2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
45 struct compressed_bio
{
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios
;
49 /* the pages with the compressed data on them */
50 struct page
**compressed_pages
;
52 /* inode that owns this data */
55 /* starting offset in the inode for our pages */
58 /* number of bytes in the inode we're working on */
61 /* number of bytes on disk */
62 unsigned long compressed_len
;
64 /* the compression algorithm for this bio */
67 /* number of compressed pages in the array */
68 unsigned long nr_pages
;
74 /* for reads, this is the bio we are copying the data into */
78 * the start of a variable length array of checksums only
84 static int btrfs_decompress_biovec(int type
, struct page
**pages_in
,
85 u64 disk_start
, struct bio_vec
*bvec
,
86 int vcnt
, size_t srclen
);
88 static inline int compressed_bio_size(struct btrfs_root
*root
,
89 unsigned long disk_size
)
91 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
93 return sizeof(struct compressed_bio
) +
94 ((disk_size
+ root
->sectorsize
- 1) / root
->sectorsize
) *
98 static struct bio
*compressed_bio_alloc(struct block_device
*bdev
,
99 u64 first_byte
, gfp_t gfp_flags
)
103 nr_vecs
= bio_get_nr_vecs(bdev
);
104 return btrfs_bio_alloc(bdev
, first_byte
>> 9, nr_vecs
, gfp_flags
);
107 static int check_compressed_csum(struct inode
*inode
,
108 struct compressed_bio
*cb
,
116 u32
*cb_sum
= &cb
->sums
;
118 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
121 for (i
= 0; i
< cb
->nr_pages
; i
++) {
122 page
= cb
->compressed_pages
[i
];
125 kaddr
= kmap_atomic(page
);
126 csum
= btrfs_csum_data(kaddr
, csum
, PAGE_CACHE_SIZE
);
127 btrfs_csum_final(csum
, (char *)&csum
);
128 kunmap_atomic(kaddr
);
130 if (csum
!= *cb_sum
) {
131 btrfs_info(BTRFS_I(inode
)->root
->fs_info
,
132 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
133 btrfs_ino(inode
), disk_start
, csum
, *cb_sum
,
146 /* when we finish reading compressed pages from the disk, we
147 * decompress them and then run the bio end_io routines on the
148 * decompressed pages (in the inode address space).
150 * This allows the checksumming and other IO error handling routines
153 * The compressed pages are freed here, and it must be run
156 static void end_compressed_bio_read(struct bio
*bio
, int err
)
158 struct compressed_bio
*cb
= bio
->bi_private
;
167 /* if there are more bios still pending for this compressed
170 if (!atomic_dec_and_test(&cb
->pending_bios
))
174 ret
= check_compressed_csum(inode
, cb
,
175 (u64
)bio
->bi_iter
.bi_sector
<< 9);
179 /* ok, we're the last bio for this extent, lets start
182 ret
= btrfs_decompress_biovec(cb
->compress_type
,
183 cb
->compressed_pages
,
185 cb
->orig_bio
->bi_io_vec
,
186 cb
->orig_bio
->bi_vcnt
,
192 /* release the compressed pages */
194 for (index
= 0; index
< cb
->nr_pages
; index
++) {
195 page
= cb
->compressed_pages
[index
];
196 page
->mapping
= NULL
;
197 page_cache_release(page
);
200 /* do io completion on the original bio */
202 bio_io_error(cb
->orig_bio
);
205 struct bio_vec
*bvec
;
208 * we have verified the checksum already, set page
209 * checked so the end_io handlers know about it
211 bio_for_each_segment_all(bvec
, cb
->orig_bio
, i
)
212 SetPageChecked(bvec
->bv_page
);
214 bio_endio(cb
->orig_bio
, 0);
217 /* finally free the cb struct */
218 kfree(cb
->compressed_pages
);
225 * Clear the writeback bits on all of the file
226 * pages for a compressed write
228 static noinline
void end_compressed_writeback(struct inode
*inode
, u64 start
,
229 unsigned long ram_size
)
231 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
232 unsigned long end_index
= (start
+ ram_size
- 1) >> PAGE_CACHE_SHIFT
;
233 struct page
*pages
[16];
234 unsigned long nr_pages
= end_index
- index
+ 1;
238 while (nr_pages
> 0) {
239 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
241 nr_pages
, ARRAY_SIZE(pages
)), pages
);
247 for (i
= 0; i
< ret
; i
++) {
248 end_page_writeback(pages
[i
]);
249 page_cache_release(pages
[i
]);
254 /* the inode may be gone now */
258 * do the cleanup once all the compressed pages hit the disk.
259 * This will clear writeback on the file pages and free the compressed
262 * This also calls the writeback end hooks for the file pages so that
263 * metadata and checksums can be updated in the file.
265 static void end_compressed_bio_write(struct bio
*bio
, int err
)
267 struct extent_io_tree
*tree
;
268 struct compressed_bio
*cb
= bio
->bi_private
;
276 /* if there are more bios still pending for this compressed
279 if (!atomic_dec_and_test(&cb
->pending_bios
))
282 /* ok, we're the last bio for this extent, step one is to
283 * call back into the FS and do all the end_io operations
286 tree
= &BTRFS_I(inode
)->io_tree
;
287 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
288 tree
->ops
->writepage_end_io_hook(cb
->compressed_pages
[0],
290 cb
->start
+ cb
->len
- 1,
292 cb
->compressed_pages
[0]->mapping
= NULL
;
294 end_compressed_writeback(inode
, cb
->start
, cb
->len
);
295 /* note, our inode could be gone now */
298 * release the compressed pages, these came from alloc_page and
299 * are not attached to the inode at all
302 for (index
= 0; index
< cb
->nr_pages
; index
++) {
303 page
= cb
->compressed_pages
[index
];
304 page
->mapping
= NULL
;
305 page_cache_release(page
);
308 /* finally free the cb struct */
309 kfree(cb
->compressed_pages
);
316 * worker function to build and submit bios for previously compressed pages.
317 * The corresponding pages in the inode should be marked for writeback
318 * and the compressed pages should have a reference on them for dropping
319 * when the IO is complete.
321 * This also checksums the file bytes and gets things ready for
324 int btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
325 unsigned long len
, u64 disk_start
,
326 unsigned long compressed_len
,
327 struct page
**compressed_pages
,
328 unsigned long nr_pages
)
330 struct bio
*bio
= NULL
;
331 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
332 struct compressed_bio
*cb
;
333 unsigned long bytes_left
;
334 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
337 u64 first_byte
= disk_start
;
338 struct block_device
*bdev
;
340 int skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
342 WARN_ON(start
& ((u64
)PAGE_CACHE_SIZE
- 1));
343 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
346 atomic_set(&cb
->pending_bios
, 0);
352 cb
->compressed_pages
= compressed_pages
;
353 cb
->compressed_len
= compressed_len
;
355 cb
->nr_pages
= nr_pages
;
357 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
359 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
364 bio
->bi_private
= cb
;
365 bio
->bi_end_io
= end_compressed_bio_write
;
366 atomic_inc(&cb
->pending_bios
);
368 /* create and submit bios for the compressed pages */
369 bytes_left
= compressed_len
;
370 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
371 page
= compressed_pages
[pg_index
];
372 page
->mapping
= inode
->i_mapping
;
373 if (bio
->bi_iter
.bi_size
)
374 ret
= io_tree
->ops
->merge_bio_hook(WRITE
, page
, 0,
380 page
->mapping
= NULL
;
381 if (ret
|| bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0) <
386 * inc the count before we submit the bio so
387 * we know the end IO handler won't happen before
388 * we inc the count. Otherwise, the cb might get
389 * freed before we're done setting it up
391 atomic_inc(&cb
->pending_bios
);
392 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
393 BUG_ON(ret
); /* -ENOMEM */
396 ret
= btrfs_csum_one_bio(root
, inode
, bio
,
398 BUG_ON(ret
); /* -ENOMEM */
401 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
402 BUG_ON(ret
); /* -ENOMEM */
406 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
408 bio
->bi_private
= cb
;
409 bio
->bi_end_io
= end_compressed_bio_write
;
410 bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0);
412 if (bytes_left
< PAGE_CACHE_SIZE
) {
413 btrfs_info(BTRFS_I(inode
)->root
->fs_info
,
414 "bytes left %lu compress len %lu nr %lu",
415 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
417 bytes_left
-= PAGE_CACHE_SIZE
;
418 first_byte
+= PAGE_CACHE_SIZE
;
423 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
424 BUG_ON(ret
); /* -ENOMEM */
427 ret
= btrfs_csum_one_bio(root
, inode
, bio
, start
, 1);
428 BUG_ON(ret
); /* -ENOMEM */
431 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
432 BUG_ON(ret
); /* -ENOMEM */
438 static noinline
int add_ra_bio_pages(struct inode
*inode
,
440 struct compressed_bio
*cb
)
442 unsigned long end_index
;
443 unsigned long pg_index
;
445 u64 isize
= i_size_read(inode
);
448 unsigned long nr_pages
= 0;
449 struct extent_map
*em
;
450 struct address_space
*mapping
= inode
->i_mapping
;
451 struct extent_map_tree
*em_tree
;
452 struct extent_io_tree
*tree
;
456 page
= cb
->orig_bio
->bi_io_vec
[cb
->orig_bio
->bi_vcnt
- 1].bv_page
;
457 last_offset
= (page_offset(page
) + PAGE_CACHE_SIZE
);
458 em_tree
= &BTRFS_I(inode
)->extent_tree
;
459 tree
= &BTRFS_I(inode
)->io_tree
;
464 end_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
466 while (last_offset
< compressed_end
) {
467 pg_index
= last_offset
>> PAGE_CACHE_SHIFT
;
469 if (pg_index
> end_index
)
473 page
= radix_tree_lookup(&mapping
->page_tree
, pg_index
);
475 if (page
&& !radix_tree_exceptional_entry(page
)) {
482 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) &
487 if (add_to_page_cache_lru(page
, mapping
, pg_index
,
489 page_cache_release(page
);
493 end
= last_offset
+ PAGE_CACHE_SIZE
- 1;
495 * at this point, we have a locked page in the page cache
496 * for these bytes in the file. But, we have to make
497 * sure they map to this compressed extent on disk.
499 set_page_extent_mapped(page
);
500 lock_extent(tree
, last_offset
, end
);
501 read_lock(&em_tree
->lock
);
502 em
= lookup_extent_mapping(em_tree
, last_offset
,
504 read_unlock(&em_tree
->lock
);
506 if (!em
|| last_offset
< em
->start
||
507 (last_offset
+ PAGE_CACHE_SIZE
> extent_map_end(em
)) ||
508 (em
->block_start
>> 9) != cb
->orig_bio
->bi_iter
.bi_sector
) {
510 unlock_extent(tree
, last_offset
, end
);
512 page_cache_release(page
);
517 if (page
->index
== end_index
) {
519 size_t zero_offset
= isize
& (PAGE_CACHE_SIZE
- 1);
523 zeros
= PAGE_CACHE_SIZE
- zero_offset
;
524 userpage
= kmap_atomic(page
);
525 memset(userpage
+ zero_offset
, 0, zeros
);
526 flush_dcache_page(page
);
527 kunmap_atomic(userpage
);
531 ret
= bio_add_page(cb
->orig_bio
, page
,
534 if (ret
== PAGE_CACHE_SIZE
) {
536 page_cache_release(page
);
538 unlock_extent(tree
, last_offset
, end
);
540 page_cache_release(page
);
544 last_offset
+= PAGE_CACHE_SIZE
;
550 * for a compressed read, the bio we get passed has all the inode pages
551 * in it. We don't actually do IO on those pages but allocate new ones
552 * to hold the compressed pages on disk.
554 * bio->bi_iter.bi_sector points to the compressed extent on disk
555 * bio->bi_io_vec points to all of the inode pages
556 * bio->bi_vcnt is a count of pages
558 * After the compressed pages are read, we copy the bytes into the
559 * bio we were passed and then call the bio end_io calls
561 int btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
562 int mirror_num
, unsigned long bio_flags
)
564 struct extent_io_tree
*tree
;
565 struct extent_map_tree
*em_tree
;
566 struct compressed_bio
*cb
;
567 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
568 unsigned long uncompressed_len
= bio
->bi_vcnt
* PAGE_CACHE_SIZE
;
569 unsigned long compressed_len
;
570 unsigned long nr_pages
;
571 unsigned long pg_index
;
573 struct block_device
*bdev
;
574 struct bio
*comp_bio
;
575 u64 cur_disk_byte
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
578 struct extent_map
*em
;
583 tree
= &BTRFS_I(inode
)->io_tree
;
584 em_tree
= &BTRFS_I(inode
)->extent_tree
;
586 /* we need the actual starting offset of this extent in the file */
587 read_lock(&em_tree
->lock
);
588 em
= lookup_extent_mapping(em_tree
,
589 page_offset(bio
->bi_io_vec
->bv_page
),
591 read_unlock(&em_tree
->lock
);
595 compressed_len
= em
->block_len
;
596 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
600 atomic_set(&cb
->pending_bios
, 0);
603 cb
->mirror_num
= mirror_num
;
606 cb
->start
= em
->orig_start
;
608 em_start
= em
->start
;
613 cb
->len
= uncompressed_len
;
614 cb
->compressed_len
= compressed_len
;
615 cb
->compress_type
= extent_compress_type(bio_flags
);
618 nr_pages
= (compressed_len
+ PAGE_CACHE_SIZE
- 1) /
620 cb
->compressed_pages
= kzalloc(sizeof(struct page
*) * nr_pages
,
622 if (!cb
->compressed_pages
)
625 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
627 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
628 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
630 if (!cb
->compressed_pages
[pg_index
]) {
631 faili
= pg_index
- 1;
636 faili
= nr_pages
- 1;
637 cb
->nr_pages
= nr_pages
;
639 /* In the parent-locked case, we only locked the range we are
640 * interested in. In all other cases, we can opportunistically
641 * cache decompressed data that goes beyond the requested range. */
642 if (!(bio_flags
& EXTENT_BIO_PARENT_LOCKED
))
643 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
645 /* include any pages we added in add_ra-bio_pages */
646 uncompressed_len
= bio
->bi_vcnt
* PAGE_CACHE_SIZE
;
647 cb
->len
= uncompressed_len
;
649 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
, GFP_NOFS
);
652 comp_bio
->bi_private
= cb
;
653 comp_bio
->bi_end_io
= end_compressed_bio_read
;
654 atomic_inc(&cb
->pending_bios
);
656 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
657 page
= cb
->compressed_pages
[pg_index
];
658 page
->mapping
= inode
->i_mapping
;
659 page
->index
= em_start
>> PAGE_CACHE_SHIFT
;
661 if (comp_bio
->bi_iter
.bi_size
)
662 ret
= tree
->ops
->merge_bio_hook(READ
, page
, 0,
668 page
->mapping
= NULL
;
669 if (ret
|| bio_add_page(comp_bio
, page
, PAGE_CACHE_SIZE
, 0) <
673 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
, 0);
674 BUG_ON(ret
); /* -ENOMEM */
677 * inc the count before we submit the bio so
678 * we know the end IO handler won't happen before
679 * we inc the count. Otherwise, the cb might get
680 * freed before we're done setting it up
682 atomic_inc(&cb
->pending_bios
);
684 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
685 ret
= btrfs_lookup_bio_sums(root
, inode
,
687 BUG_ON(ret
); /* -ENOMEM */
689 sums
+= (comp_bio
->bi_iter
.bi_size
+
690 root
->sectorsize
- 1) / root
->sectorsize
;
692 ret
= btrfs_map_bio(root
, READ
, comp_bio
,
695 bio_endio(comp_bio
, ret
);
699 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
,
702 comp_bio
->bi_private
= cb
;
703 comp_bio
->bi_end_io
= end_compressed_bio_read
;
705 bio_add_page(comp_bio
, page
, PAGE_CACHE_SIZE
, 0);
707 cur_disk_byte
+= PAGE_CACHE_SIZE
;
711 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
, 0);
712 BUG_ON(ret
); /* -ENOMEM */
714 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
715 ret
= btrfs_lookup_bio_sums(root
, inode
, comp_bio
, sums
);
716 BUG_ON(ret
); /* -ENOMEM */
719 ret
= btrfs_map_bio(root
, READ
, comp_bio
, mirror_num
, 0);
721 bio_endio(comp_bio
, ret
);
728 __free_page(cb
->compressed_pages
[faili
]);
732 kfree(cb
->compressed_pages
);
740 static struct list_head comp_idle_workspace
[BTRFS_COMPRESS_TYPES
];
741 static spinlock_t comp_workspace_lock
[BTRFS_COMPRESS_TYPES
];
742 static int comp_num_workspace
[BTRFS_COMPRESS_TYPES
];
743 static atomic_t comp_alloc_workspace
[BTRFS_COMPRESS_TYPES
];
744 static wait_queue_head_t comp_workspace_wait
[BTRFS_COMPRESS_TYPES
];
746 static struct btrfs_compress_op
*btrfs_compress_op
[] = {
747 &btrfs_zlib_compress
,
751 void __init
btrfs_init_compress(void)
755 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
756 INIT_LIST_HEAD(&comp_idle_workspace
[i
]);
757 spin_lock_init(&comp_workspace_lock
[i
]);
758 atomic_set(&comp_alloc_workspace
[i
], 0);
759 init_waitqueue_head(&comp_workspace_wait
[i
]);
764 * this finds an available workspace or allocates a new one
765 * ERR_PTR is returned if things go bad.
767 static struct list_head
*find_workspace(int type
)
769 struct list_head
*workspace
;
770 int cpus
= num_online_cpus();
773 struct list_head
*idle_workspace
= &comp_idle_workspace
[idx
];
774 spinlock_t
*workspace_lock
= &comp_workspace_lock
[idx
];
775 atomic_t
*alloc_workspace
= &comp_alloc_workspace
[idx
];
776 wait_queue_head_t
*workspace_wait
= &comp_workspace_wait
[idx
];
777 int *num_workspace
= &comp_num_workspace
[idx
];
779 spin_lock(workspace_lock
);
780 if (!list_empty(idle_workspace
)) {
781 workspace
= idle_workspace
->next
;
784 spin_unlock(workspace_lock
);
788 if (atomic_read(alloc_workspace
) > cpus
) {
791 spin_unlock(workspace_lock
);
792 prepare_to_wait(workspace_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
793 if (atomic_read(alloc_workspace
) > cpus
&& !*num_workspace
)
795 finish_wait(workspace_wait
, &wait
);
798 atomic_inc(alloc_workspace
);
799 spin_unlock(workspace_lock
);
801 workspace
= btrfs_compress_op
[idx
]->alloc_workspace();
802 if (IS_ERR(workspace
)) {
803 atomic_dec(alloc_workspace
);
804 wake_up(workspace_wait
);
810 * put a workspace struct back on the list or free it if we have enough
811 * idle ones sitting around
813 static void free_workspace(int type
, struct list_head
*workspace
)
816 struct list_head
*idle_workspace
= &comp_idle_workspace
[idx
];
817 spinlock_t
*workspace_lock
= &comp_workspace_lock
[idx
];
818 atomic_t
*alloc_workspace
= &comp_alloc_workspace
[idx
];
819 wait_queue_head_t
*workspace_wait
= &comp_workspace_wait
[idx
];
820 int *num_workspace
= &comp_num_workspace
[idx
];
822 spin_lock(workspace_lock
);
823 if (*num_workspace
< num_online_cpus()) {
824 list_add(workspace
, idle_workspace
);
826 spin_unlock(workspace_lock
);
829 spin_unlock(workspace_lock
);
831 btrfs_compress_op
[idx
]->free_workspace(workspace
);
832 atomic_dec(alloc_workspace
);
835 if (waitqueue_active(workspace_wait
))
836 wake_up(workspace_wait
);
840 * cleanup function for module exit
842 static void free_workspaces(void)
844 struct list_head
*workspace
;
847 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
848 while (!list_empty(&comp_idle_workspace
[i
])) {
849 workspace
= comp_idle_workspace
[i
].next
;
851 btrfs_compress_op
[i
]->free_workspace(workspace
);
852 atomic_dec(&comp_alloc_workspace
[i
]);
858 * given an address space and start/len, compress the bytes.
860 * pages are allocated to hold the compressed result and stored
863 * out_pages is used to return the number of pages allocated. There
864 * may be pages allocated even if we return an error
866 * total_in is used to return the number of bytes actually read. It
867 * may be smaller then len if we had to exit early because we
868 * ran out of room in the pages array or because we cross the
871 * total_out is used to return the total number of compressed bytes
873 * max_out tells us the max number of bytes that we're allowed to
876 int btrfs_compress_pages(int type
, struct address_space
*mapping
,
877 u64 start
, unsigned long len
,
879 unsigned long nr_dest_pages
,
880 unsigned long *out_pages
,
881 unsigned long *total_in
,
882 unsigned long *total_out
,
883 unsigned long max_out
)
885 struct list_head
*workspace
;
888 workspace
= find_workspace(type
);
889 if (IS_ERR(workspace
))
890 return PTR_ERR(workspace
);
892 ret
= btrfs_compress_op
[type
-1]->compress_pages(workspace
, mapping
,
894 nr_dest_pages
, out_pages
,
897 free_workspace(type
, workspace
);
902 * pages_in is an array of pages with compressed data.
904 * disk_start is the starting logical offset of this array in the file
906 * bvec is a bio_vec of pages from the file that we want to decompress into
908 * vcnt is the count of pages in the biovec
910 * srclen is the number of bytes in pages_in
912 * The basic idea is that we have a bio that was created by readpages.
913 * The pages in the bio are for the uncompressed data, and they may not
914 * be contiguous. They all correspond to the range of bytes covered by
915 * the compressed extent.
917 static int btrfs_decompress_biovec(int type
, struct page
**pages_in
,
918 u64 disk_start
, struct bio_vec
*bvec
,
919 int vcnt
, size_t srclen
)
921 struct list_head
*workspace
;
924 workspace
= find_workspace(type
);
925 if (IS_ERR(workspace
))
926 return PTR_ERR(workspace
);
928 ret
= btrfs_compress_op
[type
-1]->decompress_biovec(workspace
, pages_in
,
931 free_workspace(type
, workspace
);
936 * a less complex decompression routine. Our compressed data fits in a
937 * single page, and we want to read a single page out of it.
938 * start_byte tells us the offset into the compressed data we're interested in
940 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
941 unsigned long start_byte
, size_t srclen
, size_t destlen
)
943 struct list_head
*workspace
;
946 workspace
= find_workspace(type
);
947 if (IS_ERR(workspace
))
948 return PTR_ERR(workspace
);
950 ret
= btrfs_compress_op
[type
-1]->decompress(workspace
, data_in
,
951 dest_page
, start_byte
,
954 free_workspace(type
, workspace
);
958 void btrfs_exit_compress(void)
964 * Copy uncompressed data from working buffer to pages.
966 * buf_start is the byte offset we're of the start of our workspace buffer.
968 * total_out is the last byte of the buffer
970 int btrfs_decompress_buf2page(char *buf
, unsigned long buf_start
,
971 unsigned long total_out
, u64 disk_start
,
972 struct bio_vec
*bvec
, int vcnt
,
973 unsigned long *pg_index
,
974 unsigned long *pg_offset
)
976 unsigned long buf_offset
;
977 unsigned long current_buf_start
;
978 unsigned long start_byte
;
979 unsigned long working_bytes
= total_out
- buf_start
;
982 struct page
*page_out
= bvec
[*pg_index
].bv_page
;
985 * start byte is the first byte of the page we're currently
986 * copying into relative to the start of the compressed data.
988 start_byte
= page_offset(page_out
) - disk_start
;
990 /* we haven't yet hit data corresponding to this page */
991 if (total_out
<= start_byte
)
995 * the start of the data we care about is offset into
996 * the middle of our working buffer
998 if (total_out
> start_byte
&& buf_start
< start_byte
) {
999 buf_offset
= start_byte
- buf_start
;
1000 working_bytes
-= buf_offset
;
1004 current_buf_start
= buf_start
;
1006 /* copy bytes from the working buffer into the pages */
1007 while (working_bytes
> 0) {
1008 bytes
= min(PAGE_CACHE_SIZE
- *pg_offset
,
1009 PAGE_CACHE_SIZE
- buf_offset
);
1010 bytes
= min(bytes
, working_bytes
);
1011 kaddr
= kmap_atomic(page_out
);
1012 memcpy(kaddr
+ *pg_offset
, buf
+ buf_offset
, bytes
);
1013 kunmap_atomic(kaddr
);
1014 flush_dcache_page(page_out
);
1016 *pg_offset
+= bytes
;
1017 buf_offset
+= bytes
;
1018 working_bytes
-= bytes
;
1019 current_buf_start
+= bytes
;
1021 /* check if we need to pick another page */
1022 if (*pg_offset
== PAGE_CACHE_SIZE
) {
1024 if (*pg_index
>= vcnt
)
1027 page_out
= bvec
[*pg_index
].bv_page
;
1029 start_byte
= page_offset(page_out
) - disk_start
;
1032 * make sure our new page is covered by this
1035 if (total_out
<= start_byte
)
1039 * the next page in the biovec might not be adjacent
1040 * to the last page, but it might still be found
1041 * inside this working buffer. bump our offset pointer
1043 if (total_out
> start_byte
&&
1044 current_buf_start
< start_byte
) {
1045 buf_offset
= start_byte
- buf_start
;
1046 working_bytes
= total_out
- start_byte
;
1047 current_buf_start
= buf_start
+ buf_offset
;
1056 * When uncompressing data, we need to make sure and zero any parts of
1057 * the biovec that were not filled in by the decompression code. pg_index
1058 * and pg_offset indicate the last page and the last offset of that page
1059 * that have been filled in. This will zero everything remaining in the
1062 void btrfs_clear_biovec_end(struct bio_vec
*bvec
, int vcnt
,
1063 unsigned long pg_index
,
1064 unsigned long pg_offset
)
1066 while (pg_index
< vcnt
) {
1067 struct page
*page
= bvec
[pg_index
].bv_page
;
1068 unsigned long off
= bvec
[pg_index
].bv_offset
;
1069 unsigned long len
= bvec
[pg_index
].bv_len
;
1071 if (pg_offset
< off
)
1073 if (pg_offset
< off
+ len
) {
1074 unsigned long bytes
= off
+ len
- pg_offset
;
1077 kaddr
= kmap_atomic(page
);
1078 memset(kaddr
+ pg_offset
, 0, bytes
);
1079 kunmap_atomic(kaddr
);