2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
24 * Inode locking rules:
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
41 * Inode LRU list locks
54 static unsigned int i_hash_mask __read_mostly
;
55 static unsigned int i_hash_shift __read_mostly
;
56 static struct hlist_head
*inode_hashtable __read_mostly
;
57 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
59 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_sb_list_lock
);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops
= {
67 EXPORT_SYMBOL(empty_aops
);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat
;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
75 static DEFINE_PER_CPU(unsigned long, nr_unused
);
77 static struct kmem_cache
*inode_cachep __read_mostly
;
79 static long get_nr_inodes(void)
83 for_each_possible_cpu(i
)
84 sum
+= per_cpu(nr_inodes
, i
);
85 return sum
< 0 ? 0 : sum
;
88 static inline long get_nr_inodes_unused(void)
92 for_each_possible_cpu(i
)
93 sum
+= per_cpu(nr_unused
, i
);
94 return sum
< 0 ? 0 : sum
;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty
> 0 ? nr_dirty
: 0;
105 * Handle nr_inode sysctl
108 int proc_nr_inodes(struct ctl_table
*table
, int write
,
109 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
111 inodes_stat
.nr_inodes
= get_nr_inodes();
112 inodes_stat
.nr_unused
= get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
118 * inode_init_always - perform inode structure intialisation
119 * @sb: superblock inode belongs to
120 * @inode: inode to initialise
122 * These are initializations that need to be done on every inode
123 * allocation as the fields are not initialised by slab allocation.
125 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
127 static const struct inode_operations empty_iops
;
128 static const struct file_operations empty_fops
;
129 struct address_space
*const mapping
= &inode
->i_data
;
132 inode
->i_blkbits
= sb
->s_blocksize_bits
;
134 atomic_set(&inode
->i_count
, 1);
135 inode
->i_op
= &empty_iops
;
136 inode
->i_fop
= &empty_fops
;
137 inode
->__i_nlink
= 1;
138 inode
->i_opflags
= 0;
139 i_uid_write(inode
, 0);
140 i_gid_write(inode
, 0);
141 atomic_set(&inode
->i_writecount
, 0);
145 inode
->i_generation
= 0;
147 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
149 inode
->i_pipe
= NULL
;
150 inode
->i_bdev
= NULL
;
151 inode
->i_cdev
= NULL
;
153 inode
->dirtied_when
= 0;
155 if (security_inode_alloc(inode
))
157 spin_lock_init(&inode
->i_lock
);
158 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
160 mutex_init(&inode
->i_mutex
);
161 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
163 atomic_set(&inode
->i_dio_count
, 0);
165 mapping
->a_ops
= &empty_aops
;
166 mapping
->host
= inode
;
168 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
169 mapping
->private_data
= NULL
;
170 mapping
->backing_dev_info
= &default_backing_dev_info
;
171 mapping
->writeback_index
= 0;
174 * If the block_device provides a backing_dev_info for client
175 * inodes then use that. Otherwise the inode share the bdev's
179 struct backing_dev_info
*bdi
;
181 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
182 mapping
->backing_dev_info
= bdi
;
184 inode
->i_private
= NULL
;
185 inode
->i_mapping
= mapping
;
186 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
187 #ifdef CONFIG_FS_POSIX_ACL
188 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
191 #ifdef CONFIG_FSNOTIFY
192 inode
->i_fsnotify_mask
= 0;
195 this_cpu_inc(nr_inodes
);
201 EXPORT_SYMBOL(inode_init_always
);
203 static struct inode
*alloc_inode(struct super_block
*sb
)
207 if (sb
->s_op
->alloc_inode
)
208 inode
= sb
->s_op
->alloc_inode(sb
);
210 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
215 if (unlikely(inode_init_always(sb
, inode
))) {
216 if (inode
->i_sb
->s_op
->destroy_inode
)
217 inode
->i_sb
->s_op
->destroy_inode(inode
);
219 kmem_cache_free(inode_cachep
, inode
);
226 void free_inode_nonrcu(struct inode
*inode
)
228 kmem_cache_free(inode_cachep
, inode
);
230 EXPORT_SYMBOL(free_inode_nonrcu
);
232 void __destroy_inode(struct inode
*inode
)
234 BUG_ON(inode_has_buffers(inode
));
235 security_inode_free(inode
);
236 fsnotify_inode_delete(inode
);
237 if (!inode
->i_nlink
) {
238 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
239 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
242 #ifdef CONFIG_FS_POSIX_ACL
243 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
244 posix_acl_release(inode
->i_acl
);
245 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
246 posix_acl_release(inode
->i_default_acl
);
248 this_cpu_dec(nr_inodes
);
250 EXPORT_SYMBOL(__destroy_inode
);
252 static void i_callback(struct rcu_head
*head
)
254 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
255 kmem_cache_free(inode_cachep
, inode
);
258 static void destroy_inode(struct inode
*inode
)
260 BUG_ON(!list_empty(&inode
->i_lru
));
261 __destroy_inode(inode
);
262 if (inode
->i_sb
->s_op
->destroy_inode
)
263 inode
->i_sb
->s_op
->destroy_inode(inode
);
265 call_rcu(&inode
->i_rcu
, i_callback
);
269 * drop_nlink - directly drop an inode's link count
272 * This is a low-level filesystem helper to replace any
273 * direct filesystem manipulation of i_nlink. In cases
274 * where we are attempting to track writes to the
275 * filesystem, a decrement to zero means an imminent
276 * write when the file is truncated and actually unlinked
279 void drop_nlink(struct inode
*inode
)
281 WARN_ON(inode
->i_nlink
== 0);
284 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
286 EXPORT_SYMBOL(drop_nlink
);
289 * clear_nlink - directly zero an inode's link count
292 * This is a low-level filesystem helper to replace any
293 * direct filesystem manipulation of i_nlink. See
294 * drop_nlink() for why we care about i_nlink hitting zero.
296 void clear_nlink(struct inode
*inode
)
298 if (inode
->i_nlink
) {
299 inode
->__i_nlink
= 0;
300 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
303 EXPORT_SYMBOL(clear_nlink
);
306 * set_nlink - directly set an inode's link count
308 * @nlink: new nlink (should be non-zero)
310 * This is a low-level filesystem helper to replace any
311 * direct filesystem manipulation of i_nlink.
313 void set_nlink(struct inode
*inode
, unsigned int nlink
)
318 /* Yes, some filesystems do change nlink from zero to one */
319 if (inode
->i_nlink
== 0)
320 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
322 inode
->__i_nlink
= nlink
;
325 EXPORT_SYMBOL(set_nlink
);
328 * inc_nlink - directly increment an inode's link count
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink. Currently,
333 * it is only here for parity with dec_nlink().
335 void inc_nlink(struct inode
*inode
)
337 if (unlikely(inode
->i_nlink
== 0)) {
338 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
339 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
344 EXPORT_SYMBOL(inc_nlink
);
346 void address_space_init_once(struct address_space
*mapping
)
348 memset(mapping
, 0, sizeof(*mapping
));
349 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
350 spin_lock_init(&mapping
->tree_lock
);
351 mutex_init(&mapping
->i_mmap_mutex
);
352 INIT_LIST_HEAD(&mapping
->private_list
);
353 spin_lock_init(&mapping
->private_lock
);
354 mapping
->i_mmap
= RB_ROOT
;
355 INIT_LIST_HEAD(&mapping
->i_mmap_nonlinear
);
357 EXPORT_SYMBOL(address_space_init_once
);
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
364 void inode_init_once(struct inode
*inode
)
366 memset(inode
, 0, sizeof(*inode
));
367 INIT_HLIST_NODE(&inode
->i_hash
);
368 INIT_LIST_HEAD(&inode
->i_devices
);
369 INIT_LIST_HEAD(&inode
->i_wb_list
);
370 INIT_LIST_HEAD(&inode
->i_lru
);
371 address_space_init_once(&inode
->i_data
);
372 i_size_ordered_init(inode
);
373 #ifdef CONFIG_FSNOTIFY
374 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
377 EXPORT_SYMBOL(inode_init_once
);
379 static void init_once(void *foo
)
381 struct inode
*inode
= (struct inode
*) foo
;
383 inode_init_once(inode
);
387 * inode->i_lock must be held
389 void __iget(struct inode
*inode
)
391 atomic_inc(&inode
->i_count
);
395 * get additional reference to inode; caller must already hold one.
397 void ihold(struct inode
*inode
)
399 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
401 EXPORT_SYMBOL(ihold
);
403 static void inode_lru_list_add(struct inode
*inode
)
405 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
406 this_cpu_inc(nr_unused
);
410 * Add inode to LRU if needed (inode is unused and clean).
412 * Needs inode->i_lock held.
414 void inode_add_lru(struct inode
*inode
)
416 if (!(inode
->i_state
& (I_DIRTY
| I_SYNC
| I_FREEING
| I_WILL_FREE
)) &&
417 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
418 inode_lru_list_add(inode
);
422 static void inode_lru_list_del(struct inode
*inode
)
425 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
426 this_cpu_dec(nr_unused
);
430 * inode_sb_list_add - add inode to the superblock list of inodes
431 * @inode: inode to add
433 void inode_sb_list_add(struct inode
*inode
)
435 spin_lock(&inode_sb_list_lock
);
436 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
437 spin_unlock(&inode_sb_list_lock
);
439 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
441 static inline void inode_sb_list_del(struct inode
*inode
)
443 if (!list_empty(&inode
->i_sb_list
)) {
444 spin_lock(&inode_sb_list_lock
);
445 list_del_init(&inode
->i_sb_list
);
446 spin_unlock(&inode_sb_list_lock
);
450 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
454 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
456 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
457 return tmp
& i_hash_mask
;
461 * __insert_inode_hash - hash an inode
462 * @inode: unhashed inode
463 * @hashval: unsigned long value used to locate this object in the
466 * Add an inode to the inode hash for this superblock.
468 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
470 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
472 spin_lock(&inode_hash_lock
);
473 spin_lock(&inode
->i_lock
);
474 hlist_add_head(&inode
->i_hash
, b
);
475 spin_unlock(&inode
->i_lock
);
476 spin_unlock(&inode_hash_lock
);
478 EXPORT_SYMBOL(__insert_inode_hash
);
481 * __remove_inode_hash - remove an inode from the hash
482 * @inode: inode to unhash
484 * Remove an inode from the superblock.
486 void __remove_inode_hash(struct inode
*inode
)
488 spin_lock(&inode_hash_lock
);
489 spin_lock(&inode
->i_lock
);
490 hlist_del_init(&inode
->i_hash
);
491 spin_unlock(&inode
->i_lock
);
492 spin_unlock(&inode_hash_lock
);
494 EXPORT_SYMBOL(__remove_inode_hash
);
496 void clear_inode(struct inode
*inode
)
500 * We have to cycle tree_lock here because reclaim can be still in the
501 * process of removing the last page (in __delete_from_page_cache())
502 * and we must not free mapping under it.
504 spin_lock_irq(&inode
->i_data
.tree_lock
);
505 BUG_ON(inode
->i_data
.nrpages
);
506 BUG_ON(inode
->i_data
.nrshadows
);
507 spin_unlock_irq(&inode
->i_data
.tree_lock
);
508 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
509 BUG_ON(!(inode
->i_state
& I_FREEING
));
510 BUG_ON(inode
->i_state
& I_CLEAR
);
511 /* don't need i_lock here, no concurrent mods to i_state */
512 inode
->i_state
= I_FREEING
| I_CLEAR
;
514 EXPORT_SYMBOL(clear_inode
);
517 * Free the inode passed in, removing it from the lists it is still connected
518 * to. We remove any pages still attached to the inode and wait for any IO that
519 * is still in progress before finally destroying the inode.
521 * An inode must already be marked I_FREEING so that we avoid the inode being
522 * moved back onto lists if we race with other code that manipulates the lists
523 * (e.g. writeback_single_inode). The caller is responsible for setting this.
525 * An inode must already be removed from the LRU list before being evicted from
526 * the cache. This should occur atomically with setting the I_FREEING state
527 * flag, so no inodes here should ever be on the LRU when being evicted.
529 static void evict(struct inode
*inode
)
531 const struct super_operations
*op
= inode
->i_sb
->s_op
;
533 BUG_ON(!(inode
->i_state
& I_FREEING
));
534 BUG_ON(!list_empty(&inode
->i_lru
));
536 if (!list_empty(&inode
->i_wb_list
))
537 inode_wb_list_del(inode
);
539 inode_sb_list_del(inode
);
542 * Wait for flusher thread to be done with the inode so that filesystem
543 * does not start destroying it while writeback is still running. Since
544 * the inode has I_FREEING set, flusher thread won't start new work on
545 * the inode. We just have to wait for running writeback to finish.
547 inode_wait_for_writeback(inode
);
549 if (op
->evict_inode
) {
550 op
->evict_inode(inode
);
552 truncate_inode_pages_final(&inode
->i_data
);
555 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
557 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
560 remove_inode_hash(inode
);
562 spin_lock(&inode
->i_lock
);
563 wake_up_bit(&inode
->i_state
, __I_NEW
);
564 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
565 spin_unlock(&inode
->i_lock
);
567 destroy_inode(inode
);
571 * dispose_list - dispose of the contents of a local list
572 * @head: the head of the list to free
574 * Dispose-list gets a local list with local inodes in it, so it doesn't
575 * need to worry about list corruption and SMP locks.
577 static void dispose_list(struct list_head
*head
)
579 while (!list_empty(head
)) {
582 inode
= list_first_entry(head
, struct inode
, i_lru
);
583 list_del_init(&inode
->i_lru
);
590 * evict_inodes - evict all evictable inodes for a superblock
591 * @sb: superblock to operate on
593 * Make sure that no inodes with zero refcount are retained. This is
594 * called by superblock shutdown after having MS_ACTIVE flag removed,
595 * so any inode reaching zero refcount during or after that call will
596 * be immediately evicted.
598 void evict_inodes(struct super_block
*sb
)
600 struct inode
*inode
, *next
;
603 spin_lock(&inode_sb_list_lock
);
604 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
605 if (atomic_read(&inode
->i_count
))
608 spin_lock(&inode
->i_lock
);
609 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
610 spin_unlock(&inode
->i_lock
);
614 inode
->i_state
|= I_FREEING
;
615 inode_lru_list_del(inode
);
616 spin_unlock(&inode
->i_lock
);
617 list_add(&inode
->i_lru
, &dispose
);
619 spin_unlock(&inode_sb_list_lock
);
621 dispose_list(&dispose
);
625 * invalidate_inodes - attempt to free all inodes on a superblock
626 * @sb: superblock to operate on
627 * @kill_dirty: flag to guide handling of dirty inodes
629 * Attempts to free all inodes for a given superblock. If there were any
630 * busy inodes return a non-zero value, else zero.
631 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
634 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
637 struct inode
*inode
, *next
;
640 spin_lock(&inode_sb_list_lock
);
641 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
642 spin_lock(&inode
->i_lock
);
643 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
644 spin_unlock(&inode
->i_lock
);
647 if (inode
->i_state
& I_DIRTY
&& !kill_dirty
) {
648 spin_unlock(&inode
->i_lock
);
652 if (atomic_read(&inode
->i_count
)) {
653 spin_unlock(&inode
->i_lock
);
658 inode
->i_state
|= I_FREEING
;
659 inode_lru_list_del(inode
);
660 spin_unlock(&inode
->i_lock
);
661 list_add(&inode
->i_lru
, &dispose
);
663 spin_unlock(&inode_sb_list_lock
);
665 dispose_list(&dispose
);
671 * Isolate the inode from the LRU in preparation for freeing it.
673 * Any inodes which are pinned purely because of attached pagecache have their
674 * pagecache removed. If the inode has metadata buffers attached to
675 * mapping->private_list then try to remove them.
677 * If the inode has the I_REFERENCED flag set, then it means that it has been
678 * used recently - the flag is set in iput_final(). When we encounter such an
679 * inode, clear the flag and move it to the back of the LRU so it gets another
680 * pass through the LRU before it gets reclaimed. This is necessary because of
681 * the fact we are doing lazy LRU updates to minimise lock contention so the
682 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
683 * with this flag set because they are the inodes that are out of order.
685 static enum lru_status
686 inode_lru_isolate(struct list_head
*item
, spinlock_t
*lru_lock
, void *arg
)
688 struct list_head
*freeable
= arg
;
689 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
692 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
693 * If we fail to get the lock, just skip it.
695 if (!spin_trylock(&inode
->i_lock
))
699 * Referenced or dirty inodes are still in use. Give them another pass
700 * through the LRU as we canot reclaim them now.
702 if (atomic_read(&inode
->i_count
) ||
703 (inode
->i_state
& ~I_REFERENCED
)) {
704 list_del_init(&inode
->i_lru
);
705 spin_unlock(&inode
->i_lock
);
706 this_cpu_dec(nr_unused
);
710 /* recently referenced inodes get one more pass */
711 if (inode
->i_state
& I_REFERENCED
) {
712 inode
->i_state
&= ~I_REFERENCED
;
713 spin_unlock(&inode
->i_lock
);
717 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
719 spin_unlock(&inode
->i_lock
);
720 spin_unlock(lru_lock
);
721 if (remove_inode_buffers(inode
)) {
723 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
724 if (current_is_kswapd())
725 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
727 __count_vm_events(PGINODESTEAL
, reap
);
728 if (current
->reclaim_state
)
729 current
->reclaim_state
->reclaimed_slab
+= reap
;
736 WARN_ON(inode
->i_state
& I_NEW
);
737 inode
->i_state
|= I_FREEING
;
738 list_move(&inode
->i_lru
, freeable
);
739 spin_unlock(&inode
->i_lock
);
741 this_cpu_dec(nr_unused
);
746 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
747 * This is called from the superblock shrinker function with a number of inodes
748 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
749 * then are freed outside inode_lock by dispose_list().
751 long prune_icache_sb(struct super_block
*sb
, unsigned long nr_to_scan
,
757 freed
= list_lru_walk_node(&sb
->s_inode_lru
, nid
, inode_lru_isolate
,
758 &freeable
, &nr_to_scan
);
759 dispose_list(&freeable
);
763 static void __wait_on_freeing_inode(struct inode
*inode
);
765 * Called with the inode lock held.
767 static struct inode
*find_inode(struct super_block
*sb
,
768 struct hlist_head
*head
,
769 int (*test
)(struct inode
*, void *),
772 struct inode
*inode
= NULL
;
775 hlist_for_each_entry(inode
, head
, i_hash
) {
776 if (inode
->i_sb
!= sb
)
778 if (!test(inode
, data
))
780 spin_lock(&inode
->i_lock
);
781 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
782 __wait_on_freeing_inode(inode
);
786 spin_unlock(&inode
->i_lock
);
793 * find_inode_fast is the fast path version of find_inode, see the comment at
794 * iget_locked for details.
796 static struct inode
*find_inode_fast(struct super_block
*sb
,
797 struct hlist_head
*head
, unsigned long ino
)
799 struct inode
*inode
= NULL
;
802 hlist_for_each_entry(inode
, head
, i_hash
) {
803 if (inode
->i_ino
!= ino
)
805 if (inode
->i_sb
!= sb
)
807 spin_lock(&inode
->i_lock
);
808 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
809 __wait_on_freeing_inode(inode
);
813 spin_unlock(&inode
->i_lock
);
820 * Each cpu owns a range of LAST_INO_BATCH numbers.
821 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
822 * to renew the exhausted range.
824 * This does not significantly increase overflow rate because every CPU can
825 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
826 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
827 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
828 * overflow rate by 2x, which does not seem too significant.
830 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
831 * error if st_ino won't fit in target struct field. Use 32bit counter
832 * here to attempt to avoid that.
834 #define LAST_INO_BATCH 1024
835 static DEFINE_PER_CPU(unsigned int, last_ino
);
837 unsigned int get_next_ino(void)
839 unsigned int *p
= &get_cpu_var(last_ino
);
840 unsigned int res
= *p
;
843 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
844 static atomic_t shared_last_ino
;
845 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
847 res
= next
- LAST_INO_BATCH
;
852 put_cpu_var(last_ino
);
855 EXPORT_SYMBOL(get_next_ino
);
858 * new_inode_pseudo - obtain an inode
861 * Allocates a new inode for given superblock.
862 * Inode wont be chained in superblock s_inodes list
864 * - fs can't be unmount
865 * - quotas, fsnotify, writeback can't work
867 struct inode
*new_inode_pseudo(struct super_block
*sb
)
869 struct inode
*inode
= alloc_inode(sb
);
872 spin_lock(&inode
->i_lock
);
874 spin_unlock(&inode
->i_lock
);
875 INIT_LIST_HEAD(&inode
->i_sb_list
);
881 * new_inode - obtain an inode
884 * Allocates a new inode for given superblock. The default gfp_mask
885 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
886 * If HIGHMEM pages are unsuitable or it is known that pages allocated
887 * for the page cache are not reclaimable or migratable,
888 * mapping_set_gfp_mask() must be called with suitable flags on the
889 * newly created inode's mapping
892 struct inode
*new_inode(struct super_block
*sb
)
896 spin_lock_prefetch(&inode_sb_list_lock
);
898 inode
= new_inode_pseudo(sb
);
900 inode_sb_list_add(inode
);
903 EXPORT_SYMBOL(new_inode
);
905 #ifdef CONFIG_DEBUG_LOCK_ALLOC
906 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
908 if (S_ISDIR(inode
->i_mode
)) {
909 struct file_system_type
*type
= inode
->i_sb
->s_type
;
911 /* Set new key only if filesystem hasn't already changed it */
912 if (lockdep_match_class(&inode
->i_mutex
, &type
->i_mutex_key
)) {
914 * ensure nobody is actually holding i_mutex
916 mutex_destroy(&inode
->i_mutex
);
917 mutex_init(&inode
->i_mutex
);
918 lockdep_set_class(&inode
->i_mutex
,
919 &type
->i_mutex_dir_key
);
923 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
927 * unlock_new_inode - clear the I_NEW state and wake up any waiters
928 * @inode: new inode to unlock
930 * Called when the inode is fully initialised to clear the new state of the
931 * inode and wake up anyone waiting for the inode to finish initialisation.
933 void unlock_new_inode(struct inode
*inode
)
935 lockdep_annotate_inode_mutex_key(inode
);
936 spin_lock(&inode
->i_lock
);
937 WARN_ON(!(inode
->i_state
& I_NEW
));
938 inode
->i_state
&= ~I_NEW
;
940 wake_up_bit(&inode
->i_state
, __I_NEW
);
941 spin_unlock(&inode
->i_lock
);
943 EXPORT_SYMBOL(unlock_new_inode
);
946 * lock_two_nondirectories - take two i_mutexes on non-directory objects
948 * Lock any non-NULL argument that is not a directory.
949 * Zero, one or two objects may be locked by this function.
951 * @inode1: first inode to lock
952 * @inode2: second inode to lock
954 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
957 swap(inode1
, inode2
);
959 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
960 mutex_lock(&inode1
->i_mutex
);
961 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
962 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_NONDIR2
);
964 EXPORT_SYMBOL(lock_two_nondirectories
);
967 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
968 * @inode1: first inode to unlock
969 * @inode2: second inode to unlock
971 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
973 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
974 mutex_unlock(&inode1
->i_mutex
);
975 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
976 mutex_unlock(&inode2
->i_mutex
);
978 EXPORT_SYMBOL(unlock_two_nondirectories
);
981 * iget5_locked - obtain an inode from a mounted file system
982 * @sb: super block of file system
983 * @hashval: hash value (usually inode number) to get
984 * @test: callback used for comparisons between inodes
985 * @set: callback used to initialize a new struct inode
986 * @data: opaque data pointer to pass to @test and @set
988 * Search for the inode specified by @hashval and @data in the inode cache,
989 * and if present it is return it with an increased reference count. This is
990 * a generalized version of iget_locked() for file systems where the inode
991 * number is not sufficient for unique identification of an inode.
993 * If the inode is not in cache, allocate a new inode and return it locked,
994 * hashed, and with the I_NEW flag set. The file system gets to fill it in
995 * before unlocking it via unlock_new_inode().
997 * Note both @test and @set are called with the inode_hash_lock held, so can't
1000 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1001 int (*test
)(struct inode
*, void *),
1002 int (*set
)(struct inode
*, void *), void *data
)
1004 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1005 struct inode
*inode
;
1007 spin_lock(&inode_hash_lock
);
1008 inode
= find_inode(sb
, head
, test
, data
);
1009 spin_unlock(&inode_hash_lock
);
1012 wait_on_inode(inode
);
1016 inode
= alloc_inode(sb
);
1020 spin_lock(&inode_hash_lock
);
1021 /* We released the lock, so.. */
1022 old
= find_inode(sb
, head
, test
, data
);
1024 if (set(inode
, data
))
1027 spin_lock(&inode
->i_lock
);
1028 inode
->i_state
= I_NEW
;
1029 hlist_add_head(&inode
->i_hash
, head
);
1030 spin_unlock(&inode
->i_lock
);
1031 inode_sb_list_add(inode
);
1032 spin_unlock(&inode_hash_lock
);
1034 /* Return the locked inode with I_NEW set, the
1035 * caller is responsible for filling in the contents
1041 * Uhhuh, somebody else created the same inode under
1042 * us. Use the old inode instead of the one we just
1045 spin_unlock(&inode_hash_lock
);
1046 destroy_inode(inode
);
1048 wait_on_inode(inode
);
1053 spin_unlock(&inode_hash_lock
);
1054 destroy_inode(inode
);
1057 EXPORT_SYMBOL(iget5_locked
);
1060 * iget_locked - obtain an inode from a mounted file system
1061 * @sb: super block of file system
1062 * @ino: inode number to get
1064 * Search for the inode specified by @ino in the inode cache and if present
1065 * return it with an increased reference count. This is for file systems
1066 * where the inode number is sufficient for unique identification of an inode.
1068 * If the inode is not in cache, allocate a new inode and return it locked,
1069 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1070 * before unlocking it via unlock_new_inode().
1072 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1074 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1075 struct inode
*inode
;
1077 spin_lock(&inode_hash_lock
);
1078 inode
= find_inode_fast(sb
, head
, ino
);
1079 spin_unlock(&inode_hash_lock
);
1081 wait_on_inode(inode
);
1085 inode
= alloc_inode(sb
);
1089 spin_lock(&inode_hash_lock
);
1090 /* We released the lock, so.. */
1091 old
= find_inode_fast(sb
, head
, ino
);
1094 spin_lock(&inode
->i_lock
);
1095 inode
->i_state
= I_NEW
;
1096 hlist_add_head(&inode
->i_hash
, head
);
1097 spin_unlock(&inode
->i_lock
);
1098 inode_sb_list_add(inode
);
1099 spin_unlock(&inode_hash_lock
);
1101 /* Return the locked inode with I_NEW set, the
1102 * caller is responsible for filling in the contents
1108 * Uhhuh, somebody else created the same inode under
1109 * us. Use the old inode instead of the one we just
1112 spin_unlock(&inode_hash_lock
);
1113 destroy_inode(inode
);
1115 wait_on_inode(inode
);
1119 EXPORT_SYMBOL(iget_locked
);
1122 * search the inode cache for a matching inode number.
1123 * If we find one, then the inode number we are trying to
1124 * allocate is not unique and so we should not use it.
1126 * Returns 1 if the inode number is unique, 0 if it is not.
1128 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1130 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1131 struct inode
*inode
;
1133 spin_lock(&inode_hash_lock
);
1134 hlist_for_each_entry(inode
, b
, i_hash
) {
1135 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1136 spin_unlock(&inode_hash_lock
);
1140 spin_unlock(&inode_hash_lock
);
1146 * iunique - get a unique inode number
1148 * @max_reserved: highest reserved inode number
1150 * Obtain an inode number that is unique on the system for a given
1151 * superblock. This is used by file systems that have no natural
1152 * permanent inode numbering system. An inode number is returned that
1153 * is higher than the reserved limit but unique.
1156 * With a large number of inodes live on the file system this function
1157 * currently becomes quite slow.
1159 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1162 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1163 * error if st_ino won't fit in target struct field. Use 32bit counter
1164 * here to attempt to avoid that.
1166 static DEFINE_SPINLOCK(iunique_lock
);
1167 static unsigned int counter
;
1170 spin_lock(&iunique_lock
);
1172 if (counter
<= max_reserved
)
1173 counter
= max_reserved
+ 1;
1175 } while (!test_inode_iunique(sb
, res
));
1176 spin_unlock(&iunique_lock
);
1180 EXPORT_SYMBOL(iunique
);
1182 struct inode
*igrab(struct inode
*inode
)
1184 spin_lock(&inode
->i_lock
);
1185 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1187 spin_unlock(&inode
->i_lock
);
1189 spin_unlock(&inode
->i_lock
);
1191 * Handle the case where s_op->clear_inode is not been
1192 * called yet, and somebody is calling igrab
1193 * while the inode is getting freed.
1199 EXPORT_SYMBOL(igrab
);
1202 * ilookup5_nowait - search for an inode in the inode cache
1203 * @sb: super block of file system to search
1204 * @hashval: hash value (usually inode number) to search for
1205 * @test: callback used for comparisons between inodes
1206 * @data: opaque data pointer to pass to @test
1208 * Search for the inode specified by @hashval and @data in the inode cache.
1209 * If the inode is in the cache, the inode is returned with an incremented
1212 * Note: I_NEW is not waited upon so you have to be very careful what you do
1213 * with the returned inode. You probably should be using ilookup5() instead.
1215 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1217 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1218 int (*test
)(struct inode
*, void *), void *data
)
1220 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1221 struct inode
*inode
;
1223 spin_lock(&inode_hash_lock
);
1224 inode
= find_inode(sb
, head
, test
, data
);
1225 spin_unlock(&inode_hash_lock
);
1229 EXPORT_SYMBOL(ilookup5_nowait
);
1232 * ilookup5 - search for an inode in the inode cache
1233 * @sb: super block of file system to search
1234 * @hashval: hash value (usually inode number) to search for
1235 * @test: callback used for comparisons between inodes
1236 * @data: opaque data pointer to pass to @test
1238 * Search for the inode specified by @hashval and @data in the inode cache,
1239 * and if the inode is in the cache, return the inode with an incremented
1240 * reference count. Waits on I_NEW before returning the inode.
1241 * returned with an incremented reference count.
1243 * This is a generalized version of ilookup() for file systems where the
1244 * inode number is not sufficient for unique identification of an inode.
1246 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1248 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1249 int (*test
)(struct inode
*, void *), void *data
)
1251 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1254 wait_on_inode(inode
);
1257 EXPORT_SYMBOL(ilookup5
);
1260 * ilookup - search for an inode in the inode cache
1261 * @sb: super block of file system to search
1262 * @ino: inode number to search for
1264 * Search for the inode @ino in the inode cache, and if the inode is in the
1265 * cache, the inode is returned with an incremented reference count.
1267 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1269 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1270 struct inode
*inode
;
1272 spin_lock(&inode_hash_lock
);
1273 inode
= find_inode_fast(sb
, head
, ino
);
1274 spin_unlock(&inode_hash_lock
);
1277 wait_on_inode(inode
);
1280 EXPORT_SYMBOL(ilookup
);
1282 int insert_inode_locked(struct inode
*inode
)
1284 struct super_block
*sb
= inode
->i_sb
;
1285 ino_t ino
= inode
->i_ino
;
1286 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1289 struct inode
*old
= NULL
;
1290 spin_lock(&inode_hash_lock
);
1291 hlist_for_each_entry(old
, head
, i_hash
) {
1292 if (old
->i_ino
!= ino
)
1294 if (old
->i_sb
!= sb
)
1296 spin_lock(&old
->i_lock
);
1297 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1298 spin_unlock(&old
->i_lock
);
1304 spin_lock(&inode
->i_lock
);
1305 inode
->i_state
|= I_NEW
;
1306 hlist_add_head(&inode
->i_hash
, head
);
1307 spin_unlock(&inode
->i_lock
);
1308 spin_unlock(&inode_hash_lock
);
1312 spin_unlock(&old
->i_lock
);
1313 spin_unlock(&inode_hash_lock
);
1315 if (unlikely(!inode_unhashed(old
))) {
1322 EXPORT_SYMBOL(insert_inode_locked
);
1324 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1325 int (*test
)(struct inode
*, void *), void *data
)
1327 struct super_block
*sb
= inode
->i_sb
;
1328 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1331 struct inode
*old
= NULL
;
1333 spin_lock(&inode_hash_lock
);
1334 hlist_for_each_entry(old
, head
, i_hash
) {
1335 if (old
->i_sb
!= sb
)
1337 if (!test(old
, data
))
1339 spin_lock(&old
->i_lock
);
1340 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1341 spin_unlock(&old
->i_lock
);
1347 spin_lock(&inode
->i_lock
);
1348 inode
->i_state
|= I_NEW
;
1349 hlist_add_head(&inode
->i_hash
, head
);
1350 spin_unlock(&inode
->i_lock
);
1351 spin_unlock(&inode_hash_lock
);
1355 spin_unlock(&old
->i_lock
);
1356 spin_unlock(&inode_hash_lock
);
1358 if (unlikely(!inode_unhashed(old
))) {
1365 EXPORT_SYMBOL(insert_inode_locked4
);
1368 int generic_delete_inode(struct inode
*inode
)
1372 EXPORT_SYMBOL(generic_delete_inode
);
1375 * Called when we're dropping the last reference
1378 * Call the FS "drop_inode()" function, defaulting to
1379 * the legacy UNIX filesystem behaviour. If it tells
1380 * us to evict inode, do so. Otherwise, retain inode
1381 * in cache if fs is alive, sync and evict if fs is
1384 static void iput_final(struct inode
*inode
)
1386 struct super_block
*sb
= inode
->i_sb
;
1387 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1390 WARN_ON(inode
->i_state
& I_NEW
);
1393 drop
= op
->drop_inode(inode
);
1395 drop
= generic_drop_inode(inode
);
1397 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1398 inode
->i_state
|= I_REFERENCED
;
1399 inode_add_lru(inode
);
1400 spin_unlock(&inode
->i_lock
);
1405 inode
->i_state
|= I_WILL_FREE
;
1406 spin_unlock(&inode
->i_lock
);
1407 write_inode_now(inode
, 1);
1408 spin_lock(&inode
->i_lock
);
1409 WARN_ON(inode
->i_state
& I_NEW
);
1410 inode
->i_state
&= ~I_WILL_FREE
;
1413 inode
->i_state
|= I_FREEING
;
1414 if (!list_empty(&inode
->i_lru
))
1415 inode_lru_list_del(inode
);
1416 spin_unlock(&inode
->i_lock
);
1422 * iput - put an inode
1423 * @inode: inode to put
1425 * Puts an inode, dropping its usage count. If the inode use count hits
1426 * zero, the inode is then freed and may also be destroyed.
1428 * Consequently, iput() can sleep.
1430 void iput(struct inode
*inode
)
1433 BUG_ON(inode
->i_state
& I_CLEAR
);
1435 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
))
1439 EXPORT_SYMBOL(iput
);
1442 * bmap - find a block number in a file
1443 * @inode: inode of file
1444 * @block: block to find
1446 * Returns the block number on the device holding the inode that
1447 * is the disk block number for the block of the file requested.
1448 * That is, asked for block 4 of inode 1 the function will return the
1449 * disk block relative to the disk start that holds that block of the
1452 sector_t
bmap(struct inode
*inode
, sector_t block
)
1455 if (inode
->i_mapping
->a_ops
->bmap
)
1456 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1459 EXPORT_SYMBOL(bmap
);
1462 * With relative atime, only update atime if the previous atime is
1463 * earlier than either the ctime or mtime or if at least a day has
1464 * passed since the last atime update.
1466 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1467 struct timespec now
)
1470 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1473 * Is mtime younger than atime? If yes, update atime:
1475 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1478 * Is ctime younger than atime? If yes, update atime:
1480 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1484 * Is the previous atime value older than a day? If yes,
1487 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1490 * Good, we can skip the atime update:
1496 * This does the actual work of updating an inodes time or version. Must have
1497 * had called mnt_want_write() before calling this.
1499 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1501 if (inode
->i_op
->update_time
)
1502 return inode
->i_op
->update_time(inode
, time
, flags
);
1504 if (flags
& S_ATIME
)
1505 inode
->i_atime
= *time
;
1506 if (flags
& S_VERSION
)
1507 inode_inc_iversion(inode
);
1508 if (flags
& S_CTIME
)
1509 inode
->i_ctime
= *time
;
1510 if (flags
& S_MTIME
)
1511 inode
->i_mtime
= *time
;
1512 mark_inode_dirty_sync(inode
);
1517 * touch_atime - update the access time
1518 * @path: the &struct path to update
1520 * Update the accessed time on an inode and mark it for writeback.
1521 * This function automatically handles read only file systems and media,
1522 * as well as the "noatime" flag and inode specific "noatime" markers.
1524 void touch_atime(const struct path
*path
)
1526 struct vfsmount
*mnt
= path
->mnt
;
1527 struct inode
*inode
= path
->dentry
->d_inode
;
1528 struct timespec now
;
1530 if (inode
->i_flags
& S_NOATIME
)
1532 if (IS_NOATIME(inode
))
1534 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1537 if (mnt
->mnt_flags
& MNT_NOATIME
)
1539 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1542 now
= current_fs_time(inode
->i_sb
);
1544 if (!relatime_need_update(mnt
, inode
, now
))
1547 if (timespec_equal(&inode
->i_atime
, &now
))
1550 if (!sb_start_write_trylock(inode
->i_sb
))
1553 if (__mnt_want_write(mnt
))
1556 * File systems can error out when updating inodes if they need to
1557 * allocate new space to modify an inode (such is the case for
1558 * Btrfs), but since we touch atime while walking down the path we
1559 * really don't care if we failed to update the atime of the file,
1560 * so just ignore the return value.
1561 * We may also fail on filesystems that have the ability to make parts
1562 * of the fs read only, e.g. subvolumes in Btrfs.
1564 update_time(inode
, &now
, S_ATIME
);
1565 __mnt_drop_write(mnt
);
1567 sb_end_write(inode
->i_sb
);
1569 EXPORT_SYMBOL(touch_atime
);
1572 * The logic we want is
1574 * if suid or (sgid and xgrp)
1577 int should_remove_suid(struct dentry
*dentry
)
1579 umode_t mode
= dentry
->d_inode
->i_mode
;
1582 /* suid always must be killed */
1583 if (unlikely(mode
& S_ISUID
))
1584 kill
= ATTR_KILL_SUID
;
1587 * sgid without any exec bits is just a mandatory locking mark; leave
1588 * it alone. If some exec bits are set, it's a real sgid; kill it.
1590 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1591 kill
|= ATTR_KILL_SGID
;
1593 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1598 EXPORT_SYMBOL(should_remove_suid
);
1600 static int __remove_suid(struct dentry
*dentry
, int kill
)
1602 struct iattr newattrs
;
1604 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1606 * Note we call this on write, so notify_change will not
1607 * encounter any conflicting delegations:
1609 return notify_change(dentry
, &newattrs
, NULL
);
1612 int file_remove_suid(struct file
*file
)
1614 struct dentry
*dentry
= file
->f_path
.dentry
;
1615 struct inode
*inode
= dentry
->d_inode
;
1620 /* Fast path for nothing security related */
1621 if (IS_NOSEC(inode
))
1624 killsuid
= should_remove_suid(dentry
);
1625 killpriv
= security_inode_need_killpriv(dentry
);
1630 error
= security_inode_killpriv(dentry
);
1631 if (!error
&& killsuid
)
1632 error
= __remove_suid(dentry
, killsuid
);
1633 if (!error
&& (inode
->i_sb
->s_flags
& MS_NOSEC
))
1634 inode
->i_flags
|= S_NOSEC
;
1638 EXPORT_SYMBOL(file_remove_suid
);
1641 * file_update_time - update mtime and ctime time
1642 * @file: file accessed
1644 * Update the mtime and ctime members of an inode and mark the inode
1645 * for writeback. Note that this function is meant exclusively for
1646 * usage in the file write path of filesystems, and filesystems may
1647 * choose to explicitly ignore update via this function with the
1648 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1649 * timestamps are handled by the server. This can return an error for
1650 * file systems who need to allocate space in order to update an inode.
1653 int file_update_time(struct file
*file
)
1655 struct inode
*inode
= file_inode(file
);
1656 struct timespec now
;
1660 /* First try to exhaust all avenues to not sync */
1661 if (IS_NOCMTIME(inode
))
1664 now
= current_fs_time(inode
->i_sb
);
1665 if (!timespec_equal(&inode
->i_mtime
, &now
))
1668 if (!timespec_equal(&inode
->i_ctime
, &now
))
1671 if (IS_I_VERSION(inode
))
1672 sync_it
|= S_VERSION
;
1677 /* Finally allowed to write? Takes lock. */
1678 if (__mnt_want_write_file(file
))
1681 ret
= update_time(inode
, &now
, sync_it
);
1682 __mnt_drop_write_file(file
);
1686 EXPORT_SYMBOL(file_update_time
);
1688 int inode_needs_sync(struct inode
*inode
)
1692 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1696 EXPORT_SYMBOL(inode_needs_sync
);
1698 int inode_wait(void *word
)
1703 EXPORT_SYMBOL(inode_wait
);
1706 * If we try to find an inode in the inode hash while it is being
1707 * deleted, we have to wait until the filesystem completes its
1708 * deletion before reporting that it isn't found. This function waits
1709 * until the deletion _might_ have completed. Callers are responsible
1710 * to recheck inode state.
1712 * It doesn't matter if I_NEW is not set initially, a call to
1713 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1716 static void __wait_on_freeing_inode(struct inode
*inode
)
1718 wait_queue_head_t
*wq
;
1719 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1720 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1721 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1722 spin_unlock(&inode
->i_lock
);
1723 spin_unlock(&inode_hash_lock
);
1725 finish_wait(wq
, &wait
.wait
);
1726 spin_lock(&inode_hash_lock
);
1729 static __initdata
unsigned long ihash_entries
;
1730 static int __init
set_ihash_entries(char *str
)
1734 ihash_entries
= simple_strtoul(str
, &str
, 0);
1737 __setup("ihash_entries=", set_ihash_entries
);
1740 * Initialize the waitqueues and inode hash table.
1742 void __init
inode_init_early(void)
1746 /* If hashes are distributed across NUMA nodes, defer
1747 * hash allocation until vmalloc space is available.
1753 alloc_large_system_hash("Inode-cache",
1754 sizeof(struct hlist_head
),
1763 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1764 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1767 void __init
inode_init(void)
1771 /* inode slab cache */
1772 inode_cachep
= kmem_cache_create("inode_cache",
1773 sizeof(struct inode
),
1775 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1779 /* Hash may have been set up in inode_init_early */
1784 alloc_large_system_hash("Inode-cache",
1785 sizeof(struct hlist_head
),
1794 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1795 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1798 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1800 inode
->i_mode
= mode
;
1801 if (S_ISCHR(mode
)) {
1802 inode
->i_fop
= &def_chr_fops
;
1803 inode
->i_rdev
= rdev
;
1804 } else if (S_ISBLK(mode
)) {
1805 inode
->i_fop
= &def_blk_fops
;
1806 inode
->i_rdev
= rdev
;
1807 } else if (S_ISFIFO(mode
))
1808 inode
->i_fop
= &pipefifo_fops
;
1809 else if (S_ISSOCK(mode
))
1810 inode
->i_fop
= &bad_sock_fops
;
1812 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1813 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1816 EXPORT_SYMBOL(init_special_inode
);
1819 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1821 * @dir: Directory inode
1822 * @mode: mode of the new inode
1824 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1827 inode
->i_uid
= current_fsuid();
1828 if (dir
&& dir
->i_mode
& S_ISGID
) {
1829 inode
->i_gid
= dir
->i_gid
;
1833 inode
->i_gid
= current_fsgid();
1834 inode
->i_mode
= mode
;
1836 EXPORT_SYMBOL(inode_init_owner
);
1839 * inode_owner_or_capable - check current task permissions to inode
1840 * @inode: inode being checked
1842 * Return true if current either has CAP_FOWNER in a namespace with the
1843 * inode owner uid mapped, or owns the file.
1845 bool inode_owner_or_capable(const struct inode
*inode
)
1847 struct user_namespace
*ns
;
1849 if (uid_eq(current_fsuid(), inode
->i_uid
))
1852 ns
= current_user_ns();
1853 if (ns_capable(ns
, CAP_FOWNER
) && kuid_has_mapping(ns
, inode
->i_uid
))
1857 EXPORT_SYMBOL(inode_owner_or_capable
);
1860 * Direct i/o helper functions
1862 static void __inode_dio_wait(struct inode
*inode
)
1864 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
1865 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
1868 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
1869 if (atomic_read(&inode
->i_dio_count
))
1871 } while (atomic_read(&inode
->i_dio_count
));
1872 finish_wait(wq
, &q
.wait
);
1876 * inode_dio_wait - wait for outstanding DIO requests to finish
1877 * @inode: inode to wait for
1879 * Waits for all pending direct I/O requests to finish so that we can
1880 * proceed with a truncate or equivalent operation.
1882 * Must be called under a lock that serializes taking new references
1883 * to i_dio_count, usually by inode->i_mutex.
1885 void inode_dio_wait(struct inode
*inode
)
1887 if (atomic_read(&inode
->i_dio_count
))
1888 __inode_dio_wait(inode
);
1890 EXPORT_SYMBOL(inode_dio_wait
);
1893 * inode_dio_done - signal finish of a direct I/O requests
1894 * @inode: inode the direct I/O happens on
1896 * This is called once we've finished processing a direct I/O request,
1897 * and is used to wake up callers waiting for direct I/O to be quiesced.
1899 void inode_dio_done(struct inode
*inode
)
1901 if (atomic_dec_and_test(&inode
->i_dio_count
))
1902 wake_up_bit(&inode
->i_state
, __I_DIO_WAKEUP
);
1904 EXPORT_SYMBOL(inode_dio_done
);
1907 * inode_set_flags - atomically set some inode flags
1909 * Note: the caller should be holding i_mutex, or else be sure that
1910 * they have exclusive access to the inode structure (i.e., while the
1911 * inode is being instantiated). The reason for the cmpxchg() loop
1912 * --- which wouldn't be necessary if all code paths which modify
1913 * i_flags actually followed this rule, is that there is at least one
1914 * code path which doesn't today --- for example,
1915 * __generic_file_aio_write() calls file_remove_suid() without holding
1916 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1918 * In the long run, i_mutex is overkill, and we should probably look
1919 * at using the i_lock spinlock to protect i_flags, and then make sure
1920 * it is so documented in include/linux/fs.h and that all code follows
1921 * the locking convention!!
1923 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
1926 unsigned int old_flags
, new_flags
;
1928 WARN_ON_ONCE(flags
& ~mask
);
1930 old_flags
= ACCESS_ONCE(inode
->i_flags
);
1931 new_flags
= (old_flags
& ~mask
) | flags
;
1932 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
1933 new_flags
) != old_flags
));
1935 EXPORT_SYMBOL(inode_set_flags
);