to_hstate(kobj
, &nid
);
1797 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
1800 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1801 struct kobj_attribute
*attr
, char *buf
)
1803 return nr_hugepages_show_common(kobj
, attr
, buf
);
1806 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1807 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1809 return nr_hugepages_store_common(false, kobj
, buf
, len
);
1811 HSTATE_ATTR(nr_hugepages
);
1816 * hstate attribute for optionally mempolicy-based constraint on persistent
1817 * huge page alloc/free.
1819 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1820 struct kobj_attribute
*attr
, char *buf
)
1822 return nr_hugepages_show_common(kobj
, attr
, buf
);
1825 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1826 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1828 return nr_hugepages_store_common(true, kobj
, buf
, len
);
1830 HSTATE_ATTR(nr_hugepages_mempolicy
);
1834 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1835 struct kobj_attribute
*attr
, char *buf
)
1837 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1838 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1841 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1842 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1845 unsigned long input
;
1846 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1848 if (hstate_is_gigantic(h
))
1851 err
= kstrtoul(buf
, 10, &input
);
1855 spin_lock(&hugetlb_lock
);
1856 h
->nr_overcommit_huge_pages
= input
;
1857 spin_unlock(&hugetlb_lock
);
1861 HSTATE_ATTR(nr_overcommit_hugepages
);
1863 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1864 struct kobj_attribute
*attr
, char *buf
)
1867 unsigned long free_huge_pages
;
1870 h
= kobj_to_hstate(kobj
, &nid
);
1871 if (nid
== NUMA_NO_NODE
)
1872 free_huge_pages
= h
->free_huge_pages
;
1874 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1876 return sprintf(buf
, "%lu\n", free_huge_pages
);
1878 HSTATE_ATTR_RO(free_hugepages
);
1880 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1881 struct kobj_attribute
*attr
, char *buf
)
1883 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1884 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1886 HSTATE_ATTR_RO(resv_hugepages
);
1888 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1889 struct kobj_attribute
*attr
, char *buf
)
1892 unsigned long surplus_huge_pages
;
1895 h
= kobj_to_hstate(kobj
, &nid
);
1896 if (nid
== NUMA_NO_NODE
)
1897 surplus_huge_pages
= h
->surplus_huge_pages
;
1899 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1901 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1903 HSTATE_ATTR_RO(surplus_hugepages
);
1905 static struct attribute
*hstate_attrs
[] = {
1906 &nr_hugepages_attr
.attr
,
1907 &nr_overcommit_hugepages_attr
.attr
,
1908 &free_hugepages_attr
.attr
,
1909 &resv_hugepages_attr
.attr
,
1910 &surplus_hugepages_attr
.attr
,
1912 &nr_hugepages_mempolicy_attr
.attr
,
1917 static struct attribute_group hstate_attr_group
= {
1918 .attrs
= hstate_attrs
,
1921 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1922 struct kobject
**hstate_kobjs
,
1923 struct attribute_group
*hstate_attr_group
)
1926 int hi
= hstate_index(h
);
1928 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1929 if (!hstate_kobjs
[hi
])
1932 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1934 kobject_put(hstate_kobjs
[hi
]);
1939 static void __init
hugetlb_sysfs_init(void)
1944 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1945 if (!hugepages_kobj
)
1948 for_each_hstate(h
) {
1949 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1950 hstate_kobjs
, &hstate_attr_group
);
1952 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
1959 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1960 * with node devices in node_devices[] using a parallel array. The array
1961 * index of a node device or _hstate == node id.
1962 * This is here to avoid any static dependency of the node device driver, in
1963 * the base kernel, on the hugetlb module.
1965 struct node_hstate
{
1966 struct kobject
*hugepages_kobj
;
1967 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1969 struct node_hstate node_hstates
[MAX_NUMNODES
];
1972 * A subset of global hstate attributes for node devices
1974 static struct attribute
*per_node_hstate_attrs
[] = {
1975 &nr_hugepages_attr
.attr
,
1976 &free_hugepages_attr
.attr
,
1977 &surplus_hugepages_attr
.attr
,
1981 static struct attribute_group per_node_hstate_attr_group
= {
1982 .attrs
= per_node_hstate_attrs
,
1986 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1987 * Returns node id via non-NULL nidp.
1989 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1993 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1994 struct node_hstate
*nhs
= &node_hstates
[nid
];
1996 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1997 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2009 * Unregister hstate attributes from a single node device.
2010 * No-op if no hstate attributes attached.
2012 static void hugetlb_unregister_node(struct node
*node
)
2015 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2017 if (!nhs
->hugepages_kobj
)
2018 return; /* no hstate attributes */
2020 for_each_hstate(h
) {
2021 int idx
= hstate_index(h
);
2022 if (nhs
->hstate_kobjs
[idx
]) {
2023 kobject_put(nhs
->hstate_kobjs
[idx
]);
2024 nhs
->hstate_kobjs
[idx
] = NULL
;
2028 kobject_put(nhs
->hugepages_kobj
);
2029 nhs
->hugepages_kobj
= NULL
;
2033 * hugetlb module exit: unregister hstate attributes from node devices
2036 static void hugetlb_unregister_all_nodes(void)
2041 * disable node device registrations.
2043 register_hugetlbfs_with_node(NULL
, NULL
);
2046 * remove hstate attributes from any nodes that have them.
2048 for (nid
= 0; nid
< nr_node_ids
; nid
++)
2049 hugetlb_unregister_node(node_devices
[nid
]);
2053 * Register hstate attributes for a single node device.
2054 * No-op if attributes already registered.
2056 static void hugetlb_register_node(struct node
*node
)
2059 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2062 if (nhs
->hugepages_kobj
)
2063 return; /* already allocated */
2065 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2067 if (!nhs
->hugepages_kobj
)
2070 for_each_hstate(h
) {
2071 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2073 &per_node_hstate_attr_group
);
2075 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2076 h
->name
, node
->dev
.id
);
2077 hugetlb_unregister_node(node
);
2084 * hugetlb init time: register hstate attributes for all registered node
2085 * devices of nodes that have memory. All on-line nodes should have
2086 * registered their associated device by this time.
2088 static void __init
hugetlb_register_all_nodes(void)
2092 for_each_node_state(nid
, N_MEMORY
) {
2093 struct node
*node
= node_devices
[nid
];
2094 if (node
->dev
.id
== nid
)
2095 hugetlb_register_node(node
);
2099 * Let the node device driver know we're here so it can
2100 * [un]register hstate attributes on node hotplug.
2102 register_hugetlbfs_with_node(hugetlb_register_node
,
2103 hugetlb_unregister_node
);
2105 #else /* !CONFIG_NUMA */
2107 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2115 static void hugetlb_unregister_all_nodes(void) { }
2117 static void hugetlb_register_all_nodes(void) { }
2121 static void __exit
hugetlb_exit(void)
2125 hugetlb_unregister_all_nodes();
2127 for_each_hstate(h
) {
2128 kobject_put(hstate_kobjs
[hstate_index(h
)]);
2131 kobject_put(hugepages_kobj
);
2132 kfree(htlb_fault_mutex_table
);
2134 module_exit(hugetlb_exit
);
2136 static int __init
hugetlb_init(void)
2140 if (!hugepages_supported())
2143 if (!size_to_hstate(default_hstate_size
)) {
2144 default_hstate_size
= HPAGE_SIZE
;
2145 if (!size_to_hstate(default_hstate_size
))
2146 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2148 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2149 if (default_hstate_max_huge_pages
)
2150 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2152 hugetlb_init_hstates();
2153 gather_bootmem_prealloc();
2156 hugetlb_sysfs_init();
2157 hugetlb_register_all_nodes();
2158 hugetlb_cgroup_file_init();
2161 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2163 num_fault_mutexes
= 1;
2165 htlb_fault_mutex_table
=
2166 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2167 BUG_ON(!htlb_fault_mutex_table
);
2169 for (i
= 0; i
< num_fault_mutexes
; i
++)
2170 mutex_init(&htlb_fault_mutex_table
[i
]);
2173 module_init(hugetlb_init
);
2175 /* Should be called on processing a hugepagesz=... option */
2176 void __init
hugetlb_add_hstate(unsigned order
)
2181 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2182 pr_warning("hugepagesz= specified twice, ignoring\n");
2185 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2187 h
= &hstates
[hugetlb_max_hstate
++];
2189 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2190 h
->nr_huge_pages
= 0;
2191 h
->free_huge_pages
= 0;
2192 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2193 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2194 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2195 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2196 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2197 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2198 huge_page_size(h
)/1024);
2203 static int __init
hugetlb_nrpages_setup(char *s
)
2206 static unsigned long *last_mhp
;
2209 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2210 * so this hugepages= parameter goes to the "default hstate".
2212 if (!hugetlb_max_hstate
)
2213 mhp
= &default_hstate_max_huge_pages
;
2215 mhp
= &parsed_hstate
->max_huge_pages
;
2217 if (mhp
== last_mhp
) {
2218 pr_warning("hugepages= specified twice without "
2219 "interleaving hugepagesz=, ignoring\n");
2223 if (sscanf(s
, "%lu", mhp
) <= 0)
2227 * Global state is always initialized later in hugetlb_init.
2228 * But we need to allocate >= MAX_ORDER hstates here early to still
2229 * use the bootmem allocator.
2231 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2232 hugetlb_hstate_alloc_pages(parsed_hstate
);
2238 __setup("hugepages=", hugetlb_nrpages_setup
);
2240 static int __init
hugetlb_default_setup(char *s
)
2242 default_hstate_size
= memparse(s
, &s
);
2245 __setup("default_hugepagesz=", hugetlb_default_setup
);
2247 static unsigned int cpuset_mems_nr(unsigned int *array
)
2250 unsigned int nr
= 0;
2252 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2258 #ifdef CONFIG_SYSCTL
2259 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2260 struct ctl_table
*table
, int write
,
2261 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2263 struct hstate
*h
= &default_hstate
;
2264 unsigned long tmp
= h
->max_huge_pages
;
2267 if (!hugepages_supported())
2271 table
->maxlen
= sizeof(unsigned long);
2272 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2277 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2278 NUMA_NO_NODE
, tmp
, *length
);
2283 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2284 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2287 return hugetlb_sysctl_handler_common(false, table
, write
,
2288 buffer
, length
, ppos
);
2292 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2293 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2295 return hugetlb_sysctl_handler_common(true, table
, write
,
2296 buffer
, length
, ppos
);
2298 #endif /* CONFIG_NUMA */
2300 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2301 void __user
*buffer
,
2302 size_t *length
, loff_t
*ppos
)
2304 struct hstate
*h
= &default_hstate
;
2308 if (!hugepages_supported())
2311 tmp
= h
->nr_overcommit_huge_pages
;
2313 if (write
&& hstate_is_gigantic(h
))
2317 table
->maxlen
= sizeof(unsigned long);
2318 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2323 spin_lock(&hugetlb_lock
);
2324 h
->nr_overcommit_huge_pages
= tmp
;
2325 spin_unlock(&hugetlb_lock
);
2331 #endif /* CONFIG_SYSCTL */
2333 void hugetlb_report_meminfo(struct seq_file
*m
)
2335 struct hstate
*h
= &default_hstate
;
2336 if (!hugepages_supported())
2339 "HugePages_Total: %5lu\n"
2340 "HugePages_Free: %5lu\n"
2341 "HugePages_Rsvd: %5lu\n"
2342 "HugePages_Surp: %5lu\n"
2343 "Hugepagesize: %8lu kB\n",
2347 h
->surplus_huge_pages
,
2348 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2351 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2353 struct hstate
*h
= &default_hstate
;
2354 if (!hugepages_supported())
2357 "Node %d HugePages_Total: %5u\n"
2358 "Node %d HugePages_Free: %5u\n"
2359 "Node %d HugePages_Surp: %5u\n",
2360 nid
, h
->nr_huge_pages_node
[nid
],
2361 nid
, h
->free_huge_pages_node
[nid
],
2362 nid
, h
->surplus_huge_pages_node
[nid
]);
2365 void hugetlb_show_meminfo(void)
2370 if (!hugepages_supported())
2373 for_each_node_state(nid
, N_MEMORY
)
2375 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2377 h
->nr_huge_pages_node
[nid
],
2378 h
->free_huge_pages_node
[nid
],
2379 h
->surplus_huge_pages_node
[nid
],
2380 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2383 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2384 unsigned long hugetlb_total_pages(void)
2387 unsigned long nr_total_pages
= 0;
2390 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2391 return nr_total_pages
;
2394 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2398 spin_lock(&hugetlb_lock
);
2400 * When cpuset is configured, it breaks the strict hugetlb page
2401 * reservation as the accounting is done on a global variable. Such
2402 * reservation is completely rubbish in the presence of cpuset because
2403 * the reservation is not checked against page availability for the
2404 * current cpuset. Application can still potentially OOM'ed by kernel
2405 * with lack of free htlb page in cpuset that the task is in.
2406 * Attempt to enforce strict accounting with cpuset is almost
2407 * impossible (or too ugly) because cpuset is too fluid that
2408 * task or memory node can be dynamically moved between cpusets.
2410 * The change of semantics for shared hugetlb mapping with cpuset is
2411 * undesirable. However, in order to preserve some of the semantics,
2412 * we fall back to check against current free page availability as
2413 * a best attempt and hopefully to minimize the impact of changing
2414 * semantics that cpuset has.
2417 if (gather_surplus_pages(h
, delta
) < 0)
2420 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2421 return_unused_surplus_pages(h
, delta
);
2428 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2431 spin_unlock(&hugetlb_lock
);
2435 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2437 struct resv_map
*resv
= vma_resv_map(vma
);
2440 * This new VMA should share its siblings reservation map if present.
2441 * The VMA will only ever have a valid reservation map pointer where
2442 * it is being copied for another still existing VMA. As that VMA
2443 * has a reference to the reservation map it cannot disappear until
2444 * after this open call completes. It is therefore safe to take a
2445 * new reference here without additional locking.
2447 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2448 kref_get(&resv
->refs
);
2451 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2453 struct hstate
*h
= hstate_vma(vma
);
2454 struct resv_map
*resv
= vma_resv_map(vma
);
2455 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2456 unsigned long reserve
, start
, end
;
2458 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2461 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2462 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2464 reserve
= (end
- start
) - region_count(resv
, start
, end
);
2466 kref_put(&resv
->refs
, resv_map_release
);
2469 hugetlb_acct_memory(h
, -reserve
);
2470 hugepage_subpool_put_pages(spool
, reserve
);
2475 * We cannot handle pagefaults against hugetlb pages at all. They cause
2476 * handle_mm_fault() to try to instantiate regular-sized pages in the
2477 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2480 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2486 const struct vm_operations_struct hugetlb_vm_ops
= {
2487 .fault
= hugetlb_vm_op_fault
,
2488 .open
= hugetlb_vm_op_open
,
2489 .close
= hugetlb_vm_op_close
,
2492 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2498 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2499 vma
->vm_page_prot
)));
2501 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2502 vma
->vm_page_prot
));
2504 entry
= pte_mkyoung(entry
);
2505 entry
= pte_mkhuge(entry
);
2506 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2511 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2512 unsigned long address
, pte_t
*ptep
)
2516 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2517 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2518 update_mmu_cache(vma
, address
, ptep
);
2521 static int is_hugetlb_entry_migration(pte_t pte
)
2525 if (huge_pte_none(pte
) || pte_present(pte
))
2527 swp
= pte_to_swp_entry(pte
);
2528 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2534 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2538 if (huge_pte_none(pte
) || pte_present(pte
))
2540 swp
= pte_to_swp_entry(pte
);
2541 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2547 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2548 struct vm_area_struct
*vma
)
2550 pte_t
*src_pte
, *dst_pte
, entry
;
2551 struct page
*ptepage
;
2554 struct hstate
*h
= hstate_vma(vma
);
2555 unsigned long sz
= huge_page_size(h
);
2556 unsigned long mmun_start
; /* For mmu_notifiers */
2557 unsigned long mmun_end
; /* For mmu_notifiers */
2560 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2562 mmun_start
= vma
->vm_start
;
2563 mmun_end
= vma
->vm_end
;
2565 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
2567 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2568 spinlock_t
*src_ptl
, *dst_ptl
;
2569 src_pte
= huge_pte_offset(src
, addr
);
2572 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2578 /* If the pagetables are shared don't copy or take references */
2579 if (dst_pte
== src_pte
)
2582 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
2583 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
2584 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
2585 entry
= huge_ptep_get(src_pte
);
2586 if (huge_pte_none(entry
)) { /* skip none entry */
2588 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
2589 is_hugetlb_entry_hwpoisoned(entry
))) {
2590 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
2592 if (is_write_migration_entry(swp_entry
) && cow
) {
2594 * COW mappings require pages in both
2595 * parent and child to be set to read.
2597 make_migration_entry_read(&swp_entry
);
2598 entry
= swp_entry_to_pte(swp_entry
);
2599 set_huge_pte_at(src
, addr
, src_pte
, entry
);
2601 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2604 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2605 mmu_notifier_invalidate_range(src
, mmun_start
,
2608 entry
= huge_ptep_get(src_pte
);
2609 ptepage
= pte_page(entry
);
2611 page_dup_rmap(ptepage
);
2612 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2614 spin_unlock(src_ptl
);
2615 spin_unlock(dst_ptl
);
2619 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
2624 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2625 unsigned long start
, unsigned long end
,
2626 struct page
*ref_page
)
2628 int force_flush
= 0;
2629 struct mm_struct
*mm
= vma
->vm_mm
;
2630 unsigned long address
;
2635 struct hstate
*h
= hstate_vma(vma
);
2636 unsigned long sz
= huge_page_size(h
);
2637 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2638 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2640 WARN_ON(!is_vm_hugetlb_page(vma
));
2641 BUG_ON(start
& ~huge_page_mask(h
));
2642 BUG_ON(end
& ~huge_page_mask(h
));
2644 tlb_start_vma(tlb
, vma
);
2645 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2648 for (; address
< end
; address
+= sz
) {
2649 ptep
= huge_pte_offset(mm
, address
);
2653 ptl
= huge_pte_lock(h
, mm
, ptep
);
2654 if (huge_pmd_unshare(mm
, &address
, ptep
))
2657 pte
= huge_ptep_get(ptep
);
2658 if (huge_pte_none(pte
))
2662 * Migrating hugepage or HWPoisoned hugepage is already
2663 * unmapped and its refcount is dropped, so just clear pte here.
2665 if (unlikely(!pte_present(pte
))) {
2666 huge_pte_clear(mm
, address
, ptep
);
2670 page
= pte_page(pte
);
2672 * If a reference page is supplied, it is because a specific
2673 * page is being unmapped, not a range. Ensure the page we
2674 * are about to unmap is the actual page of interest.
2677 if (page
!= ref_page
)
2681 * Mark the VMA as having unmapped its page so that
2682 * future faults in this VMA will fail rather than
2683 * looking like data was lost
2685 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2688 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2689 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2690 if (huge_pte_dirty(pte
))
2691 set_page_dirty(page
);
2693 page_remove_rmap(page
);
2694 force_flush
= !__tlb_remove_page(tlb
, page
);
2700 /* Bail out after unmapping reference page if supplied */
2709 * mmu_gather ran out of room to batch pages, we break out of
2710 * the PTE lock to avoid doing the potential expensive TLB invalidate
2711 * and page-free while holding it.
2716 if (address
< end
&& !ref_page
)
2719 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2720 tlb_end_vma(tlb
, vma
);
2723 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2724 struct vm_area_struct
*vma
, unsigned long start
,
2725 unsigned long end
, struct page
*ref_page
)
2727 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2730 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2731 * test will fail on a vma being torn down, and not grab a page table
2732 * on its way out. We're lucky that the flag has such an appropriate
2733 * name, and can in fact be safely cleared here. We could clear it
2734 * before the __unmap_hugepage_range above, but all that's necessary
2735 * is to clear it before releasing the i_mmap_rwsem. This works
2736 * because in the context this is called, the VMA is about to be
2737 * destroyed and the i_mmap_rwsem is held.
2739 vma
->vm_flags
&= ~VM_MAYSHARE
;
2742 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2743 unsigned long end
, struct page
*ref_page
)
2745 struct mm_struct
*mm
;
2746 struct mmu_gather tlb
;
2750 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2751 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2752 tlb_finish_mmu(&tlb
, start
, end
);
2756 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2757 * mappping it owns the reserve page for. The intention is to unmap the page
2758 * from other VMAs and let the children be SIGKILLed if they are faulting the
2761 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2762 struct page
*page
, unsigned long address
)
2764 struct hstate
*h
= hstate_vma(vma
);
2765 struct vm_area_struct
*iter_vma
;
2766 struct address_space
*mapping
;
2770 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2771 * from page cache lookup which is in HPAGE_SIZE units.
2773 address
= address
& huge_page_mask(h
);
2774 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2776 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2779 * Take the mapping lock for the duration of the table walk. As
2780 * this mapping should be shared between all the VMAs,
2781 * __unmap_hugepage_range() is called as the lock is already held
2783 i_mmap_lock_write(mapping
);
2784 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2785 /* Do not unmap the current VMA */
2786 if (iter_vma
== vma
)
2790 * Unmap the page from other VMAs without their own reserves.
2791 * They get marked to be SIGKILLed if they fault in these
2792 * areas. This is because a future no-page fault on this VMA
2793 * could insert a zeroed page instead of the data existing
2794 * from the time of fork. This would look like data corruption
2796 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2797 unmap_hugepage_range(iter_vma
, address
,
2798 address
+ huge_page_size(h
), page
);
2800 i_mmap_unlock_write(mapping
);
2804 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2805 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2806 * cannot race with other handlers or page migration.
2807 * Keep the pte_same checks anyway to make transition from the mutex easier.
2809 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2810 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2811 struct page
*pagecache_page
, spinlock_t
*ptl
)
2813 struct hstate
*h
= hstate_vma(vma
);
2814 struct page
*old_page
, *new_page
;
2815 int ret
= 0, outside_reserve
= 0;
2816 unsigned long mmun_start
; /* For mmu_notifiers */
2817 unsigned long mmun_end
; /* For mmu_notifiers */
2819 old_page
= pte_page(pte
);
2822 /* If no-one else is actually using this page, avoid the copy
2823 * and just make the page writable */
2824 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
2825 page_move_anon_rmap(old_page
, vma
, address
);
2826 set_huge_ptep_writable(vma
, address
, ptep
);
2831 * If the process that created a MAP_PRIVATE mapping is about to
2832 * perform a COW due to a shared page count, attempt to satisfy
2833 * the allocation without using the existing reserves. The pagecache
2834 * page is used to determine if the reserve at this address was
2835 * consumed or not. If reserves were used, a partial faulted mapping
2836 * at the time of fork() could consume its reserves on COW instead
2837 * of the full address range.
2839 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2840 old_page
!= pagecache_page
)
2841 outside_reserve
= 1;
2843 page_cache_get(old_page
);
2846 * Drop page table lock as buddy allocator may be called. It will
2847 * be acquired again before returning to the caller, as expected.
2850 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2852 if (IS_ERR(new_page
)) {
2854 * If a process owning a MAP_PRIVATE mapping fails to COW,
2855 * it is due to references held by a child and an insufficient
2856 * huge page pool. To guarantee the original mappers
2857 * reliability, unmap the page from child processes. The child
2858 * may get SIGKILLed if it later faults.
2860 if (outside_reserve
) {
2861 page_cache_release(old_page
);
2862 BUG_ON(huge_pte_none(pte
));
2863 unmap_ref_private(mm
, vma
, old_page
, address
);
2864 BUG_ON(huge_pte_none(pte
));
2866 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2868 pte_same(huge_ptep_get(ptep
), pte
)))
2869 goto retry_avoidcopy
;
2871 * race occurs while re-acquiring page table
2872 * lock, and our job is done.
2877 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
2878 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
2879 goto out_release_old
;
2883 * When the original hugepage is shared one, it does not have
2884 * anon_vma prepared.
2886 if (unlikely(anon_vma_prepare(vma
))) {
2888 goto out_release_all
;
2891 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2892 pages_per_huge_page(h
));
2893 __SetPageUptodate(new_page
);
2895 mmun_start
= address
& huge_page_mask(h
);
2896 mmun_end
= mmun_start
+ huge_page_size(h
);
2897 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2900 * Retake the page table lock to check for racing updates
2901 * before the page tables are altered
2904 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2905 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
2906 ClearPagePrivate(new_page
);
2909 huge_ptep_clear_flush(vma
, address
, ptep
);
2910 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
2911 set_huge_pte_at(mm
, address
, ptep
,
2912 make_huge_pte(vma
, new_page
, 1));
2913 page_remove_rmap(old_page
);
2914 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2915 /* Make the old page be freed below */
2916 new_page
= old_page
;
2919 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2921 page_cache_release(new_page
);
2923 page_cache_release(old_page
);
2925 spin_lock(ptl
); /* Caller expects lock to be held */
2929 /* Return the pagecache page at a given address within a VMA */
2930 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2931 struct vm_area_struct
*vma
, unsigned long address
)
2933 struct address_space
*mapping
;
2936 mapping
= vma
->vm_file
->f_mapping
;
2937 idx
= vma_hugecache_offset(h
, vma
, address
);
2939 return find_lock_page(mapping
, idx
);
2943 * Return whether there is a pagecache page to back given address within VMA.
2944 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2946 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2947 struct vm_area_struct
*vma
, unsigned long address
)
2949 struct address_space
*mapping
;
2953 mapping
= vma
->vm_file
->f_mapping
;
2954 idx
= vma_hugecache_offset(h
, vma
, address
);
2956 page
= find_get_page(mapping
, idx
);
2959 return page
!= NULL
;
2962 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2963 struct address_space
*mapping
, pgoff_t idx
,
2964 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2966 struct hstate
*h
= hstate_vma(vma
);
2967 int ret
= VM_FAULT_SIGBUS
;
2975 * Currently, we are forced to kill the process in the event the
2976 * original mapper has unmapped pages from the child due to a failed
2977 * COW. Warn that such a situation has occurred as it may not be obvious
2979 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2980 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2986 * Use page lock to guard against racing truncation
2987 * before we get page_table_lock.
2990 page
= find_lock_page(mapping
, idx
);
2992 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2995 page
= alloc_huge_page(vma
, address
, 0);
2997 ret
= PTR_ERR(page
);
3001 ret
= VM_FAULT_SIGBUS
;
3004 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3005 __SetPageUptodate(page
);
3007 if (vma
->vm_flags
& VM_MAYSHARE
) {
3009 struct inode
*inode
= mapping
->host
;
3011 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3018 ClearPagePrivate(page
);
3020 spin_lock(&inode
->i_lock
);
3021 inode
->i_blocks
+= blocks_per_huge_page(h
);
3022 spin_unlock(&inode
->i_lock
);
3025 if (unlikely(anon_vma_prepare(vma
))) {
3027 goto backout_unlocked
;
3033 * If memory error occurs between mmap() and fault, some process
3034 * don't have hwpoisoned swap entry for errored virtual address.
3035 * So we need to block hugepage fault by PG_hwpoison bit check.
3037 if (unlikely(PageHWPoison(page
))) {
3038 ret
= VM_FAULT_HWPOISON
|
3039 VM_FAULT_SET_HINDEX(hstate_index(h
));
3040 goto backout_unlocked
;
3045 * If we are going to COW a private mapping later, we examine the
3046 * pending reservations for this page now. This will ensure that
3047 * any allocations necessary to record that reservation occur outside
3050 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
3051 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3053 goto backout_unlocked
;
3056 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3058 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3063 if (!huge_pte_none(huge_ptep_get(ptep
)))
3067 ClearPagePrivate(page
);
3068 hugepage_add_new_anon_rmap(page
, vma
, address
);
3070 page_dup_rmap(page
);
3071 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3072 && (vma
->vm_flags
& VM_SHARED
)));
3073 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3075 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3076 /* Optimization, do the COW without a second fault */
3077 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
3094 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3095 struct vm_area_struct
*vma
,
3096 struct address_space
*mapping
,
3097 pgoff_t idx
, unsigned long address
)
3099 unsigned long key
[2];
3102 if (vma
->vm_flags
& VM_SHARED
) {
3103 key
[0] = (unsigned long) mapping
;
3106 key
[0] = (unsigned long) mm
;
3107 key
[1] = address
>> huge_page_shift(h
);
3110 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3112 return hash
& (num_fault_mutexes
- 1);
3116 * For uniprocesor systems we always use a single mutex, so just
3117 * return 0 and avoid the hashing overhead.
3119 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3120 struct vm_area_struct
*vma
,
3121 struct address_space
*mapping
,
3122 pgoff_t idx
, unsigned long address
)
3128 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3129 unsigned long address
, unsigned int flags
)
3136 struct page
*page
= NULL
;
3137 struct page
*pagecache_page
= NULL
;
3138 struct hstate
*h
= hstate_vma(vma
);
3139 struct address_space
*mapping
;
3140 int need_wait_lock
= 0;
3142 address
&= huge_page_mask(h
);
3144 ptep
= huge_pte_offset(mm
, address
);
3146 entry
= huge_ptep_get(ptep
);
3147 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3148 migration_entry_wait_huge(vma
, mm
, ptep
);
3150 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3151 return VM_FAULT_HWPOISON_LARGE
|
3152 VM_FAULT_SET_HINDEX(hstate_index(h
));
3155 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3157 return VM_FAULT_OOM
;
3159 mapping
= vma
->vm_file
->f_mapping
;
3160 idx
= vma_hugecache_offset(h
, vma
, address
);
3163 * Serialize hugepage allocation and instantiation, so that we don't
3164 * get spurious allocation failures if two CPUs race to instantiate
3165 * the same page in the page cache.
3167 hash
= fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3168 mutex_lock(&htlb_fault_mutex_table
[hash
]);
3170 entry
= huge_ptep_get(ptep
);
3171 if (huge_pte_none(entry
)) {
3172 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3179 * entry could be a migration/hwpoison entry at this point, so this
3180 * check prevents the kernel from going below assuming that we have
3181 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3182 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3185 if (!pte_present(entry
))
3189 * If we are going to COW the mapping later, we examine the pending
3190 * reservations for this page now. This will ensure that any
3191 * allocations necessary to record that reservation occur outside the
3192 * spinlock. For private mappings, we also lookup the pagecache
3193 * page now as it is used to determine if a reservation has been
3196 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3197 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3202 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3203 pagecache_page
= hugetlbfs_pagecache_page(h
,
3207 ptl
= huge_pte_lock(h
, mm
, ptep
);
3209 /* Check for a racing update before calling hugetlb_cow */
3210 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3214 * hugetlb_cow() requires page locks of pte_page(entry) and
3215 * pagecache_page, so here we need take the former one
3216 * when page != pagecache_page or !pagecache_page.
3218 page
= pte_page(entry
);
3219 if (page
!= pagecache_page
)
3220 if (!trylock_page(page
)) {
3227 if (flags
& FAULT_FLAG_WRITE
) {
3228 if (!huge_pte_write(entry
)) {
3229 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3230 pagecache_page
, ptl
);
3233 entry
= huge_pte_mkdirty(entry
);
3235 entry
= pte_mkyoung(entry
);
3236 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3237 flags
& FAULT_FLAG_WRITE
))
3238 update_mmu_cache(vma
, address
, ptep
);
3240 if (page
!= pagecache_page
)
3246 if (pagecache_page
) {
3247 unlock_page(pagecache_page
);
3248 put_page(pagecache_page
);
3251 mutex_unlock(&htlb_fault_mutex_table
[hash
]);
3253 * Generally it's safe to hold refcount during waiting page lock. But
3254 * here we just wait to defer the next page fault to avoid busy loop and
3255 * the page is not used after unlocked before returning from the current
3256 * page fault. So we are safe from accessing freed page, even if we wait
3257 * here without taking refcount.
3260 wait_on_page_locked(page
);
3264 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3265 struct page
**pages
, struct vm_area_struct
**vmas
,
3266 unsigned long *position
, unsigned long *nr_pages
,
3267 long i
, unsigned int flags
)
3269 unsigned long pfn_offset
;
3270 unsigned long vaddr
= *position
;
3271 unsigned long remainder
= *nr_pages
;
3272 struct hstate
*h
= hstate_vma(vma
);
3274 while (vaddr
< vma
->vm_end
&& remainder
) {
3276 spinlock_t
*ptl
= NULL
;
3281 * Some archs (sparc64, sh*) have multiple pte_ts to
3282 * each hugepage. We have to make sure we get the
3283 * first, for the page indexing below to work.
3285 * Note that page table lock is not held when pte is null.
3287 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3289 ptl
= huge_pte_lock(h
, mm
, pte
);
3290 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3293 * When coredumping, it suits get_dump_page if we just return
3294 * an error where there's an empty slot with no huge pagecache
3295 * to back it. This way, we avoid allocating a hugepage, and
3296 * the sparse dumpfile avoids allocating disk blocks, but its
3297 * huge holes still show up with zeroes where they need to be.
3299 if (absent
&& (flags
& FOLL_DUMP
) &&
3300 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3308 * We need call hugetlb_fault for both hugepages under migration
3309 * (in which case hugetlb_fault waits for the migration,) and
3310 * hwpoisoned hugepages (in which case we need to prevent the
3311 * caller from accessing to them.) In order to do this, we use
3312 * here is_swap_pte instead of is_hugetlb_entry_migration and
3313 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3314 * both cases, and because we can't follow correct pages
3315 * directly from any kind of swap entries.
3317 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3318 ((flags
& FOLL_WRITE
) &&
3319 !huge_pte_write(huge_ptep_get(pte
)))) {
3324 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3325 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3326 if (!(ret
& VM_FAULT_ERROR
))
3333 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3334 page
= pte_page(huge_ptep_get(pte
));
3337 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3338 get_page_foll(pages
[i
]);
3348 if (vaddr
< vma
->vm_end
&& remainder
&&
3349 pfn_offset
< pages_per_huge_page(h
)) {
3351 * We use pfn_offset to avoid touching the pageframes
3352 * of this compound page.
3358 *nr_pages
= remainder
;
3361 return i
? i
: -EFAULT
;
3364 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3365 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3367 struct mm_struct
*mm
= vma
->vm_mm
;
3368 unsigned long start
= address
;
3371 struct hstate
*h
= hstate_vma(vma
);
3372 unsigned long pages
= 0;
3374 BUG_ON(address
>= end
);
3375 flush_cache_range(vma
, address
, end
);
3377 mmu_notifier_invalidate_range_start(mm
, start
, end
);
3378 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
3379 for (; address
< end
; address
+= huge_page_size(h
)) {
3381 ptep
= huge_pte_offset(mm
, address
);
3384 ptl
= huge_pte_lock(h
, mm
, ptep
);
3385 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3390 pte
= huge_ptep_get(ptep
);
3391 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
3395 if (unlikely(is_hugetlb_entry_migration(pte
))) {
3396 swp_entry_t entry
= pte_to_swp_entry(pte
);
3398 if (is_write_migration_entry(entry
)) {
3401 make_migration_entry_read(&entry
);
3402 newpte
= swp_entry_to_pte(entry
);
3403 set_huge_pte_at(mm
, address
, ptep
, newpte
);
3409 if (!huge_pte_none(pte
)) {
3410 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3411 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3412 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3413 set_huge_pte_at(mm
, address
, ptep
, pte
);
3419 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3420 * may have cleared our pud entry and done put_page on the page table:
3421 * once we release i_mmap_rwsem, another task can do the final put_page
3422 * and that page table be reused and filled with junk.
3424 flush_tlb_range(vma
, start
, end
);
3425 mmu_notifier_invalidate_range(mm
, start
, end
);
3426 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
3427 mmu_notifier_invalidate_range_end(mm
, start
, end
);
3429 return pages
<< h
->order
;
3432 int hugetlb_reserve_pages(struct inode
*inode
,
3434 struct vm_area_struct
*vma
,
3435 vm_flags_t vm_flags
)
3438 struct hstate
*h
= hstate_inode(inode
);
3439 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3440 struct resv_map
*resv_map
;
3443 * Only apply hugepage reservation if asked. At fault time, an
3444 * attempt will be made for VM_NORESERVE to allocate a page
3445 * without using reserves
3447 if (vm_flags
& VM_NORESERVE
)
3451 * Shared mappings base their reservation on the number of pages that
3452 * are already allocated on behalf of the file. Private mappings need
3453 * to reserve the full area even if read-only as mprotect() may be
3454 * called to make the mapping read-write. Assume !vma is a shm mapping
3456 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
3457 resv_map
= inode_resv_map(inode
);
3459 chg
= region_chg(resv_map
, from
, to
);
3462 resv_map
= resv_map_alloc();
3468 set_vma_resv_map(vma
, resv_map
);
3469 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3477 /* There must be enough pages in the subpool for the mapping */
3478 if (hugepage_subpool_get_pages(spool
, chg
)) {
3484 * Check enough hugepages are available for the reservation.
3485 * Hand the pages back to the subpool if there are not
3487 ret
= hugetlb_acct_memory(h
, chg
);
3489 hugepage_subpool_put_pages(spool
, chg
);
3494 * Account for the reservations made. Shared mappings record regions
3495 * that have reservations as they are shared by multiple VMAs.
3496 * When the last VMA disappears, the region map says how much
3497 * the reservation was and the page cache tells how much of
3498 * the reservation was consumed. Private mappings are per-VMA and
3499 * only the consumed reservations are tracked. When the VMA
3500 * disappears, the original reservation is the VMA size and the
3501 * consumed reservations are stored in the map. Hence, nothing
3502 * else has to be done for private mappings here
3504 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3505 region_add(resv_map
, from
, to
);
3508 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3509 kref_put(&resv_map
->refs
, resv_map_release
);
3513 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3515 struct hstate
*h
= hstate_inode(inode
);
3516 struct resv_map
*resv_map
= inode_resv_map(inode
);
3518 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3521 chg
= region_truncate(resv_map
, offset
);
3522 spin_lock(&inode
->i_lock
);
3523 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3524 spin_unlock(&inode
->i_lock
);
3526 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3527 hugetlb_acct_memory(h
, -(chg
- freed
));
3530 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3531 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3532 struct vm_area_struct
*vma
,
3533 unsigned long addr
, pgoff_t idx
)
3535 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3537 unsigned long sbase
= saddr
& PUD_MASK
;
3538 unsigned long s_end
= sbase
+ PUD_SIZE
;
3540 /* Allow segments to share if only one is marked locked */
3541 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3542 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3545 * match the virtual addresses, permission and the alignment of the
3548 if (pmd_index(addr
) != pmd_index(saddr
) ||
3549 vm_flags
!= svm_flags
||
3550 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3556 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3558 unsigned long base
= addr
& PUD_MASK
;
3559 unsigned long end
= base
+ PUD_SIZE
;
3562 * check on proper vm_flags and page table alignment
3564 if (vma
->vm_flags
& VM_MAYSHARE
&&
3565 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3571 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3572 * and returns the corresponding pte. While this is not necessary for the
3573 * !shared pmd case because we can allocate the pmd later as well, it makes the
3574 * code much cleaner. pmd allocation is essential for the shared case because
3575 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3576 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3577 * bad pmd for sharing.
3579 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3581 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3582 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3583 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3585 struct vm_area_struct
*svma
;
3586 unsigned long saddr
;
3591 if (!vma_shareable(vma
, addr
))
3592 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3594 i_mmap_lock_write(mapping
);
3595 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3599 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3601 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3604 get_page(virt_to_page(spte
));
3613 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
3615 if (pud_none(*pud
)) {
3616 pud_populate(mm
, pud
,
3617 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3619 put_page(virt_to_page(spte
));
3624 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3625 i_mmap_unlock_write(mapping
);
3630 * unmap huge page backed by shared pte.
3632 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3633 * indicated by page_count > 1, unmap is achieved by clearing pud and
3634 * decrementing the ref count. If count == 1, the pte page is not shared.
3636 * called with page table lock held.
3638 * returns: 1 successfully unmapped a shared pte page
3639 * 0 the underlying pte page is not shared, or it is the last user
3641 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3643 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3644 pud_t
*pud
= pud_offset(pgd
, *addr
);
3646 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3647 if (page_count(virt_to_page(ptep
)) == 1)
3651 put_page(virt_to_page(ptep
));
3653 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3656 #define want_pmd_share() (1)
3657 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3658 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3662 #define want_pmd_share() (0)
3663 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3665 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3666 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3667 unsigned long addr
, unsigned long sz
)
3673 pgd
= pgd_offset(mm
, addr
);
3674 pud
= pud_alloc(mm
, pgd
, addr
);
3676 if (sz
== PUD_SIZE
) {
3679 BUG_ON(sz
!= PMD_SIZE
);
3680 if (want_pmd_share() && pud_none(*pud
))
3681 pte
= huge_pmd_share(mm
, addr
, pud
);
3683 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3686 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3691 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3697 pgd
= pgd_offset(mm
, addr
);
3698 if (pgd_present(*pgd
)) {
3699 pud
= pud_offset(pgd
, addr
);
3700 if (pud_present(*pud
)) {
3702 return (pte_t
*)pud
;
3703 pmd
= pmd_offset(pud
, addr
);
3706 return (pte_t
*) pmd
;
3709 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3712 * These functions are overwritable if your architecture needs its own
3715 struct page
* __weak
3716 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
3719 return ERR_PTR(-EINVAL
);
3722 struct page
* __weak
3723 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3724 pmd_t
*pmd
, int flags
)
3726 struct page
*page
= NULL
;
3729 ptl
= pmd_lockptr(mm
, pmd
);
3732 * make sure that the address range covered by this pmd is not
3733 * unmapped from other threads.
3735 if (!pmd_huge(*pmd
))
3737 if (pmd_present(*pmd
)) {
3738 page
= pte_page(*(pte_t
*)pmd
) +
3739 ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3740 if (flags
& FOLL_GET
)
3743 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t
*)pmd
))) {
3745 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
3749 * hwpoisoned entry is treated as no_page_table in
3750 * follow_page_mask().
3758 struct page
* __weak
3759 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3760 pud_t
*pud
, int flags
)
3762 if (flags
& FOLL_GET
)
3765 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3768 #ifdef CONFIG_MEMORY_FAILURE
3770 /* Should be called in hugetlb_lock */
3771 static int is_hugepage_on_freelist(struct page
*hpage
)
3775 struct hstate
*h
= page_hstate(hpage
);
3776 int nid
= page_to_nid(hpage
);
3778 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3785 * This function is called from memory failure code.
3786 * Assume the caller holds page lock of the head page.
3788 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3790 struct hstate
*h
= page_hstate(hpage
);
3791 int nid
= page_to_nid(hpage
);
3794 spin_lock(&hugetlb_lock
);
3795 if (is_hugepage_on_freelist(hpage
)) {
3797 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3798 * but dangling hpage->lru can trigger list-debug warnings
3799 * (this happens when we call unpoison_memory() on it),
3800 * so let it point to itself with list_del_init().
3802 list_del_init(&hpage
->lru
);
3803 set_page_refcounted(hpage
);
3804 h
->free_huge_pages
--;
3805 h
->free_huge_pages_node
[nid
]--;
3808 spin_unlock(&hugetlb_lock
);
3813 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
3815 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3816 if (!get_page_unless_zero(page
))
3818 spin_lock(&hugetlb_lock
);
3819 list_move_tail(&page
->lru
, list
);
3820 spin_unlock(&hugetlb_lock
);
3824 void putback_active_hugepage(struct page
*page
)
3826 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3827 spin_lock(&hugetlb_lock
);
3828 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
3829 spin_unlock(&hugetlb_lock
);
3833 bool is_hugepage_active(struct page
*page
)
3835 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
3837 * This function can be called for a tail page because the caller,
3838 * scan_movable_pages, scans through a given pfn-range which typically
3839 * covers one memory block. In systems using gigantic hugepage (1GB
3840 * for x86_64,) a hugepage is larger than a memory block, and we don't
3841 * support migrating such large hugepages for now, so return false
3842 * when called for tail pages.
3847 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3848 * so we should return false for them.
3850 if (unlikely(PageHWPoison(page
)))
3852 return page_count(page
) > 0;