2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
53 unsigned id
; /* kernel internal index number */
54 unsigned nr
; /* number of io_events */
55 unsigned head
; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
60 unsigned compat_features
;
61 unsigned incompat_features
;
62 unsigned header_length
; /* size of aio_ring */
65 struct io_event io_events
[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
73 struct kioctx
*table
[];
77 unsigned reqs_available
;
81 struct percpu_ref users
;
84 struct percpu_ref reqs
;
86 unsigned long user_id
;
88 struct __percpu kioctx_cpu
*cpu
;
91 * For percpu reqs_available, number of slots we move to/from global
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
99 * The real limit is nr_events - 1, which will be larger (see
104 /* Size of ringbuffer, in units of struct io_event */
107 unsigned long mmap_base
;
108 unsigned long mmap_size
;
110 struct page
**ring_pages
;
113 struct work_struct free_work
;
116 * signals when all in-flight requests are done
118 struct completion
*requests_done
;
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
127 * We batch accesses to it with a percpu version.
129 atomic_t reqs_available
;
130 } ____cacheline_aligned_in_smp
;
134 struct list_head active_reqs
; /* used for cancellation */
135 } ____cacheline_aligned_in_smp
;
138 struct mutex ring_lock
;
139 wait_queue_head_t wait
;
140 } ____cacheline_aligned_in_smp
;
144 spinlock_t completion_lock
;
145 } ____cacheline_aligned_in_smp
;
147 struct page
*internal_pages
[AIO_RING_PAGES
];
148 struct file
*aio_ring_file
;
153 /*------ sysctl variables----*/
154 static DEFINE_SPINLOCK(aio_nr_lock
);
155 unsigned long aio_nr
; /* current system wide number of aio requests */
156 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
157 /*----end sysctl variables---*/
159 static struct kmem_cache
*kiocb_cachep
;
160 static struct kmem_cache
*kioctx_cachep
;
162 static struct vfsmount
*aio_mnt
;
164 static const struct file_operations aio_ring_fops
;
165 static const struct address_space_operations aio_ctx_aops
;
167 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
169 struct qstr
this = QSTR_INIT("[aio]", 5);
172 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
174 return ERR_CAST(inode
);
176 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
177 inode
->i_mapping
->private_data
= ctx
;
178 inode
->i_size
= PAGE_SIZE
* nr_pages
;
180 path
.dentry
= d_alloc_pseudo(aio_mnt
->mnt_sb
, &this);
183 return ERR_PTR(-ENOMEM
);
185 path
.mnt
= mntget(aio_mnt
);
187 d_instantiate(path
.dentry
, inode
);
188 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
, &aio_ring_fops
);
194 file
->f_flags
= O_RDWR
;
195 file
->private_data
= ctx
;
199 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
200 int flags
, const char *dev_name
, void *data
)
202 static const struct dentry_operations ops
= {
203 .d_dname
= simple_dname
,
205 return mount_pseudo(fs_type
, "aio:", NULL
, &ops
, 0xa10a10a1);
209 * Creates the slab caches used by the aio routines, panic on
210 * failure as this is done early during the boot sequence.
212 static int __init
aio_setup(void)
214 static struct file_system_type aio_fs
= {
217 .kill_sb
= kill_anon_super
,
219 aio_mnt
= kern_mount(&aio_fs
);
221 panic("Failed to create aio fs mount.");
223 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
224 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page
));
230 __initcall(aio_setup
);
232 static void put_aio_ring_file(struct kioctx
*ctx
)
234 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
236 truncate_setsize(aio_ring_file
->f_inode
, 0);
238 /* Prevent further access to the kioctx from migratepages */
239 spin_lock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
240 aio_ring_file
->f_inode
->i_mapping
->private_data
= NULL
;
241 ctx
->aio_ring_file
= NULL
;
242 spin_unlock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
248 static void aio_free_ring(struct kioctx
*ctx
)
252 /* Disconnect the kiotx from the ring file. This prevents future
253 * accesses to the kioctx from page migration.
255 put_aio_ring_file(ctx
);
257 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
259 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
260 page_count(ctx
->ring_pages
[i
]));
261 page
= ctx
->ring_pages
[i
];
264 ctx
->ring_pages
[i
] = NULL
;
268 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
269 kfree(ctx
->ring_pages
);
270 ctx
->ring_pages
= NULL
;
274 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
276 vma
->vm_ops
= &generic_file_vm_ops
;
280 static const struct file_operations aio_ring_fops
= {
281 .mmap
= aio_ring_mmap
,
284 static int aio_set_page_dirty(struct page
*page
)
289 #if IS_ENABLED(CONFIG_MIGRATION)
290 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
291 struct page
*old
, enum migrate_mode mode
)
300 /* mapping->private_lock here protects against the kioctx teardown. */
301 spin_lock(&mapping
->private_lock
);
302 ctx
= mapping
->private_data
;
308 /* The ring_lock mutex. The prevents aio_read_events() from writing
309 * to the ring's head, and prevents page migration from mucking in
310 * a partially initialized kiotx.
312 if (!mutex_trylock(&ctx
->ring_lock
)) {
318 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
319 /* Make sure the old page hasn't already been changed */
320 if (ctx
->ring_pages
[idx
] != old
)
328 /* Writeback must be complete */
329 BUG_ON(PageWriteback(old
));
332 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
, 1);
333 if (rc
!= MIGRATEPAGE_SUCCESS
) {
338 /* Take completion_lock to prevent other writes to the ring buffer
339 * while the old page is copied to the new. This prevents new
340 * events from being lost.
342 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
343 migrate_page_copy(new, old
);
344 BUG_ON(ctx
->ring_pages
[idx
] != old
);
345 ctx
->ring_pages
[idx
] = new;
346 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
348 /* The old page is no longer accessible. */
352 mutex_unlock(&ctx
->ring_lock
);
354 spin_unlock(&mapping
->private_lock
);
359 static const struct address_space_operations aio_ctx_aops
= {
360 .set_page_dirty
= aio_set_page_dirty
,
361 #if IS_ENABLED(CONFIG_MIGRATION)
362 .migratepage
= aio_migratepage
,
366 static int aio_setup_ring(struct kioctx
*ctx
)
368 struct aio_ring
*ring
;
369 unsigned nr_events
= ctx
->max_reqs
;
370 struct mm_struct
*mm
= current
->mm
;
371 unsigned long size
, unused
;
376 /* Compensate for the ring buffer's head/tail overlap entry */
377 nr_events
+= 2; /* 1 is required, 2 for good luck */
379 size
= sizeof(struct aio_ring
);
380 size
+= sizeof(struct io_event
) * nr_events
;
382 nr_pages
= PFN_UP(size
);
386 file
= aio_private_file(ctx
, nr_pages
);
388 ctx
->aio_ring_file
= NULL
;
392 ctx
->aio_ring_file
= file
;
393 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
394 / sizeof(struct io_event
);
396 ctx
->ring_pages
= ctx
->internal_pages
;
397 if (nr_pages
> AIO_RING_PAGES
) {
398 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
400 if (!ctx
->ring_pages
) {
401 put_aio_ring_file(ctx
);
406 for (i
= 0; i
< nr_pages
; i
++) {
408 page
= find_or_create_page(file
->f_inode
->i_mapping
,
409 i
, GFP_HIGHUSER
| __GFP_ZERO
);
412 pr_debug("pid(%d) page[%d]->count=%d\n",
413 current
->pid
, i
, page_count(page
));
414 SetPageUptodate(page
);
418 ctx
->ring_pages
[i
] = page
;
422 if (unlikely(i
!= nr_pages
)) {
427 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
428 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
430 down_write(&mm
->mmap_sem
);
431 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
432 PROT_READ
| PROT_WRITE
,
433 MAP_SHARED
, 0, &unused
);
434 up_write(&mm
->mmap_sem
);
435 if (IS_ERR((void *)ctx
->mmap_base
)) {
441 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
443 ctx
->user_id
= ctx
->mmap_base
;
444 ctx
->nr_events
= nr_events
; /* trusted copy */
446 ring
= kmap_atomic(ctx
->ring_pages
[0]);
447 ring
->nr
= nr_events
; /* user copy */
449 ring
->head
= ring
->tail
= 0;
450 ring
->magic
= AIO_RING_MAGIC
;
451 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
452 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
453 ring
->header_length
= sizeof(struct aio_ring
);
455 flush_dcache_page(ctx
->ring_pages
[0]);
460 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
461 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
462 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
464 void kiocb_set_cancel_fn(struct kiocb
*req
, kiocb_cancel_fn
*cancel
)
466 struct kioctx
*ctx
= req
->ki_ctx
;
469 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
471 if (!req
->ki_list
.next
)
472 list_add(&req
->ki_list
, &ctx
->active_reqs
);
474 req
->ki_cancel
= cancel
;
476 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
478 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
480 static int kiocb_cancel(struct kiocb
*kiocb
)
482 kiocb_cancel_fn
*old
, *cancel
;
485 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
486 * actually has a cancel function, hence the cmpxchg()
489 cancel
= ACCESS_ONCE(kiocb
->ki_cancel
);
491 if (!cancel
|| cancel
== KIOCB_CANCELLED
)
495 cancel
= cmpxchg(&kiocb
->ki_cancel
, old
, KIOCB_CANCELLED
);
496 } while (cancel
!= old
);
498 return cancel(kiocb
);
501 static void free_ioctx(struct work_struct
*work
)
503 struct kioctx
*ctx
= container_of(work
, struct kioctx
, free_work
);
505 pr_debug("freeing %p\n", ctx
);
508 free_percpu(ctx
->cpu
);
509 kmem_cache_free(kioctx_cachep
, ctx
);
512 static void free_ioctx_reqs(struct percpu_ref
*ref
)
514 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
516 /* At this point we know that there are no any in-flight requests */
517 if (ctx
->requests_done
)
518 complete(ctx
->requests_done
);
520 INIT_WORK(&ctx
->free_work
, free_ioctx
);
521 schedule_work(&ctx
->free_work
);
525 * When this function runs, the kioctx has been removed from the "hash table"
526 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
527 * now it's safe to cancel any that need to be.
529 static void free_ioctx_users(struct percpu_ref
*ref
)
531 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
534 spin_lock_irq(&ctx
->ctx_lock
);
536 while (!list_empty(&ctx
->active_reqs
)) {
537 req
= list_first_entry(&ctx
->active_reqs
,
538 struct kiocb
, ki_list
);
540 list_del_init(&req
->ki_list
);
544 spin_unlock_irq(&ctx
->ctx_lock
);
546 percpu_ref_kill(&ctx
->reqs
);
547 percpu_ref_put(&ctx
->reqs
);
550 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
553 struct kioctx_table
*table
, *old
;
554 struct aio_ring
*ring
;
556 spin_lock(&mm
->ioctx_lock
);
558 table
= rcu_dereference(mm
->ioctx_table
);
562 for (i
= 0; i
< table
->nr
; i
++)
563 if (!table
->table
[i
]) {
565 table
->table
[i
] = ctx
;
567 spin_unlock(&mm
->ioctx_lock
);
569 /* While kioctx setup is in progress,
570 * we are protected from page migration
571 * changes ring_pages by ->ring_lock.
573 ring
= kmap_atomic(ctx
->ring_pages
[0]);
579 new_nr
= (table
? table
->nr
: 1) * 4;
582 spin_unlock(&mm
->ioctx_lock
);
584 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
591 spin_lock(&mm
->ioctx_lock
);
593 old
= rcu_dereference(mm
->ioctx_table
);
596 rcu_assign_pointer(mm
->ioctx_table
, table
);
597 } else if (table
->nr
> old
->nr
) {
598 memcpy(table
->table
, old
->table
,
599 old
->nr
* sizeof(struct kioctx
*));
601 rcu_assign_pointer(mm
->ioctx_table
, table
);
610 static void aio_nr_sub(unsigned nr
)
612 spin_lock(&aio_nr_lock
);
613 if (WARN_ON(aio_nr
- nr
> aio_nr
))
617 spin_unlock(&aio_nr_lock
);
621 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
623 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
625 struct mm_struct
*mm
= current
->mm
;
630 * We keep track of the number of available ringbuffer slots, to prevent
631 * overflow (reqs_available), and we also use percpu counters for this.
633 * So since up to half the slots might be on other cpu's percpu counters
634 * and unavailable, double nr_events so userspace sees what they
635 * expected: additionally, we move req_batch slots to/from percpu
636 * counters at a time, so make sure that isn't 0:
638 nr_events
= max(nr_events
, num_possible_cpus() * 4);
641 /* Prevent overflows */
642 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
643 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
644 pr_debug("ENOMEM: nr_events too high\n");
645 return ERR_PTR(-EINVAL
);
648 if (!nr_events
|| (unsigned long)nr_events
> (aio_max_nr
* 2UL))
649 return ERR_PTR(-EAGAIN
);
651 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
653 return ERR_PTR(-ENOMEM
);
655 ctx
->max_reqs
= nr_events
;
657 spin_lock_init(&ctx
->ctx_lock
);
658 spin_lock_init(&ctx
->completion_lock
);
659 mutex_init(&ctx
->ring_lock
);
660 /* Protect against page migration throughout kiotx setup by keeping
661 * the ring_lock mutex held until setup is complete. */
662 mutex_lock(&ctx
->ring_lock
);
663 init_waitqueue_head(&ctx
->wait
);
665 INIT_LIST_HEAD(&ctx
->active_reqs
);
667 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
))
670 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
))
673 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
677 err
= aio_setup_ring(ctx
);
681 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
682 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
683 if (ctx
->req_batch
< 1)
686 /* limit the number of system wide aios */
687 spin_lock(&aio_nr_lock
);
688 if (aio_nr
+ nr_events
> (aio_max_nr
* 2UL) ||
689 aio_nr
+ nr_events
< aio_nr
) {
690 spin_unlock(&aio_nr_lock
);
694 aio_nr
+= ctx
->max_reqs
;
695 spin_unlock(&aio_nr_lock
);
697 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
698 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
700 err
= ioctx_add_table(ctx
, mm
);
704 /* Release the ring_lock mutex now that all setup is complete. */
705 mutex_unlock(&ctx
->ring_lock
);
707 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
708 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
712 aio_nr_sub(ctx
->max_reqs
);
716 mutex_unlock(&ctx
->ring_lock
);
717 free_percpu(ctx
->cpu
);
718 free_percpu(ctx
->reqs
.pcpu_count
);
719 free_percpu(ctx
->users
.pcpu_count
);
720 kmem_cache_free(kioctx_cachep
, ctx
);
721 pr_debug("error allocating ioctx %d\n", err
);
726 * Cancels all outstanding aio requests on an aio context. Used
727 * when the processes owning a context have all exited to encourage
728 * the rapid destruction of the kioctx.
730 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
731 struct completion
*requests_done
)
733 struct kioctx_table
*table
;
735 if (atomic_xchg(&ctx
->dead
, 1))
739 spin_lock(&mm
->ioctx_lock
);
741 table
= rcu_dereference(mm
->ioctx_table
);
743 WARN_ON(ctx
!= table
->table
[ctx
->id
]);
744 table
->table
[ctx
->id
] = NULL
;
746 spin_unlock(&mm
->ioctx_lock
);
748 /* percpu_ref_kill() will do the necessary call_rcu() */
749 wake_up_all(&ctx
->wait
);
752 * It'd be more correct to do this in free_ioctx(), after all
753 * the outstanding kiocbs have finished - but by then io_destroy
754 * has already returned, so io_setup() could potentially return
755 * -EAGAIN with no ioctxs actually in use (as far as userspace
758 aio_nr_sub(ctx
->max_reqs
);
761 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
763 ctx
->requests_done
= requests_done
;
764 percpu_ref_kill(&ctx
->users
);
768 /* wait_on_sync_kiocb:
769 * Waits on the given sync kiocb to complete.
771 ssize_t
wait_on_sync_kiocb(struct kiocb
*req
)
773 while (!req
->ki_ctx
) {
774 set_current_state(TASK_UNINTERRUPTIBLE
);
779 __set_current_state(TASK_RUNNING
);
780 return req
->ki_user_data
;
782 EXPORT_SYMBOL(wait_on_sync_kiocb
);
785 * exit_aio: called when the last user of mm goes away. At this point, there is
786 * no way for any new requests to be submited or any of the io_* syscalls to be
787 * called on the context.
789 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
792 void exit_aio(struct mm_struct
*mm
)
794 struct kioctx_table
*table
;
800 table
= rcu_dereference(mm
->ioctx_table
);
803 if (!table
|| i
>= table
->nr
) {
805 rcu_assign_pointer(mm
->ioctx_table
, NULL
);
811 ctx
= table
->table
[i
++];
817 * We don't need to bother with munmap() here -
818 * exit_mmap(mm) is coming and it'll unmap everything.
819 * Since aio_free_ring() uses non-zero ->mmap_size
820 * as indicator that it needs to unmap the area,
821 * just set it to 0; aio_free_ring() is the only
822 * place that uses ->mmap_size, so it's safe.
826 kill_ioctx(mm
, ctx
, NULL
);
830 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
832 struct kioctx_cpu
*kcpu
;
836 kcpu
= this_cpu_ptr(ctx
->cpu
);
838 local_irq_save(flags
);
839 kcpu
->reqs_available
+= nr
;
841 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
842 kcpu
->reqs_available
-= ctx
->req_batch
;
843 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
846 local_irq_restore(flags
);
850 static bool get_reqs_available(struct kioctx
*ctx
)
852 struct kioctx_cpu
*kcpu
;
857 kcpu
= this_cpu_ptr(ctx
->cpu
);
859 local_irq_save(flags
);
860 if (!kcpu
->reqs_available
) {
861 int old
, avail
= atomic_read(&ctx
->reqs_available
);
864 if (avail
< ctx
->req_batch
)
868 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
869 avail
, avail
- ctx
->req_batch
);
870 } while (avail
!= old
);
872 kcpu
->reqs_available
+= ctx
->req_batch
;
876 kcpu
->reqs_available
--;
878 local_irq_restore(flags
);
884 * Allocate a slot for an aio request.
885 * Returns NULL if no requests are free.
887 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
891 if (!get_reqs_available(ctx
))
894 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
|__GFP_ZERO
);
898 percpu_ref_get(&ctx
->reqs
);
903 put_reqs_available(ctx
, 1);
907 static void kiocb_free(struct kiocb
*req
)
911 if (req
->ki_eventfd
!= NULL
)
912 eventfd_ctx_put(req
->ki_eventfd
);
913 kmem_cache_free(kiocb_cachep
, req
);
916 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
918 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
919 struct mm_struct
*mm
= current
->mm
;
920 struct kioctx
*ctx
, *ret
= NULL
;
921 struct kioctx_table
*table
;
924 if (get_user(id
, &ring
->id
))
928 table
= rcu_dereference(mm
->ioctx_table
);
930 if (!table
|| id
>= table
->nr
)
933 ctx
= table
->table
[id
];
934 if (ctx
&& ctx
->user_id
== ctx_id
) {
935 percpu_ref_get(&ctx
->users
);
944 * Called when the io request on the given iocb is complete.
946 void aio_complete(struct kiocb
*iocb
, long res
, long res2
)
948 struct kioctx
*ctx
= iocb
->ki_ctx
;
949 struct aio_ring
*ring
;
950 struct io_event
*ev_page
, *event
;
955 * Special case handling for sync iocbs:
956 * - events go directly into the iocb for fast handling
957 * - the sync task with the iocb in its stack holds the single iocb
958 * ref, no other paths have a way to get another ref
959 * - the sync task helpfully left a reference to itself in the iocb
961 if (is_sync_kiocb(iocb
)) {
962 iocb
->ki_user_data
= res
;
964 iocb
->ki_ctx
= ERR_PTR(-EXDEV
);
965 wake_up_process(iocb
->ki_obj
.tsk
);
969 if (iocb
->ki_list
.next
) {
972 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
973 list_del(&iocb
->ki_list
);
974 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
978 * Add a completion event to the ring buffer. Must be done holding
979 * ctx->completion_lock to prevent other code from messing with the tail
980 * pointer since we might be called from irq context.
982 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
985 pos
= tail
+ AIO_EVENTS_OFFSET
;
987 if (++tail
>= ctx
->nr_events
)
990 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
991 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
993 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
994 event
->data
= iocb
->ki_user_data
;
998 kunmap_atomic(ev_page
);
999 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1001 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1002 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
1005 /* after flagging the request as done, we
1006 * must never even look at it again
1008 smp_wmb(); /* make event visible before updating tail */
1012 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1014 kunmap_atomic(ring
);
1015 flush_dcache_page(ctx
->ring_pages
[0]);
1017 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1019 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1022 * Check if the user asked us to deliver the result through an
1023 * eventfd. The eventfd_signal() function is safe to be called
1026 if (iocb
->ki_eventfd
!= NULL
)
1027 eventfd_signal(iocb
->ki_eventfd
, 1);
1029 /* everything turned out well, dispose of the aiocb. */
1031 put_reqs_available(ctx
, 1);
1034 * We have to order our ring_info tail store above and test
1035 * of the wait list below outside the wait lock. This is
1036 * like in wake_up_bit() where clearing a bit has to be
1037 * ordered with the unlocked test.
1041 if (waitqueue_active(&ctx
->wait
))
1042 wake_up(&ctx
->wait
);
1044 percpu_ref_put(&ctx
->reqs
);
1046 EXPORT_SYMBOL(aio_complete
);
1049 * Pull an event off of the ioctx's event ring. Returns the number of
1052 static long aio_read_events_ring(struct kioctx
*ctx
,
1053 struct io_event __user
*event
, long nr
)
1055 struct aio_ring
*ring
;
1056 unsigned head
, tail
, pos
;
1060 mutex_lock(&ctx
->ring_lock
);
1062 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1063 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1066 kunmap_atomic(ring
);
1068 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1073 head
%= ctx
->nr_events
;
1074 tail
%= ctx
->nr_events
;
1078 struct io_event
*ev
;
1081 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1085 avail
= min(avail
, nr
- ret
);
1086 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
-
1087 ((head
+ AIO_EVENTS_OFFSET
) % AIO_EVENTS_PER_PAGE
));
1089 pos
= head
+ AIO_EVENTS_OFFSET
;
1090 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1091 pos
%= AIO_EVENTS_PER_PAGE
;
1094 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1095 sizeof(*ev
) * avail
);
1098 if (unlikely(copy_ret
)) {
1105 head
%= ctx
->nr_events
;
1108 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1110 kunmap_atomic(ring
);
1111 flush_dcache_page(ctx
->ring_pages
[0]);
1113 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1115 mutex_unlock(&ctx
->ring_lock
);
1120 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1121 struct io_event __user
*event
, long *i
)
1123 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1128 if (unlikely(atomic_read(&ctx
->dead
)))
1134 return ret
< 0 || *i
>= min_nr
;
1137 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1138 struct io_event __user
*event
,
1139 struct timespec __user
*timeout
)
1141 ktime_t until
= { .tv64
= KTIME_MAX
};
1147 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1150 until
= timespec_to_ktime(ts
);
1154 * Note that aio_read_events() is being called as the conditional - i.e.
1155 * we're calling it after prepare_to_wait() has set task state to
1156 * TASK_INTERRUPTIBLE.
1158 * But aio_read_events() can block, and if it blocks it's going to flip
1159 * the task state back to TASK_RUNNING.
1161 * This should be ok, provided it doesn't flip the state back to
1162 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1163 * will only happen if the mutex_lock() call blocks, and we then find
1164 * the ringbuffer empty. So in practice we should be ok, but it's
1165 * something to be aware of when touching this code.
1167 wait_event_interruptible_hrtimeout(ctx
->wait
,
1168 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
), until
);
1170 if (!ret
&& signal_pending(current
))
1177 * Create an aio_context capable of receiving at least nr_events.
1178 * ctxp must not point to an aio_context that already exists, and
1179 * must be initialized to 0 prior to the call. On successful
1180 * creation of the aio_context, *ctxp is filled in with the resulting
1181 * handle. May fail with -EINVAL if *ctxp is not initialized,
1182 * if the specified nr_events exceeds internal limits. May fail
1183 * with -EAGAIN if the specified nr_events exceeds the user's limit
1184 * of available events. May fail with -ENOMEM if insufficient kernel
1185 * resources are available. May fail with -EFAULT if an invalid
1186 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1189 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1191 struct kioctx
*ioctx
= NULL
;
1195 ret
= get_user(ctx
, ctxp
);
1200 if (unlikely(ctx
|| nr_events
== 0)) {
1201 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1206 ioctx
= ioctx_alloc(nr_events
);
1207 ret
= PTR_ERR(ioctx
);
1208 if (!IS_ERR(ioctx
)) {
1209 ret
= put_user(ioctx
->user_id
, ctxp
);
1211 kill_ioctx(current
->mm
, ioctx
, NULL
);
1212 percpu_ref_put(&ioctx
->users
);
1220 * Destroy the aio_context specified. May cancel any outstanding
1221 * AIOs and block on completion. Will fail with -ENOSYS if not
1222 * implemented. May fail with -EINVAL if the context pointed to
1225 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1227 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1228 if (likely(NULL
!= ioctx
)) {
1229 struct completion requests_done
=
1230 COMPLETION_INITIALIZER_ONSTACK(requests_done
);
1233 /* Pass requests_done to kill_ioctx() where it can be set
1234 * in a thread-safe way. If we try to set it here then we have
1235 * a race condition if two io_destroy() called simultaneously.
1237 ret
= kill_ioctx(current
->mm
, ioctx
, &requests_done
);
1238 percpu_ref_put(&ioctx
->users
);
1240 /* Wait until all IO for the context are done. Otherwise kernel
1241 * keep using user-space buffers even if user thinks the context
1245 wait_for_completion(&requests_done
);
1249 pr_debug("EINVAL: io_destroy: invalid context id\n");
1253 typedef ssize_t (aio_rw_op
)(struct kiocb
*, const struct iovec
*,
1254 unsigned long, loff_t
);
1255 typedef ssize_t (rw_iter_op
)(struct kiocb
*, struct iov_iter
*);
1257 static ssize_t
aio_setup_vectored_rw(struct kiocb
*kiocb
,
1258 int rw
, char __user
*buf
,
1259 unsigned long *nr_segs
,
1260 struct iovec
**iovec
,
1265 *nr_segs
= kiocb
->ki_nbytes
;
1267 #ifdef CONFIG_COMPAT
1269 ret
= compat_rw_copy_check_uvector(rw
,
1270 (struct compat_iovec __user
*)buf
,
1271 *nr_segs
, 1, *iovec
, iovec
);
1274 ret
= rw_copy_check_uvector(rw
,
1275 (struct iovec __user
*)buf
,
1276 *nr_segs
, 1, *iovec
, iovec
);
1280 /* ki_nbytes now reflect bytes instead of segs */
1281 kiocb
->ki_nbytes
= ret
;
1285 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
,
1286 int rw
, char __user
*buf
,
1287 unsigned long *nr_segs
,
1288 struct iovec
*iovec
)
1290 if (unlikely(!access_ok(!rw
, buf
, kiocb
->ki_nbytes
)))
1293 iovec
->iov_base
= buf
;
1294 iovec
->iov_len
= kiocb
->ki_nbytes
;
1301 * Performs the initial checks and aio retry method
1302 * setup for the kiocb at the time of io submission.
1304 static ssize_t
aio_run_iocb(struct kiocb
*req
, unsigned opcode
,
1305 char __user
*buf
, bool compat
)
1307 struct file
*file
= req
->ki_filp
;
1309 unsigned long nr_segs
;
1313 rw_iter_op
*iter_op
;
1314 struct iovec inline_vec
, *iovec
= &inline_vec
;
1315 struct iov_iter iter
;
1318 case IOCB_CMD_PREAD
:
1319 case IOCB_CMD_PREADV
:
1322 rw_op
= file
->f_op
->aio_read
;
1323 iter_op
= file
->f_op
->read_iter
;
1326 case IOCB_CMD_PWRITE
:
1327 case IOCB_CMD_PWRITEV
:
1330 rw_op
= file
->f_op
->aio_write
;
1331 iter_op
= file
->f_op
->write_iter
;
1334 if (unlikely(!(file
->f_mode
& mode
)))
1337 if (!rw_op
&& !iter_op
)
1340 ret
= (opcode
== IOCB_CMD_PREADV
||
1341 opcode
== IOCB_CMD_PWRITEV
)
1342 ? aio_setup_vectored_rw(req
, rw
, buf
, &nr_segs
,
1344 : aio_setup_single_vector(req
, rw
, buf
, &nr_segs
,
1347 ret
= rw_verify_area(rw
, file
, &req
->ki_pos
, req
->ki_nbytes
);
1349 if (iovec
!= &inline_vec
)
1354 req
->ki_nbytes
= ret
;
1356 /* XXX: move/kill - rw_verify_area()? */
1357 /* This matches the pread()/pwrite() logic */
1358 if (req
->ki_pos
< 0) {
1364 file_start_write(file
);
1367 iov_iter_init(&iter
, rw
, iovec
, nr_segs
, req
->ki_nbytes
);
1368 ret
= iter_op(req
, &iter
);
1370 ret
= rw_op(req
, iovec
, nr_segs
, req
->ki_pos
);
1374 file_end_write(file
);
1377 case IOCB_CMD_FDSYNC
:
1378 if (!file
->f_op
->aio_fsync
)
1381 ret
= file
->f_op
->aio_fsync(req
, 1);
1384 case IOCB_CMD_FSYNC
:
1385 if (!file
->f_op
->aio_fsync
)
1388 ret
= file
->f_op
->aio_fsync(req
, 0);
1392 pr_debug("EINVAL: no operation provided\n");
1396 if (iovec
!= &inline_vec
)
1399 if (ret
!= -EIOCBQUEUED
) {
1401 * There's no easy way to restart the syscall since other AIO's
1402 * may be already running. Just fail this IO with EINTR.
1404 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
1405 ret
== -ERESTARTNOHAND
||
1406 ret
== -ERESTART_RESTARTBLOCK
))
1408 aio_complete(req
, ret
, 0);
1414 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1415 struct iocb
*iocb
, bool compat
)
1420 /* enforce forwards compatibility on users */
1421 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1422 pr_debug("EINVAL: reserve field set\n");
1426 /* prevent overflows */
1428 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1429 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1430 ((ssize_t
)iocb
->aio_nbytes
< 0)
1432 pr_debug("EINVAL: io_submit: overflow check\n");
1436 req
= aio_get_req(ctx
);
1440 req
->ki_filp
= fget(iocb
->aio_fildes
);
1441 if (unlikely(!req
->ki_filp
)) {
1446 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1448 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1449 * instance of the file* now. The file descriptor must be
1450 * an eventfd() fd, and will be signaled for each completed
1451 * event using the eventfd_signal() function.
1453 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1454 if (IS_ERR(req
->ki_eventfd
)) {
1455 ret
= PTR_ERR(req
->ki_eventfd
);
1456 req
->ki_eventfd
= NULL
;
1461 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1462 if (unlikely(ret
)) {
1463 pr_debug("EFAULT: aio_key\n");
1467 req
->ki_obj
.user
= user_iocb
;
1468 req
->ki_user_data
= iocb
->aio_data
;
1469 req
->ki_pos
= iocb
->aio_offset
;
1470 req
->ki_nbytes
= iocb
->aio_nbytes
;
1472 ret
= aio_run_iocb(req
, iocb
->aio_lio_opcode
,
1473 (char __user
*)(unsigned long)iocb
->aio_buf
,
1480 put_reqs_available(ctx
, 1);
1481 percpu_ref_put(&ctx
->reqs
);
1486 long do_io_submit(aio_context_t ctx_id
, long nr
,
1487 struct iocb __user
*__user
*iocbpp
, bool compat
)
1492 struct blk_plug plug
;
1494 if (unlikely(nr
< 0))
1497 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1498 nr
= LONG_MAX
/sizeof(*iocbpp
);
1500 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1503 ctx
= lookup_ioctx(ctx_id
);
1504 if (unlikely(!ctx
)) {
1505 pr_debug("EINVAL: invalid context id\n");
1509 blk_start_plug(&plug
);
1512 * AKPM: should this return a partial result if some of the IOs were
1513 * successfully submitted?
1515 for (i
=0; i
<nr
; i
++) {
1516 struct iocb __user
*user_iocb
;
1519 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1524 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1529 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, compat
);
1533 blk_finish_plug(&plug
);
1535 percpu_ref_put(&ctx
->users
);
1540 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1541 * the number of iocbs queued. May return -EINVAL if the aio_context
1542 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1543 * *iocbpp[0] is not properly initialized, if the operation specified
1544 * is invalid for the file descriptor in the iocb. May fail with
1545 * -EFAULT if any of the data structures point to invalid data. May
1546 * fail with -EBADF if the file descriptor specified in the first
1547 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1548 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1549 * fail with -ENOSYS if not implemented.
1551 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1552 struct iocb __user
* __user
*, iocbpp
)
1554 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1558 * Finds a given iocb for cancellation.
1560 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1563 struct list_head
*pos
;
1565 assert_spin_locked(&ctx
->ctx_lock
);
1567 if (key
!= KIOCB_KEY
)
1570 /* TODO: use a hash or array, this sucks. */
1571 list_for_each(pos
, &ctx
->active_reqs
) {
1572 struct kiocb
*kiocb
= list_kiocb(pos
);
1573 if (kiocb
->ki_obj
.user
== iocb
)
1580 * Attempts to cancel an iocb previously passed to io_submit. If
1581 * the operation is successfully cancelled, the resulting event is
1582 * copied into the memory pointed to by result without being placed
1583 * into the completion queue and 0 is returned. May fail with
1584 * -EFAULT if any of the data structures pointed to are invalid.
1585 * May fail with -EINVAL if aio_context specified by ctx_id is
1586 * invalid. May fail with -EAGAIN if the iocb specified was not
1587 * cancelled. Will fail with -ENOSYS if not implemented.
1589 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1590 struct io_event __user
*, result
)
1593 struct kiocb
*kiocb
;
1597 ret
= get_user(key
, &iocb
->aio_key
);
1601 ctx
= lookup_ioctx(ctx_id
);
1605 spin_lock_irq(&ctx
->ctx_lock
);
1607 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1609 ret
= kiocb_cancel(kiocb
);
1613 spin_unlock_irq(&ctx
->ctx_lock
);
1617 * The result argument is no longer used - the io_event is
1618 * always delivered via the ring buffer. -EINPROGRESS indicates
1619 * cancellation is progress:
1624 percpu_ref_put(&ctx
->users
);
1630 * Attempts to read at least min_nr events and up to nr events from
1631 * the completion queue for the aio_context specified by ctx_id. If
1632 * it succeeds, the number of read events is returned. May fail with
1633 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1634 * out of range, if timeout is out of range. May fail with -EFAULT
1635 * if any of the memory specified is invalid. May return 0 or
1636 * < min_nr if the timeout specified by timeout has elapsed
1637 * before sufficient events are available, where timeout == NULL
1638 * specifies an infinite timeout. Note that the timeout pointed to by
1639 * timeout is relative. Will fail with -ENOSYS if not implemented.
1641 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1644 struct io_event __user
*, events
,
1645 struct timespec __user
*, timeout
)
1647 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1650 if (likely(ioctx
)) {
1651 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1652 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1653 percpu_ref_put(&ioctx
->users
);