4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
27 * The following locks and mutexes are used by kmemleak:
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
101 #include <linux/kasan.h>
102 #include <linux/kmemcheck.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
107 * Kmemleak configuration and common defines.
109 #define MAX_TRACE 16 /* stack trace length */
110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
115 #define BYTES_PER_POINTER sizeof(void *)
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
119 __GFP_NORETRY | __GFP_NOMEMALLOC | \
122 /* scanning area inside a memory block */
123 struct kmemleak_scan_area
{
124 struct hlist_node node
;
129 #define KMEMLEAK_GREY 0
130 #define KMEMLEAK_BLACK -1
133 * Structure holding the metadata for each allocated memory block.
134 * Modifications to such objects should be made while holding the
135 * object->lock. Insertions or deletions from object_list, gray_list or
136 * rb_node are already protected by the corresponding locks or mutex (see
137 * the notes on locking above). These objects are reference-counted
138 * (use_count) and freed using the RCU mechanism.
140 struct kmemleak_object
{
142 unsigned long flags
; /* object status flags */
143 struct list_head object_list
;
144 struct list_head gray_list
;
145 struct rb_node rb_node
;
146 struct rcu_head rcu
; /* object_list lockless traversal */
147 /* object usage count; object freed when use_count == 0 */
149 unsigned long pointer
;
151 /* minimum number of a pointers found before it is considered leak */
153 /* the total number of pointers found pointing to this object */
155 /* checksum for detecting modified objects */
157 /* memory ranges to be scanned inside an object (empty for all) */
158 struct hlist_head area_list
;
159 unsigned long trace
[MAX_TRACE
];
160 unsigned int trace_len
;
161 unsigned long jiffies
; /* creation timestamp */
162 pid_t pid
; /* pid of the current task */
163 char comm
[TASK_COMM_LEN
]; /* executable name */
166 /* flag representing the memory block allocation status */
167 #define OBJECT_ALLOCATED (1 << 0)
168 /* flag set after the first reporting of an unreference object */
169 #define OBJECT_REPORTED (1 << 1)
170 /* flag set to not scan the object */
171 #define OBJECT_NO_SCAN (1 << 2)
173 /* number of bytes to print per line; must be 16 or 32 */
174 #define HEX_ROW_SIZE 16
175 /* number of bytes to print at a time (1, 2, 4, 8) */
176 #define HEX_GROUP_SIZE 1
177 /* include ASCII after the hex output */
179 /* max number of lines to be printed */
180 #define HEX_MAX_LINES 2
182 /* the list of all allocated objects */
183 static LIST_HEAD(object_list
);
184 /* the list of gray-colored objects (see color_gray comment below) */
185 static LIST_HEAD(gray_list
);
186 /* search tree for object boundaries */
187 static struct rb_root object_tree_root
= RB_ROOT
;
188 /* rw_lock protecting the access to object_list and object_tree_root */
189 static DEFINE_RWLOCK(kmemleak_lock
);
191 /* allocation caches for kmemleak internal data */
192 static struct kmem_cache
*object_cache
;
193 static struct kmem_cache
*scan_area_cache
;
195 /* set if tracing memory operations is enabled */
196 static int kmemleak_enabled
;
197 /* set in the late_initcall if there were no errors */
198 static int kmemleak_initialized
;
199 /* enables or disables early logging of the memory operations */
200 static int kmemleak_early_log
= 1;
201 /* set if a kmemleak warning was issued */
202 static int kmemleak_warning
;
203 /* set if a fatal kmemleak error has occurred */
204 static int kmemleak_error
;
206 /* minimum and maximum address that may be valid pointers */
207 static unsigned long min_addr
= ULONG_MAX
;
208 static unsigned long max_addr
;
210 static struct task_struct
*scan_thread
;
211 /* used to avoid reporting of recently allocated objects */
212 static unsigned long jiffies_min_age
;
213 static unsigned long jiffies_last_scan
;
214 /* delay between automatic memory scannings */
215 static signed long jiffies_scan_wait
;
216 /* enables or disables the task stacks scanning */
217 static int kmemleak_stack_scan
= 1;
218 /* protects the memory scanning, parameters and debug/kmemleak file access */
219 static DEFINE_MUTEX(scan_mutex
);
220 /* setting kmemleak=on, will set this var, skipping the disable */
221 static int kmemleak_skip_disable
;
222 /* If there are leaks that can be reported */
223 static bool kmemleak_found_leaks
;
226 * Early object allocation/freeing logging. Kmemleak is initialized after the
227 * kernel allocator. However, both the kernel allocator and kmemleak may
228 * allocate memory blocks which need to be tracked. Kmemleak defines an
229 * arbitrary buffer to hold the allocation/freeing information before it is
233 /* kmemleak operation type for early logging */
236 KMEMLEAK_ALLOC_PERCPU
,
239 KMEMLEAK_FREE_PERCPU
,
247 * Structure holding the information passed to kmemleak callbacks during the
251 int op_type
; /* kmemleak operation type */
252 const void *ptr
; /* allocated/freed memory block */
253 size_t size
; /* memory block size */
254 int min_count
; /* minimum reference count */
255 unsigned long trace
[MAX_TRACE
]; /* stack trace */
256 unsigned int trace_len
; /* stack trace length */
259 /* early logging buffer and current position */
260 static struct early_log
261 early_log
[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
] __initdata
;
262 static int crt_early_log __initdata
;
264 static void kmemleak_disable(void);
267 * Print a warning and dump the stack trace.
269 #define kmemleak_warn(x...) do { \
272 kmemleak_warning = 1; \
276 * Macro invoked when a serious kmemleak condition occurred and cannot be
277 * recovered from. Kmemleak will be disabled and further allocation/freeing
278 * tracing no longer available.
280 #define kmemleak_stop(x...) do { \
282 kmemleak_disable(); \
286 * Printing of the objects hex dump to the seq file. The number of lines to be
287 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
288 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
289 * with the object->lock held.
291 static void hex_dump_object(struct seq_file
*seq
,
292 struct kmemleak_object
*object
)
294 const u8
*ptr
= (const u8
*)object
->pointer
;
295 int i
, len
, remaining
;
296 unsigned char linebuf
[HEX_ROW_SIZE
* 5];
298 /* limit the number of lines to HEX_MAX_LINES */
300 min(object
->size
, (size_t)(HEX_MAX_LINES
* HEX_ROW_SIZE
));
302 seq_printf(seq
, " hex dump (first %d bytes):\n", len
);
303 for (i
= 0; i
< len
; i
+= HEX_ROW_SIZE
) {
304 int linelen
= min(remaining
, HEX_ROW_SIZE
);
306 remaining
-= HEX_ROW_SIZE
;
307 hex_dump_to_buffer(ptr
+ i
, linelen
, HEX_ROW_SIZE
,
308 HEX_GROUP_SIZE
, linebuf
, sizeof(linebuf
),
310 seq_printf(seq
, " %s\n", linebuf
);
315 * Object colors, encoded with count and min_count:
316 * - white - orphan object, not enough references to it (count < min_count)
317 * - gray - not orphan, not marked as false positive (min_count == 0) or
318 * sufficient references to it (count >= min_count)
319 * - black - ignore, it doesn't contain references (e.g. text section)
320 * (min_count == -1). No function defined for this color.
321 * Newly created objects don't have any color assigned (object->count == -1)
322 * before the next memory scan when they become white.
324 static bool color_white(const struct kmemleak_object
*object
)
326 return object
->count
!= KMEMLEAK_BLACK
&&
327 object
->count
< object
->min_count
;
330 static bool color_gray(const struct kmemleak_object
*object
)
332 return object
->min_count
!= KMEMLEAK_BLACK
&&
333 object
->count
>= object
->min_count
;
337 * Objects are considered unreferenced only if their color is white, they have
338 * not be deleted and have a minimum age to avoid false positives caused by
339 * pointers temporarily stored in CPU registers.
341 static bool unreferenced_object(struct kmemleak_object
*object
)
343 return (color_white(object
) && object
->flags
& OBJECT_ALLOCATED
) &&
344 time_before_eq(object
->jiffies
+ jiffies_min_age
,
349 * Printing of the unreferenced objects information to the seq file. The
350 * print_unreferenced function must be called with the object->lock held.
352 static void print_unreferenced(struct seq_file
*seq
,
353 struct kmemleak_object
*object
)
356 unsigned int msecs_age
= jiffies_to_msecs(jiffies
- object
->jiffies
);
358 seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
359 object
->pointer
, object
->size
);
360 seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
361 object
->comm
, object
->pid
, object
->jiffies
,
362 msecs_age
/ 1000, msecs_age
% 1000);
363 hex_dump_object(seq
, object
);
364 seq_printf(seq
, " backtrace:\n");
366 for (i
= 0; i
< object
->trace_len
; i
++) {
367 void *ptr
= (void *)object
->trace
[i
];
368 seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
373 * Print the kmemleak_object information. This function is used mainly for
374 * debugging special cases when kmemleak operations. It must be called with
375 * the object->lock held.
377 static void dump_object_info(struct kmemleak_object
*object
)
379 struct stack_trace trace
;
381 trace
.nr_entries
= object
->trace_len
;
382 trace
.entries
= object
->trace
;
384 pr_notice("Object 0x%08lx (size %zu):\n",
385 object
->pointer
, object
->size
);
386 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
387 object
->comm
, object
->pid
, object
->jiffies
);
388 pr_notice(" min_count = %d\n", object
->min_count
);
389 pr_notice(" count = %d\n", object
->count
);
390 pr_notice(" flags = 0x%lx\n", object
->flags
);
391 pr_notice(" checksum = %u\n", object
->checksum
);
392 pr_notice(" backtrace:\n");
393 print_stack_trace(&trace
, 4);
397 * Look-up a memory block metadata (kmemleak_object) in the object search
398 * tree based on a pointer value. If alias is 0, only values pointing to the
399 * beginning of the memory block are allowed. The kmemleak_lock must be held
400 * when calling this function.
402 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
404 struct rb_node
*rb
= object_tree_root
.rb_node
;
407 struct kmemleak_object
*object
=
408 rb_entry(rb
, struct kmemleak_object
, rb_node
);
409 if (ptr
< object
->pointer
)
410 rb
= object
->rb_node
.rb_left
;
411 else if (object
->pointer
+ object
->size
<= ptr
)
412 rb
= object
->rb_node
.rb_right
;
413 else if (object
->pointer
== ptr
|| alias
)
416 kmemleak_warn("Found object by alias at 0x%08lx\n",
418 dump_object_info(object
);
426 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
427 * that once an object's use_count reached 0, the RCU freeing was already
428 * registered and the object should no longer be used. This function must be
429 * called under the protection of rcu_read_lock().
431 static int get_object(struct kmemleak_object
*object
)
433 return atomic_inc_not_zero(&object
->use_count
);
437 * RCU callback to free a kmemleak_object.
439 static void free_object_rcu(struct rcu_head
*rcu
)
441 struct hlist_node
*tmp
;
442 struct kmemleak_scan_area
*area
;
443 struct kmemleak_object
*object
=
444 container_of(rcu
, struct kmemleak_object
, rcu
);
447 * Once use_count is 0 (guaranteed by put_object), there is no other
448 * code accessing this object, hence no need for locking.
450 hlist_for_each_entry_safe(area
, tmp
, &object
->area_list
, node
) {
451 hlist_del(&area
->node
);
452 kmem_cache_free(scan_area_cache
, area
);
454 kmem_cache_free(object_cache
, object
);
458 * Decrement the object use_count. Once the count is 0, free the object using
459 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
460 * delete_object() path, the delayed RCU freeing ensures that there is no
461 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
464 static void put_object(struct kmemleak_object
*object
)
466 if (!atomic_dec_and_test(&object
->use_count
))
469 /* should only get here after delete_object was called */
470 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
472 call_rcu(&object
->rcu
, free_object_rcu
);
476 * Look up an object in the object search tree and increase its use_count.
478 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
481 struct kmemleak_object
*object
= NULL
;
484 read_lock_irqsave(&kmemleak_lock
, flags
);
485 if (ptr
>= min_addr
&& ptr
< max_addr
)
486 object
= lookup_object(ptr
, alias
);
487 read_unlock_irqrestore(&kmemleak_lock
, flags
);
489 /* check whether the object is still available */
490 if (object
&& !get_object(object
))
498 * Save stack trace to the given array of MAX_TRACE size.
500 static int __save_stack_trace(unsigned long *trace
)
502 struct stack_trace stack_trace
;
504 stack_trace
.max_entries
= MAX_TRACE
;
505 stack_trace
.nr_entries
= 0;
506 stack_trace
.entries
= trace
;
507 stack_trace
.skip
= 2;
508 save_stack_trace(&stack_trace
);
510 return stack_trace
.nr_entries
;
514 * Create the metadata (struct kmemleak_object) corresponding to an allocated
515 * memory block and add it to the object_list and object_tree_root.
517 static struct kmemleak_object
*create_object(unsigned long ptr
, size_t size
,
518 int min_count
, gfp_t gfp
)
521 struct kmemleak_object
*object
, *parent
;
522 struct rb_node
**link
, *rb_parent
;
524 object
= kmem_cache_alloc(object_cache
, gfp_kmemleak_mask(gfp
));
526 pr_warning("Cannot allocate a kmemleak_object structure\n");
531 INIT_LIST_HEAD(&object
->object_list
);
532 INIT_LIST_HEAD(&object
->gray_list
);
533 INIT_HLIST_HEAD(&object
->area_list
);
534 spin_lock_init(&object
->lock
);
535 atomic_set(&object
->use_count
, 1);
536 object
->flags
= OBJECT_ALLOCATED
;
537 object
->pointer
= ptr
;
539 object
->min_count
= min_count
;
540 object
->count
= 0; /* white color initially */
541 object
->jiffies
= jiffies
;
542 object
->checksum
= 0;
544 /* task information */
547 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
548 } else if (in_softirq()) {
550 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
552 object
->pid
= current
->pid
;
554 * There is a small chance of a race with set_task_comm(),
555 * however using get_task_comm() here may cause locking
556 * dependency issues with current->alloc_lock. In the worst
557 * case, the command line is not correct.
559 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
562 /* kernel backtrace */
563 object
->trace_len
= __save_stack_trace(object
->trace
);
565 write_lock_irqsave(&kmemleak_lock
, flags
);
567 min_addr
= min(min_addr
, ptr
);
568 max_addr
= max(max_addr
, ptr
+ size
);
569 link
= &object_tree_root
.rb_node
;
573 parent
= rb_entry(rb_parent
, struct kmemleak_object
, rb_node
);
574 if (ptr
+ size
<= parent
->pointer
)
575 link
= &parent
->rb_node
.rb_left
;
576 else if (parent
->pointer
+ parent
->size
<= ptr
)
577 link
= &parent
->rb_node
.rb_right
;
579 kmemleak_stop("Cannot insert 0x%lx into the object "
580 "search tree (overlaps existing)\n",
582 kmem_cache_free(object_cache
, object
);
584 spin_lock(&object
->lock
);
585 dump_object_info(object
);
586 spin_unlock(&object
->lock
);
590 rb_link_node(&object
->rb_node
, rb_parent
, link
);
591 rb_insert_color(&object
->rb_node
, &object_tree_root
);
593 list_add_tail_rcu(&object
->object_list
, &object_list
);
595 write_unlock_irqrestore(&kmemleak_lock
, flags
);
600 * Remove the metadata (struct kmemleak_object) for a memory block from the
601 * object_list and object_tree_root and decrement its use_count.
603 static void __delete_object(struct kmemleak_object
*object
)
607 write_lock_irqsave(&kmemleak_lock
, flags
);
608 rb_erase(&object
->rb_node
, &object_tree_root
);
609 list_del_rcu(&object
->object_list
);
610 write_unlock_irqrestore(&kmemleak_lock
, flags
);
612 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
613 WARN_ON(atomic_read(&object
->use_count
) < 2);
616 * Locking here also ensures that the corresponding memory block
617 * cannot be freed when it is being scanned.
619 spin_lock_irqsave(&object
->lock
, flags
);
620 object
->flags
&= ~OBJECT_ALLOCATED
;
621 spin_unlock_irqrestore(&object
->lock
, flags
);
626 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
629 static void delete_object_full(unsigned long ptr
)
631 struct kmemleak_object
*object
;
633 object
= find_and_get_object(ptr
, 0);
636 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
641 __delete_object(object
);
646 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
647 * delete it. If the memory block is partially freed, the function may create
648 * additional metadata for the remaining parts of the block.
650 static void delete_object_part(unsigned long ptr
, size_t size
)
652 struct kmemleak_object
*object
;
653 unsigned long start
, end
;
655 object
= find_and_get_object(ptr
, 1);
658 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
659 "(size %zu)\n", ptr
, size
);
663 __delete_object(object
);
666 * Create one or two objects that may result from the memory block
667 * split. Note that partial freeing is only done by free_bootmem() and
668 * this happens before kmemleak_init() is called. The path below is
669 * only executed during early log recording in kmemleak_init(), so
670 * GFP_KERNEL is enough.
672 start
= object
->pointer
;
673 end
= object
->pointer
+ object
->size
;
675 create_object(start
, ptr
- start
, object
->min_count
,
677 if (ptr
+ size
< end
)
678 create_object(ptr
+ size
, end
- ptr
- size
, object
->min_count
,
684 static void __paint_it(struct kmemleak_object
*object
, int color
)
686 object
->min_count
= color
;
687 if (color
== KMEMLEAK_BLACK
)
688 object
->flags
|= OBJECT_NO_SCAN
;
691 static void paint_it(struct kmemleak_object
*object
, int color
)
695 spin_lock_irqsave(&object
->lock
, flags
);
696 __paint_it(object
, color
);
697 spin_unlock_irqrestore(&object
->lock
, flags
);
700 static void paint_ptr(unsigned long ptr
, int color
)
702 struct kmemleak_object
*object
;
704 object
= find_and_get_object(ptr
, 0);
706 kmemleak_warn("Trying to color unknown object "
707 "at 0x%08lx as %s\n", ptr
,
708 (color
== KMEMLEAK_GREY
) ? "Grey" :
709 (color
== KMEMLEAK_BLACK
) ? "Black" : "Unknown");
712 paint_it(object
, color
);
717 * Mark an object permanently as gray-colored so that it can no longer be
718 * reported as a leak. This is used in general to mark a false positive.
720 static void make_gray_object(unsigned long ptr
)
722 paint_ptr(ptr
, KMEMLEAK_GREY
);
726 * Mark the object as black-colored so that it is ignored from scans and
729 static void make_black_object(unsigned long ptr
)
731 paint_ptr(ptr
, KMEMLEAK_BLACK
);
735 * Add a scanning area to the object. If at least one such area is added,
736 * kmemleak will only scan these ranges rather than the whole memory block.
738 static void add_scan_area(unsigned long ptr
, size_t size
, gfp_t gfp
)
741 struct kmemleak_object
*object
;
742 struct kmemleak_scan_area
*area
;
744 object
= find_and_get_object(ptr
, 1);
746 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
751 area
= kmem_cache_alloc(scan_area_cache
, gfp_kmemleak_mask(gfp
));
753 pr_warning("Cannot allocate a scan area\n");
757 spin_lock_irqsave(&object
->lock
, flags
);
758 if (size
== SIZE_MAX
) {
759 size
= object
->pointer
+ object
->size
- ptr
;
760 } else if (ptr
+ size
> object
->pointer
+ object
->size
) {
761 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
762 dump_object_info(object
);
763 kmem_cache_free(scan_area_cache
, area
);
767 INIT_HLIST_NODE(&area
->node
);
771 hlist_add_head(&area
->node
, &object
->area_list
);
773 spin_unlock_irqrestore(&object
->lock
, flags
);
779 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
780 * pointer. Such object will not be scanned by kmemleak but references to it
783 static void object_no_scan(unsigned long ptr
)
786 struct kmemleak_object
*object
;
788 object
= find_and_get_object(ptr
, 0);
790 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
794 spin_lock_irqsave(&object
->lock
, flags
);
795 object
->flags
|= OBJECT_NO_SCAN
;
796 spin_unlock_irqrestore(&object
->lock
, flags
);
801 * Log an early kmemleak_* call to the early_log buffer. These calls will be
802 * processed later once kmemleak is fully initialized.
804 static void __init
log_early(int op_type
, const void *ptr
, size_t size
,
808 struct early_log
*log
;
810 if (kmemleak_error
) {
811 /* kmemleak stopped recording, just count the requests */
816 if (crt_early_log
>= ARRAY_SIZE(early_log
)) {
822 * There is no need for locking since the kernel is still in UP mode
823 * at this stage. Disabling the IRQs is enough.
825 local_irq_save(flags
);
826 log
= &early_log
[crt_early_log
];
827 log
->op_type
= op_type
;
830 log
->min_count
= min_count
;
831 log
->trace_len
= __save_stack_trace(log
->trace
);
833 local_irq_restore(flags
);
837 * Log an early allocated block and populate the stack trace.
839 static void early_alloc(struct early_log
*log
)
841 struct kmemleak_object
*object
;
845 if (!kmemleak_enabled
|| !log
->ptr
|| IS_ERR(log
->ptr
))
849 * RCU locking needed to ensure object is not freed via put_object().
852 object
= create_object((unsigned long)log
->ptr
, log
->size
,
853 log
->min_count
, GFP_ATOMIC
);
856 spin_lock_irqsave(&object
->lock
, flags
);
857 for (i
= 0; i
< log
->trace_len
; i
++)
858 object
->trace
[i
] = log
->trace
[i
];
859 object
->trace_len
= log
->trace_len
;
860 spin_unlock_irqrestore(&object
->lock
, flags
);
866 * Log an early allocated block and populate the stack trace.
868 static void early_alloc_percpu(struct early_log
*log
)
871 const void __percpu
*ptr
= log
->ptr
;
873 for_each_possible_cpu(cpu
) {
874 log
->ptr
= per_cpu_ptr(ptr
, cpu
);
880 * kmemleak_alloc - register a newly allocated object
881 * @ptr: pointer to beginning of the object
882 * @size: size of the object
883 * @min_count: minimum number of references to this object. If during memory
884 * scanning a number of references less than @min_count is found,
885 * the object is reported as a memory leak. If @min_count is 0,
886 * the object is never reported as a leak. If @min_count is -1,
887 * the object is ignored (not scanned and not reported as a leak)
888 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
890 * This function is called from the kernel allocators when a new object
891 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
893 void __ref
kmemleak_alloc(const void *ptr
, size_t size
, int min_count
,
896 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
898 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
899 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
900 else if (kmemleak_early_log
)
901 log_early(KMEMLEAK_ALLOC
, ptr
, size
, min_count
);
903 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
906 * kmemleak_alloc_percpu - register a newly allocated __percpu object
907 * @ptr: __percpu pointer to beginning of the object
908 * @size: size of the object
910 * This function is called from the kernel percpu allocator when a new object
911 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
914 void __ref
kmemleak_alloc_percpu(const void __percpu
*ptr
, size_t size
)
918 pr_debug("%s(0x%p, %zu)\n", __func__
, ptr
, size
);
921 * Percpu allocations are only scanned and not reported as leaks
922 * (min_count is set to 0).
924 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
925 for_each_possible_cpu(cpu
)
926 create_object((unsigned long)per_cpu_ptr(ptr
, cpu
),
927 size
, 0, GFP_KERNEL
);
928 else if (kmemleak_early_log
)
929 log_early(KMEMLEAK_ALLOC_PERCPU
, ptr
, size
, 0);
931 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu
);
934 * kmemleak_free - unregister a previously registered object
935 * @ptr: pointer to beginning of the object
937 * This function is called from the kernel allocators when an object (memory
938 * block) is freed (kmem_cache_free, kfree, vfree etc.).
940 void __ref
kmemleak_free(const void *ptr
)
942 pr_debug("%s(0x%p)\n", __func__
, ptr
);
944 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
945 delete_object_full((unsigned long)ptr
);
946 else if (kmemleak_early_log
)
947 log_early(KMEMLEAK_FREE
, ptr
, 0, 0);
949 EXPORT_SYMBOL_GPL(kmemleak_free
);
952 * kmemleak_free_part - partially unregister a previously registered object
953 * @ptr: pointer to the beginning or inside the object. This also
954 * represents the start of the range to be freed
955 * @size: size to be unregistered
957 * This function is called when only a part of a memory block is freed
958 * (usually from the bootmem allocator).
960 void __ref
kmemleak_free_part(const void *ptr
, size_t size
)
962 pr_debug("%s(0x%p)\n", __func__
, ptr
);
964 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
965 delete_object_part((unsigned long)ptr
, size
);
966 else if (kmemleak_early_log
)
967 log_early(KMEMLEAK_FREE_PART
, ptr
, size
, 0);
969 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
972 * kmemleak_free_percpu - unregister a previously registered __percpu object
973 * @ptr: __percpu pointer to beginning of the object
975 * This function is called from the kernel percpu allocator when an object
976 * (memory block) is freed (free_percpu).
978 void __ref
kmemleak_free_percpu(const void __percpu
*ptr
)
982 pr_debug("%s(0x%p)\n", __func__
, ptr
);
984 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
985 for_each_possible_cpu(cpu
)
986 delete_object_full((unsigned long)per_cpu_ptr(ptr
,
988 else if (kmemleak_early_log
)
989 log_early(KMEMLEAK_FREE_PERCPU
, ptr
, 0, 0);
991 EXPORT_SYMBOL_GPL(kmemleak_free_percpu
);
994 * kmemleak_update_trace - update object allocation stack trace
995 * @ptr: pointer to beginning of the object
997 * Override the object allocation stack trace for cases where the actual
998 * allocation place is not always useful.
1000 void __ref
kmemleak_update_trace(const void *ptr
)
1002 struct kmemleak_object
*object
;
1003 unsigned long flags
;
1005 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1007 if (!kmemleak_enabled
|| IS_ERR_OR_NULL(ptr
))
1010 object
= find_and_get_object((unsigned long)ptr
, 1);
1013 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1019 spin_lock_irqsave(&object
->lock
, flags
);
1020 object
->trace_len
= __save_stack_trace(object
->trace
);
1021 spin_unlock_irqrestore(&object
->lock
, flags
);
1025 EXPORT_SYMBOL(kmemleak_update_trace
);
1028 * kmemleak_not_leak - mark an allocated object as false positive
1029 * @ptr: pointer to beginning of the object
1031 * Calling this function on an object will cause the memory block to no longer
1032 * be reported as leak and always be scanned.
1034 void __ref
kmemleak_not_leak(const void *ptr
)
1036 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1038 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1039 make_gray_object((unsigned long)ptr
);
1040 else if (kmemleak_early_log
)
1041 log_early(KMEMLEAK_NOT_LEAK
, ptr
, 0, 0);
1043 EXPORT_SYMBOL(kmemleak_not_leak
);
1046 * kmemleak_ignore - ignore an allocated object
1047 * @ptr: pointer to beginning of the object
1049 * Calling this function on an object will cause the memory block to be
1050 * ignored (not scanned and not reported as a leak). This is usually done when
1051 * it is known that the corresponding block is not a leak and does not contain
1052 * any references to other allocated memory blocks.
1054 void __ref
kmemleak_ignore(const void *ptr
)
1056 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1058 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1059 make_black_object((unsigned long)ptr
);
1060 else if (kmemleak_early_log
)
1061 log_early(KMEMLEAK_IGNORE
, ptr
, 0, 0);
1063 EXPORT_SYMBOL(kmemleak_ignore
);
1066 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1067 * @ptr: pointer to beginning or inside the object. This also
1068 * represents the start of the scan area
1069 * @size: size of the scan area
1070 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1072 * This function is used when it is known that only certain parts of an object
1073 * contain references to other objects. Kmemleak will only scan these areas
1074 * reducing the number false negatives.
1076 void __ref
kmemleak_scan_area(const void *ptr
, size_t size
, gfp_t gfp
)
1078 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1080 if (kmemleak_enabled
&& ptr
&& size
&& !IS_ERR(ptr
))
1081 add_scan_area((unsigned long)ptr
, size
, gfp
);
1082 else if (kmemleak_early_log
)
1083 log_early(KMEMLEAK_SCAN_AREA
, ptr
, size
, 0);
1085 EXPORT_SYMBOL(kmemleak_scan_area
);
1088 * kmemleak_no_scan - do not scan an allocated object
1089 * @ptr: pointer to beginning of the object
1091 * This function notifies kmemleak not to scan the given memory block. Useful
1092 * in situations where it is known that the given object does not contain any
1093 * references to other objects. Kmemleak will not scan such objects reducing
1094 * the number of false negatives.
1096 void __ref
kmemleak_no_scan(const void *ptr
)
1098 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1100 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1101 object_no_scan((unsigned long)ptr
);
1102 else if (kmemleak_early_log
)
1103 log_early(KMEMLEAK_NO_SCAN
, ptr
, 0, 0);
1105 EXPORT_SYMBOL(kmemleak_no_scan
);
1108 * Update an object's checksum and return true if it was modified.
1110 static bool update_checksum(struct kmemleak_object
*object
)
1112 u32 old_csum
= object
->checksum
;
1114 if (!kmemcheck_is_obj_initialized(object
->pointer
, object
->size
))
1117 kasan_disable_current();
1118 object
->checksum
= crc32(0, (void *)object
->pointer
, object
->size
);
1119 kasan_enable_current();
1121 return object
->checksum
!= old_csum
;
1125 * Memory scanning is a long process and it needs to be interruptable. This
1126 * function checks whether such interrupt condition occurred.
1128 static int scan_should_stop(void)
1130 if (!kmemleak_enabled
)
1134 * This function may be called from either process or kthread context,
1135 * hence the need to check for both stop conditions.
1138 return signal_pending(current
);
1140 return kthread_should_stop();
1146 * Scan a memory block (exclusive range) for valid pointers and add those
1147 * found to the gray list.
1149 static void scan_block(void *_start
, void *_end
,
1150 struct kmemleak_object
*scanned
, int allow_resched
)
1153 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
1154 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
1156 for (ptr
= start
; ptr
< end
; ptr
++) {
1157 struct kmemleak_object
*object
;
1158 unsigned long flags
;
1159 unsigned long pointer
;
1163 if (scan_should_stop())
1166 /* don't scan uninitialized memory */
1167 if (!kmemcheck_is_obj_initialized((unsigned long)ptr
,
1171 kasan_disable_current();
1173 kasan_enable_current();
1175 object
= find_and_get_object(pointer
, 1);
1178 if (object
== scanned
) {
1179 /* self referenced, ignore */
1185 * Avoid the lockdep recursive warning on object->lock being
1186 * previously acquired in scan_object(). These locks are
1187 * enclosed by scan_mutex.
1189 spin_lock_irqsave_nested(&object
->lock
, flags
,
1190 SINGLE_DEPTH_NESTING
);
1191 if (!color_white(object
)) {
1192 /* non-orphan, ignored or new */
1193 spin_unlock_irqrestore(&object
->lock
, flags
);
1199 * Increase the object's reference count (number of pointers
1200 * to the memory block). If this count reaches the required
1201 * minimum, the object's color will become gray and it will be
1202 * added to the gray_list.
1205 if (color_gray(object
)) {
1206 list_add_tail(&object
->gray_list
, &gray_list
);
1207 spin_unlock_irqrestore(&object
->lock
, flags
);
1211 spin_unlock_irqrestore(&object
->lock
, flags
);
1217 * Scan a memory block corresponding to a kmemleak_object. A condition is
1218 * that object->use_count >= 1.
1220 static void scan_object(struct kmemleak_object
*object
)
1222 struct kmemleak_scan_area
*area
;
1223 unsigned long flags
;
1226 * Once the object->lock is acquired, the corresponding memory block
1227 * cannot be freed (the same lock is acquired in delete_object).
1229 spin_lock_irqsave(&object
->lock
, flags
);
1230 if (object
->flags
& OBJECT_NO_SCAN
)
1232 if (!(object
->flags
& OBJECT_ALLOCATED
))
1233 /* already freed object */
1235 if (hlist_empty(&object
->area_list
)) {
1236 void *start
= (void *)object
->pointer
;
1237 void *end
= (void *)(object
->pointer
+ object
->size
);
1239 while (start
< end
&& (object
->flags
& OBJECT_ALLOCATED
) &&
1240 !(object
->flags
& OBJECT_NO_SCAN
)) {
1241 scan_block(start
, min(start
+ MAX_SCAN_SIZE
, end
),
1243 start
+= MAX_SCAN_SIZE
;
1245 spin_unlock_irqrestore(&object
->lock
, flags
);
1247 spin_lock_irqsave(&object
->lock
, flags
);
1250 hlist_for_each_entry(area
, &object
->area_list
, node
)
1251 scan_block((void *)area
->start
,
1252 (void *)(area
->start
+ area
->size
),
1255 spin_unlock_irqrestore(&object
->lock
, flags
);
1259 * Scan the objects already referenced (gray objects). More objects will be
1260 * referenced and, if there are no memory leaks, all the objects are scanned.
1262 static void scan_gray_list(void)
1264 struct kmemleak_object
*object
, *tmp
;
1267 * The list traversal is safe for both tail additions and removals
1268 * from inside the loop. The kmemleak objects cannot be freed from
1269 * outside the loop because their use_count was incremented.
1271 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1272 while (&object
->gray_list
!= &gray_list
) {
1275 /* may add new objects to the list */
1276 if (!scan_should_stop())
1277 scan_object(object
);
1279 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1282 /* remove the object from the list and release it */
1283 list_del(&object
->gray_list
);
1288 WARN_ON(!list_empty(&gray_list
));
1292 * Scan data sections and all the referenced memory blocks allocated via the
1293 * kernel's standard allocators. This function must be called with the
1296 static void kmemleak_scan(void)
1298 unsigned long flags
;
1299 struct kmemleak_object
*object
;
1303 jiffies_last_scan
= jiffies
;
1305 /* prepare the kmemleak_object's */
1307 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1308 spin_lock_irqsave(&object
->lock
, flags
);
1311 * With a few exceptions there should be a maximum of
1312 * 1 reference to any object at this point.
1314 if (atomic_read(&object
->use_count
) > 1) {
1315 pr_debug("object->use_count = %d\n",
1316 atomic_read(&object
->use_count
));
1317 dump_object_info(object
);
1320 /* reset the reference count (whiten the object) */
1322 if (color_gray(object
) && get_object(object
))
1323 list_add_tail(&object
->gray_list
, &gray_list
);
1325 spin_unlock_irqrestore(&object
->lock
, flags
);
1329 /* data/bss scanning */
1330 scan_block(_sdata
, _edata
, NULL
, 1);
1331 scan_block(__bss_start
, __bss_stop
, NULL
, 1);
1334 /* per-cpu sections scanning */
1335 for_each_possible_cpu(i
)
1336 scan_block(__per_cpu_start
+ per_cpu_offset(i
),
1337 __per_cpu_end
+ per_cpu_offset(i
), NULL
, 1);
1341 * Struct page scanning for each node.
1344 for_each_online_node(i
) {
1345 unsigned long start_pfn
= node_start_pfn(i
);
1346 unsigned long end_pfn
= node_end_pfn(i
);
1349 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1352 if (!pfn_valid(pfn
))
1354 page
= pfn_to_page(pfn
);
1355 /* only scan if page is in use */
1356 if (page_count(page
) == 0)
1358 scan_block(page
, page
+ 1, NULL
, 1);
1364 * Scanning the task stacks (may introduce false negatives).
1366 if (kmemleak_stack_scan
) {
1367 struct task_struct
*p
, *g
;
1369 read_lock(&tasklist_lock
);
1370 do_each_thread(g
, p
) {
1371 scan_block(task_stack_page(p
), task_stack_page(p
) +
1372 THREAD_SIZE
, NULL
, 0);
1373 } while_each_thread(g
, p
);
1374 read_unlock(&tasklist_lock
);
1378 * Scan the objects already referenced from the sections scanned
1384 * Check for new or unreferenced objects modified since the previous
1385 * scan and color them gray until the next scan.
1388 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1389 spin_lock_irqsave(&object
->lock
, flags
);
1390 if (color_white(object
) && (object
->flags
& OBJECT_ALLOCATED
)
1391 && update_checksum(object
) && get_object(object
)) {
1392 /* color it gray temporarily */
1393 object
->count
= object
->min_count
;
1394 list_add_tail(&object
->gray_list
, &gray_list
);
1396 spin_unlock_irqrestore(&object
->lock
, flags
);
1401 * Re-scan the gray list for modified unreferenced objects.
1406 * If scanning was stopped do not report any new unreferenced objects.
1408 if (scan_should_stop())
1412 * Scanning result reporting.
1415 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1416 spin_lock_irqsave(&object
->lock
, flags
);
1417 if (unreferenced_object(object
) &&
1418 !(object
->flags
& OBJECT_REPORTED
)) {
1419 object
->flags
|= OBJECT_REPORTED
;
1422 spin_unlock_irqrestore(&object
->lock
, flags
);
1427 kmemleak_found_leaks
= true;
1429 pr_info("%d new suspected memory leaks (see "
1430 "/sys/kernel/debug/kmemleak)\n", new_leaks
);
1436 * Thread function performing automatic memory scanning. Unreferenced objects
1437 * at the end of a memory scan are reported but only the first time.
1439 static int kmemleak_scan_thread(void *arg
)
1441 static int first_run
= 1;
1443 pr_info("Automatic memory scanning thread started\n");
1444 set_user_nice(current
, 10);
1447 * Wait before the first scan to allow the system to fully initialize.
1451 ssleep(SECS_FIRST_SCAN
);
1454 while (!kthread_should_stop()) {
1455 signed long timeout
= jiffies_scan_wait
;
1457 mutex_lock(&scan_mutex
);
1459 mutex_unlock(&scan_mutex
);
1461 /* wait before the next scan */
1462 while (timeout
&& !kthread_should_stop())
1463 timeout
= schedule_timeout_interruptible(timeout
);
1466 pr_info("Automatic memory scanning thread ended\n");
1472 * Start the automatic memory scanning thread. This function must be called
1473 * with the scan_mutex held.
1475 static void start_scan_thread(void)
1479 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1480 if (IS_ERR(scan_thread
)) {
1481 pr_warning("Failed to create the scan thread\n");
1487 * Stop the automatic memory scanning thread. This function must be called
1488 * with the scan_mutex held.
1490 static void stop_scan_thread(void)
1493 kthread_stop(scan_thread
);
1499 * Iterate over the object_list and return the first valid object at or after
1500 * the required position with its use_count incremented. The function triggers
1501 * a memory scanning when the pos argument points to the first position.
1503 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1505 struct kmemleak_object
*object
;
1509 err
= mutex_lock_interruptible(&scan_mutex
);
1511 return ERR_PTR(err
);
1514 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1517 if (get_object(object
))
1526 * Return the next object in the object_list. The function decrements the
1527 * use_count of the previous object and increases that of the next one.
1529 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1531 struct kmemleak_object
*prev_obj
= v
;
1532 struct kmemleak_object
*next_obj
= NULL
;
1533 struct kmemleak_object
*obj
= prev_obj
;
1537 list_for_each_entry_continue_rcu(obj
, &object_list
, object_list
) {
1538 if (get_object(obj
)) {
1544 put_object(prev_obj
);
1549 * Decrement the use_count of the last object required, if any.
1551 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1555 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1556 * waiting was interrupted, so only release it if !IS_ERR.
1559 mutex_unlock(&scan_mutex
);
1566 * Print the information for an unreferenced object to the seq file.
1568 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1570 struct kmemleak_object
*object
= v
;
1571 unsigned long flags
;
1573 spin_lock_irqsave(&object
->lock
, flags
);
1574 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1575 print_unreferenced(seq
, object
);
1576 spin_unlock_irqrestore(&object
->lock
, flags
);
1580 static const struct seq_operations kmemleak_seq_ops
= {
1581 .start
= kmemleak_seq_start
,
1582 .next
= kmemleak_seq_next
,
1583 .stop
= kmemleak_seq_stop
,
1584 .show
= kmemleak_seq_show
,
1587 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1589 return seq_open(file
, &kmemleak_seq_ops
);
1592 static int dump_str_object_info(const char *str
)
1594 unsigned long flags
;
1595 struct kmemleak_object
*object
;
1598 if (kstrtoul(str
, 0, &addr
))
1600 object
= find_and_get_object(addr
, 0);
1602 pr_info("Unknown object at 0x%08lx\n", addr
);
1606 spin_lock_irqsave(&object
->lock
, flags
);
1607 dump_object_info(object
);
1608 spin_unlock_irqrestore(&object
->lock
, flags
);
1615 * We use grey instead of black to ensure we can do future scans on the same
1616 * objects. If we did not do future scans these black objects could
1617 * potentially contain references to newly allocated objects in the future and
1618 * we'd end up with false positives.
1620 static void kmemleak_clear(void)
1622 struct kmemleak_object
*object
;
1623 unsigned long flags
;
1626 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1627 spin_lock_irqsave(&object
->lock
, flags
);
1628 if ((object
->flags
& OBJECT_REPORTED
) &&
1629 unreferenced_object(object
))
1630 __paint_it(object
, KMEMLEAK_GREY
);
1631 spin_unlock_irqrestore(&object
->lock
, flags
);
1635 kmemleak_found_leaks
= false;
1638 static void __kmemleak_do_cleanup(void);
1641 * File write operation to configure kmemleak at run-time. The following
1642 * commands can be written to the /sys/kernel/debug/kmemleak file:
1643 * off - disable kmemleak (irreversible)
1644 * stack=on - enable the task stacks scanning
1645 * stack=off - disable the tasks stacks scanning
1646 * scan=on - start the automatic memory scanning thread
1647 * scan=off - stop the automatic memory scanning thread
1648 * scan=... - set the automatic memory scanning period in seconds (0 to
1650 * scan - trigger a memory scan
1651 * clear - mark all current reported unreferenced kmemleak objects as
1652 * grey to ignore printing them, or free all kmemleak objects
1653 * if kmemleak has been disabled.
1654 * dump=... - dump information about the object found at the given address
1656 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1657 size_t size
, loff_t
*ppos
)
1663 buf_size
= min(size
, (sizeof(buf
) - 1));
1664 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1668 ret
= mutex_lock_interruptible(&scan_mutex
);
1672 if (strncmp(buf
, "clear", 5) == 0) {
1673 if (kmemleak_enabled
)
1676 __kmemleak_do_cleanup();
1680 if (!kmemleak_enabled
) {
1685 if (strncmp(buf
, "off", 3) == 0)
1687 else if (strncmp(buf
, "stack=on", 8) == 0)
1688 kmemleak_stack_scan
= 1;
1689 else if (strncmp(buf
, "stack=off", 9) == 0)
1690 kmemleak_stack_scan
= 0;
1691 else if (strncmp(buf
, "scan=on", 7) == 0)
1692 start_scan_thread();
1693 else if (strncmp(buf
, "scan=off", 8) == 0)
1695 else if (strncmp(buf
, "scan=", 5) == 0) {
1698 ret
= kstrtoul(buf
+ 5, 0, &secs
);
1703 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1704 start_scan_thread();
1706 } else if (strncmp(buf
, "scan", 4) == 0)
1708 else if (strncmp(buf
, "dump=", 5) == 0)
1709 ret
= dump_str_object_info(buf
+ 5);
1714 mutex_unlock(&scan_mutex
);
1718 /* ignore the rest of the buffer, only one command at a time */
1723 static const struct file_operations kmemleak_fops
= {
1724 .owner
= THIS_MODULE
,
1725 .open
= kmemleak_open
,
1727 .write
= kmemleak_write
,
1728 .llseek
= seq_lseek
,
1729 .release
= seq_release
,
1732 static void __kmemleak_do_cleanup(void)
1734 struct kmemleak_object
*object
;
1737 list_for_each_entry_rcu(object
, &object_list
, object_list
)
1738 delete_object_full(object
->pointer
);
1743 * Stop the memory scanning thread and free the kmemleak internal objects if
1744 * no previous scan thread (otherwise, kmemleak may still have some useful
1745 * information on memory leaks).
1747 static void kmemleak_do_cleanup(struct work_struct
*work
)
1749 mutex_lock(&scan_mutex
);
1752 if (!kmemleak_found_leaks
)
1753 __kmemleak_do_cleanup();
1755 pr_info("Kmemleak disabled without freeing internal data. "
1756 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1757 mutex_unlock(&scan_mutex
);
1760 static DECLARE_WORK(cleanup_work
, kmemleak_do_cleanup
);
1763 * Disable kmemleak. No memory allocation/freeing will be traced once this
1764 * function is called. Disabling kmemleak is an irreversible operation.
1766 static void kmemleak_disable(void)
1768 /* atomically check whether it was already invoked */
1769 if (cmpxchg(&kmemleak_error
, 0, 1))
1772 /* stop any memory operation tracing */
1773 kmemleak_enabled
= 0;
1775 /* check whether it is too early for a kernel thread */
1776 if (kmemleak_initialized
)
1777 schedule_work(&cleanup_work
);
1779 pr_info("Kernel memory leak detector disabled\n");
1783 * Allow boot-time kmemleak disabling (enabled by default).
1785 static int kmemleak_boot_config(char *str
)
1789 if (strcmp(str
, "off") == 0)
1791 else if (strcmp(str
, "on") == 0)
1792 kmemleak_skip_disable
= 1;
1797 early_param("kmemleak", kmemleak_boot_config
);
1799 static void __init
print_log_trace(struct early_log
*log
)
1801 struct stack_trace trace
;
1803 trace
.nr_entries
= log
->trace_len
;
1804 trace
.entries
= log
->trace
;
1806 pr_notice("Early log backtrace:\n");
1807 print_stack_trace(&trace
, 2);
1811 * Kmemleak initialization.
1813 void __init
kmemleak_init(void)
1816 unsigned long flags
;
1818 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1819 if (!kmemleak_skip_disable
) {
1820 kmemleak_early_log
= 0;
1826 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
1827 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
1829 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
1830 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
1832 if (crt_early_log
>= ARRAY_SIZE(early_log
))
1833 pr_warning("Early log buffer exceeded (%d), please increase "
1834 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log
);
1836 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1837 local_irq_save(flags
);
1838 kmemleak_early_log
= 0;
1839 if (kmemleak_error
) {
1840 local_irq_restore(flags
);
1843 kmemleak_enabled
= 1;
1844 local_irq_restore(flags
);
1847 * This is the point where tracking allocations is safe. Automatic
1848 * scanning is started during the late initcall. Add the early logged
1849 * callbacks to the kmemleak infrastructure.
1851 for (i
= 0; i
< crt_early_log
; i
++) {
1852 struct early_log
*log
= &early_log
[i
];
1854 switch (log
->op_type
) {
1855 case KMEMLEAK_ALLOC
:
1858 case KMEMLEAK_ALLOC_PERCPU
:
1859 early_alloc_percpu(log
);
1862 kmemleak_free(log
->ptr
);
1864 case KMEMLEAK_FREE_PART
:
1865 kmemleak_free_part(log
->ptr
, log
->size
);
1867 case KMEMLEAK_FREE_PERCPU
:
1868 kmemleak_free_percpu(log
->ptr
);
1870 case KMEMLEAK_NOT_LEAK
:
1871 kmemleak_not_leak(log
->ptr
);
1873 case KMEMLEAK_IGNORE
:
1874 kmemleak_ignore(log
->ptr
);
1876 case KMEMLEAK_SCAN_AREA
:
1877 kmemleak_scan_area(log
->ptr
, log
->size
, GFP_KERNEL
);
1879 case KMEMLEAK_NO_SCAN
:
1880 kmemleak_no_scan(log
->ptr
);
1883 kmemleak_warn("Unknown early log operation: %d\n",
1887 if (kmemleak_warning
) {
1888 print_log_trace(log
);
1889 kmemleak_warning
= 0;
1895 * Late initialization function.
1897 static int __init
kmemleak_late_init(void)
1899 struct dentry
*dentry
;
1901 kmemleak_initialized
= 1;
1903 if (kmemleak_error
) {
1905 * Some error occurred and kmemleak was disabled. There is a
1906 * small chance that kmemleak_disable() was called immediately
1907 * after setting kmemleak_initialized and we may end up with
1908 * two clean-up threads but serialized by scan_mutex.
1910 schedule_work(&cleanup_work
);
1914 dentry
= debugfs_create_file("kmemleak", S_IRUGO
, NULL
, NULL
,
1917 pr_warning("Failed to create the debugfs kmemleak file\n");
1918 mutex_lock(&scan_mutex
);
1919 start_scan_thread();
1920 mutex_unlock(&scan_mutex
);
1922 pr_info("Kernel memory leak detector initialized\n");
1926 late_initcall(kmemleak_late_init
);