2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
46 struct btrfs_root
*root
,
47 struct btrfs_device
*device
);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
49 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
53 static DEFINE_MUTEX(uuid_mutex
);
54 static LIST_HEAD(fs_uuids
);
56 static void lock_chunks(struct btrfs_root
*root
)
58 mutex_lock(&root
->fs_info
->chunk_mutex
);
61 static void unlock_chunks(struct btrfs_root
*root
)
63 mutex_unlock(&root
->fs_info
->chunk_mutex
);
66 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
68 struct btrfs_fs_devices
*fs_devs
;
70 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_NOFS
);
72 return ERR_PTR(-ENOMEM
);
74 mutex_init(&fs_devs
->device_list_mutex
);
76 INIT_LIST_HEAD(&fs_devs
->devices
);
77 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
78 INIT_LIST_HEAD(&fs_devs
->list
);
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
92 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
94 struct btrfs_fs_devices
*fs_devs
;
96 fs_devs
= __alloc_fs_devices();
101 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
103 generate_random_uuid(fs_devs
->fsid
);
108 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
110 struct btrfs_device
*device
;
111 WARN_ON(fs_devices
->opened
);
112 while (!list_empty(&fs_devices
->devices
)) {
113 device
= list_entry(fs_devices
->devices
.next
,
114 struct btrfs_device
, dev_list
);
115 list_del(&device
->dev_list
);
116 rcu_string_free(device
->name
);
122 static void btrfs_kobject_uevent(struct block_device
*bdev
,
123 enum kobject_action action
)
127 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
129 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
131 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
132 &disk_to_dev(bdev
->bd_disk
)->kobj
);
135 void btrfs_cleanup_fs_uuids(void)
137 struct btrfs_fs_devices
*fs_devices
;
139 while (!list_empty(&fs_uuids
)) {
140 fs_devices
= list_entry(fs_uuids
.next
,
141 struct btrfs_fs_devices
, list
);
142 list_del(&fs_devices
->list
);
143 free_fs_devices(fs_devices
);
147 static struct btrfs_device
*__alloc_device(void)
149 struct btrfs_device
*dev
;
151 dev
= kzalloc(sizeof(*dev
), GFP_NOFS
);
153 return ERR_PTR(-ENOMEM
);
155 INIT_LIST_HEAD(&dev
->dev_list
);
156 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
158 spin_lock_init(&dev
->io_lock
);
160 spin_lock_init(&dev
->reada_lock
);
161 atomic_set(&dev
->reada_in_flight
, 0);
162 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_WAIT
);
163 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_WAIT
);
168 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
171 struct btrfs_device
*dev
;
173 list_for_each_entry(dev
, head
, dev_list
) {
174 if (dev
->devid
== devid
&&
175 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
182 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
184 struct btrfs_fs_devices
*fs_devices
;
186 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
187 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
194 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
195 int flush
, struct block_device
**bdev
,
196 struct buffer_head
**bh
)
200 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
203 ret
= PTR_ERR(*bdev
);
204 printk(KERN_INFO
"BTRFS: open %s failed\n", device_path
);
209 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
210 ret
= set_blocksize(*bdev
, 4096);
212 blkdev_put(*bdev
, flags
);
215 invalidate_bdev(*bdev
);
216 *bh
= btrfs_read_dev_super(*bdev
);
219 blkdev_put(*bdev
, flags
);
231 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
232 struct bio
*head
, struct bio
*tail
)
235 struct bio
*old_head
;
237 old_head
= pending_bios
->head
;
238 pending_bios
->head
= head
;
239 if (pending_bios
->tail
)
240 tail
->bi_next
= old_head
;
242 pending_bios
->tail
= tail
;
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
256 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
259 struct backing_dev_info
*bdi
;
260 struct btrfs_fs_info
*fs_info
;
261 struct btrfs_pending_bios
*pending_bios
;
265 unsigned long num_run
;
266 unsigned long batch_run
= 0;
268 unsigned long last_waited
= 0;
270 int sync_pending
= 0;
271 struct blk_plug plug
;
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
279 blk_start_plug(&plug
);
281 bdi
= blk_get_backing_dev_info(device
->bdev
);
282 fs_info
= device
->dev_root
->fs_info
;
283 limit
= btrfs_async_submit_limit(fs_info
);
284 limit
= limit
* 2 / 3;
287 spin_lock(&device
->io_lock
);
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
297 if (!force_reg
&& device
->pending_sync_bios
.head
) {
298 pending_bios
= &device
->pending_sync_bios
;
301 pending_bios
= &device
->pending_bios
;
305 pending
= pending_bios
->head
;
306 tail
= pending_bios
->tail
;
307 WARN_ON(pending
&& !tail
);
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
314 * device->running_pending is used to synchronize with the
317 if (device
->pending_sync_bios
.head
== NULL
&&
318 device
->pending_bios
.head
== NULL
) {
320 device
->running_pending
= 0;
323 device
->running_pending
= 1;
326 pending_bios
->head
= NULL
;
327 pending_bios
->tail
= NULL
;
329 spin_unlock(&device
->io_lock
);
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
338 pending_bios
!= &device
->pending_sync_bios
&&
339 device
->pending_sync_bios
.head
) ||
340 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
341 device
->pending_bios
.head
)) {
342 spin_lock(&device
->io_lock
);
343 requeue_list(pending_bios
, pending
, tail
);
348 pending
= pending
->bi_next
;
351 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
352 waitqueue_active(&fs_info
->async_submit_wait
))
353 wake_up(&fs_info
->async_submit_wait
);
355 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
365 if (pending_bios
== &device
->pending_sync_bios
) {
367 } else if (sync_pending
) {
368 blk_finish_plug(&plug
);
369 blk_start_plug(&plug
);
373 btrfsic_submit_bio(cur
->bi_rw
, cur
);
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
384 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
385 fs_info
->fs_devices
->open_devices
> 1) {
386 struct io_context
*ioc
;
388 ioc
= current
->io_context
;
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
399 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
400 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
402 ioc
->last_waited
== last_waited
)) {
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
409 last_waited
= ioc
->last_waited
;
414 spin_lock(&device
->io_lock
);
415 requeue_list(pending_bios
, pending
, tail
);
416 device
->running_pending
= 1;
418 spin_unlock(&device
->io_lock
);
419 btrfs_queue_work(fs_info
->submit_workers
,
423 /* unplug every 64 requests just for good measure */
424 if (batch_run
% 64 == 0) {
425 blk_finish_plug(&plug
);
426 blk_start_plug(&plug
);
435 spin_lock(&device
->io_lock
);
436 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
438 spin_unlock(&device
->io_lock
);
441 blk_finish_plug(&plug
);
444 static void pending_bios_fn(struct btrfs_work
*work
)
446 struct btrfs_device
*device
;
448 device
= container_of(work
, struct btrfs_device
, work
);
449 run_scheduled_bios(device
);
453 * Add new device to list of registered devices
456 * 1 - first time device is seen
457 * 0 - device already known
460 static noinline
int device_list_add(const char *path
,
461 struct btrfs_super_block
*disk_super
,
462 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
464 struct btrfs_device
*device
;
465 struct btrfs_fs_devices
*fs_devices
;
466 struct rcu_string
*name
;
468 u64 found_transid
= btrfs_super_generation(disk_super
);
470 fs_devices
= find_fsid(disk_super
->fsid
);
472 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
473 if (IS_ERR(fs_devices
))
474 return PTR_ERR(fs_devices
);
476 list_add(&fs_devices
->list
, &fs_uuids
);
477 fs_devices
->latest_devid
= devid
;
478 fs_devices
->latest_trans
= found_transid
;
482 device
= __find_device(&fs_devices
->devices
, devid
,
483 disk_super
->dev_item
.uuid
);
486 if (fs_devices
->opened
)
489 device
= btrfs_alloc_device(NULL
, &devid
,
490 disk_super
->dev_item
.uuid
);
491 if (IS_ERR(device
)) {
492 /* we can safely leave the fs_devices entry around */
493 return PTR_ERR(device
);
496 name
= rcu_string_strdup(path
, GFP_NOFS
);
501 rcu_assign_pointer(device
->name
, name
);
503 mutex_lock(&fs_devices
->device_list_mutex
);
504 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
505 fs_devices
->num_devices
++;
506 mutex_unlock(&fs_devices
->device_list_mutex
);
509 device
->fs_devices
= fs_devices
;
510 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
511 name
= rcu_string_strdup(path
, GFP_NOFS
);
514 rcu_string_free(device
->name
);
515 rcu_assign_pointer(device
->name
, name
);
516 if (device
->missing
) {
517 fs_devices
->missing_devices
--;
522 if (found_transid
> fs_devices
->latest_trans
) {
523 fs_devices
->latest_devid
= devid
;
524 fs_devices
->latest_trans
= found_transid
;
526 *fs_devices_ret
= fs_devices
;
531 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
533 struct btrfs_fs_devices
*fs_devices
;
534 struct btrfs_device
*device
;
535 struct btrfs_device
*orig_dev
;
537 fs_devices
= alloc_fs_devices(orig
->fsid
);
538 if (IS_ERR(fs_devices
))
541 fs_devices
->latest_devid
= orig
->latest_devid
;
542 fs_devices
->latest_trans
= orig
->latest_trans
;
543 fs_devices
->total_devices
= orig
->total_devices
;
545 /* We have held the volume lock, it is safe to get the devices. */
546 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
547 struct rcu_string
*name
;
549 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
555 * This is ok to do without rcu read locked because we hold the
556 * uuid mutex so nothing we touch in here is going to disappear.
558 if (orig_dev
->name
) {
559 name
= rcu_string_strdup(orig_dev
->name
->str
, GFP_NOFS
);
564 rcu_assign_pointer(device
->name
, name
);
567 list_add(&device
->dev_list
, &fs_devices
->devices
);
568 device
->fs_devices
= fs_devices
;
569 fs_devices
->num_devices
++;
573 free_fs_devices(fs_devices
);
574 return ERR_PTR(-ENOMEM
);
577 void btrfs_close_extra_devices(struct btrfs_fs_info
*fs_info
,
578 struct btrfs_fs_devices
*fs_devices
, int step
)
580 struct btrfs_device
*device
, *next
;
582 struct block_device
*latest_bdev
= NULL
;
583 u64 latest_devid
= 0;
584 u64 latest_transid
= 0;
586 mutex_lock(&uuid_mutex
);
588 /* This is the initialized path, it is safe to release the devices. */
589 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
590 if (device
->in_fs_metadata
) {
591 if (!device
->is_tgtdev_for_dev_replace
&&
593 device
->generation
> latest_transid
)) {
594 latest_devid
= device
->devid
;
595 latest_transid
= device
->generation
;
596 latest_bdev
= device
->bdev
;
601 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
603 * In the first step, keep the device which has
604 * the correct fsid and the devid that is used
605 * for the dev_replace procedure.
606 * In the second step, the dev_replace state is
607 * read from the device tree and it is known
608 * whether the procedure is really active or
609 * not, which means whether this device is
610 * used or whether it should be removed.
612 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
617 blkdev_put(device
->bdev
, device
->mode
);
619 fs_devices
->open_devices
--;
621 if (device
->writeable
) {
622 list_del_init(&device
->dev_alloc_list
);
623 device
->writeable
= 0;
624 if (!device
->is_tgtdev_for_dev_replace
)
625 fs_devices
->rw_devices
--;
627 list_del_init(&device
->dev_list
);
628 fs_devices
->num_devices
--;
629 rcu_string_free(device
->name
);
633 if (fs_devices
->seed
) {
634 fs_devices
= fs_devices
->seed
;
638 fs_devices
->latest_bdev
= latest_bdev
;
639 fs_devices
->latest_devid
= latest_devid
;
640 fs_devices
->latest_trans
= latest_transid
;
642 mutex_unlock(&uuid_mutex
);
645 static void __free_device(struct work_struct
*work
)
647 struct btrfs_device
*device
;
649 device
= container_of(work
, struct btrfs_device
, rcu_work
);
652 blkdev_put(device
->bdev
, device
->mode
);
654 rcu_string_free(device
->name
);
658 static void free_device(struct rcu_head
*head
)
660 struct btrfs_device
*device
;
662 device
= container_of(head
, struct btrfs_device
, rcu
);
664 INIT_WORK(&device
->rcu_work
, __free_device
);
665 schedule_work(&device
->rcu_work
);
668 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
670 struct btrfs_device
*device
;
672 if (--fs_devices
->opened
> 0)
675 mutex_lock(&fs_devices
->device_list_mutex
);
676 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
677 struct btrfs_device
*new_device
;
678 struct rcu_string
*name
;
681 fs_devices
->open_devices
--;
683 if (device
->writeable
&&
684 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
685 list_del_init(&device
->dev_alloc_list
);
686 fs_devices
->rw_devices
--;
689 if (device
->can_discard
)
690 fs_devices
->num_can_discard
--;
692 fs_devices
->missing_devices
--;
694 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
696 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
698 /* Safe because we are under uuid_mutex */
700 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
701 BUG_ON(!name
); /* -ENOMEM */
702 rcu_assign_pointer(new_device
->name
, name
);
705 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
706 new_device
->fs_devices
= device
->fs_devices
;
708 call_rcu(&device
->rcu
, free_device
);
710 mutex_unlock(&fs_devices
->device_list_mutex
);
712 WARN_ON(fs_devices
->open_devices
);
713 WARN_ON(fs_devices
->rw_devices
);
714 fs_devices
->opened
= 0;
715 fs_devices
->seeding
= 0;
720 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
722 struct btrfs_fs_devices
*seed_devices
= NULL
;
725 mutex_lock(&uuid_mutex
);
726 ret
= __btrfs_close_devices(fs_devices
);
727 if (!fs_devices
->opened
) {
728 seed_devices
= fs_devices
->seed
;
729 fs_devices
->seed
= NULL
;
731 mutex_unlock(&uuid_mutex
);
733 while (seed_devices
) {
734 fs_devices
= seed_devices
;
735 seed_devices
= fs_devices
->seed
;
736 __btrfs_close_devices(fs_devices
);
737 free_fs_devices(fs_devices
);
740 * Wait for rcu kworkers under __btrfs_close_devices
741 * to finish all blkdev_puts so device is really
742 * free when umount is done.
748 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
749 fmode_t flags
, void *holder
)
751 struct request_queue
*q
;
752 struct block_device
*bdev
;
753 struct list_head
*head
= &fs_devices
->devices
;
754 struct btrfs_device
*device
;
755 struct block_device
*latest_bdev
= NULL
;
756 struct buffer_head
*bh
;
757 struct btrfs_super_block
*disk_super
;
758 u64 latest_devid
= 0;
759 u64 latest_transid
= 0;
766 list_for_each_entry(device
, head
, dev_list
) {
772 /* Just open everything we can; ignore failures here */
773 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
777 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
778 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
779 if (devid
!= device
->devid
)
782 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
786 device
->generation
= btrfs_super_generation(disk_super
);
787 if (!latest_transid
|| device
->generation
> latest_transid
) {
788 latest_devid
= devid
;
789 latest_transid
= device
->generation
;
793 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
794 device
->writeable
= 0;
796 device
->writeable
= !bdev_read_only(bdev
);
800 q
= bdev_get_queue(bdev
);
801 if (blk_queue_discard(q
)) {
802 device
->can_discard
= 1;
803 fs_devices
->num_can_discard
++;
807 device
->in_fs_metadata
= 0;
808 device
->mode
= flags
;
810 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
811 fs_devices
->rotating
= 1;
813 fs_devices
->open_devices
++;
814 if (device
->writeable
&&
815 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
816 fs_devices
->rw_devices
++;
817 list_add(&device
->dev_alloc_list
,
818 &fs_devices
->alloc_list
);
825 blkdev_put(bdev
, flags
);
828 if (fs_devices
->open_devices
== 0) {
832 fs_devices
->seeding
= seeding
;
833 fs_devices
->opened
= 1;
834 fs_devices
->latest_bdev
= latest_bdev
;
835 fs_devices
->latest_devid
= latest_devid
;
836 fs_devices
->latest_trans
= latest_transid
;
837 fs_devices
->total_rw_bytes
= 0;
842 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
843 fmode_t flags
, void *holder
)
847 mutex_lock(&uuid_mutex
);
848 if (fs_devices
->opened
) {
849 fs_devices
->opened
++;
852 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
854 mutex_unlock(&uuid_mutex
);
859 * Look for a btrfs signature on a device. This may be called out of the mount path
860 * and we are not allowed to call set_blocksize during the scan. The superblock
861 * is read via pagecache
863 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
864 struct btrfs_fs_devices
**fs_devices_ret
)
866 struct btrfs_super_block
*disk_super
;
867 struct block_device
*bdev
;
878 * we would like to check all the supers, but that would make
879 * a btrfs mount succeed after a mkfs from a different FS.
880 * So, we need to add a special mount option to scan for
881 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
883 bytenr
= btrfs_sb_offset(0);
885 mutex_lock(&uuid_mutex
);
887 bdev
= blkdev_get_by_path(path
, flags
, holder
);
894 /* make sure our super fits in the device */
895 if (bytenr
+ PAGE_CACHE_SIZE
>= i_size_read(bdev
->bd_inode
))
898 /* make sure our super fits in the page */
899 if (sizeof(*disk_super
) > PAGE_CACHE_SIZE
)
902 /* make sure our super doesn't straddle pages on disk */
903 index
= bytenr
>> PAGE_CACHE_SHIFT
;
904 if ((bytenr
+ sizeof(*disk_super
) - 1) >> PAGE_CACHE_SHIFT
!= index
)
907 /* pull in the page with our super */
908 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
911 if (IS_ERR_OR_NULL(page
))
916 /* align our pointer to the offset of the super block */
917 disk_super
= p
+ (bytenr
& ~PAGE_CACHE_MASK
);
919 if (btrfs_super_bytenr(disk_super
) != bytenr
||
920 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
)
923 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
924 transid
= btrfs_super_generation(disk_super
);
925 total_devices
= btrfs_super_num_devices(disk_super
);
927 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
929 if (disk_super
->label
[0]) {
930 if (disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
931 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
932 printk(KERN_INFO
"BTRFS: device label %s ", disk_super
->label
);
934 printk(KERN_INFO
"BTRFS: device fsid %pU ", disk_super
->fsid
);
937 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
940 if (!ret
&& fs_devices_ret
)
941 (*fs_devices_ret
)->total_devices
= total_devices
;
945 page_cache_release(page
);
948 blkdev_put(bdev
, flags
);
950 mutex_unlock(&uuid_mutex
);
954 /* helper to account the used device space in the range */
955 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
956 u64 end
, u64
*length
)
958 struct btrfs_key key
;
959 struct btrfs_root
*root
= device
->dev_root
;
960 struct btrfs_dev_extent
*dev_extent
;
961 struct btrfs_path
*path
;
965 struct extent_buffer
*l
;
969 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
972 path
= btrfs_alloc_path();
977 key
.objectid
= device
->devid
;
979 key
.type
= BTRFS_DEV_EXTENT_KEY
;
981 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
985 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
992 slot
= path
->slots
[0];
993 if (slot
>= btrfs_header_nritems(l
)) {
994 ret
= btrfs_next_leaf(root
, path
);
1002 btrfs_item_key_to_cpu(l
, &key
, slot
);
1004 if (key
.objectid
< device
->devid
)
1007 if (key
.objectid
> device
->devid
)
1010 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
1013 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1014 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1016 if (key
.offset
<= start
&& extent_end
> end
) {
1017 *length
= end
- start
+ 1;
1019 } else if (key
.offset
<= start
&& extent_end
> start
)
1020 *length
+= extent_end
- start
;
1021 else if (key
.offset
> start
&& extent_end
<= end
)
1022 *length
+= extent_end
- key
.offset
;
1023 else if (key
.offset
> start
&& key
.offset
<= end
) {
1024 *length
+= end
- key
.offset
+ 1;
1026 } else if (key
.offset
> end
)
1034 btrfs_free_path(path
);
1038 static int contains_pending_extent(struct btrfs_trans_handle
*trans
,
1039 struct btrfs_device
*device
,
1040 u64
*start
, u64 len
)
1042 struct extent_map
*em
;
1045 list_for_each_entry(em
, &trans
->transaction
->pending_chunks
, list
) {
1046 struct map_lookup
*map
;
1049 map
= (struct map_lookup
*)em
->bdev
;
1050 for (i
= 0; i
< map
->num_stripes
; i
++) {
1051 if (map
->stripes
[i
].dev
!= device
)
1053 if (map
->stripes
[i
].physical
>= *start
+ len
||
1054 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1057 *start
= map
->stripes
[i
].physical
+
1068 * find_free_dev_extent - find free space in the specified device
1069 * @device: the device which we search the free space in
1070 * @num_bytes: the size of the free space that we need
1071 * @start: store the start of the free space.
1072 * @len: the size of the free space. that we find, or the size of the max
1073 * free space if we don't find suitable free space
1075 * this uses a pretty simple search, the expectation is that it is
1076 * called very infrequently and that a given device has a small number
1079 * @start is used to store the start of the free space if we find. But if we
1080 * don't find suitable free space, it will be used to store the start position
1081 * of the max free space.
1083 * @len is used to store the size of the free space that we find.
1084 * But if we don't find suitable free space, it is used to store the size of
1085 * the max free space.
1087 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1088 struct btrfs_device
*device
, u64 num_bytes
,
1089 u64
*start
, u64
*len
)
1091 struct btrfs_key key
;
1092 struct btrfs_root
*root
= device
->dev_root
;
1093 struct btrfs_dev_extent
*dev_extent
;
1094 struct btrfs_path
*path
;
1100 u64 search_end
= device
->total_bytes
;
1103 struct extent_buffer
*l
;
1105 /* FIXME use last free of some kind */
1107 /* we don't want to overwrite the superblock on the drive,
1108 * so we make sure to start at an offset of at least 1MB
1110 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1112 path
= btrfs_alloc_path();
1116 max_hole_start
= search_start
;
1120 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1126 path
->search_commit_root
= 1;
1127 path
->skip_locking
= 1;
1129 key
.objectid
= device
->devid
;
1130 key
.offset
= search_start
;
1131 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1133 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1137 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1144 slot
= path
->slots
[0];
1145 if (slot
>= btrfs_header_nritems(l
)) {
1146 ret
= btrfs_next_leaf(root
, path
);
1154 btrfs_item_key_to_cpu(l
, &key
, slot
);
1156 if (key
.objectid
< device
->devid
)
1159 if (key
.objectid
> device
->devid
)
1162 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
1165 if (key
.offset
> search_start
) {
1166 hole_size
= key
.offset
- search_start
;
1169 * Have to check before we set max_hole_start, otherwise
1170 * we could end up sending back this offset anyway.
1172 if (contains_pending_extent(trans
, device
,
1177 if (hole_size
> max_hole_size
) {
1178 max_hole_start
= search_start
;
1179 max_hole_size
= hole_size
;
1183 * If this free space is greater than which we need,
1184 * it must be the max free space that we have found
1185 * until now, so max_hole_start must point to the start
1186 * of this free space and the length of this free space
1187 * is stored in max_hole_size. Thus, we return
1188 * max_hole_start and max_hole_size and go back to the
1191 if (hole_size
>= num_bytes
) {
1197 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1198 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1200 if (extent_end
> search_start
)
1201 search_start
= extent_end
;
1208 * At this point, search_start should be the end of
1209 * allocated dev extents, and when shrinking the device,
1210 * search_end may be smaller than search_start.
1212 if (search_end
> search_start
)
1213 hole_size
= search_end
- search_start
;
1215 if (hole_size
> max_hole_size
) {
1216 max_hole_start
= search_start
;
1217 max_hole_size
= hole_size
;
1220 if (contains_pending_extent(trans
, device
, &search_start
, hole_size
)) {
1221 btrfs_release_path(path
);
1226 if (hole_size
< num_bytes
)
1232 btrfs_free_path(path
);
1233 *start
= max_hole_start
;
1235 *len
= max_hole_size
;
1239 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1240 struct btrfs_device
*device
,
1244 struct btrfs_path
*path
;
1245 struct btrfs_root
*root
= device
->dev_root
;
1246 struct btrfs_key key
;
1247 struct btrfs_key found_key
;
1248 struct extent_buffer
*leaf
= NULL
;
1249 struct btrfs_dev_extent
*extent
= NULL
;
1251 path
= btrfs_alloc_path();
1255 key
.objectid
= device
->devid
;
1257 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1259 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1261 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1262 BTRFS_DEV_EXTENT_KEY
);
1265 leaf
= path
->nodes
[0];
1266 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1267 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1268 struct btrfs_dev_extent
);
1269 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1270 btrfs_dev_extent_length(leaf
, extent
) < start
);
1272 btrfs_release_path(path
);
1274 } else if (ret
== 0) {
1275 leaf
= path
->nodes
[0];
1276 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1277 struct btrfs_dev_extent
);
1279 btrfs_error(root
->fs_info
, ret
, "Slot search failed");
1283 if (device
->bytes_used
> 0) {
1284 u64 len
= btrfs_dev_extent_length(leaf
, extent
);
1285 device
->bytes_used
-= len
;
1286 spin_lock(&root
->fs_info
->free_chunk_lock
);
1287 root
->fs_info
->free_chunk_space
+= len
;
1288 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1290 ret
= btrfs_del_item(trans
, root
, path
);
1292 btrfs_error(root
->fs_info
, ret
,
1293 "Failed to remove dev extent item");
1296 btrfs_free_path(path
);
1300 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1301 struct btrfs_device
*device
,
1302 u64 chunk_tree
, u64 chunk_objectid
,
1303 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1306 struct btrfs_path
*path
;
1307 struct btrfs_root
*root
= device
->dev_root
;
1308 struct btrfs_dev_extent
*extent
;
1309 struct extent_buffer
*leaf
;
1310 struct btrfs_key key
;
1312 WARN_ON(!device
->in_fs_metadata
);
1313 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1314 path
= btrfs_alloc_path();
1318 key
.objectid
= device
->devid
;
1320 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1321 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1326 leaf
= path
->nodes
[0];
1327 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1328 struct btrfs_dev_extent
);
1329 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1330 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1331 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1333 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1334 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1336 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1337 btrfs_mark_buffer_dirty(leaf
);
1339 btrfs_free_path(path
);
1343 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1345 struct extent_map_tree
*em_tree
;
1346 struct extent_map
*em
;
1350 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1351 read_lock(&em_tree
->lock
);
1352 n
= rb_last(&em_tree
->map
);
1354 em
= rb_entry(n
, struct extent_map
, rb_node
);
1355 ret
= em
->start
+ em
->len
;
1357 read_unlock(&em_tree
->lock
);
1362 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1366 struct btrfs_key key
;
1367 struct btrfs_key found_key
;
1368 struct btrfs_path
*path
;
1370 path
= btrfs_alloc_path();
1374 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1375 key
.type
= BTRFS_DEV_ITEM_KEY
;
1376 key
.offset
= (u64
)-1;
1378 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1382 BUG_ON(ret
== 0); /* Corruption */
1384 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1385 BTRFS_DEV_ITEMS_OBJECTID
,
1386 BTRFS_DEV_ITEM_KEY
);
1390 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1392 *devid_ret
= found_key
.offset
+ 1;
1396 btrfs_free_path(path
);
1401 * the device information is stored in the chunk root
1402 * the btrfs_device struct should be fully filled in
1404 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1405 struct btrfs_root
*root
,
1406 struct btrfs_device
*device
)
1409 struct btrfs_path
*path
;
1410 struct btrfs_dev_item
*dev_item
;
1411 struct extent_buffer
*leaf
;
1412 struct btrfs_key key
;
1415 root
= root
->fs_info
->chunk_root
;
1417 path
= btrfs_alloc_path();
1421 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1422 key
.type
= BTRFS_DEV_ITEM_KEY
;
1423 key
.offset
= device
->devid
;
1425 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1430 leaf
= path
->nodes
[0];
1431 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1433 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1434 btrfs_set_device_generation(leaf
, dev_item
, 0);
1435 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1436 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1437 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1438 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1439 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1440 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1441 btrfs_set_device_group(leaf
, dev_item
, 0);
1442 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1443 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1444 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1446 ptr
= btrfs_device_uuid(dev_item
);
1447 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1448 ptr
= btrfs_device_fsid(dev_item
);
1449 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1450 btrfs_mark_buffer_dirty(leaf
);
1454 btrfs_free_path(path
);
1459 * Function to update ctime/mtime for a given device path.
1460 * Mainly used for ctime/mtime based probe like libblkid.
1462 static void update_dev_time(char *path_name
)
1466 filp
= filp_open(path_name
, O_RDWR
, 0);
1469 file_update_time(filp
);
1470 filp_close(filp
, NULL
);
1474 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1475 struct btrfs_device
*device
)
1478 struct btrfs_path
*path
;
1479 struct btrfs_key key
;
1480 struct btrfs_trans_handle
*trans
;
1482 root
= root
->fs_info
->chunk_root
;
1484 path
= btrfs_alloc_path();
1488 trans
= btrfs_start_transaction(root
, 0);
1489 if (IS_ERR(trans
)) {
1490 btrfs_free_path(path
);
1491 return PTR_ERR(trans
);
1493 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1494 key
.type
= BTRFS_DEV_ITEM_KEY
;
1495 key
.offset
= device
->devid
;
1498 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1507 ret
= btrfs_del_item(trans
, root
, path
);
1511 btrfs_free_path(path
);
1512 unlock_chunks(root
);
1513 btrfs_commit_transaction(trans
, root
);
1517 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1519 struct btrfs_device
*device
;
1520 struct btrfs_device
*next_device
;
1521 struct block_device
*bdev
;
1522 struct buffer_head
*bh
= NULL
;
1523 struct btrfs_super_block
*disk_super
;
1524 struct btrfs_fs_devices
*cur_devices
;
1531 bool clear_super
= false;
1533 mutex_lock(&uuid_mutex
);
1536 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
1538 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1539 root
->fs_info
->avail_system_alloc_bits
|
1540 root
->fs_info
->avail_metadata_alloc_bits
;
1541 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
1543 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1544 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
);
1545 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1546 WARN_ON(num_devices
< 1);
1549 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
);
1551 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) && num_devices
<= 4) {
1552 ret
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
;
1556 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) && num_devices
<= 2) {
1557 ret
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
;
1561 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID5
) &&
1562 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1563 ret
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
;
1566 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID6
) &&
1567 root
->fs_info
->fs_devices
->rw_devices
<= 3) {
1568 ret
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
;
1572 if (strcmp(device_path
, "missing") == 0) {
1573 struct list_head
*devices
;
1574 struct btrfs_device
*tmp
;
1577 devices
= &root
->fs_info
->fs_devices
->devices
;
1579 * It is safe to read the devices since the volume_mutex
1582 list_for_each_entry(tmp
, devices
, dev_list
) {
1583 if (tmp
->in_fs_metadata
&&
1584 !tmp
->is_tgtdev_for_dev_replace
&&
1594 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
1598 ret
= btrfs_get_bdev_and_sb(device_path
,
1599 FMODE_WRITE
| FMODE_EXCL
,
1600 root
->fs_info
->bdev_holder
, 0,
1604 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1605 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1606 dev_uuid
= disk_super
->dev_item
.uuid
;
1607 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1615 if (device
->is_tgtdev_for_dev_replace
) {
1616 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1620 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1621 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1625 if (device
->writeable
) {
1627 list_del_init(&device
->dev_alloc_list
);
1628 unlock_chunks(root
);
1629 root
->fs_info
->fs_devices
->rw_devices
--;
1633 mutex_unlock(&uuid_mutex
);
1634 ret
= btrfs_shrink_device(device
, 0);
1635 mutex_lock(&uuid_mutex
);
1640 * TODO: the superblock still includes this device in its num_devices
1641 * counter although write_all_supers() is not locked out. This
1642 * could give a filesystem state which requires a degraded mount.
1644 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1648 spin_lock(&root
->fs_info
->free_chunk_lock
);
1649 root
->fs_info
->free_chunk_space
= device
->total_bytes
-
1651 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1653 device
->in_fs_metadata
= 0;
1654 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1657 * the device list mutex makes sure that we don't change
1658 * the device list while someone else is writing out all
1659 * the device supers. Whoever is writing all supers, should
1660 * lock the device list mutex before getting the number of
1661 * devices in the super block (super_copy). Conversely,
1662 * whoever updates the number of devices in the super block
1663 * (super_copy) should hold the device list mutex.
1666 cur_devices
= device
->fs_devices
;
1667 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1668 list_del_rcu(&device
->dev_list
);
1670 device
->fs_devices
->num_devices
--;
1671 device
->fs_devices
->total_devices
--;
1673 if (device
->missing
)
1674 root
->fs_info
->fs_devices
->missing_devices
--;
1676 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1677 struct btrfs_device
, dev_list
);
1678 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1679 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1680 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1681 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1684 device
->fs_devices
->open_devices
--;
1685 /* remove sysfs entry */
1686 btrfs_kobj_rm_device(root
->fs_info
, device
);
1689 call_rcu(&device
->rcu
, free_device
);
1691 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1692 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1693 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1695 if (cur_devices
->open_devices
== 0) {
1696 struct btrfs_fs_devices
*fs_devices
;
1697 fs_devices
= root
->fs_info
->fs_devices
;
1698 while (fs_devices
) {
1699 if (fs_devices
->seed
== cur_devices
) {
1700 fs_devices
->seed
= cur_devices
->seed
;
1703 fs_devices
= fs_devices
->seed
;
1705 cur_devices
->seed
= NULL
;
1707 __btrfs_close_devices(cur_devices
);
1708 unlock_chunks(root
);
1709 free_fs_devices(cur_devices
);
1712 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1713 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1716 * at this point, the device is zero sized. We want to
1717 * remove it from the devices list and zero out the old super
1719 if (clear_super
&& disk_super
) {
1723 /* make sure this device isn't detected as part of
1726 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1727 set_buffer_dirty(bh
);
1728 sync_dirty_buffer(bh
);
1730 /* clear the mirror copies of super block on the disk
1731 * being removed, 0th copy is been taken care above and
1732 * the below would take of the rest
1734 for (i
= 1; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
1735 bytenr
= btrfs_sb_offset(i
);
1736 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
1737 i_size_read(bdev
->bd_inode
))
1741 bh
= __bread(bdev
, bytenr
/ 4096,
1742 BTRFS_SUPER_INFO_SIZE
);
1746 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1748 if (btrfs_super_bytenr(disk_super
) != bytenr
||
1749 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
1752 memset(&disk_super
->magic
, 0,
1753 sizeof(disk_super
->magic
));
1754 set_buffer_dirty(bh
);
1755 sync_dirty_buffer(bh
);
1762 /* Notify udev that device has changed */
1763 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
1765 /* Update ctime/mtime for device path for libblkid */
1766 update_dev_time(device_path
);
1772 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1774 mutex_unlock(&uuid_mutex
);
1777 if (device
->writeable
) {
1779 list_add(&device
->dev_alloc_list
,
1780 &root
->fs_info
->fs_devices
->alloc_list
);
1781 unlock_chunks(root
);
1782 root
->fs_info
->fs_devices
->rw_devices
++;
1787 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info
*fs_info
,
1788 struct btrfs_device
*srcdev
)
1790 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1792 list_del_rcu(&srcdev
->dev_list
);
1793 list_del_rcu(&srcdev
->dev_alloc_list
);
1794 fs_info
->fs_devices
->num_devices
--;
1795 if (srcdev
->missing
) {
1796 fs_info
->fs_devices
->missing_devices
--;
1797 fs_info
->fs_devices
->rw_devices
++;
1799 if (srcdev
->can_discard
)
1800 fs_info
->fs_devices
->num_can_discard
--;
1802 fs_info
->fs_devices
->open_devices
--;
1804 /* zero out the old super */
1805 btrfs_scratch_superblock(srcdev
);
1808 call_rcu(&srcdev
->rcu
, free_device
);
1811 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
1812 struct btrfs_device
*tgtdev
)
1814 struct btrfs_device
*next_device
;
1817 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1819 btrfs_scratch_superblock(tgtdev
);
1820 fs_info
->fs_devices
->open_devices
--;
1822 fs_info
->fs_devices
->num_devices
--;
1823 if (tgtdev
->can_discard
)
1824 fs_info
->fs_devices
->num_can_discard
++;
1826 next_device
= list_entry(fs_info
->fs_devices
->devices
.next
,
1827 struct btrfs_device
, dev_list
);
1828 if (tgtdev
->bdev
== fs_info
->sb
->s_bdev
)
1829 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1830 if (tgtdev
->bdev
== fs_info
->fs_devices
->latest_bdev
)
1831 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1832 list_del_rcu(&tgtdev
->dev_list
);
1834 call_rcu(&tgtdev
->rcu
, free_device
);
1836 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1839 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
1840 struct btrfs_device
**device
)
1843 struct btrfs_super_block
*disk_super
;
1846 struct block_device
*bdev
;
1847 struct buffer_head
*bh
;
1850 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
1851 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
1854 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1855 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1856 dev_uuid
= disk_super
->dev_item
.uuid
;
1857 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1862 blkdev_put(bdev
, FMODE_READ
);
1866 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
1868 struct btrfs_device
**device
)
1871 if (strcmp(device_path
, "missing") == 0) {
1872 struct list_head
*devices
;
1873 struct btrfs_device
*tmp
;
1875 devices
= &root
->fs_info
->fs_devices
->devices
;
1877 * It is safe to read the devices since the volume_mutex
1878 * is held by the caller.
1880 list_for_each_entry(tmp
, devices
, dev_list
) {
1881 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1888 btrfs_err(root
->fs_info
, "no missing device found");
1894 return btrfs_find_device_by_path(root
, device_path
, device
);
1899 * does all the dirty work required for changing file system's UUID.
1901 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
1903 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1904 struct btrfs_fs_devices
*old_devices
;
1905 struct btrfs_fs_devices
*seed_devices
;
1906 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
1907 struct btrfs_device
*device
;
1910 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1911 if (!fs_devices
->seeding
)
1914 seed_devices
= __alloc_fs_devices();
1915 if (IS_ERR(seed_devices
))
1916 return PTR_ERR(seed_devices
);
1918 old_devices
= clone_fs_devices(fs_devices
);
1919 if (IS_ERR(old_devices
)) {
1920 kfree(seed_devices
);
1921 return PTR_ERR(old_devices
);
1924 list_add(&old_devices
->list
, &fs_uuids
);
1926 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1927 seed_devices
->opened
= 1;
1928 INIT_LIST_HEAD(&seed_devices
->devices
);
1929 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1930 mutex_init(&seed_devices
->device_list_mutex
);
1932 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1933 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
1936 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1937 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1938 device
->fs_devices
= seed_devices
;
1941 fs_devices
->seeding
= 0;
1942 fs_devices
->num_devices
= 0;
1943 fs_devices
->open_devices
= 0;
1944 fs_devices
->seed
= seed_devices
;
1946 generate_random_uuid(fs_devices
->fsid
);
1947 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1948 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1949 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1951 super_flags
= btrfs_super_flags(disk_super
) &
1952 ~BTRFS_SUPER_FLAG_SEEDING
;
1953 btrfs_set_super_flags(disk_super
, super_flags
);
1959 * strore the expected generation for seed devices in device items.
1961 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1962 struct btrfs_root
*root
)
1964 struct btrfs_path
*path
;
1965 struct extent_buffer
*leaf
;
1966 struct btrfs_dev_item
*dev_item
;
1967 struct btrfs_device
*device
;
1968 struct btrfs_key key
;
1969 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1970 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1974 path
= btrfs_alloc_path();
1978 root
= root
->fs_info
->chunk_root
;
1979 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1981 key
.type
= BTRFS_DEV_ITEM_KEY
;
1984 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1988 leaf
= path
->nodes
[0];
1990 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1991 ret
= btrfs_next_leaf(root
, path
);
1996 leaf
= path
->nodes
[0];
1997 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1998 btrfs_release_path(path
);
2002 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2003 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2004 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2007 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2008 struct btrfs_dev_item
);
2009 devid
= btrfs_device_id(leaf
, dev_item
);
2010 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2012 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2014 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2016 BUG_ON(!device
); /* Logic error */
2018 if (device
->fs_devices
->seeding
) {
2019 btrfs_set_device_generation(leaf
, dev_item
,
2020 device
->generation
);
2021 btrfs_mark_buffer_dirty(leaf
);
2029 btrfs_free_path(path
);
2033 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2035 struct request_queue
*q
;
2036 struct btrfs_trans_handle
*trans
;
2037 struct btrfs_device
*device
;
2038 struct block_device
*bdev
;
2039 struct list_head
*devices
;
2040 struct super_block
*sb
= root
->fs_info
->sb
;
2041 struct rcu_string
*name
;
2043 int seeding_dev
= 0;
2046 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2049 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2050 root
->fs_info
->bdev_holder
);
2052 return PTR_ERR(bdev
);
2054 if (root
->fs_info
->fs_devices
->seeding
) {
2056 down_write(&sb
->s_umount
);
2057 mutex_lock(&uuid_mutex
);
2060 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2062 devices
= &root
->fs_info
->fs_devices
->devices
;
2064 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2065 list_for_each_entry(device
, devices
, dev_list
) {
2066 if (device
->bdev
== bdev
) {
2069 &root
->fs_info
->fs_devices
->device_list_mutex
);
2073 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2075 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2076 if (IS_ERR(device
)) {
2077 /* we can safely leave the fs_devices entry around */
2078 ret
= PTR_ERR(device
);
2082 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2088 rcu_assign_pointer(device
->name
, name
);
2090 trans
= btrfs_start_transaction(root
, 0);
2091 if (IS_ERR(trans
)) {
2092 rcu_string_free(device
->name
);
2094 ret
= PTR_ERR(trans
);
2100 q
= bdev_get_queue(bdev
);
2101 if (blk_queue_discard(q
))
2102 device
->can_discard
= 1;
2103 device
->writeable
= 1;
2104 device
->generation
= trans
->transid
;
2105 device
->io_width
= root
->sectorsize
;
2106 device
->io_align
= root
->sectorsize
;
2107 device
->sector_size
= root
->sectorsize
;
2108 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2109 device
->disk_total_bytes
= device
->total_bytes
;
2110 device
->dev_root
= root
->fs_info
->dev_root
;
2111 device
->bdev
= bdev
;
2112 device
->in_fs_metadata
= 1;
2113 device
->is_tgtdev_for_dev_replace
= 0;
2114 device
->mode
= FMODE_EXCL
;
2115 device
->dev_stats_valid
= 1;
2116 set_blocksize(device
->bdev
, 4096);
2119 sb
->s_flags
&= ~MS_RDONLY
;
2120 ret
= btrfs_prepare_sprout(root
);
2121 BUG_ON(ret
); /* -ENOMEM */
2124 device
->fs_devices
= root
->fs_info
->fs_devices
;
2126 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2127 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2128 list_add(&device
->dev_alloc_list
,
2129 &root
->fs_info
->fs_devices
->alloc_list
);
2130 root
->fs_info
->fs_devices
->num_devices
++;
2131 root
->fs_info
->fs_devices
->open_devices
++;
2132 root
->fs_info
->fs_devices
->rw_devices
++;
2133 root
->fs_info
->fs_devices
->total_devices
++;
2134 if (device
->can_discard
)
2135 root
->fs_info
->fs_devices
->num_can_discard
++;
2136 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2138 spin_lock(&root
->fs_info
->free_chunk_lock
);
2139 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2140 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2142 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2143 root
->fs_info
->fs_devices
->rotating
= 1;
2145 total_bytes
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2146 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2147 total_bytes
+ device
->total_bytes
);
2149 total_bytes
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2150 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2153 /* add sysfs device entry */
2154 btrfs_kobj_add_device(root
->fs_info
, device
);
2156 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2159 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2160 ret
= init_first_rw_device(trans
, root
, device
);
2162 btrfs_abort_transaction(trans
, root
, ret
);
2165 ret
= btrfs_finish_sprout(trans
, root
);
2167 btrfs_abort_transaction(trans
, root
, ret
);
2171 /* Sprouting would change fsid of the mounted root,
2172 * so rename the fsid on the sysfs
2174 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2175 root
->fs_info
->fsid
);
2176 if (kobject_rename(&root
->fs_info
->super_kobj
, fsid_buf
))
2179 ret
= btrfs_add_device(trans
, root
, device
);
2181 btrfs_abort_transaction(trans
, root
, ret
);
2187 * we've got more storage, clear any full flags on the space
2190 btrfs_clear_space_info_full(root
->fs_info
);
2192 unlock_chunks(root
);
2193 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2194 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2195 ret
= btrfs_commit_transaction(trans
, root
);
2198 mutex_unlock(&uuid_mutex
);
2199 up_write(&sb
->s_umount
);
2201 if (ret
) /* transaction commit */
2204 ret
= btrfs_relocate_sys_chunks(root
);
2206 btrfs_error(root
->fs_info
, ret
,
2207 "Failed to relocate sys chunks after "
2208 "device initialization. This can be fixed "
2209 "using the \"btrfs balance\" command.");
2210 trans
= btrfs_attach_transaction(root
);
2211 if (IS_ERR(trans
)) {
2212 if (PTR_ERR(trans
) == -ENOENT
)
2214 return PTR_ERR(trans
);
2216 ret
= btrfs_commit_transaction(trans
, root
);
2219 /* Update ctime/mtime for libblkid */
2220 update_dev_time(device_path
);
2224 unlock_chunks(root
);
2225 btrfs_end_transaction(trans
, root
);
2226 rcu_string_free(device
->name
);
2227 btrfs_kobj_rm_device(root
->fs_info
, device
);
2230 blkdev_put(bdev
, FMODE_EXCL
);
2232 mutex_unlock(&uuid_mutex
);
2233 up_write(&sb
->s_umount
);
2238 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2239 struct btrfs_device
**device_out
)
2241 struct request_queue
*q
;
2242 struct btrfs_device
*device
;
2243 struct block_device
*bdev
;
2244 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2245 struct list_head
*devices
;
2246 struct rcu_string
*name
;
2247 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2251 if (fs_info
->fs_devices
->seeding
)
2254 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2255 fs_info
->bdev_holder
);
2257 return PTR_ERR(bdev
);
2259 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2261 devices
= &fs_info
->fs_devices
->devices
;
2262 list_for_each_entry(device
, devices
, dev_list
) {
2263 if (device
->bdev
== bdev
) {
2269 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2270 if (IS_ERR(device
)) {
2271 ret
= PTR_ERR(device
);
2275 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2281 rcu_assign_pointer(device
->name
, name
);
2283 q
= bdev_get_queue(bdev
);
2284 if (blk_queue_discard(q
))
2285 device
->can_discard
= 1;
2286 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2287 device
->writeable
= 1;
2288 device
->generation
= 0;
2289 device
->io_width
= root
->sectorsize
;
2290 device
->io_align
= root
->sectorsize
;
2291 device
->sector_size
= root
->sectorsize
;
2292 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2293 device
->disk_total_bytes
= device
->total_bytes
;
2294 device
->dev_root
= fs_info
->dev_root
;
2295 device
->bdev
= bdev
;
2296 device
->in_fs_metadata
= 1;
2297 device
->is_tgtdev_for_dev_replace
= 1;
2298 device
->mode
= FMODE_EXCL
;
2299 device
->dev_stats_valid
= 1;
2300 set_blocksize(device
->bdev
, 4096);
2301 device
->fs_devices
= fs_info
->fs_devices
;
2302 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2303 fs_info
->fs_devices
->num_devices
++;
2304 fs_info
->fs_devices
->open_devices
++;
2305 if (device
->can_discard
)
2306 fs_info
->fs_devices
->num_can_discard
++;
2307 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2309 *device_out
= device
;
2313 blkdev_put(bdev
, FMODE_EXCL
);
2317 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2318 struct btrfs_device
*tgtdev
)
2320 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2321 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2322 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2323 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2324 tgtdev
->dev_root
= fs_info
->dev_root
;
2325 tgtdev
->in_fs_metadata
= 1;
2328 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2329 struct btrfs_device
*device
)
2332 struct btrfs_path
*path
;
2333 struct btrfs_root
*root
;
2334 struct btrfs_dev_item
*dev_item
;
2335 struct extent_buffer
*leaf
;
2336 struct btrfs_key key
;
2338 root
= device
->dev_root
->fs_info
->chunk_root
;
2340 path
= btrfs_alloc_path();
2344 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2345 key
.type
= BTRFS_DEV_ITEM_KEY
;
2346 key
.offset
= device
->devid
;
2348 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2357 leaf
= path
->nodes
[0];
2358 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2360 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2361 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2362 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2363 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2364 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2365 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->disk_total_bytes
);
2366 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
2367 btrfs_mark_buffer_dirty(leaf
);
2370 btrfs_free_path(path
);
2374 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2375 struct btrfs_device
*device
, u64 new_size
)
2377 struct btrfs_super_block
*super_copy
=
2378 device
->dev_root
->fs_info
->super_copy
;
2379 u64 old_total
= btrfs_super_total_bytes(super_copy
);
2380 u64 diff
= new_size
- device
->total_bytes
;
2382 if (!device
->writeable
)
2384 if (new_size
<= device
->total_bytes
||
2385 device
->is_tgtdev_for_dev_replace
)
2388 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2389 device
->fs_devices
->total_rw_bytes
+= diff
;
2391 device
->total_bytes
= new_size
;
2392 device
->disk_total_bytes
= new_size
;
2393 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2395 return btrfs_update_device(trans
, device
);
2398 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2399 struct btrfs_device
*device
, u64 new_size
)
2402 lock_chunks(device
->dev_root
);
2403 ret
= __btrfs_grow_device(trans
, device
, new_size
);
2404 unlock_chunks(device
->dev_root
);
2408 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2409 struct btrfs_root
*root
,
2410 u64 chunk_tree
, u64 chunk_objectid
,
2414 struct btrfs_path
*path
;
2415 struct btrfs_key key
;
2417 root
= root
->fs_info
->chunk_root
;
2418 path
= btrfs_alloc_path();
2422 key
.objectid
= chunk_objectid
;
2423 key
.offset
= chunk_offset
;
2424 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2426 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2429 else if (ret
> 0) { /* Logic error or corruption */
2430 btrfs_error(root
->fs_info
, -ENOENT
,
2431 "Failed lookup while freeing chunk.");
2436 ret
= btrfs_del_item(trans
, root
, path
);
2438 btrfs_error(root
->fs_info
, ret
,
2439 "Failed to delete chunk item.");
2441 btrfs_free_path(path
);
2445 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2448 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2449 struct btrfs_disk_key
*disk_key
;
2450 struct btrfs_chunk
*chunk
;
2457 struct btrfs_key key
;
2459 array_size
= btrfs_super_sys_array_size(super_copy
);
2461 ptr
= super_copy
->sys_chunk_array
;
2464 while (cur
< array_size
) {
2465 disk_key
= (struct btrfs_disk_key
*)ptr
;
2466 btrfs_disk_key_to_cpu(&key
, disk_key
);
2468 len
= sizeof(*disk_key
);
2470 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2471 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2472 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2473 len
+= btrfs_chunk_item_size(num_stripes
);
2478 if (key
.objectid
== chunk_objectid
&&
2479 key
.offset
== chunk_offset
) {
2480 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2482 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2491 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
2492 u64 chunk_tree
, u64 chunk_objectid
,
2495 struct extent_map_tree
*em_tree
;
2496 struct btrfs_root
*extent_root
;
2497 struct btrfs_trans_handle
*trans
;
2498 struct extent_map
*em
;
2499 struct map_lookup
*map
;
2503 root
= root
->fs_info
->chunk_root
;
2504 extent_root
= root
->fs_info
->extent_root
;
2505 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2507 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2511 /* step one, relocate all the extents inside this chunk */
2512 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2516 trans
= btrfs_start_transaction(root
, 0);
2517 if (IS_ERR(trans
)) {
2518 ret
= PTR_ERR(trans
);
2519 btrfs_std_error(root
->fs_info
, ret
);
2526 * step two, delete the device extents and the
2527 * chunk tree entries
2529 read_lock(&em_tree
->lock
);
2530 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2531 read_unlock(&em_tree
->lock
);
2533 BUG_ON(!em
|| em
->start
> chunk_offset
||
2534 em
->start
+ em
->len
< chunk_offset
);
2535 map
= (struct map_lookup
*)em
->bdev
;
2537 for (i
= 0; i
< map
->num_stripes
; i
++) {
2538 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
2539 map
->stripes
[i
].physical
);
2542 if (map
->stripes
[i
].dev
) {
2543 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2547 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
2552 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2554 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2555 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2559 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
2562 write_lock(&em_tree
->lock
);
2563 remove_extent_mapping(em_tree
, em
);
2564 write_unlock(&em_tree
->lock
);
2566 /* once for the tree */
2567 free_extent_map(em
);
2569 free_extent_map(em
);
2571 unlock_chunks(root
);
2572 btrfs_end_transaction(trans
, root
);
2576 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2578 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2579 struct btrfs_path
*path
;
2580 struct extent_buffer
*leaf
;
2581 struct btrfs_chunk
*chunk
;
2582 struct btrfs_key key
;
2583 struct btrfs_key found_key
;
2584 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
2586 bool retried
= false;
2590 path
= btrfs_alloc_path();
2595 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2596 key
.offset
= (u64
)-1;
2597 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2600 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2603 BUG_ON(ret
== 0); /* Corruption */
2605 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2612 leaf
= path
->nodes
[0];
2613 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2615 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2616 struct btrfs_chunk
);
2617 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2618 btrfs_release_path(path
);
2620 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2621 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
2630 if (found_key
.offset
== 0)
2632 key
.offset
= found_key
.offset
- 1;
2635 if (failed
&& !retried
) {
2639 } else if (WARN_ON(failed
&& retried
)) {
2643 btrfs_free_path(path
);
2647 static int insert_balance_item(struct btrfs_root
*root
,
2648 struct btrfs_balance_control
*bctl
)
2650 struct btrfs_trans_handle
*trans
;
2651 struct btrfs_balance_item
*item
;
2652 struct btrfs_disk_balance_args disk_bargs
;
2653 struct btrfs_path
*path
;
2654 struct extent_buffer
*leaf
;
2655 struct btrfs_key key
;
2658 path
= btrfs_alloc_path();
2662 trans
= btrfs_start_transaction(root
, 0);
2663 if (IS_ERR(trans
)) {
2664 btrfs_free_path(path
);
2665 return PTR_ERR(trans
);
2668 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2669 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2672 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2677 leaf
= path
->nodes
[0];
2678 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
2680 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
2682 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
2683 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
2684 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
2685 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
2686 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
2687 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
2689 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
2691 btrfs_mark_buffer_dirty(leaf
);
2693 btrfs_free_path(path
);
2694 err
= btrfs_commit_transaction(trans
, root
);
2700 static int del_balance_item(struct btrfs_root
*root
)
2702 struct btrfs_trans_handle
*trans
;
2703 struct btrfs_path
*path
;
2704 struct btrfs_key key
;
2707 path
= btrfs_alloc_path();
2711 trans
= btrfs_start_transaction(root
, 0);
2712 if (IS_ERR(trans
)) {
2713 btrfs_free_path(path
);
2714 return PTR_ERR(trans
);
2717 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2718 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2721 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2729 ret
= btrfs_del_item(trans
, root
, path
);
2731 btrfs_free_path(path
);
2732 err
= btrfs_commit_transaction(trans
, root
);
2739 * This is a heuristic used to reduce the number of chunks balanced on
2740 * resume after balance was interrupted.
2742 static void update_balance_args(struct btrfs_balance_control
*bctl
)
2745 * Turn on soft mode for chunk types that were being converted.
2747 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2748 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2749 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2750 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2751 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2752 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2755 * Turn on usage filter if is not already used. The idea is
2756 * that chunks that we have already balanced should be
2757 * reasonably full. Don't do it for chunks that are being
2758 * converted - that will keep us from relocating unconverted
2759 * (albeit full) chunks.
2761 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2762 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2763 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2764 bctl
->data
.usage
= 90;
2766 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2767 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2768 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2769 bctl
->sys
.usage
= 90;
2771 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2772 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2773 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2774 bctl
->meta
.usage
= 90;
2779 * Should be called with both balance and volume mutexes held to
2780 * serialize other volume operations (add_dev/rm_dev/resize) with
2781 * restriper. Same goes for unset_balance_control.
2783 static void set_balance_control(struct btrfs_balance_control
*bctl
)
2785 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
2787 BUG_ON(fs_info
->balance_ctl
);
2789 spin_lock(&fs_info
->balance_lock
);
2790 fs_info
->balance_ctl
= bctl
;
2791 spin_unlock(&fs_info
->balance_lock
);
2794 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
2796 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
2798 BUG_ON(!fs_info
->balance_ctl
);
2800 spin_lock(&fs_info
->balance_lock
);
2801 fs_info
->balance_ctl
= NULL
;
2802 spin_unlock(&fs_info
->balance_lock
);
2808 * Balance filters. Return 1 if chunk should be filtered out
2809 * (should not be balanced).
2811 static int chunk_profiles_filter(u64 chunk_type
,
2812 struct btrfs_balance_args
*bargs
)
2814 chunk_type
= chunk_to_extended(chunk_type
) &
2815 BTRFS_EXTENDED_PROFILE_MASK
;
2817 if (bargs
->profiles
& chunk_type
)
2823 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
2824 struct btrfs_balance_args
*bargs
)
2826 struct btrfs_block_group_cache
*cache
;
2827 u64 chunk_used
, user_thresh
;
2830 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2831 chunk_used
= btrfs_block_group_used(&cache
->item
);
2833 if (bargs
->usage
== 0)
2835 else if (bargs
->usage
> 100)
2836 user_thresh
= cache
->key
.offset
;
2838 user_thresh
= div_factor_fine(cache
->key
.offset
,
2841 if (chunk_used
< user_thresh
)
2844 btrfs_put_block_group(cache
);
2848 static int chunk_devid_filter(struct extent_buffer
*leaf
,
2849 struct btrfs_chunk
*chunk
,
2850 struct btrfs_balance_args
*bargs
)
2852 struct btrfs_stripe
*stripe
;
2853 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2856 for (i
= 0; i
< num_stripes
; i
++) {
2857 stripe
= btrfs_stripe_nr(chunk
, i
);
2858 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
2865 /* [pstart, pend) */
2866 static int chunk_drange_filter(struct extent_buffer
*leaf
,
2867 struct btrfs_chunk
*chunk
,
2869 struct btrfs_balance_args
*bargs
)
2871 struct btrfs_stripe
*stripe
;
2872 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2878 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
2881 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
2882 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
2883 factor
= num_stripes
/ 2;
2884 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
2885 factor
= num_stripes
- 1;
2886 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
2887 factor
= num_stripes
- 2;
2889 factor
= num_stripes
;
2892 for (i
= 0; i
< num_stripes
; i
++) {
2893 stripe
= btrfs_stripe_nr(chunk
, i
);
2894 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
2897 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
2898 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
2899 do_div(stripe_length
, factor
);
2901 if (stripe_offset
< bargs
->pend
&&
2902 stripe_offset
+ stripe_length
> bargs
->pstart
)
2909 /* [vstart, vend) */
2910 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
2911 struct btrfs_chunk
*chunk
,
2913 struct btrfs_balance_args
*bargs
)
2915 if (chunk_offset
< bargs
->vend
&&
2916 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
2917 /* at least part of the chunk is inside this vrange */
2923 static int chunk_soft_convert_filter(u64 chunk_type
,
2924 struct btrfs_balance_args
*bargs
)
2926 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
2929 chunk_type
= chunk_to_extended(chunk_type
) &
2930 BTRFS_EXTENDED_PROFILE_MASK
;
2932 if (bargs
->target
== chunk_type
)
2938 static int should_balance_chunk(struct btrfs_root
*root
,
2939 struct extent_buffer
*leaf
,
2940 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
2942 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
2943 struct btrfs_balance_args
*bargs
= NULL
;
2944 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2947 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
2948 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
2952 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
2953 bargs
= &bctl
->data
;
2954 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
2956 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
2957 bargs
= &bctl
->meta
;
2959 /* profiles filter */
2960 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
2961 chunk_profiles_filter(chunk_type
, bargs
)) {
2966 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2967 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
2972 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
2973 chunk_devid_filter(leaf
, chunk
, bargs
)) {
2977 /* drange filter, makes sense only with devid filter */
2978 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
2979 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
2984 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
2985 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
2989 /* soft profile changing mode */
2990 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
2991 chunk_soft_convert_filter(chunk_type
, bargs
)) {
2996 * limited by count, must be the last filter
2998 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
2999 if (bargs
->limit
== 0)
3008 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3010 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3011 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3012 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3013 struct list_head
*devices
;
3014 struct btrfs_device
*device
;
3017 struct btrfs_chunk
*chunk
;
3018 struct btrfs_path
*path
;
3019 struct btrfs_key key
;
3020 struct btrfs_key found_key
;
3021 struct btrfs_trans_handle
*trans
;
3022 struct extent_buffer
*leaf
;
3025 int enospc_errors
= 0;
3026 bool counting
= true;
3027 u64 limit_data
= bctl
->data
.limit
;
3028 u64 limit_meta
= bctl
->meta
.limit
;
3029 u64 limit_sys
= bctl
->sys
.limit
;
3031 /* step one make some room on all the devices */
3032 devices
= &fs_info
->fs_devices
->devices
;
3033 list_for_each_entry(device
, devices
, dev_list
) {
3034 old_size
= device
->total_bytes
;
3035 size_to_free
= div_factor(old_size
, 1);
3036 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
3037 if (!device
->writeable
||
3038 device
->total_bytes
- device
->bytes_used
> size_to_free
||
3039 device
->is_tgtdev_for_dev_replace
)
3042 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3047 trans
= btrfs_start_transaction(dev_root
, 0);
3048 BUG_ON(IS_ERR(trans
));
3050 ret
= btrfs_grow_device(trans
, device
, old_size
);
3053 btrfs_end_transaction(trans
, dev_root
);
3056 /* step two, relocate all the chunks */
3057 path
= btrfs_alloc_path();
3063 /* zero out stat counters */
3064 spin_lock(&fs_info
->balance_lock
);
3065 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3066 spin_unlock(&fs_info
->balance_lock
);
3069 bctl
->data
.limit
= limit_data
;
3070 bctl
->meta
.limit
= limit_meta
;
3071 bctl
->sys
.limit
= limit_sys
;
3073 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3074 key
.offset
= (u64
)-1;
3075 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3078 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3079 atomic_read(&fs_info
->balance_cancel_req
)) {
3084 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3089 * this shouldn't happen, it means the last relocate
3093 BUG(); /* FIXME break ? */
3095 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3096 BTRFS_CHUNK_ITEM_KEY
);
3102 leaf
= path
->nodes
[0];
3103 slot
= path
->slots
[0];
3104 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3106 if (found_key
.objectid
!= key
.objectid
)
3109 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3112 spin_lock(&fs_info
->balance_lock
);
3113 bctl
->stat
.considered
++;
3114 spin_unlock(&fs_info
->balance_lock
);
3117 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3119 btrfs_release_path(path
);
3124 spin_lock(&fs_info
->balance_lock
);
3125 bctl
->stat
.expected
++;
3126 spin_unlock(&fs_info
->balance_lock
);
3130 ret
= btrfs_relocate_chunk(chunk_root
,
3131 chunk_root
->root_key
.objectid
,
3134 if (ret
&& ret
!= -ENOSPC
)
3136 if (ret
== -ENOSPC
) {
3139 spin_lock(&fs_info
->balance_lock
);
3140 bctl
->stat
.completed
++;
3141 spin_unlock(&fs_info
->balance_lock
);
3144 if (found_key
.offset
== 0)
3146 key
.offset
= found_key
.offset
- 1;
3150 btrfs_release_path(path
);
3155 btrfs_free_path(path
);
3156 if (enospc_errors
) {
3157 btrfs_info(fs_info
, "%d enospc errors during balance",
3167 * alloc_profile_is_valid - see if a given profile is valid and reduced
3168 * @flags: profile to validate
3169 * @extended: if true @flags is treated as an extended profile
3171 static int alloc_profile_is_valid(u64 flags
, int extended
)
3173 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3174 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3176 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3178 /* 1) check that all other bits are zeroed */
3182 /* 2) see if profile is reduced */
3184 return !extended
; /* "0" is valid for usual profiles */
3186 /* true if exactly one bit set */
3187 return (flags
& (flags
- 1)) == 0;
3190 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3192 /* cancel requested || normal exit path */
3193 return atomic_read(&fs_info
->balance_cancel_req
) ||
3194 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3195 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3198 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3202 unset_balance_control(fs_info
);
3203 ret
= del_balance_item(fs_info
->tree_root
);
3205 btrfs_std_error(fs_info
, ret
);
3207 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3211 * Should be called with both balance and volume mutexes held
3213 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3214 struct btrfs_ioctl_balance_args
*bargs
)
3216 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3223 if (btrfs_fs_closing(fs_info
) ||
3224 atomic_read(&fs_info
->balance_pause_req
) ||
3225 atomic_read(&fs_info
->balance_cancel_req
)) {
3230 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3231 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3235 * In case of mixed groups both data and meta should be picked,
3236 * and identical options should be given for both of them.
3238 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3239 if (mixed
&& (bctl
->flags
& allowed
)) {
3240 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3241 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3242 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3243 btrfs_err(fs_info
, "with mixed groups data and "
3244 "metadata balance options must be the same");
3250 num_devices
= fs_info
->fs_devices
->num_devices
;
3251 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
3252 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3253 BUG_ON(num_devices
< 1);
3256 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
3257 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3258 if (num_devices
== 1)
3259 allowed
|= BTRFS_BLOCK_GROUP_DUP
;
3260 else if (num_devices
> 1)
3261 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3262 if (num_devices
> 2)
3263 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3264 if (num_devices
> 3)
3265 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3266 BTRFS_BLOCK_GROUP_RAID6
);
3267 if ((bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3268 (!alloc_profile_is_valid(bctl
->data
.target
, 1) ||
3269 (bctl
->data
.target
& ~allowed
))) {
3270 btrfs_err(fs_info
, "unable to start balance with target "
3271 "data profile %llu",
3276 if ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3277 (!alloc_profile_is_valid(bctl
->meta
.target
, 1) ||
3278 (bctl
->meta
.target
& ~allowed
))) {
3280 "unable to start balance with target metadata profile %llu",
3285 if ((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3286 (!alloc_profile_is_valid(bctl
->sys
.target
, 1) ||
3287 (bctl
->sys
.target
& ~allowed
))) {
3289 "unable to start balance with target system profile %llu",
3295 /* allow dup'ed data chunks only in mixed mode */
3296 if (!mixed
&& (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3297 (bctl
->data
.target
& BTRFS_BLOCK_GROUP_DUP
)) {
3298 btrfs_err(fs_info
, "dup for data is not allowed");
3303 /* allow to reduce meta or sys integrity only if force set */
3304 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3305 BTRFS_BLOCK_GROUP_RAID10
|
3306 BTRFS_BLOCK_GROUP_RAID5
|
3307 BTRFS_BLOCK_GROUP_RAID6
;
3309 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3311 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3312 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3313 !(bctl
->sys
.target
& allowed
)) ||
3314 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3315 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3316 !(bctl
->meta
.target
& allowed
))) {
3317 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3318 btrfs_info(fs_info
, "force reducing metadata integrity");
3320 btrfs_err(fs_info
, "balance will reduce metadata "
3321 "integrity, use force if you want this");
3326 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3328 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3329 int num_tolerated_disk_barrier_failures
;
3330 u64 target
= bctl
->sys
.target
;
3332 num_tolerated_disk_barrier_failures
=
3333 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3334 if (num_tolerated_disk_barrier_failures
> 0 &&
3336 (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3337 BTRFS_AVAIL_ALLOC_BIT_SINGLE
)))
3338 num_tolerated_disk_barrier_failures
= 0;
3339 else if (num_tolerated_disk_barrier_failures
> 1 &&
3341 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)))
3342 num_tolerated_disk_barrier_failures
= 1;
3344 fs_info
->num_tolerated_disk_barrier_failures
=
3345 num_tolerated_disk_barrier_failures
;
3348 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3349 if (ret
&& ret
!= -EEXIST
)
3352 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3353 BUG_ON(ret
== -EEXIST
);
3354 set_balance_control(bctl
);
3356 BUG_ON(ret
!= -EEXIST
);
3357 spin_lock(&fs_info
->balance_lock
);
3358 update_balance_args(bctl
);
3359 spin_unlock(&fs_info
->balance_lock
);
3362 atomic_inc(&fs_info
->balance_running
);
3363 mutex_unlock(&fs_info
->balance_mutex
);
3365 ret
= __btrfs_balance(fs_info
);
3367 mutex_lock(&fs_info
->balance_mutex
);
3368 atomic_dec(&fs_info
->balance_running
);
3370 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3371 fs_info
->num_tolerated_disk_barrier_failures
=
3372 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3376 memset(bargs
, 0, sizeof(*bargs
));
3377 update_ioctl_balance_args(fs_info
, 0, bargs
);
3380 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3381 balance_need_close(fs_info
)) {
3382 __cancel_balance(fs_info
);
3385 wake_up(&fs_info
->balance_wait_q
);
3389 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3390 __cancel_balance(fs_info
);
3393 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3398 static int balance_kthread(void *data
)
3400 struct btrfs_fs_info
*fs_info
= data
;
3403 mutex_lock(&fs_info
->volume_mutex
);
3404 mutex_lock(&fs_info
->balance_mutex
);
3406 if (fs_info
->balance_ctl
) {
3407 btrfs_info(fs_info
, "continuing balance");
3408 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3411 mutex_unlock(&fs_info
->balance_mutex
);
3412 mutex_unlock(&fs_info
->volume_mutex
);
3417 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3419 struct task_struct
*tsk
;
3421 spin_lock(&fs_info
->balance_lock
);
3422 if (!fs_info
->balance_ctl
) {
3423 spin_unlock(&fs_info
->balance_lock
);
3426 spin_unlock(&fs_info
->balance_lock
);
3428 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3429 btrfs_info(fs_info
, "force skipping balance");
3433 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3434 return PTR_ERR_OR_ZERO(tsk
);
3437 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3439 struct btrfs_balance_control
*bctl
;
3440 struct btrfs_balance_item
*item
;
3441 struct btrfs_disk_balance_args disk_bargs
;
3442 struct btrfs_path
*path
;
3443 struct extent_buffer
*leaf
;
3444 struct btrfs_key key
;
3447 path
= btrfs_alloc_path();
3451 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3452 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
3455 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3458 if (ret
> 0) { /* ret = -ENOENT; */
3463 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3469 leaf
= path
->nodes
[0];
3470 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3472 bctl
->fs_info
= fs_info
;
3473 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3474 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3476 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3477 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3478 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3479 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3480 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3481 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3483 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3485 mutex_lock(&fs_info
->volume_mutex
);
3486 mutex_lock(&fs_info
->balance_mutex
);
3488 set_balance_control(bctl
);
3490 mutex_unlock(&fs_info
->balance_mutex
);
3491 mutex_unlock(&fs_info
->volume_mutex
);
3493 btrfs_free_path(path
);
3497 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3501 mutex_lock(&fs_info
->balance_mutex
);
3502 if (!fs_info
->balance_ctl
) {
3503 mutex_unlock(&fs_info
->balance_mutex
);
3507 if (atomic_read(&fs_info
->balance_running
)) {
3508 atomic_inc(&fs_info
->balance_pause_req
);
3509 mutex_unlock(&fs_info
->balance_mutex
);
3511 wait_event(fs_info
->balance_wait_q
,
3512 atomic_read(&fs_info
->balance_running
) == 0);
3514 mutex_lock(&fs_info
->balance_mutex
);
3515 /* we are good with balance_ctl ripped off from under us */
3516 BUG_ON(atomic_read(&fs_info
->balance_running
));
3517 atomic_dec(&fs_info
->balance_pause_req
);
3522 mutex_unlock(&fs_info
->balance_mutex
);
3526 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3528 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
3531 mutex_lock(&fs_info
->balance_mutex
);
3532 if (!fs_info
->balance_ctl
) {
3533 mutex_unlock(&fs_info
->balance_mutex
);
3537 atomic_inc(&fs_info
->balance_cancel_req
);
3539 * if we are running just wait and return, balance item is
3540 * deleted in btrfs_balance in this case
3542 if (atomic_read(&fs_info
->balance_running
)) {
3543 mutex_unlock(&fs_info
->balance_mutex
);
3544 wait_event(fs_info
->balance_wait_q
,
3545 atomic_read(&fs_info
->balance_running
) == 0);
3546 mutex_lock(&fs_info
->balance_mutex
);
3548 /* __cancel_balance needs volume_mutex */
3549 mutex_unlock(&fs_info
->balance_mutex
);
3550 mutex_lock(&fs_info
->volume_mutex
);
3551 mutex_lock(&fs_info
->balance_mutex
);
3553 if (fs_info
->balance_ctl
)
3554 __cancel_balance(fs_info
);
3556 mutex_unlock(&fs_info
->volume_mutex
);
3559 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
3560 atomic_dec(&fs_info
->balance_cancel_req
);
3561 mutex_unlock(&fs_info
->balance_mutex
);
3565 static int btrfs_uuid_scan_kthread(void *data
)
3567 struct btrfs_fs_info
*fs_info
= data
;
3568 struct btrfs_root
*root
= fs_info
->tree_root
;
3569 struct btrfs_key key
;
3570 struct btrfs_key max_key
;
3571 struct btrfs_path
*path
= NULL
;
3573 struct extent_buffer
*eb
;
3575 struct btrfs_root_item root_item
;
3577 struct btrfs_trans_handle
*trans
= NULL
;
3579 path
= btrfs_alloc_path();
3586 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3589 max_key
.objectid
= (u64
)-1;
3590 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3591 max_key
.offset
= (u64
)-1;
3593 path
->keep_locks
= 1;
3596 ret
= btrfs_search_forward(root
, &key
, path
, 0);
3603 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
3604 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
3605 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
3606 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
3609 eb
= path
->nodes
[0];
3610 slot
= path
->slots
[0];
3611 item_size
= btrfs_item_size_nr(eb
, slot
);
3612 if (item_size
< sizeof(root_item
))
3615 read_extent_buffer(eb
, &root_item
,
3616 btrfs_item_ptr_offset(eb
, slot
),
3617 (int)sizeof(root_item
));
3618 if (btrfs_root_refs(&root_item
) == 0)
3621 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
3622 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3626 btrfs_release_path(path
);
3628 * 1 - subvol uuid item
3629 * 1 - received_subvol uuid item
3631 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
3632 if (IS_ERR(trans
)) {
3633 ret
= PTR_ERR(trans
);
3641 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
3642 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3644 BTRFS_UUID_KEY_SUBVOL
,
3647 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
3653 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3654 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3655 root_item
.received_uuid
,
3656 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
3659 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
3667 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3673 btrfs_release_path(path
);
3674 if (key
.offset
< (u64
)-1) {
3676 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
3678 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3679 } else if (key
.objectid
< (u64
)-1) {
3681 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3690 btrfs_free_path(path
);
3691 if (trans
&& !IS_ERR(trans
))
3692 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3694 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
3696 fs_info
->update_uuid_tree_gen
= 1;
3697 up(&fs_info
->uuid_tree_rescan_sem
);
3702 * Callback for btrfs_uuid_tree_iterate().
3704 * 0 check succeeded, the entry is not outdated.
3705 * < 0 if an error occured.
3706 * > 0 if the check failed, which means the caller shall remove the entry.
3708 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
3709 u8
*uuid
, u8 type
, u64 subid
)
3711 struct btrfs_key key
;
3713 struct btrfs_root
*subvol_root
;
3715 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
3716 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
3719 key
.objectid
= subid
;
3720 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3721 key
.offset
= (u64
)-1;
3722 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
3723 if (IS_ERR(subvol_root
)) {
3724 ret
= PTR_ERR(subvol_root
);
3731 case BTRFS_UUID_KEY_SUBVOL
:
3732 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
3735 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
3736 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
3746 static int btrfs_uuid_rescan_kthread(void *data
)
3748 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
3752 * 1st step is to iterate through the existing UUID tree and
3753 * to delete all entries that contain outdated data.
3754 * 2nd step is to add all missing entries to the UUID tree.
3756 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
3758 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
3759 up(&fs_info
->uuid_tree_rescan_sem
);
3762 return btrfs_uuid_scan_kthread(data
);
3765 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
3767 struct btrfs_trans_handle
*trans
;
3768 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
3769 struct btrfs_root
*uuid_root
;
3770 struct task_struct
*task
;
3777 trans
= btrfs_start_transaction(tree_root
, 2);
3779 return PTR_ERR(trans
);
3781 uuid_root
= btrfs_create_tree(trans
, fs_info
,
3782 BTRFS_UUID_TREE_OBJECTID
);
3783 if (IS_ERR(uuid_root
)) {
3784 btrfs_abort_transaction(trans
, tree_root
,
3785 PTR_ERR(uuid_root
));
3786 return PTR_ERR(uuid_root
);
3789 fs_info
->uuid_root
= uuid_root
;
3791 ret
= btrfs_commit_transaction(trans
, tree_root
);
3795 down(&fs_info
->uuid_tree_rescan_sem
);
3796 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
3798 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3799 btrfs_warn(fs_info
, "failed to start uuid_scan task");
3800 up(&fs_info
->uuid_tree_rescan_sem
);
3801 return PTR_ERR(task
);
3807 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
3809 struct task_struct
*task
;
3811 down(&fs_info
->uuid_tree_rescan_sem
);
3812 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
3814 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3815 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
3816 up(&fs_info
->uuid_tree_rescan_sem
);
3817 return PTR_ERR(task
);
3824 * shrinking a device means finding all of the device extents past
3825 * the new size, and then following the back refs to the chunks.
3826 * The chunk relocation code actually frees the device extent
3828 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
3830 struct btrfs_trans_handle
*trans
;
3831 struct btrfs_root
*root
= device
->dev_root
;
3832 struct btrfs_dev_extent
*dev_extent
= NULL
;
3833 struct btrfs_path
*path
;
3841 bool retried
= false;
3842 struct extent_buffer
*l
;
3843 struct btrfs_key key
;
3844 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3845 u64 old_total
= btrfs_super_total_bytes(super_copy
);
3846 u64 old_size
= device
->total_bytes
;
3847 u64 diff
= device
->total_bytes
- new_size
;
3849 if (device
->is_tgtdev_for_dev_replace
)
3852 path
= btrfs_alloc_path();
3860 device
->total_bytes
= new_size
;
3861 if (device
->writeable
) {
3862 device
->fs_devices
->total_rw_bytes
-= diff
;
3863 spin_lock(&root
->fs_info
->free_chunk_lock
);
3864 root
->fs_info
->free_chunk_space
-= diff
;
3865 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3867 unlock_chunks(root
);
3870 key
.objectid
= device
->devid
;
3871 key
.offset
= (u64
)-1;
3872 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3875 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3879 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
3884 btrfs_release_path(path
);
3889 slot
= path
->slots
[0];
3890 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
3892 if (key
.objectid
!= device
->devid
) {
3893 btrfs_release_path(path
);
3897 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3898 length
= btrfs_dev_extent_length(l
, dev_extent
);
3900 if (key
.offset
+ length
<= new_size
) {
3901 btrfs_release_path(path
);
3905 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
3906 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
3907 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3908 btrfs_release_path(path
);
3910 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
3912 if (ret
&& ret
!= -ENOSPC
)
3916 } while (key
.offset
-- > 0);
3918 if (failed
&& !retried
) {
3922 } else if (failed
&& retried
) {
3926 device
->total_bytes
= old_size
;
3927 if (device
->writeable
)
3928 device
->fs_devices
->total_rw_bytes
+= diff
;
3929 spin_lock(&root
->fs_info
->free_chunk_lock
);
3930 root
->fs_info
->free_chunk_space
+= diff
;
3931 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3932 unlock_chunks(root
);
3936 /* Shrinking succeeded, else we would be at "done". */
3937 trans
= btrfs_start_transaction(root
, 0);
3938 if (IS_ERR(trans
)) {
3939 ret
= PTR_ERR(trans
);
3945 device
->disk_total_bytes
= new_size
;
3946 /* Now btrfs_update_device() will change the on-disk size. */
3947 ret
= btrfs_update_device(trans
, device
);
3949 unlock_chunks(root
);
3950 btrfs_end_transaction(trans
, root
);
3953 WARN_ON(diff
> old_total
);
3954 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
3955 unlock_chunks(root
);
3956 btrfs_end_transaction(trans
, root
);
3958 btrfs_free_path(path
);
3962 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
3963 struct btrfs_key
*key
,
3964 struct btrfs_chunk
*chunk
, int item_size
)
3966 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3967 struct btrfs_disk_key disk_key
;
3971 array_size
= btrfs_super_sys_array_size(super_copy
);
3972 if (array_size
+ item_size
+ sizeof(disk_key
)
3973 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
3976 ptr
= super_copy
->sys_chunk_array
+ array_size
;
3977 btrfs_cpu_key_to_disk(&disk_key
, key
);
3978 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
3979 ptr
+= sizeof(disk_key
);
3980 memcpy(ptr
, chunk
, item_size
);
3981 item_size
+= sizeof(disk_key
);
3982 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
3987 * sort the devices in descending order by max_avail, total_avail
3989 static int btrfs_cmp_device_info(const void *a
, const void *b
)
3991 const struct btrfs_device_info
*di_a
= a
;
3992 const struct btrfs_device_info
*di_b
= b
;
3994 if (di_a
->max_avail
> di_b
->max_avail
)
3996 if (di_a
->max_avail
< di_b
->max_avail
)
3998 if (di_a
->total_avail
> di_b
->total_avail
)
4000 if (di_a
->total_avail
< di_b
->total_avail
)
4005 static struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
4006 [BTRFS_RAID_RAID10
] = {
4009 .devs_max
= 0, /* 0 == as many as possible */
4011 .devs_increment
= 2,
4014 [BTRFS_RAID_RAID1
] = {
4019 .devs_increment
= 2,
4022 [BTRFS_RAID_DUP
] = {
4027 .devs_increment
= 1,
4030 [BTRFS_RAID_RAID0
] = {
4035 .devs_increment
= 1,
4038 [BTRFS_RAID_SINGLE
] = {
4043 .devs_increment
= 1,
4046 [BTRFS_RAID_RAID5
] = {
4051 .devs_increment
= 1,
4054 [BTRFS_RAID_RAID6
] = {
4059 .devs_increment
= 1,
4064 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4066 /* TODO allow them to set a preferred stripe size */
4070 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4072 if (!(type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)))
4075 btrfs_set_fs_incompat(info
, RAID56
);
4078 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4079 - sizeof(struct btrfs_item) \
4080 - sizeof(struct btrfs_chunk)) \
4081 / sizeof(struct btrfs_stripe) + 1)
4083 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4084 - 2 * sizeof(struct btrfs_disk_key) \
4085 - 2 * sizeof(struct btrfs_chunk)) \
4086 / sizeof(struct btrfs_stripe) + 1)
4088 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4089 struct btrfs_root
*extent_root
, u64 start
,
4092 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4093 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4094 struct list_head
*cur
;
4095 struct map_lookup
*map
= NULL
;
4096 struct extent_map_tree
*em_tree
;
4097 struct extent_map
*em
;
4098 struct btrfs_device_info
*devices_info
= NULL
;
4100 int num_stripes
; /* total number of stripes to allocate */
4101 int data_stripes
; /* number of stripes that count for
4103 int sub_stripes
; /* sub_stripes info for map */
4104 int dev_stripes
; /* stripes per dev */
4105 int devs_max
; /* max devs to use */
4106 int devs_min
; /* min devs needed */
4107 int devs_increment
; /* ndevs has to be a multiple of this */
4108 int ncopies
; /* how many copies to data has */
4110 u64 max_stripe_size
;
4114 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4120 BUG_ON(!alloc_profile_is_valid(type
, 0));
4122 if (list_empty(&fs_devices
->alloc_list
))
4125 index
= __get_raid_index(type
);
4127 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4128 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4129 devs_max
= btrfs_raid_array
[index
].devs_max
;
4130 devs_min
= btrfs_raid_array
[index
].devs_min
;
4131 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4132 ncopies
= btrfs_raid_array
[index
].ncopies
;
4134 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4135 max_stripe_size
= 1024 * 1024 * 1024;
4136 max_chunk_size
= 10 * max_stripe_size
;
4138 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4139 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4140 /* for larger filesystems, use larger metadata chunks */
4141 if (fs_devices
->total_rw_bytes
> 50ULL * 1024 * 1024 * 1024)
4142 max_stripe_size
= 1024 * 1024 * 1024;
4144 max_stripe_size
= 256 * 1024 * 1024;
4145 max_chunk_size
= max_stripe_size
;
4147 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4148 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4149 max_stripe_size
= 32 * 1024 * 1024;
4150 max_chunk_size
= 2 * max_stripe_size
;
4152 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4154 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4159 /* we don't want a chunk larger than 10% of writeable space */
4160 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4163 devices_info
= kzalloc(sizeof(*devices_info
) * fs_devices
->rw_devices
,
4168 cur
= fs_devices
->alloc_list
.next
;
4171 * in the first pass through the devices list, we gather information
4172 * about the available holes on each device.
4175 while (cur
!= &fs_devices
->alloc_list
) {
4176 struct btrfs_device
*device
;
4180 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4184 if (!device
->writeable
) {
4186 "BTRFS: read-only device in alloc_list\n");
4190 if (!device
->in_fs_metadata
||
4191 device
->is_tgtdev_for_dev_replace
)
4194 if (device
->total_bytes
> device
->bytes_used
)
4195 total_avail
= device
->total_bytes
- device
->bytes_used
;
4199 /* If there is no space on this device, skip it. */
4200 if (total_avail
== 0)
4203 ret
= find_free_dev_extent(trans
, device
,
4204 max_stripe_size
* dev_stripes
,
4205 &dev_offset
, &max_avail
);
4206 if (ret
&& ret
!= -ENOSPC
)
4210 max_avail
= max_stripe_size
* dev_stripes
;
4212 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4215 if (ndevs
== fs_devices
->rw_devices
) {
4216 WARN(1, "%s: found more than %llu devices\n",
4217 __func__
, fs_devices
->rw_devices
);
4220 devices_info
[ndevs
].dev_offset
= dev_offset
;
4221 devices_info
[ndevs
].max_avail
= max_avail
;
4222 devices_info
[ndevs
].total_avail
= total_avail
;
4223 devices_info
[ndevs
].dev
= device
;
4228 * now sort the devices by hole size / available space
4230 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4231 btrfs_cmp_device_info
, NULL
);
4233 /* round down to number of usable stripes */
4234 ndevs
-= ndevs
% devs_increment
;
4236 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4241 if (devs_max
&& ndevs
> devs_max
)
4244 * the primary goal is to maximize the number of stripes, so use as many
4245 * devices as possible, even if the stripes are not maximum sized.
4247 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4248 num_stripes
= ndevs
* dev_stripes
;
4251 * this will have to be fixed for RAID1 and RAID10 over
4254 data_stripes
= num_stripes
/ ncopies
;
4256 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4257 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4258 btrfs_super_stripesize(info
->super_copy
));
4259 data_stripes
= num_stripes
- 1;
4261 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4262 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4263 btrfs_super_stripesize(info
->super_copy
));
4264 data_stripes
= num_stripes
- 2;
4268 * Use the number of data stripes to figure out how big this chunk
4269 * is really going to be in terms of logical address space,
4270 * and compare that answer with the max chunk size
4272 if (stripe_size
* data_stripes
> max_chunk_size
) {
4273 u64 mask
= (1ULL << 24) - 1;
4274 stripe_size
= max_chunk_size
;
4275 do_div(stripe_size
, data_stripes
);
4277 /* bump the answer up to a 16MB boundary */
4278 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4280 /* but don't go higher than the limits we found
4281 * while searching for free extents
4283 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4284 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4287 do_div(stripe_size
, dev_stripes
);
4289 /* align to BTRFS_STRIPE_LEN */
4290 do_div(stripe_size
, raid_stripe_len
);
4291 stripe_size
*= raid_stripe_len
;
4293 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4298 map
->num_stripes
= num_stripes
;
4300 for (i
= 0; i
< ndevs
; ++i
) {
4301 for (j
= 0; j
< dev_stripes
; ++j
) {
4302 int s
= i
* dev_stripes
+ j
;
4303 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4304 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4308 map
->sector_size
= extent_root
->sectorsize
;
4309 map
->stripe_len
= raid_stripe_len
;
4310 map
->io_align
= raid_stripe_len
;
4311 map
->io_width
= raid_stripe_len
;
4313 map
->sub_stripes
= sub_stripes
;
4315 num_bytes
= stripe_size
* data_stripes
;
4317 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4319 em
= alloc_extent_map();
4325 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4326 em
->bdev
= (struct block_device
*)map
;
4328 em
->len
= num_bytes
;
4329 em
->block_start
= 0;
4330 em
->block_len
= em
->len
;
4331 em
->orig_block_len
= stripe_size
;
4333 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4334 write_lock(&em_tree
->lock
);
4335 ret
= add_extent_mapping(em_tree
, em
, 0);
4337 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4338 atomic_inc(&em
->refs
);
4340 write_unlock(&em_tree
->lock
);
4342 free_extent_map(em
);
4346 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4347 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4350 goto error_del_extent
;
4352 free_extent_map(em
);
4353 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4355 kfree(devices_info
);
4359 write_lock(&em_tree
->lock
);
4360 remove_extent_mapping(em_tree
, em
);
4361 write_unlock(&em_tree
->lock
);
4363 /* One for our allocation */
4364 free_extent_map(em
);
4365 /* One for the tree reference */
4366 free_extent_map(em
);
4368 kfree(devices_info
);
4372 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4373 struct btrfs_root
*extent_root
,
4374 u64 chunk_offset
, u64 chunk_size
)
4376 struct btrfs_key key
;
4377 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4378 struct btrfs_device
*device
;
4379 struct btrfs_chunk
*chunk
;
4380 struct btrfs_stripe
*stripe
;
4381 struct extent_map_tree
*em_tree
;
4382 struct extent_map
*em
;
4383 struct map_lookup
*map
;
4390 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4391 read_lock(&em_tree
->lock
);
4392 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4393 read_unlock(&em_tree
->lock
);
4396 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4397 "%Lu len %Lu", chunk_offset
, chunk_size
);
4401 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4402 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4403 " %Lu-%Lu, found %Lu-%Lu", chunk_offset
,
4404 chunk_size
, em
->start
, em
->len
);
4405 free_extent_map(em
);
4409 map
= (struct map_lookup
*)em
->bdev
;
4410 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4411 stripe_size
= em
->orig_block_len
;
4413 chunk
= kzalloc(item_size
, GFP_NOFS
);
4419 for (i
= 0; i
< map
->num_stripes
; i
++) {
4420 device
= map
->stripes
[i
].dev
;
4421 dev_offset
= map
->stripes
[i
].physical
;
4423 device
->bytes_used
+= stripe_size
;
4424 ret
= btrfs_update_device(trans
, device
);
4427 ret
= btrfs_alloc_dev_extent(trans
, device
,
4428 chunk_root
->root_key
.objectid
,
4429 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4430 chunk_offset
, dev_offset
,
4436 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4437 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4439 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4441 stripe
= &chunk
->stripe
;
4442 for (i
= 0; i
< map
->num_stripes
; i
++) {
4443 device
= map
->stripes
[i
].dev
;
4444 dev_offset
= map
->stripes
[i
].physical
;
4446 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4447 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4448 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4452 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4453 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4454 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4455 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4456 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4457 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4458 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4459 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4460 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4462 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4463 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4464 key
.offset
= chunk_offset
;
4466 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4467 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4469 * TODO: Cleanup of inserted chunk root in case of
4472 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4478 free_extent_map(em
);
4483 * Chunk allocation falls into two parts. The first part does works
4484 * that make the new allocated chunk useable, but not do any operation
4485 * that modifies the chunk tree. The second part does the works that
4486 * require modifying the chunk tree. This division is important for the
4487 * bootstrap process of adding storage to a seed btrfs.
4489 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4490 struct btrfs_root
*extent_root
, u64 type
)
4494 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4495 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4498 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4499 struct btrfs_root
*root
,
4500 struct btrfs_device
*device
)
4503 u64 sys_chunk_offset
;
4505 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4506 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4509 chunk_offset
= find_next_chunk(fs_info
);
4510 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
4511 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
4516 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
4517 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4518 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
4521 btrfs_abort_transaction(trans
, root
, ret
);
4525 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
4527 btrfs_abort_transaction(trans
, root
, ret
);
4532 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
4534 struct extent_map
*em
;
4535 struct map_lookup
*map
;
4536 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
4540 read_lock(&map_tree
->map_tree
.lock
);
4541 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
4542 read_unlock(&map_tree
->map_tree
.lock
);
4546 if (btrfs_test_opt(root
, DEGRADED
)) {
4547 free_extent_map(em
);
4551 map
= (struct map_lookup
*)em
->bdev
;
4552 for (i
= 0; i
< map
->num_stripes
; i
++) {
4553 if (!map
->stripes
[i
].dev
->writeable
) {
4558 free_extent_map(em
);
4562 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
4564 extent_map_tree_init(&tree
->map_tree
);
4567 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
4569 struct extent_map
*em
;
4572 write_lock(&tree
->map_tree
.lock
);
4573 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
4575 remove_extent_mapping(&tree
->map_tree
, em
);
4576 write_unlock(&tree
->map_tree
.lock
);
4580 free_extent_map(em
);
4581 /* once for the tree */
4582 free_extent_map(em
);
4586 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
4588 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4589 struct extent_map
*em
;
4590 struct map_lookup
*map
;
4591 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4594 read_lock(&em_tree
->lock
);
4595 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4596 read_unlock(&em_tree
->lock
);
4599 * We could return errors for these cases, but that could get ugly and
4600 * we'd probably do the same thing which is just not do anything else
4601 * and exit, so return 1 so the callers don't try to use other copies.
4604 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
4609 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4610 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
4611 "%Lu-%Lu", logical
, logical
+len
, em
->start
,
4612 em
->start
+ em
->len
);
4613 free_extent_map(em
);
4617 map
= (struct map_lookup
*)em
->bdev
;
4618 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
4619 ret
= map
->num_stripes
;
4620 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
4621 ret
= map
->sub_stripes
;
4622 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
4624 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
4628 free_extent_map(em
);
4630 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
4631 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
4633 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
4638 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
4639 struct btrfs_mapping_tree
*map_tree
,
4642 struct extent_map
*em
;
4643 struct map_lookup
*map
;
4644 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4645 unsigned long len
= root
->sectorsize
;
4647 read_lock(&em_tree
->lock
);
4648 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4649 read_unlock(&em_tree
->lock
);
4652 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4653 map
= (struct map_lookup
*)em
->bdev
;
4654 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4655 BTRFS_BLOCK_GROUP_RAID6
)) {
4656 len
= map
->stripe_len
* nr_data_stripes(map
);
4658 free_extent_map(em
);
4662 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
4663 u64 logical
, u64 len
, int mirror_num
)
4665 struct extent_map
*em
;
4666 struct map_lookup
*map
;
4667 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4670 read_lock(&em_tree
->lock
);
4671 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4672 read_unlock(&em_tree
->lock
);
4675 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4676 map
= (struct map_lookup
*)em
->bdev
;
4677 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4678 BTRFS_BLOCK_GROUP_RAID6
))
4680 free_extent_map(em
);
4684 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
4685 struct map_lookup
*map
, int first
, int num
,
4686 int optimal
, int dev_replace_is_ongoing
)
4690 struct btrfs_device
*srcdev
;
4692 if (dev_replace_is_ongoing
&&
4693 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
4694 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
4695 srcdev
= fs_info
->dev_replace
.srcdev
;
4700 * try to avoid the drive that is the source drive for a
4701 * dev-replace procedure, only choose it if no other non-missing
4702 * mirror is available
4704 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
4705 if (map
->stripes
[optimal
].dev
->bdev
&&
4706 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
4708 for (i
= first
; i
< first
+ num
; i
++) {
4709 if (map
->stripes
[i
].dev
->bdev
&&
4710 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
4715 /* we couldn't find one that doesn't fail. Just return something
4716 * and the io error handling code will clean up eventually
4721 static inline int parity_smaller(u64 a
, u64 b
)
4726 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4727 static void sort_parity_stripes(struct btrfs_bio
*bbio
, u64
*raid_map
)
4729 struct btrfs_bio_stripe s
;
4736 for (i
= 0; i
< bbio
->num_stripes
- 1; i
++) {
4737 if (parity_smaller(raid_map
[i
], raid_map
[i
+1])) {
4738 s
= bbio
->stripes
[i
];
4740 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
4741 raid_map
[i
] = raid_map
[i
+1];
4742 bbio
->stripes
[i
+1] = s
;
4750 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
4751 u64 logical
, u64
*length
,
4752 struct btrfs_bio
**bbio_ret
,
4753 int mirror_num
, u64
**raid_map_ret
)
4755 struct extent_map
*em
;
4756 struct map_lookup
*map
;
4757 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4758 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4761 u64 stripe_end_offset
;
4766 u64
*raid_map
= NULL
;
4772 struct btrfs_bio
*bbio
= NULL
;
4773 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
4774 int dev_replace_is_ongoing
= 0;
4775 int num_alloc_stripes
;
4776 int patch_the_first_stripe_for_dev_replace
= 0;
4777 u64 physical_to_patch_in_first_stripe
= 0;
4778 u64 raid56_full_stripe_start
= (u64
)-1;
4780 read_lock(&em_tree
->lock
);
4781 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
4782 read_unlock(&em_tree
->lock
);
4785 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
4790 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4791 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
4792 "found %Lu-%Lu", logical
, em
->start
,
4793 em
->start
+ em
->len
);
4794 free_extent_map(em
);
4798 map
= (struct map_lookup
*)em
->bdev
;
4799 offset
= logical
- em
->start
;
4801 stripe_len
= map
->stripe_len
;
4804 * stripe_nr counts the total number of stripes we have to stride
4805 * to get to this block
4807 do_div(stripe_nr
, stripe_len
);
4809 stripe_offset
= stripe_nr
* stripe_len
;
4810 BUG_ON(offset
< stripe_offset
);
4812 /* stripe_offset is the offset of this block in its stripe*/
4813 stripe_offset
= offset
- stripe_offset
;
4815 /* if we're here for raid56, we need to know the stripe aligned start */
4816 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)) {
4817 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
4818 raid56_full_stripe_start
= offset
;
4820 /* allow a write of a full stripe, but make sure we don't
4821 * allow straddling of stripes
4823 do_div(raid56_full_stripe_start
, full_stripe_len
);
4824 raid56_full_stripe_start
*= full_stripe_len
;
4827 if (rw
& REQ_DISCARD
) {
4828 /* we don't discard raid56 yet */
4830 (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)) {
4834 *length
= min_t(u64
, em
->len
- offset
, *length
);
4835 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
4837 /* For writes to RAID[56], allow a full stripeset across all disks.
4838 For other RAID types and for RAID[56] reads, just allow a single
4839 stripe (on a single disk). */
4840 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
) &&
4842 max_len
= stripe_len
* nr_data_stripes(map
) -
4843 (offset
- raid56_full_stripe_start
);
4845 /* we limit the length of each bio to what fits in a stripe */
4846 max_len
= stripe_len
- stripe_offset
;
4848 *length
= min_t(u64
, em
->len
- offset
, max_len
);
4850 *length
= em
->len
- offset
;
4853 /* This is for when we're called from btrfs_merge_bio_hook() and all
4854 it cares about is the length */
4858 btrfs_dev_replace_lock(dev_replace
);
4859 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
4860 if (!dev_replace_is_ongoing
)
4861 btrfs_dev_replace_unlock(dev_replace
);
4863 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
4864 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
4865 dev_replace
->tgtdev
!= NULL
) {
4867 * in dev-replace case, for repair case (that's the only
4868 * case where the mirror is selected explicitly when
4869 * calling btrfs_map_block), blocks left of the left cursor
4870 * can also be read from the target drive.
4871 * For REQ_GET_READ_MIRRORS, the target drive is added as
4872 * the last one to the array of stripes. For READ, it also
4873 * needs to be supported using the same mirror number.
4874 * If the requested block is not left of the left cursor,
4875 * EIO is returned. This can happen because btrfs_num_copies()
4876 * returns one more in the dev-replace case.
4878 u64 tmp_length
= *length
;
4879 struct btrfs_bio
*tmp_bbio
= NULL
;
4880 int tmp_num_stripes
;
4881 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
4882 int index_srcdev
= 0;
4884 u64 physical_of_found
= 0;
4886 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
4887 logical
, &tmp_length
, &tmp_bbio
, 0, NULL
);
4889 WARN_ON(tmp_bbio
!= NULL
);
4893 tmp_num_stripes
= tmp_bbio
->num_stripes
;
4894 if (mirror_num
> tmp_num_stripes
) {
4896 * REQ_GET_READ_MIRRORS does not contain this
4897 * mirror, that means that the requested area
4898 * is not left of the left cursor
4906 * process the rest of the function using the mirror_num
4907 * of the source drive. Therefore look it up first.
4908 * At the end, patch the device pointer to the one of the
4911 for (i
= 0; i
< tmp_num_stripes
; i
++) {
4912 if (tmp_bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
4914 * In case of DUP, in order to keep it
4915 * simple, only add the mirror with the
4916 * lowest physical address
4919 physical_of_found
<=
4920 tmp_bbio
->stripes
[i
].physical
)
4925 tmp_bbio
->stripes
[i
].physical
;
4930 mirror_num
= index_srcdev
+ 1;
4931 patch_the_first_stripe_for_dev_replace
= 1;
4932 physical_to_patch_in_first_stripe
= physical_of_found
;
4941 } else if (mirror_num
> map
->num_stripes
) {
4947 stripe_nr_orig
= stripe_nr
;
4948 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
4949 do_div(stripe_nr_end
, map
->stripe_len
);
4950 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
4953 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
4954 if (rw
& REQ_DISCARD
)
4955 num_stripes
= min_t(u64
, map
->num_stripes
,
4956 stripe_nr_end
- stripe_nr_orig
);
4957 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
4958 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
4959 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
4960 num_stripes
= map
->num_stripes
;
4961 else if (mirror_num
)
4962 stripe_index
= mirror_num
- 1;
4964 stripe_index
= find_live_mirror(fs_info
, map
, 0,
4966 current
->pid
% map
->num_stripes
,
4967 dev_replace_is_ongoing
);
4968 mirror_num
= stripe_index
+ 1;
4971 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
4972 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
4973 num_stripes
= map
->num_stripes
;
4974 } else if (mirror_num
) {
4975 stripe_index
= mirror_num
- 1;
4980 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
4981 int factor
= map
->num_stripes
/ map
->sub_stripes
;
4983 stripe_index
= do_div(stripe_nr
, factor
);
4984 stripe_index
*= map
->sub_stripes
;
4986 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
4987 num_stripes
= map
->sub_stripes
;
4988 else if (rw
& REQ_DISCARD
)
4989 num_stripes
= min_t(u64
, map
->sub_stripes
*
4990 (stripe_nr_end
- stripe_nr_orig
),
4992 else if (mirror_num
)
4993 stripe_index
+= mirror_num
- 1;
4995 int old_stripe_index
= stripe_index
;
4996 stripe_index
= find_live_mirror(fs_info
, map
,
4998 map
->sub_stripes
, stripe_index
+
4999 current
->pid
% map
->sub_stripes
,
5000 dev_replace_is_ongoing
);
5001 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5004 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
5005 BTRFS_BLOCK_GROUP_RAID6
)) {
5008 if (bbio_ret
&& ((rw
& REQ_WRITE
) || mirror_num
> 1)
5012 /* push stripe_nr back to the start of the full stripe */
5013 stripe_nr
= raid56_full_stripe_start
;
5014 do_div(stripe_nr
, stripe_len
);
5016 stripe_index
= do_div(stripe_nr
, nr_data_stripes(map
));
5018 /* RAID[56] write or recovery. Return all stripes */
5019 num_stripes
= map
->num_stripes
;
5020 max_errors
= nr_parity_stripes(map
);
5022 raid_map
= kmalloc_array(num_stripes
, sizeof(u64
),
5029 /* Work out the disk rotation on this stripe-set */
5031 rot
= do_div(tmp
, num_stripes
);
5033 /* Fill in the logical address of each stripe */
5034 tmp
= stripe_nr
* nr_data_stripes(map
);
5035 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5036 raid_map
[(i
+rot
) % num_stripes
] =
5037 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5039 raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5040 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5041 raid_map
[(i
+rot
+1) % num_stripes
] =
5044 *length
= map
->stripe_len
;
5049 * Mirror #0 or #1 means the original data block.
5050 * Mirror #2 is RAID5 parity block.
5051 * Mirror #3 is RAID6 Q block.
5053 stripe_index
= do_div(stripe_nr
, nr_data_stripes(map
));
5055 stripe_index
= nr_data_stripes(map
) +
5058 /* We distribute the parity blocks across stripes */
5059 tmp
= stripe_nr
+ stripe_index
;
5060 stripe_index
= do_div(tmp
, map
->num_stripes
);
5064 * after this do_div call, stripe_nr is the number of stripes
5065 * on this device we have to walk to find the data, and
5066 * stripe_index is the number of our device in the stripe array
5068 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
5069 mirror_num
= stripe_index
+ 1;
5071 BUG_ON(stripe_index
>= map
->num_stripes
);
5073 num_alloc_stripes
= num_stripes
;
5074 if (dev_replace_is_ongoing
) {
5075 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
5076 num_alloc_stripes
<<= 1;
5077 if (rw
& REQ_GET_READ_MIRRORS
)
5078 num_alloc_stripes
++;
5080 bbio
= kzalloc(btrfs_bio_size(num_alloc_stripes
), GFP_NOFS
);
5086 atomic_set(&bbio
->error
, 0);
5088 if (rw
& REQ_DISCARD
) {
5090 int sub_stripes
= 0;
5091 u64 stripes_per_dev
= 0;
5092 u32 remaining_stripes
= 0;
5093 u32 last_stripe
= 0;
5096 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5097 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5100 sub_stripes
= map
->sub_stripes
;
5102 factor
= map
->num_stripes
/ sub_stripes
;
5103 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5106 &remaining_stripes
);
5107 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5108 last_stripe
*= sub_stripes
;
5111 for (i
= 0; i
< num_stripes
; i
++) {
5112 bbio
->stripes
[i
].physical
=
5113 map
->stripes
[stripe_index
].physical
+
5114 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5115 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5117 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5118 BTRFS_BLOCK_GROUP_RAID10
)) {
5119 bbio
->stripes
[i
].length
= stripes_per_dev
*
5122 if (i
/ sub_stripes
< remaining_stripes
)
5123 bbio
->stripes
[i
].length
+=
5127 * Special for the first stripe and
5130 * |-------|...|-------|
5134 if (i
< sub_stripes
)
5135 bbio
->stripes
[i
].length
-=
5138 if (stripe_index
>= last_stripe
&&
5139 stripe_index
<= (last_stripe
+
5141 bbio
->stripes
[i
].length
-=
5144 if (i
== sub_stripes
- 1)
5147 bbio
->stripes
[i
].length
= *length
;
5150 if (stripe_index
== map
->num_stripes
) {
5151 /* This could only happen for RAID0/10 */
5157 for (i
= 0; i
< num_stripes
; i
++) {
5158 bbio
->stripes
[i
].physical
=
5159 map
->stripes
[stripe_index
].physical
+
5161 stripe_nr
* map
->stripe_len
;
5162 bbio
->stripes
[i
].dev
=
5163 map
->stripes
[stripe_index
].dev
;
5168 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) {
5169 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5170 BTRFS_BLOCK_GROUP_RAID10
|
5171 BTRFS_BLOCK_GROUP_RAID5
|
5172 BTRFS_BLOCK_GROUP_DUP
)) {
5174 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5179 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5180 dev_replace
->tgtdev
!= NULL
) {
5181 int index_where_to_add
;
5182 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5185 * duplicate the write operations while the dev replace
5186 * procedure is running. Since the copying of the old disk
5187 * to the new disk takes place at run time while the
5188 * filesystem is mounted writable, the regular write
5189 * operations to the old disk have to be duplicated to go
5190 * to the new disk as well.
5191 * Note that device->missing is handled by the caller, and
5192 * that the write to the old disk is already set up in the
5195 index_where_to_add
= num_stripes
;
5196 for (i
= 0; i
< num_stripes
; i
++) {
5197 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5198 /* write to new disk, too */
5199 struct btrfs_bio_stripe
*new =
5200 bbio
->stripes
+ index_where_to_add
;
5201 struct btrfs_bio_stripe
*old
=
5204 new->physical
= old
->physical
;
5205 new->length
= old
->length
;
5206 new->dev
= dev_replace
->tgtdev
;
5207 index_where_to_add
++;
5211 num_stripes
= index_where_to_add
;
5212 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5213 dev_replace
->tgtdev
!= NULL
) {
5214 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5215 int index_srcdev
= 0;
5217 u64 physical_of_found
= 0;
5220 * During the dev-replace procedure, the target drive can
5221 * also be used to read data in case it is needed to repair
5222 * a corrupt block elsewhere. This is possible if the
5223 * requested area is left of the left cursor. In this area,
5224 * the target drive is a full copy of the source drive.
5226 for (i
= 0; i
< num_stripes
; i
++) {
5227 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5229 * In case of DUP, in order to keep it
5230 * simple, only add the mirror with the
5231 * lowest physical address
5234 physical_of_found
<=
5235 bbio
->stripes
[i
].physical
)
5239 physical_of_found
= bbio
->stripes
[i
].physical
;
5243 u64 length
= map
->stripe_len
;
5245 if (physical_of_found
+ length
<=
5246 dev_replace
->cursor_left
) {
5247 struct btrfs_bio_stripe
*tgtdev_stripe
=
5248 bbio
->stripes
+ num_stripes
;
5250 tgtdev_stripe
->physical
= physical_of_found
;
5251 tgtdev_stripe
->length
=
5252 bbio
->stripes
[index_srcdev
].length
;
5253 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5261 bbio
->num_stripes
= num_stripes
;
5262 bbio
->max_errors
= max_errors
;
5263 bbio
->mirror_num
= mirror_num
;
5266 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5267 * mirror_num == num_stripes + 1 && dev_replace target drive is
5268 * available as a mirror
5270 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5271 WARN_ON(num_stripes
> 1);
5272 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5273 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5274 bbio
->mirror_num
= map
->num_stripes
+ 1;
5277 sort_parity_stripes(bbio
, raid_map
);
5278 *raid_map_ret
= raid_map
;
5281 if (dev_replace_is_ongoing
)
5282 btrfs_dev_replace_unlock(dev_replace
);
5283 free_extent_map(em
);
5287 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5288 u64 logical
, u64
*length
,
5289 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5291 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5295 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5296 u64 chunk_start
, u64 physical
, u64 devid
,
5297 u64
**logical
, int *naddrs
, int *stripe_len
)
5299 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5300 struct extent_map
*em
;
5301 struct map_lookup
*map
;
5309 read_lock(&em_tree
->lock
);
5310 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5311 read_unlock(&em_tree
->lock
);
5314 printk(KERN_ERR
"BTRFS: couldn't find em for chunk %Lu\n",
5319 if (em
->start
!= chunk_start
) {
5320 printk(KERN_ERR
"BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5321 em
->start
, chunk_start
);
5322 free_extent_map(em
);
5325 map
= (struct map_lookup
*)em
->bdev
;
5328 rmap_len
= map
->stripe_len
;
5330 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5331 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
5332 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5333 do_div(length
, map
->num_stripes
);
5334 else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
5335 BTRFS_BLOCK_GROUP_RAID6
)) {
5336 do_div(length
, nr_data_stripes(map
));
5337 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5340 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
5341 BUG_ON(!buf
); /* -ENOMEM */
5343 for (i
= 0; i
< map
->num_stripes
; i
++) {
5344 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5346 if (map
->stripes
[i
].physical
> physical
||
5347 map
->stripes
[i
].physical
+ length
<= physical
)
5350 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5351 do_div(stripe_nr
, map
->stripe_len
);
5353 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5354 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5355 do_div(stripe_nr
, map
->sub_stripes
);
5356 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5357 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5358 } /* else if RAID[56], multiply by nr_data_stripes().
5359 * Alternatively, just use rmap_len below instead of
5360 * map->stripe_len */
5362 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5363 WARN_ON(nr
>= map
->num_stripes
);
5364 for (j
= 0; j
< nr
; j
++) {
5365 if (buf
[j
] == bytenr
)
5369 WARN_ON(nr
>= map
->num_stripes
);
5376 *stripe_len
= rmap_len
;
5378 free_extent_map(em
);
5382 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
, int err
)
5384 if (likely(bbio
->flags
& BTRFS_BIO_ORIG_BIO_SUBMITTED
))
5385 bio_endio_nodec(bio
, err
);
5387 bio_endio(bio
, err
);
5391 static void btrfs_end_bio(struct bio
*bio
, int err
)
5393 struct btrfs_bio
*bbio
= bio
->bi_private
;
5394 struct btrfs_device
*dev
= bbio
->stripes
[0].dev
;
5395 int is_orig_bio
= 0;
5398 atomic_inc(&bbio
->error
);
5399 if (err
== -EIO
|| err
== -EREMOTEIO
) {
5400 unsigned int stripe_index
=
5401 btrfs_io_bio(bio
)->stripe_index
;
5403 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5404 dev
= bbio
->stripes
[stripe_index
].dev
;
5406 if (bio
->bi_rw
& WRITE
)
5407 btrfs_dev_stat_inc(dev
,
5408 BTRFS_DEV_STAT_WRITE_ERRS
);
5410 btrfs_dev_stat_inc(dev
,
5411 BTRFS_DEV_STAT_READ_ERRS
);
5412 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5413 btrfs_dev_stat_inc(dev
,
5414 BTRFS_DEV_STAT_FLUSH_ERRS
);
5415 btrfs_dev_stat_print_on_error(dev
);
5420 if (bio
== bbio
->orig_bio
)
5423 btrfs_bio_counter_dec(bbio
->fs_info
);
5425 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5428 bio
= bbio
->orig_bio
;
5431 bio
->bi_private
= bbio
->private;
5432 bio
->bi_end_io
= bbio
->end_io
;
5433 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5434 /* only send an error to the higher layers if it is
5435 * beyond the tolerance of the btrfs bio
5437 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
5441 * this bio is actually up to date, we didn't
5442 * go over the max number of errors
5444 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5448 btrfs_end_bbio(bbio
, bio
, err
);
5449 } else if (!is_orig_bio
) {
5455 * see run_scheduled_bios for a description of why bios are collected for
5458 * This will add one bio to the pending list for a device and make sure
5459 * the work struct is scheduled.
5461 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
5462 struct btrfs_device
*device
,
5463 int rw
, struct bio
*bio
)
5465 int should_queue
= 1;
5466 struct btrfs_pending_bios
*pending_bios
;
5468 if (device
->missing
|| !device
->bdev
) {
5469 bio_endio(bio
, -EIO
);
5473 /* don't bother with additional async steps for reads, right now */
5474 if (!(rw
& REQ_WRITE
)) {
5476 btrfsic_submit_bio(rw
, bio
);
5482 * nr_async_bios allows us to reliably return congestion to the
5483 * higher layers. Otherwise, the async bio makes it appear we have
5484 * made progress against dirty pages when we've really just put it
5485 * on a queue for later
5487 atomic_inc(&root
->fs_info
->nr_async_bios
);
5488 WARN_ON(bio
->bi_next
);
5489 bio
->bi_next
= NULL
;
5492 spin_lock(&device
->io_lock
);
5493 if (bio
->bi_rw
& REQ_SYNC
)
5494 pending_bios
= &device
->pending_sync_bios
;
5496 pending_bios
= &device
->pending_bios
;
5498 if (pending_bios
->tail
)
5499 pending_bios
->tail
->bi_next
= bio
;
5501 pending_bios
->tail
= bio
;
5502 if (!pending_bios
->head
)
5503 pending_bios
->head
= bio
;
5504 if (device
->running_pending
)
5507 spin_unlock(&device
->io_lock
);
5510 btrfs_queue_work(root
->fs_info
->submit_workers
,
5514 static int bio_size_ok(struct block_device
*bdev
, struct bio
*bio
,
5517 struct bio_vec
*prev
;
5518 struct request_queue
*q
= bdev_get_queue(bdev
);
5519 unsigned int max_sectors
= queue_max_sectors(q
);
5520 struct bvec_merge_data bvm
= {
5522 .bi_sector
= sector
,
5523 .bi_rw
= bio
->bi_rw
,
5526 if (WARN_ON(bio
->bi_vcnt
== 0))
5529 prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
5530 if (bio_sectors(bio
) > max_sectors
)
5533 if (!q
->merge_bvec_fn
)
5536 bvm
.bi_size
= bio
->bi_iter
.bi_size
- prev
->bv_len
;
5537 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < prev
->bv_len
)
5542 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5543 struct bio
*bio
, u64 physical
, int dev_nr
,
5546 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
5548 bio
->bi_private
= bbio
;
5549 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
5550 bio
->bi_end_io
= btrfs_end_bio
;
5551 bio
->bi_iter
.bi_sector
= physical
>> 9;
5554 struct rcu_string
*name
;
5557 name
= rcu_dereference(dev
->name
);
5558 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5559 "(%s id %llu), size=%u\n", rw
,
5560 (u64
)bio
->bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
5561 name
->str
, dev
->devid
, bio
->bi_size
);
5565 bio
->bi_bdev
= dev
->bdev
;
5567 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
5570 btrfs_schedule_bio(root
, dev
, rw
, bio
);
5572 btrfsic_submit_bio(rw
, bio
);
5575 static int breakup_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5576 struct bio
*first_bio
, struct btrfs_device
*dev
,
5577 int dev_nr
, int rw
, int async
)
5579 struct bio_vec
*bvec
= first_bio
->bi_io_vec
;
5581 int nr_vecs
= bio_get_nr_vecs(dev
->bdev
);
5582 u64 physical
= bbio
->stripes
[dev_nr
].physical
;
5585 bio
= btrfs_bio_alloc(dev
->bdev
, physical
>> 9, nr_vecs
, GFP_NOFS
);
5589 while (bvec
<= (first_bio
->bi_io_vec
+ first_bio
->bi_vcnt
- 1)) {
5590 if (bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5591 bvec
->bv_offset
) < bvec
->bv_len
) {
5592 u64 len
= bio
->bi_iter
.bi_size
;
5594 atomic_inc(&bbio
->stripes_pending
);
5595 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
,
5603 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
, rw
, async
);
5607 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
5609 atomic_inc(&bbio
->error
);
5610 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5611 /* Shoud be the original bio. */
5612 WARN_ON(bio
!= bbio
->orig_bio
);
5614 bio
->bi_private
= bbio
->private;
5615 bio
->bi_end_io
= bbio
->end_io
;
5616 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5617 bio
->bi_iter
.bi_sector
= logical
>> 9;
5619 btrfs_end_bbio(bbio
, bio
, -EIO
);
5623 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
5624 int mirror_num
, int async_submit
)
5626 struct btrfs_device
*dev
;
5627 struct bio
*first_bio
= bio
;
5628 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
5631 u64
*raid_map
= NULL
;
5635 struct btrfs_bio
*bbio
= NULL
;
5637 length
= bio
->bi_iter
.bi_size
;
5638 map_length
= length
;
5640 btrfs_bio_counter_inc_blocked(root
->fs_info
);
5641 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
5642 mirror_num
, &raid_map
);
5644 btrfs_bio_counter_dec(root
->fs_info
);
5648 total_devs
= bbio
->num_stripes
;
5649 bbio
->orig_bio
= first_bio
;
5650 bbio
->private = first_bio
->bi_private
;
5651 bbio
->end_io
= first_bio
->bi_end_io
;
5652 bbio
->fs_info
= root
->fs_info
;
5653 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
5656 /* In this case, map_length has been set to the length of
5657 a single stripe; not the whole write */
5659 ret
= raid56_parity_write(root
, bio
, bbio
,
5660 raid_map
, map_length
);
5662 ret
= raid56_parity_recover(root
, bio
, bbio
,
5663 raid_map
, map_length
,
5667 * FIXME, replace dosen't support raid56 yet, please fix
5670 btrfs_bio_counter_dec(root
->fs_info
);
5674 if (map_length
< length
) {
5675 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
5676 logical
, length
, map_length
);
5680 while (dev_nr
< total_devs
) {
5681 dev
= bbio
->stripes
[dev_nr
].dev
;
5682 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
5683 bbio_error(bbio
, first_bio
, logical
);
5689 * Check and see if we're ok with this bio based on it's size
5690 * and offset with the given device.
5692 if (!bio_size_ok(dev
->bdev
, first_bio
,
5693 bbio
->stripes
[dev_nr
].physical
>> 9)) {
5694 ret
= breakup_stripe_bio(root
, bbio
, first_bio
, dev
,
5695 dev_nr
, rw
, async_submit
);
5701 if (dev_nr
< total_devs
- 1) {
5702 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
5703 BUG_ON(!bio
); /* -ENOMEM */
5706 bbio
->flags
|= BTRFS_BIO_ORIG_BIO_SUBMITTED
;
5709 submit_stripe_bio(root
, bbio
, bio
,
5710 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
5714 btrfs_bio_counter_dec(root
->fs_info
);
5718 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
5721 struct btrfs_device
*device
;
5722 struct btrfs_fs_devices
*cur_devices
;
5724 cur_devices
= fs_info
->fs_devices
;
5725 while (cur_devices
) {
5727 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
5728 device
= __find_device(&cur_devices
->devices
,
5733 cur_devices
= cur_devices
->seed
;
5738 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
5739 u64 devid
, u8
*dev_uuid
)
5741 struct btrfs_device
*device
;
5742 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
5744 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
5748 list_add(&device
->dev_list
, &fs_devices
->devices
);
5749 device
->fs_devices
= fs_devices
;
5750 fs_devices
->num_devices
++;
5752 device
->missing
= 1;
5753 fs_devices
->missing_devices
++;
5759 * btrfs_alloc_device - allocate struct btrfs_device
5760 * @fs_info: used only for generating a new devid, can be NULL if
5761 * devid is provided (i.e. @devid != NULL).
5762 * @devid: a pointer to devid for this device. If NULL a new devid
5764 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5767 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5768 * on error. Returned struct is not linked onto any lists and can be
5769 * destroyed with kfree() right away.
5771 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
5775 struct btrfs_device
*dev
;
5778 if (WARN_ON(!devid
&& !fs_info
))
5779 return ERR_PTR(-EINVAL
);
5781 dev
= __alloc_device();
5790 ret
= find_next_devid(fs_info
, &tmp
);
5793 return ERR_PTR(ret
);
5799 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
5801 generate_random_uuid(dev
->uuid
);
5803 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
5804 pending_bios_fn
, NULL
, NULL
);
5809 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
5810 struct extent_buffer
*leaf
,
5811 struct btrfs_chunk
*chunk
)
5813 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5814 struct map_lookup
*map
;
5815 struct extent_map
*em
;
5819 u8 uuid
[BTRFS_UUID_SIZE
];
5824 logical
= key
->offset
;
5825 length
= btrfs_chunk_length(leaf
, chunk
);
5827 read_lock(&map_tree
->map_tree
.lock
);
5828 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
5829 read_unlock(&map_tree
->map_tree
.lock
);
5831 /* already mapped? */
5832 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
5833 free_extent_map(em
);
5836 free_extent_map(em
);
5839 em
= alloc_extent_map();
5842 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
5843 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
5845 free_extent_map(em
);
5849 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
5850 em
->bdev
= (struct block_device
*)map
;
5851 em
->start
= logical
;
5854 em
->block_start
= 0;
5855 em
->block_len
= em
->len
;
5857 map
->num_stripes
= num_stripes
;
5858 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
5859 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
5860 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
5861 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
5862 map
->type
= btrfs_chunk_type(leaf
, chunk
);
5863 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
5864 for (i
= 0; i
< num_stripes
; i
++) {
5865 map
->stripes
[i
].physical
=
5866 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
5867 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
5868 read_extent_buffer(leaf
, uuid
, (unsigned long)
5869 btrfs_stripe_dev_uuid_nr(chunk
, i
),
5871 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
5873 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
5874 free_extent_map(em
);
5877 if (!map
->stripes
[i
].dev
) {
5878 map
->stripes
[i
].dev
=
5879 add_missing_dev(root
, devid
, uuid
);
5880 if (!map
->stripes
[i
].dev
) {
5881 free_extent_map(em
);
5885 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
5888 write_lock(&map_tree
->map_tree
.lock
);
5889 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
5890 write_unlock(&map_tree
->map_tree
.lock
);
5891 BUG_ON(ret
); /* Tree corruption */
5892 free_extent_map(em
);
5897 static void fill_device_from_item(struct extent_buffer
*leaf
,
5898 struct btrfs_dev_item
*dev_item
,
5899 struct btrfs_device
*device
)
5903 device
->devid
= btrfs_device_id(leaf
, dev_item
);
5904 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
5905 device
->total_bytes
= device
->disk_total_bytes
;
5906 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
5907 device
->type
= btrfs_device_type(leaf
, dev_item
);
5908 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
5909 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
5910 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
5911 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
5912 device
->is_tgtdev_for_dev_replace
= 0;
5914 ptr
= btrfs_device_uuid(dev_item
);
5915 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
5918 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
5920 struct btrfs_fs_devices
*fs_devices
;
5923 BUG_ON(!mutex_is_locked(&uuid_mutex
));
5925 fs_devices
= root
->fs_info
->fs_devices
->seed
;
5926 while (fs_devices
) {
5927 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
5931 fs_devices
= fs_devices
->seed
;
5934 fs_devices
= find_fsid(fsid
);
5940 fs_devices
= clone_fs_devices(fs_devices
);
5941 if (IS_ERR(fs_devices
)) {
5942 ret
= PTR_ERR(fs_devices
);
5946 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
5947 root
->fs_info
->bdev_holder
);
5949 free_fs_devices(fs_devices
);
5953 if (!fs_devices
->seeding
) {
5954 __btrfs_close_devices(fs_devices
);
5955 free_fs_devices(fs_devices
);
5960 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
5961 root
->fs_info
->fs_devices
->seed
= fs_devices
;
5966 static int read_one_dev(struct btrfs_root
*root
,
5967 struct extent_buffer
*leaf
,
5968 struct btrfs_dev_item
*dev_item
)
5970 struct btrfs_device
*device
;
5973 u8 fs_uuid
[BTRFS_UUID_SIZE
];
5974 u8 dev_uuid
[BTRFS_UUID_SIZE
];
5976 devid
= btrfs_device_id(leaf
, dev_item
);
5977 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
5979 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
5982 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
5983 ret
= open_seed_devices(root
, fs_uuid
);
5984 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
5988 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
5989 if (!device
|| !device
->bdev
) {
5990 if (!btrfs_test_opt(root
, DEGRADED
))
5994 btrfs_warn(root
->fs_info
, "devid %llu missing", devid
);
5995 device
= add_missing_dev(root
, devid
, dev_uuid
);
5998 } else if (!device
->missing
) {
6000 * this happens when a device that was properly setup
6001 * in the device info lists suddenly goes bad.
6002 * device->bdev is NULL, and so we have to set
6003 * device->missing to one here
6005 root
->fs_info
->fs_devices
->missing_devices
++;
6006 device
->missing
= 1;
6010 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6011 BUG_ON(device
->writeable
);
6012 if (device
->generation
!=
6013 btrfs_device_generation(leaf
, dev_item
))
6017 fill_device_from_item(leaf
, dev_item
, device
);
6018 device
->in_fs_metadata
= 1;
6019 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6020 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6021 spin_lock(&root
->fs_info
->free_chunk_lock
);
6022 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6024 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6030 int btrfs_read_sys_array(struct btrfs_root
*root
)
6032 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
6033 struct extent_buffer
*sb
;
6034 struct btrfs_disk_key
*disk_key
;
6035 struct btrfs_chunk
*chunk
;
6037 unsigned long sb_ptr
;
6043 struct btrfs_key key
;
6045 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
6046 BTRFS_SUPER_INFO_SIZE
);
6049 btrfs_set_buffer_uptodate(sb
);
6050 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6052 * The sb extent buffer is artifical and just used to read the system array.
6053 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6054 * pages up-to-date when the page is larger: extent does not cover the
6055 * whole page and consequently check_page_uptodate does not find all
6056 * the page's extents up-to-date (the hole beyond sb),
6057 * write_extent_buffer then triggers a WARN_ON.
6059 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6060 * but sb spans only this function. Add an explicit SetPageUptodate call
6061 * to silence the warning eg. on PowerPC 64.
6063 if (PAGE_CACHE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6064 SetPageUptodate(sb
->pages
[0]);
6066 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6067 array_size
= btrfs_super_sys_array_size(super_copy
);
6069 ptr
= super_copy
->sys_chunk_array
;
6070 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6073 while (cur
< array_size
) {
6074 disk_key
= (struct btrfs_disk_key
*)ptr
;
6075 btrfs_disk_key_to_cpu(&key
, disk_key
);
6077 len
= sizeof(*disk_key
); ptr
+= len
;
6081 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6082 chunk
= (struct btrfs_chunk
*)sb_ptr
;
6083 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6086 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6087 len
= btrfs_chunk_item_size(num_stripes
);
6096 free_extent_buffer(sb
);
6100 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6102 struct btrfs_path
*path
;
6103 struct extent_buffer
*leaf
;
6104 struct btrfs_key key
;
6105 struct btrfs_key found_key
;
6109 root
= root
->fs_info
->chunk_root
;
6111 path
= btrfs_alloc_path();
6115 mutex_lock(&uuid_mutex
);
6119 * Read all device items, and then all the chunk items. All
6120 * device items are found before any chunk item (their object id
6121 * is smaller than the lowest possible object id for a chunk
6122 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6124 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6127 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6131 leaf
= path
->nodes
[0];
6132 slot
= path
->slots
[0];
6133 if (slot
>= btrfs_header_nritems(leaf
)) {
6134 ret
= btrfs_next_leaf(root
, path
);
6141 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6142 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6143 struct btrfs_dev_item
*dev_item
;
6144 dev_item
= btrfs_item_ptr(leaf
, slot
,
6145 struct btrfs_dev_item
);
6146 ret
= read_one_dev(root
, leaf
, dev_item
);
6149 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6150 struct btrfs_chunk
*chunk
;
6151 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6152 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6160 unlock_chunks(root
);
6161 mutex_unlock(&uuid_mutex
);
6163 btrfs_free_path(path
);
6167 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6169 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6170 struct btrfs_device
*device
;
6172 while (fs_devices
) {
6173 mutex_lock(&fs_devices
->device_list_mutex
);
6174 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6175 device
->dev_root
= fs_info
->dev_root
;
6176 mutex_unlock(&fs_devices
->device_list_mutex
);
6178 fs_devices
= fs_devices
->seed
;
6182 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6186 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6187 btrfs_dev_stat_reset(dev
, i
);
6190 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6192 struct btrfs_key key
;
6193 struct btrfs_key found_key
;
6194 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6195 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6196 struct extent_buffer
*eb
;
6199 struct btrfs_device
*device
;
6200 struct btrfs_path
*path
= NULL
;
6203 path
= btrfs_alloc_path();
6209 mutex_lock(&fs_devices
->device_list_mutex
);
6210 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6212 struct btrfs_dev_stats_item
*ptr
;
6215 key
.type
= BTRFS_DEV_STATS_KEY
;
6216 key
.offset
= device
->devid
;
6217 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6219 __btrfs_reset_dev_stats(device
);
6220 device
->dev_stats_valid
= 1;
6221 btrfs_release_path(path
);
6224 slot
= path
->slots
[0];
6225 eb
= path
->nodes
[0];
6226 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6227 item_size
= btrfs_item_size_nr(eb
, slot
);
6229 ptr
= btrfs_item_ptr(eb
, slot
,
6230 struct btrfs_dev_stats_item
);
6232 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6233 if (item_size
>= (1 + i
) * sizeof(__le64
))
6234 btrfs_dev_stat_set(device
, i
,
6235 btrfs_dev_stats_value(eb
, ptr
, i
));
6237 btrfs_dev_stat_reset(device
, i
);
6240 device
->dev_stats_valid
= 1;
6241 btrfs_dev_stat_print_on_load(device
);
6242 btrfs_release_path(path
);
6244 mutex_unlock(&fs_devices
->device_list_mutex
);
6247 btrfs_free_path(path
);
6248 return ret
< 0 ? ret
: 0;
6251 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6252 struct btrfs_root
*dev_root
,
6253 struct btrfs_device
*device
)
6255 struct btrfs_path
*path
;
6256 struct btrfs_key key
;
6257 struct extent_buffer
*eb
;
6258 struct btrfs_dev_stats_item
*ptr
;
6263 key
.type
= BTRFS_DEV_STATS_KEY
;
6264 key
.offset
= device
->devid
;
6266 path
= btrfs_alloc_path();
6268 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6270 printk_in_rcu(KERN_WARNING
"BTRFS: "
6271 "error %d while searching for dev_stats item for device %s!\n",
6272 ret
, rcu_str_deref(device
->name
));
6277 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6278 /* need to delete old one and insert a new one */
6279 ret
= btrfs_del_item(trans
, dev_root
, path
);
6281 printk_in_rcu(KERN_WARNING
"BTRFS: "
6282 "delete too small dev_stats item for device %s failed %d!\n",
6283 rcu_str_deref(device
->name
), ret
);
6290 /* need to insert a new item */
6291 btrfs_release_path(path
);
6292 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6293 &key
, sizeof(*ptr
));
6295 printk_in_rcu(KERN_WARNING
"BTRFS: "
6296 "insert dev_stats item for device %s failed %d!\n",
6297 rcu_str_deref(device
->name
), ret
);
6302 eb
= path
->nodes
[0];
6303 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6304 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6305 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6306 btrfs_dev_stat_read(device
, i
));
6307 btrfs_mark_buffer_dirty(eb
);
6310 btrfs_free_path(path
);
6315 * called from commit_transaction. Writes all changed device stats to disk.
6317 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6318 struct btrfs_fs_info
*fs_info
)
6320 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6321 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6322 struct btrfs_device
*device
;
6325 mutex_lock(&fs_devices
->device_list_mutex
);
6326 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6327 if (!device
->dev_stats_valid
|| !device
->dev_stats_dirty
)
6330 ret
= update_dev_stat_item(trans
, dev_root
, device
);
6332 device
->dev_stats_dirty
= 0;
6334 mutex_unlock(&fs_devices
->device_list_mutex
);
6339 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
6341 btrfs_dev_stat_inc(dev
, index
);
6342 btrfs_dev_stat_print_on_error(dev
);
6345 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
6347 if (!dev
->dev_stats_valid
)
6349 printk_ratelimited_in_rcu(KERN_ERR
"BTRFS: "
6350 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6351 rcu_str_deref(dev
->name
),
6352 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6353 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6354 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6355 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6356 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6359 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
6363 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6364 if (btrfs_dev_stat_read(dev
, i
) != 0)
6366 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
6367 return; /* all values == 0, suppress message */
6369 printk_in_rcu(KERN_INFO
"BTRFS: "
6370 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6371 rcu_str_deref(dev
->name
),
6372 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6373 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6374 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6375 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6376 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6379 int btrfs_get_dev_stats(struct btrfs_root
*root
,
6380 struct btrfs_ioctl_get_dev_stats
*stats
)
6382 struct btrfs_device
*dev
;
6383 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6386 mutex_lock(&fs_devices
->device_list_mutex
);
6387 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
6388 mutex_unlock(&fs_devices
->device_list_mutex
);
6391 btrfs_warn(root
->fs_info
, "get dev_stats failed, device not found");
6393 } else if (!dev
->dev_stats_valid
) {
6394 btrfs_warn(root
->fs_info
, "get dev_stats failed, not yet valid");
6396 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
6397 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6398 if (stats
->nr_items
> i
)
6400 btrfs_dev_stat_read_and_reset(dev
, i
);
6402 btrfs_dev_stat_reset(dev
, i
);
6405 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6406 if (stats
->nr_items
> i
)
6407 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
6409 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
6410 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
6414 int btrfs_scratch_superblock(struct btrfs_device
*device
)
6416 struct buffer_head
*bh
;
6417 struct btrfs_super_block
*disk_super
;
6419 bh
= btrfs_read_dev_super(device
->bdev
);
6422 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
6424 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
6425 set_buffer_dirty(bh
);
6426 sync_dirty_buffer(bh
);