arm: Add devicetree fixup machine function
[linux/fpc-iii.git] / fs / reiserfs / reiserfs.h
blobbf53888c7f59a677081c1e84425b9a236affccbc
1 /*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
3 * licensing and copyright details
4 */
6 #include <linux/reiserfs_fs.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/sched.h>
11 #include <linux/bug.h>
12 #include <linux/workqueue.h>
13 #include <asm/unaligned.h>
14 #include <linux/bitops.h>
15 #include <linux/proc_fs.h>
16 #include <linux/buffer_head.h>
18 /* the 32 bit compat definitions with int argument */
19 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
20 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
21 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
22 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
23 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
25 struct reiserfs_journal_list;
27 /* bitmasks for i_flags field in reiserfs-specific part of inode */
28 typedef enum {
30 * this says what format of key do all items (but stat data) of
31 * an object have. If this is set, that format is 3.6 otherwise - 3.5
33 i_item_key_version_mask = 0x0001,
36 * If this is unset, object has 3.5 stat data, otherwise,
37 * it has 3.6 stat data with 64bit size, 32bit nlink etc.
39 i_stat_data_version_mask = 0x0002,
41 /* file might need tail packing on close */
42 i_pack_on_close_mask = 0x0004,
44 /* don't pack tail of file */
45 i_nopack_mask = 0x0008,
48 * If either of these are set, "safe link" was created for this
49 * file during truncate or unlink. Safe link is used to avoid
50 * leakage of disk space on crash with some files open, but unlinked.
52 i_link_saved_unlink_mask = 0x0010,
53 i_link_saved_truncate_mask = 0x0020,
55 i_has_xattr_dir = 0x0040,
56 i_data_log = 0x0080,
57 } reiserfs_inode_flags;
59 struct reiserfs_inode_info {
60 __u32 i_key[4]; /* key is still 4 32 bit integers */
63 * transient inode flags that are never stored on disk. Bitmasks
64 * for this field are defined above.
66 __u32 i_flags;
68 /* offset of first byte stored in direct item. */
69 __u32 i_first_direct_byte;
71 /* copy of persistent inode flags read from sd_attrs. */
72 __u32 i_attrs;
74 /* first unused block of a sequence of unused blocks */
75 int i_prealloc_block;
76 int i_prealloc_count; /* length of that sequence */
78 /* per-transaction list of inodes which have preallocated blocks */
79 struct list_head i_prealloc_list;
82 * new_packing_locality is created; new blocks for the contents
83 * of this directory should be displaced
85 unsigned new_packing_locality:1;
88 * we use these for fsync or O_SYNC to decide which transaction
89 * needs to be committed in order for this inode to be properly
90 * flushed
92 unsigned int i_trans_id;
94 struct reiserfs_journal_list *i_jl;
95 atomic_t openers;
96 struct mutex tailpack;
97 #ifdef CONFIG_REISERFS_FS_XATTR
98 struct rw_semaphore i_xattr_sem;
99 #endif
100 struct inode vfs_inode;
103 typedef enum {
104 reiserfs_attrs_cleared = 0x00000001,
105 } reiserfs_super_block_flags;
108 * struct reiserfs_super_block accessors/mutators since this is a disk
109 * structure, it will always be in little endian format.
111 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count))
112 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
113 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks))
114 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
115 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block))
116 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
118 #define sb_jp_journal_1st_block(sbp) \
119 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
120 #define set_sb_jp_journal_1st_block(sbp,v) \
121 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
122 #define sb_jp_journal_dev(sbp) \
123 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
124 #define set_sb_jp_journal_dev(sbp,v) \
125 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
126 #define sb_jp_journal_size(sbp) \
127 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
128 #define set_sb_jp_journal_size(sbp,v) \
129 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
130 #define sb_jp_journal_trans_max(sbp) \
131 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
132 #define set_sb_jp_journal_trans_max(sbp,v) \
133 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
134 #define sb_jp_journal_magic(sbp) \
135 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
136 #define set_sb_jp_journal_magic(sbp,v) \
137 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
138 #define sb_jp_journal_max_batch(sbp) \
139 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
140 #define set_sb_jp_journal_max_batch(sbp,v) \
141 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
142 #define sb_jp_jourmal_max_commit_age(sbp) \
143 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
144 #define set_sb_jp_journal_max_commit_age(sbp,v) \
145 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
147 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize))
148 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
149 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
150 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
151 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
152 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
153 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state))
154 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
155 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state))
156 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
157 #define sb_hash_function_code(sbp) \
158 (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
159 #define set_sb_hash_function_code(sbp,v) \
160 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
161 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height))
162 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
163 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
164 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
165 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version))
166 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v))
168 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count))
169 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v))
171 #define sb_reserved_for_journal(sbp) \
172 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
173 #define set_sb_reserved_for_journal(sbp,v) \
174 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
176 /* LOGGING -- */
179 * These all interelate for performance.
181 * If the journal block count is smaller than n transactions, you lose speed.
182 * I don't know what n is yet, I'm guessing 8-16.
184 * typical transaction size depends on the application, how often fsync is
185 * called, and how many metadata blocks you dirty in a 30 second period.
186 * The more small files (<16k) you use, the larger your transactions will
187 * be.
189 * If your journal fills faster than dirty buffers get flushed to disk, it
190 * must flush them before allowing the journal to wrap, which slows things
191 * down. If you need high speed meta data updates, the journal should be
192 * big enough to prevent wrapping before dirty meta blocks get to disk.
194 * If the batch max is smaller than the transaction max, you'll waste space
195 * at the end of the journal because journal_end sets the next transaction
196 * to start at 0 if the next transaction has any chance of wrapping.
198 * The large the batch max age, the better the speed, and the more meta
199 * data changes you'll lose after a crash.
202 /* don't mess with these for a while */
203 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
204 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */
205 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */
206 #define JOURNAL_HASH_SIZE 8192
208 /* number of copies of the bitmaps to have floating. Must be >= 2 */
209 #define JOURNAL_NUM_BITMAPS 5
212 * One of these for every block in every transaction
213 * Each one is in two hash tables. First, a hash of the current transaction,
214 * and after journal_end, a hash of all the in memory transactions.
215 * next and prev are used by the current transaction (journal_hash).
216 * hnext and hprev are used by journal_list_hash. If a block is in more
217 * than one transaction, the journal_list_hash links it in multiple times.
218 * This allows flush_journal_list to remove just the cnode belonging to a
219 * given transaction.
221 struct reiserfs_journal_cnode {
222 struct buffer_head *bh; /* real buffer head */
223 struct super_block *sb; /* dev of real buffer head */
225 /* block number of real buffer head, == 0 when buffer on disk */
226 __u32 blocknr;
228 unsigned long state;
230 /* journal list this cnode lives in */
231 struct reiserfs_journal_list *jlist;
233 struct reiserfs_journal_cnode *next; /* next in transaction list */
234 struct reiserfs_journal_cnode *prev; /* prev in transaction list */
235 struct reiserfs_journal_cnode *hprev; /* prev in hash list */
236 struct reiserfs_journal_cnode *hnext; /* next in hash list */
239 struct reiserfs_bitmap_node {
240 int id;
241 char *data;
242 struct list_head list;
245 struct reiserfs_list_bitmap {
246 struct reiserfs_journal_list *journal_list;
247 struct reiserfs_bitmap_node **bitmaps;
251 * one of these for each transaction. The most important part here is the
252 * j_realblock. this list of cnodes is used to hash all the blocks in all
253 * the commits, to mark all the real buffer heads dirty once all the commits
254 * hit the disk, and to make sure every real block in a transaction is on
255 * disk before allowing the log area to be overwritten
257 struct reiserfs_journal_list {
258 unsigned long j_start;
259 unsigned long j_state;
260 unsigned long j_len;
261 atomic_t j_nonzerolen;
262 atomic_t j_commit_left;
264 /* all commits older than this on disk */
265 atomic_t j_older_commits_done;
267 struct mutex j_commit_mutex;
268 unsigned int j_trans_id;
269 time_t j_timestamp;
270 struct reiserfs_list_bitmap *j_list_bitmap;
271 struct buffer_head *j_commit_bh; /* commit buffer head */
272 struct reiserfs_journal_cnode *j_realblock;
273 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */
274 /* time ordered list of all active transactions */
275 struct list_head j_list;
278 * time ordered list of all transactions we haven't tried
279 * to flush yet
281 struct list_head j_working_list;
283 /* list of tail conversion targets in need of flush before commit */
284 struct list_head j_tail_bh_list;
286 /* list of data=ordered buffers in need of flush before commit */
287 struct list_head j_bh_list;
288 int j_refcount;
291 struct reiserfs_journal {
292 struct buffer_head **j_ap_blocks; /* journal blocks on disk */
293 /* newest journal block */
294 struct reiserfs_journal_cnode *j_last;
296 /* oldest journal block. start here for traverse */
297 struct reiserfs_journal_cnode *j_first;
299 struct block_device *j_dev_bd;
300 fmode_t j_dev_mode;
302 /* first block on s_dev of reserved area journal */
303 int j_1st_reserved_block;
305 unsigned long j_state;
306 unsigned int j_trans_id;
307 unsigned long j_mount_id;
309 /* start of current waiting commit (index into j_ap_blocks) */
310 unsigned long j_start;
311 unsigned long j_len; /* length of current waiting commit */
313 /* number of buffers requested by journal_begin() */
314 unsigned long j_len_alloc;
316 atomic_t j_wcount; /* count of writers for current commit */
318 /* batch count. allows turning X transactions into 1 */
319 unsigned long j_bcount;
321 /* first unflushed transactions offset */
322 unsigned long j_first_unflushed_offset;
324 /* last fully flushed journal timestamp */
325 unsigned j_last_flush_trans_id;
327 struct buffer_head *j_header_bh;
329 time_t j_trans_start_time; /* time this transaction started */
330 struct mutex j_mutex;
331 struct mutex j_flush_mutex;
333 /* wait for current transaction to finish before starting new one */
334 wait_queue_head_t j_join_wait;
336 atomic_t j_jlock; /* lock for j_join_wait */
337 int j_list_bitmap_index; /* number of next list bitmap to use */
339 /* no more journal begins allowed. MUST sleep on j_join_wait */
340 int j_must_wait;
342 /* next journal_end will flush all journal list */
343 int j_next_full_flush;
345 /* next journal_end will flush all async commits */
346 int j_next_async_flush;
348 int j_cnode_used; /* number of cnodes on the used list */
349 int j_cnode_free; /* number of cnodes on the free list */
351 /* max number of blocks in a transaction. */
352 unsigned int j_trans_max;
354 /* max number of blocks to batch into a trans */
355 unsigned int j_max_batch;
357 /* in seconds, how old can an async commit be */
358 unsigned int j_max_commit_age;
360 /* in seconds, how old can a transaction be */
361 unsigned int j_max_trans_age;
363 /* the default for the max commit age */
364 unsigned int j_default_max_commit_age;
366 struct reiserfs_journal_cnode *j_cnode_free_list;
368 /* orig pointer returned from vmalloc */
369 struct reiserfs_journal_cnode *j_cnode_free_orig;
371 struct reiserfs_journal_list *j_current_jl;
372 int j_free_bitmap_nodes;
373 int j_used_bitmap_nodes;
375 int j_num_lists; /* total number of active transactions */
376 int j_num_work_lists; /* number that need attention from kreiserfsd */
378 /* debugging to make sure things are flushed in order */
379 unsigned int j_last_flush_id;
381 /* debugging to make sure things are committed in order */
382 unsigned int j_last_commit_id;
384 struct list_head j_bitmap_nodes;
385 struct list_head j_dirty_buffers;
386 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */
388 /* list of all active transactions */
389 struct list_head j_journal_list;
391 /* lists that haven't been touched by writeback attempts */
392 struct list_head j_working_list;
394 /* hash table for real buffer heads in current trans */
395 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
397 /* hash table for all the real buffer heads in all the transactions */
398 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
400 /* array of bitmaps to record the deleted blocks */
401 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
403 /* list of inodes which have preallocated blocks */
404 struct list_head j_prealloc_list;
405 int j_persistent_trans;
406 unsigned long j_max_trans_size;
407 unsigned long j_max_batch_size;
409 int j_errno;
411 /* when flushing ordered buffers, throttle new ordered writers */
412 struct delayed_work j_work;
413 struct super_block *j_work_sb;
414 atomic_t j_async_throttle;
417 enum journal_state_bits {
418 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */
419 J_WRITERS_QUEUED, /* set when log is full due to too many writers */
420 J_ABORTED, /* set when log is aborted */
423 /* ick. magic string to find desc blocks in the journal */
424 #define JOURNAL_DESC_MAGIC "ReIsErLB"
426 typedef __u32(*hashf_t) (const signed char *, int);
428 struct reiserfs_bitmap_info {
429 __u32 free_count;
432 struct proc_dir_entry;
434 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
435 typedef unsigned long int stat_cnt_t;
436 typedef struct reiserfs_proc_info_data {
437 spinlock_t lock;
438 int exiting;
439 int max_hash_collisions;
441 stat_cnt_t breads;
442 stat_cnt_t bread_miss;
443 stat_cnt_t search_by_key;
444 stat_cnt_t search_by_key_fs_changed;
445 stat_cnt_t search_by_key_restarted;
447 stat_cnt_t insert_item_restarted;
448 stat_cnt_t paste_into_item_restarted;
449 stat_cnt_t cut_from_item_restarted;
450 stat_cnt_t delete_solid_item_restarted;
451 stat_cnt_t delete_item_restarted;
453 stat_cnt_t leaked_oid;
454 stat_cnt_t leaves_removable;
457 * balances per level.
458 * Use explicit 5 as MAX_HEIGHT is not visible yet.
460 stat_cnt_t balance_at[5]; /* XXX */
461 /* sbk == search_by_key */
462 stat_cnt_t sbk_read_at[5]; /* XXX */
463 stat_cnt_t sbk_fs_changed[5];
464 stat_cnt_t sbk_restarted[5];
465 stat_cnt_t items_at[5]; /* XXX */
466 stat_cnt_t free_at[5]; /* XXX */
467 stat_cnt_t can_node_be_removed[5]; /* XXX */
468 long int lnum[5]; /* XXX */
469 long int rnum[5]; /* XXX */
470 long int lbytes[5]; /* XXX */
471 long int rbytes[5]; /* XXX */
472 stat_cnt_t get_neighbors[5];
473 stat_cnt_t get_neighbors_restart[5];
474 stat_cnt_t need_l_neighbor[5];
475 stat_cnt_t need_r_neighbor[5];
477 stat_cnt_t free_block;
478 struct __scan_bitmap_stats {
479 stat_cnt_t call;
480 stat_cnt_t wait;
481 stat_cnt_t bmap;
482 stat_cnt_t retry;
483 stat_cnt_t in_journal_hint;
484 stat_cnt_t in_journal_nohint;
485 stat_cnt_t stolen;
486 } scan_bitmap;
487 struct __journal_stats {
488 stat_cnt_t in_journal;
489 stat_cnt_t in_journal_bitmap;
490 stat_cnt_t in_journal_reusable;
491 stat_cnt_t lock_journal;
492 stat_cnt_t lock_journal_wait;
493 stat_cnt_t journal_being;
494 stat_cnt_t journal_relock_writers;
495 stat_cnt_t journal_relock_wcount;
496 stat_cnt_t mark_dirty;
497 stat_cnt_t mark_dirty_already;
498 stat_cnt_t mark_dirty_notjournal;
499 stat_cnt_t restore_prepared;
500 stat_cnt_t prepare;
501 stat_cnt_t prepare_retry;
502 } journal;
503 } reiserfs_proc_info_data_t;
504 #else
505 typedef struct reiserfs_proc_info_data {
506 } reiserfs_proc_info_data_t;
507 #endif
509 /* reiserfs union of in-core super block data */
510 struct reiserfs_sb_info {
511 /* Buffer containing the super block */
512 struct buffer_head *s_sbh;
514 /* Pointer to the on-disk super block in the buffer */
515 struct reiserfs_super_block *s_rs;
516 struct reiserfs_bitmap_info *s_ap_bitmap;
518 /* pointer to journal information */
519 struct reiserfs_journal *s_journal;
521 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */
523 /* Serialize writers access, replace the old bkl */
524 struct mutex lock;
526 /* Owner of the lock (can be recursive) */
527 struct task_struct *lock_owner;
529 /* Depth of the lock, start from -1 like the bkl */
530 int lock_depth;
532 struct workqueue_struct *commit_wq;
534 /* Comment? -Hans */
535 void (*end_io_handler) (struct buffer_head *, int);
538 * pointer to function which is used to sort names in directory.
539 * Set on mount
541 hashf_t s_hash_function;
543 /* reiserfs's mount options are set here */
544 unsigned long s_mount_opt;
546 /* This is a structure that describes block allocator options */
547 struct {
548 /* Bitfield for enable/disable kind of options */
549 unsigned long bits;
552 * size started from which we consider file
553 * to be a large one (in blocks)
555 unsigned long large_file_size;
557 int border; /* percentage of disk, border takes */
560 * Minimal file size (in blocks) starting
561 * from which we do preallocations
563 int preallocmin;
566 * Number of blocks we try to prealloc when file
567 * reaches preallocmin size (in blocks) or prealloc_list
568 is empty.
570 int preallocsize;
571 } s_alloc_options;
573 /* Comment? -Hans */
574 wait_queue_head_t s_wait;
575 /* increased by one every time the tree gets re-balanced */
576 atomic_t s_generation_counter;
578 /* File system properties. Currently holds on-disk FS format */
579 unsigned long s_properties;
581 /* session statistics */
582 int s_disk_reads;
583 int s_disk_writes;
584 int s_fix_nodes;
585 int s_do_balance;
586 int s_unneeded_left_neighbor;
587 int s_good_search_by_key_reada;
588 int s_bmaps;
589 int s_bmaps_without_search;
590 int s_direct2indirect;
591 int s_indirect2direct;
594 * set up when it's ok for reiserfs_read_inode2() to read from
595 * disk inode with nlink==0. Currently this is only used during
596 * finish_unfinished() processing at mount time
598 int s_is_unlinked_ok;
600 reiserfs_proc_info_data_t s_proc_info_data;
601 struct proc_dir_entry *procdir;
603 /* amount of blocks reserved for further allocations */
604 int reserved_blocks;
607 /* this lock on now only used to protect reserved_blocks variable */
608 spinlock_t bitmap_lock;
609 struct dentry *priv_root; /* root of /.reiserfs_priv */
610 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */
611 int j_errno;
613 int work_queued; /* non-zero delayed work is queued */
614 struct delayed_work old_work; /* old transactions flush delayed work */
615 spinlock_t old_work_lock; /* protects old_work and work_queued */
617 #ifdef CONFIG_QUOTA
618 char *s_qf_names[MAXQUOTAS];
619 int s_jquota_fmt;
620 #endif
621 char *s_jdev; /* Stored jdev for mount option showing */
622 #ifdef CONFIG_REISERFS_CHECK
625 * Detects whether more than one copy of tb exists per superblock
626 * as a means of checking whether do_balance is executing
627 * concurrently against another tree reader/writer on a same
628 * mount point.
630 struct tree_balance *cur_tb;
631 #endif
634 /* Definitions of reiserfs on-disk properties: */
635 #define REISERFS_3_5 0
636 #define REISERFS_3_6 1
637 #define REISERFS_OLD_FORMAT 2
639 /* Mount options */
640 enum reiserfs_mount_options {
641 /* large tails will be created in a session */
642 REISERFS_LARGETAIL,
644 * small (for files less than block size) tails will
645 * be created in a session
647 REISERFS_SMALLTAIL,
649 /* replay journal and return 0. Use by fsck */
650 REPLAYONLY,
653 * -o conv: causes conversion of old format super block to the
654 * new format. If not specified - old partition will be dealt
655 * with in a manner of 3.5.x
657 REISERFS_CONVERT,
660 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
661 * reiserfs disks from 3.5.19 or earlier. 99% of the time, this
662 * option is not required. If the normal autodection code can't
663 * determine which hash to use (because both hashes had the same
664 * value for a file) use this option to force a specific hash.
665 * It won't allow you to override the existing hash on the FS, so
666 * if you have a tea hash disk, and mount with -o hash=rupasov,
667 * the mount will fail.
669 FORCE_TEA_HASH, /* try to force tea hash on mount */
670 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */
671 FORCE_R5_HASH, /* try to force rupasov hash on mount */
672 FORCE_HASH_DETECT, /* try to detect hash function on mount */
674 REISERFS_DATA_LOG,
675 REISERFS_DATA_ORDERED,
676 REISERFS_DATA_WRITEBACK,
679 * used for testing experimental features, makes benchmarking new
680 * features with and without more convenient, should never be used by
681 * users in any code shipped to users (ideally)
684 REISERFS_NO_BORDER,
685 REISERFS_NO_UNHASHED_RELOCATION,
686 REISERFS_HASHED_RELOCATION,
687 REISERFS_ATTRS,
688 REISERFS_XATTRS_USER,
689 REISERFS_POSIXACL,
690 REISERFS_EXPOSE_PRIVROOT,
691 REISERFS_BARRIER_NONE,
692 REISERFS_BARRIER_FLUSH,
694 /* Actions on error */
695 REISERFS_ERROR_PANIC,
696 REISERFS_ERROR_RO,
697 REISERFS_ERROR_CONTINUE,
699 REISERFS_USRQUOTA, /* User quota option specified */
700 REISERFS_GRPQUOTA, /* Group quota option specified */
702 REISERFS_TEST1,
703 REISERFS_TEST2,
704 REISERFS_TEST3,
705 REISERFS_TEST4,
706 REISERFS_UNSUPPORTED_OPT,
709 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
710 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
711 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
712 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
713 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
714 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
715 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
716 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
718 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
719 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
720 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
721 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
722 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
723 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
724 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
725 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
726 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
727 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
728 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
729 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
730 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
731 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
732 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
734 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
735 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
737 void reiserfs_file_buffer(struct buffer_head *bh, int list);
738 extern struct file_system_type reiserfs_fs_type;
739 int reiserfs_resize(struct super_block *, unsigned long);
741 #define CARRY_ON 0
742 #define SCHEDULE_OCCURRED 1
744 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
745 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
746 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
747 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
748 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
750 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
752 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
753 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
754 *journal)
756 return test_bit(J_ABORTED, &journal->j_state);
760 * Locking primitives. The write lock is a per superblock
761 * special mutex that has properties close to the Big Kernel Lock
762 * which was used in the previous locking scheme.
764 void reiserfs_write_lock(struct super_block *s);
765 void reiserfs_write_unlock(struct super_block *s);
766 int __must_check reiserfs_write_unlock_nested(struct super_block *s);
767 void reiserfs_write_lock_nested(struct super_block *s, int depth);
769 #ifdef CONFIG_REISERFS_CHECK
770 void reiserfs_lock_check_recursive(struct super_block *s);
771 #else
772 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
773 #endif
776 * Several mutexes depend on the write lock.
777 * However sometimes we want to relax the write lock while we hold
778 * these mutexes, according to the release/reacquire on schedule()
779 * properties of the Bkl that were used.
780 * Reiserfs performances and locking were based on this scheme.
781 * Now that the write lock is a mutex and not the bkl anymore, doing so
782 * may result in a deadlock:
784 * A acquire write_lock
785 * A acquire j_commit_mutex
786 * A release write_lock and wait for something
787 * B acquire write_lock
788 * B can't acquire j_commit_mutex and sleep
789 * A can't acquire write lock anymore
790 * deadlock
792 * What we do here is avoiding such deadlock by playing the same game
793 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
794 * we release the write lock, wait a bit and then retry.
796 * The mutexes concerned by this hack are:
797 * - The commit mutex of a journal list
798 * - The flush mutex
799 * - The journal lock
800 * - The inode mutex
802 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
803 struct super_block *s)
805 int depth;
807 depth = reiserfs_write_unlock_nested(s);
808 mutex_lock(m);
809 reiserfs_write_lock_nested(s, depth);
812 static inline void
813 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
814 struct super_block *s)
816 int depth;
818 depth = reiserfs_write_unlock_nested(s);
819 mutex_lock_nested(m, subclass);
820 reiserfs_write_lock_nested(s, depth);
823 static inline void
824 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
826 int depth;
827 depth = reiserfs_write_unlock_nested(s);
828 down_read(sem);
829 reiserfs_write_lock_nested(s, depth);
833 * When we schedule, we usually want to also release the write lock,
834 * according to the previous bkl based locking scheme of reiserfs.
836 static inline void reiserfs_cond_resched(struct super_block *s)
838 if (need_resched()) {
839 int depth;
841 depth = reiserfs_write_unlock_nested(s);
842 schedule();
843 reiserfs_write_lock_nested(s, depth);
847 struct fid;
850 * in reading the #defines, it may help to understand that they employ
851 * the following abbreviations:
853 * B = Buffer
854 * I = Item header
855 * H = Height within the tree (should be changed to LEV)
856 * N = Number of the item in the node
857 * STAT = stat data
858 * DEH = Directory Entry Header
859 * EC = Entry Count
860 * E = Entry number
861 * UL = Unsigned Long
862 * BLKH = BLocK Header
863 * UNFM = UNForMatted node
864 * DC = Disk Child
865 * P = Path
867 * These #defines are named by concatenating these abbreviations,
868 * where first comes the arguments, and last comes the return value,
869 * of the macro.
872 #define USE_INODE_GENERATION_COUNTER
874 #define REISERFS_PREALLOCATE
875 #define DISPLACE_NEW_PACKING_LOCALITIES
876 #define PREALLOCATION_SIZE 9
878 /* n must be power of 2 */
879 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
882 * to be ok for alpha and others we have to align structures to 8 byte
883 * boundary.
884 * FIXME: do not change 4 by anything else: there is code which relies on that
886 #define ROUND_UP(x) _ROUND_UP(x,8LL)
889 * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
890 * messages.
892 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
894 void __reiserfs_warning(struct super_block *s, const char *id,
895 const char *func, const char *fmt, ...);
896 #define reiserfs_warning(s, id, fmt, args...) \
897 __reiserfs_warning(s, id, __func__, fmt, ##args)
898 /* assertions handling */
900 /* always check a condition and panic if it's false. */
901 #define __RASSERT(cond, scond, format, args...) \
902 do { \
903 if (!(cond)) \
904 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
905 __FILE__ ":%i:%s: " format "\n", \
906 in_interrupt() ? -1 : task_pid_nr(current), \
907 __LINE__, __func__ , ##args); \
908 } while (0)
910 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
912 #if defined( CONFIG_REISERFS_CHECK )
913 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
914 #else
915 #define RFALSE( cond, format, args... ) do {;} while( 0 )
916 #endif
918 #define CONSTF __attribute_const__
920 * Disk Data Structures
923 /***************************************************************************
924 * SUPER BLOCK *
925 ***************************************************************************/
928 * Structure of super block on disk, a version of which in RAM is often
929 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
930 * structure containing fields never written to disk.
932 #define UNSET_HASH 0 /* Detect hash on disk */
933 #define TEA_HASH 1
934 #define YURA_HASH 2
935 #define R5_HASH 3
936 #define DEFAULT_HASH R5_HASH
938 struct journal_params {
939 /* where does journal start from on its * device */
940 __le32 jp_journal_1st_block;
942 /* journal device st_rdev */
943 __le32 jp_journal_dev;
945 /* size of the journal */
946 __le32 jp_journal_size;
948 /* max number of blocks in a transaction. */
949 __le32 jp_journal_trans_max;
952 * random value made on fs creation
953 * (this was sb_journal_block_count)
955 __le32 jp_journal_magic;
957 /* max number of blocks to batch into a trans */
958 __le32 jp_journal_max_batch;
960 /* in seconds, how old can an async commit be */
961 __le32 jp_journal_max_commit_age;
963 /* in seconds, how old can a transaction be */
964 __le32 jp_journal_max_trans_age;
967 /* this is the super from 3.5.X, where X >= 10 */
968 struct reiserfs_super_block_v1 {
969 __le32 s_block_count; /* blocks count */
970 __le32 s_free_blocks; /* free blocks count */
971 __le32 s_root_block; /* root block number */
972 struct journal_params s_journal;
973 __le16 s_blocksize; /* block size */
975 /* max size of object id array, see get_objectid() commentary */
976 __le16 s_oid_maxsize;
977 __le16 s_oid_cursize; /* current size of object id array */
979 /* this is set to 1 when filesystem was umounted, to 2 - when not */
980 __le16 s_umount_state;
983 * reiserfs magic string indicates that file system is reiserfs:
984 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
986 char s_magic[10];
989 * it is set to used by fsck to mark which
990 * phase of rebuilding is done
992 __le16 s_fs_state;
994 * indicate, what hash function is being use
995 * to sort names in a directory
997 __le32 s_hash_function_code;
998 __le16 s_tree_height; /* height of disk tree */
1001 * amount of bitmap blocks needed to address
1002 * each block of file system
1004 __le16 s_bmap_nr;
1007 * this field is only reliable on filesystem with non-standard journal
1009 __le16 s_version;
1012 * size in blocks of journal area on main device, we need to
1013 * keep after making fs with non-standard journal
1015 __le16 s_reserved_for_journal;
1016 } __attribute__ ((__packed__));
1018 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
1020 /* this is the on disk super block */
1021 struct reiserfs_super_block {
1022 struct reiserfs_super_block_v1 s_v1;
1023 __le32 s_inode_generation;
1025 /* Right now used only by inode-attributes, if enabled */
1026 __le32 s_flags;
1028 unsigned char s_uuid[16]; /* filesystem unique identifier */
1029 unsigned char s_label[16]; /* filesystem volume label */
1030 __le16 s_mnt_count; /* Count of mounts since last fsck */
1031 __le16 s_max_mnt_count; /* Maximum mounts before check */
1032 __le32 s_lastcheck; /* Timestamp of last fsck */
1033 __le32 s_check_interval; /* Interval between checks */
1036 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
1037 * so any additions must be updated there as well. */
1038 char s_unused[76];
1039 } __attribute__ ((__packed__));
1041 #define SB_SIZE (sizeof(struct reiserfs_super_block))
1043 #define REISERFS_VERSION_1 0
1044 #define REISERFS_VERSION_2 2
1046 /* on-disk super block fields converted to cpu form */
1047 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
1048 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
1049 #define SB_BLOCKSIZE(s) \
1050 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
1051 #define SB_BLOCK_COUNT(s) \
1052 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
1053 #define SB_FREE_BLOCKS(s) \
1054 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
1055 #define SB_REISERFS_MAGIC(s) \
1056 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
1057 #define SB_ROOT_BLOCK(s) \
1058 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
1059 #define SB_TREE_HEIGHT(s) \
1060 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
1061 #define SB_REISERFS_STATE(s) \
1062 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
1063 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
1064 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
1066 #define PUT_SB_BLOCK_COUNT(s, val) \
1067 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
1068 #define PUT_SB_FREE_BLOCKS(s, val) \
1069 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
1070 #define PUT_SB_ROOT_BLOCK(s, val) \
1071 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
1072 #define PUT_SB_TREE_HEIGHT(s, val) \
1073 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
1074 #define PUT_SB_REISERFS_STATE(s, val) \
1075 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1076 #define PUT_SB_VERSION(s, val) \
1077 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
1078 #define PUT_SB_BMAP_NR(s, val) \
1079 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
1081 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
1082 #define SB_ONDISK_JOURNAL_SIZE(s) \
1083 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
1084 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
1085 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
1086 #define SB_ONDISK_JOURNAL_DEVICE(s) \
1087 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
1088 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
1089 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1091 #define is_block_in_log_or_reserved_area(s, block) \
1092 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
1093 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
1094 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
1095 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1097 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
1098 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
1099 int is_reiserfs_jr(struct reiserfs_super_block *rs);
1102 * ReiserFS leaves the first 64k unused, so that partition labels have
1103 * enough space. If someone wants to write a fancy bootloader that
1104 * needs more than 64k, let us know, and this will be increased in size.
1105 * This number must be larger than than the largest block size on any
1106 * platform, or code will break. -Hans
1108 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
1109 #define REISERFS_FIRST_BLOCK unused_define
1110 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
1112 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
1113 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
1115 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1116 #define CARRY_ON 0
1117 #define REPEAT_SEARCH -1
1118 #define IO_ERROR -2
1119 #define NO_DISK_SPACE -3
1120 #define NO_BALANCING_NEEDED (-4)
1121 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
1122 #define QUOTA_EXCEEDED -6
1124 typedef __u32 b_blocknr_t;
1125 typedef __le32 unp_t;
1127 struct unfm_nodeinfo {
1128 unp_t unfm_nodenum;
1129 unsigned short unfm_freespace;
1132 /* there are two formats of keys: 3.5 and 3.6 */
1133 #define KEY_FORMAT_3_5 0
1134 #define KEY_FORMAT_3_6 1
1136 /* there are two stat datas */
1137 #define STAT_DATA_V1 0
1138 #define STAT_DATA_V2 1
1140 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
1142 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
1145 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
1147 return sb->s_fs_info;
1151 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
1152 * which overflows on large file systems.
1154 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
1156 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
1159 static inline int bmap_would_wrap(unsigned bmap_nr)
1161 return bmap_nr > ((1LL << 16) - 1);
1165 * this says about version of key of all items (but stat data) the
1166 * object consists of
1168 #define get_inode_item_key_version( inode ) \
1169 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
1171 #define set_inode_item_key_version( inode, version ) \
1172 ({ if((version)==KEY_FORMAT_3_6) \
1173 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
1174 else \
1175 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
1177 #define get_inode_sd_version(inode) \
1178 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
1180 #define set_inode_sd_version(inode, version) \
1181 ({ if((version)==STAT_DATA_V2) \
1182 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
1183 else \
1184 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1187 * This is an aggressive tail suppression policy, I am hoping it
1188 * improves our benchmarks. The principle behind it is that percentage
1189 * space saving is what matters, not absolute space saving. This is
1190 * non-intuitive, but it helps to understand it if you consider that the
1191 * cost to access 4 blocks is not much more than the cost to access 1
1192 * block, if you have to do a seek and rotate. A tail risks a
1193 * non-linear disk access that is significant as a percentage of total
1194 * time cost for a 4 block file and saves an amount of space that is
1195 * less significant as a percentage of space, or so goes the hypothesis.
1196 * -Hans
1198 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1200 (!(n_tail_size)) || \
1201 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1202 ( (n_file_size) >= (n_block_size) * 4 ) || \
1203 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1204 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1205 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1206 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1207 ( ( (n_file_size) >= (n_block_size) ) && \
1208 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1212 * Another strategy for tails, this one means only create a tail if all the
1213 * file would fit into one DIRECT item.
1214 * Primary intention for this one is to increase performance by decreasing
1215 * seeking.
1217 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1219 (!(n_tail_size)) || \
1220 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1224 * values for s_umount_state field
1226 #define REISERFS_VALID_FS 1
1227 #define REISERFS_ERROR_FS 2
1230 * there are 5 item types currently
1232 #define TYPE_STAT_DATA 0
1233 #define TYPE_INDIRECT 1
1234 #define TYPE_DIRECT 2
1235 #define TYPE_DIRENTRY 3
1236 #define TYPE_MAXTYPE 3
1237 #define TYPE_ANY 15 /* FIXME: comment is required */
1239 /***************************************************************************
1240 * KEY & ITEM HEAD *
1241 ***************************************************************************/
1243 /* * directories use this key as well as old files */
1244 struct offset_v1 {
1245 __le32 k_offset;
1246 __le32 k_uniqueness;
1247 } __attribute__ ((__packed__));
1249 struct offset_v2 {
1250 __le64 v;
1251 } __attribute__ ((__packed__));
1253 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1255 __u8 type = le64_to_cpu(v2->v) >> 60;
1256 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1259 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1261 v2->v =
1262 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1265 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1267 return le64_to_cpu(v2->v) & (~0ULL >> 4);
1270 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1272 offset &= (~0ULL >> 4);
1273 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1277 * Key of an item determines its location in the S+tree, and
1278 * is composed of 4 components
1280 struct reiserfs_key {
1281 /* packing locality: by default parent directory object id */
1282 __le32 k_dir_id;
1284 __le32 k_objectid; /* object identifier */
1285 union {
1286 struct offset_v1 k_offset_v1;
1287 struct offset_v2 k_offset_v2;
1288 } __attribute__ ((__packed__)) u;
1289 } __attribute__ ((__packed__));
1291 struct in_core_key {
1292 /* packing locality: by default parent directory object id */
1293 __u32 k_dir_id;
1294 __u32 k_objectid; /* object identifier */
1295 __u64 k_offset;
1296 __u8 k_type;
1299 struct cpu_key {
1300 struct in_core_key on_disk_key;
1301 int version;
1302 /* 3 in all cases but direct2indirect and indirect2direct conversion */
1303 int key_length;
1307 * Our function for comparing keys can compare keys of different
1308 * lengths. It takes as a parameter the length of the keys it is to
1309 * compare. These defines are used in determining what is to be passed
1310 * to it as that parameter.
1312 #define REISERFS_FULL_KEY_LEN 4
1313 #define REISERFS_SHORT_KEY_LEN 2
1315 /* The result of the key compare */
1316 #define FIRST_GREATER 1
1317 #define SECOND_GREATER -1
1318 #define KEYS_IDENTICAL 0
1319 #define KEY_FOUND 1
1320 #define KEY_NOT_FOUND 0
1322 #define KEY_SIZE (sizeof(struct reiserfs_key))
1323 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
1325 /* return values for search_by_key and clones */
1326 #define ITEM_FOUND 1
1327 #define ITEM_NOT_FOUND 0
1328 #define ENTRY_FOUND 1
1329 #define ENTRY_NOT_FOUND 0
1330 #define DIRECTORY_NOT_FOUND -1
1331 #define REGULAR_FILE_FOUND -2
1332 #define DIRECTORY_FOUND -3
1333 #define BYTE_FOUND 1
1334 #define BYTE_NOT_FOUND 0
1335 #define FILE_NOT_FOUND -1
1337 #define POSITION_FOUND 1
1338 #define POSITION_NOT_FOUND 0
1340 /* return values for reiserfs_find_entry and search_by_entry_key */
1341 #define NAME_FOUND 1
1342 #define NAME_NOT_FOUND 0
1343 #define GOTO_PREVIOUS_ITEM 2
1344 #define NAME_FOUND_INVISIBLE 3
1347 * Everything in the filesystem is stored as a set of items. The
1348 * item head contains the key of the item, its free space (for
1349 * indirect items) and specifies the location of the item itself
1350 * within the block.
1353 struct item_head {
1355 * Everything in the tree is found by searching for it based on
1356 * its key.
1358 struct reiserfs_key ih_key;
1359 union {
1361 * The free space in the last unformatted node of an
1362 * indirect item if this is an indirect item. This
1363 * equals 0xFFFF iff this is a direct item or stat data
1364 * item. Note that the key, not this field, is used to
1365 * determine the item type, and thus which field this
1366 * union contains.
1368 __le16 ih_free_space_reserved;
1371 * Iff this is a directory item, this field equals the
1372 * number of directory entries in the directory item.
1374 __le16 ih_entry_count;
1375 } __attribute__ ((__packed__)) u;
1376 __le16 ih_item_len; /* total size of the item body */
1378 /* an offset to the item body within the block */
1379 __le16 ih_item_location;
1382 * 0 for all old items, 2 for new ones. Highest bit is set by fsck
1383 * temporary, cleaned after all done
1385 __le16 ih_version;
1386 } __attribute__ ((__packed__));
1387 /* size of item header */
1388 #define IH_SIZE (sizeof(struct item_head))
1390 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
1391 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
1392 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
1393 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
1394 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
1396 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1397 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1398 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1399 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1400 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1402 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1404 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1405 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1408 * these operate on indirect items, where you've got an array of ints
1409 * at a possibly unaligned location. These are a noop on ia32
1411 * p is the array of __u32, i is the index into the array, v is the value
1412 * to store there.
1414 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1415 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1417 /* * in old version uniqueness field shows key type */
1418 #define V1_SD_UNIQUENESS 0
1419 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1420 #define V1_DIRECT_UNIQUENESS 0xffffffff
1421 #define V1_DIRENTRY_UNIQUENESS 500
1422 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */
1424 /* here are conversion routines */
1425 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1426 static inline int uniqueness2type(__u32 uniqueness)
1428 switch ((int)uniqueness) {
1429 case V1_SD_UNIQUENESS:
1430 return TYPE_STAT_DATA;
1431 case V1_INDIRECT_UNIQUENESS:
1432 return TYPE_INDIRECT;
1433 case V1_DIRECT_UNIQUENESS:
1434 return TYPE_DIRECT;
1435 case V1_DIRENTRY_UNIQUENESS:
1436 return TYPE_DIRENTRY;
1437 case V1_ANY_UNIQUENESS:
1438 default:
1439 return TYPE_ANY;
1443 static inline __u32 type2uniqueness(int type) CONSTF;
1444 static inline __u32 type2uniqueness(int type)
1446 switch (type) {
1447 case TYPE_STAT_DATA:
1448 return V1_SD_UNIQUENESS;
1449 case TYPE_INDIRECT:
1450 return V1_INDIRECT_UNIQUENESS;
1451 case TYPE_DIRECT:
1452 return V1_DIRECT_UNIQUENESS;
1453 case TYPE_DIRENTRY:
1454 return V1_DIRENTRY_UNIQUENESS;
1455 case TYPE_ANY:
1456 default:
1457 return V1_ANY_UNIQUENESS;
1462 * key is pointer to on disk key which is stored in le, result is cpu,
1463 * there is no way to get version of object from key, so, provide
1464 * version to these defines
1466 static inline loff_t le_key_k_offset(int version,
1467 const struct reiserfs_key *key)
1469 return (version == KEY_FORMAT_3_5) ?
1470 le32_to_cpu(key->u.k_offset_v1.k_offset) :
1471 offset_v2_k_offset(&(key->u.k_offset_v2));
1474 static inline loff_t le_ih_k_offset(const struct item_head *ih)
1476 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1479 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1481 if (version == KEY_FORMAT_3_5) {
1482 loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
1483 return uniqueness2type(val);
1484 } else
1485 return offset_v2_k_type(&(key->u.k_offset_v2));
1488 static inline loff_t le_ih_k_type(const struct item_head *ih)
1490 return le_key_k_type(ih_version(ih), &(ih->ih_key));
1493 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1494 loff_t offset)
1496 if (version == KEY_FORMAT_3_5)
1497 key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
1498 else
1499 set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
1502 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
1503 loff_t offset)
1505 set_le_key_k_offset(version, key,
1506 le_key_k_offset(version, key) + offset);
1509 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
1511 add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1514 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1516 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1519 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1520 int type)
1522 if (version == KEY_FORMAT_3_5) {
1523 type = type2uniqueness(type);
1524 key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
1525 } else
1526 set_offset_v2_k_type(&key->u.k_offset_v2, type);
1529 static inline void set_le_ih_k_type(struct item_head *ih, int type)
1531 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1534 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1536 return le_key_k_type(version, key) == TYPE_DIRENTRY;
1539 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1541 return le_key_k_type(version, key) == TYPE_DIRECT;
1544 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1546 return le_key_k_type(version, key) == TYPE_INDIRECT;
1549 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1551 return le_key_k_type(version, key) == TYPE_STAT_DATA;
1554 /* item header has version. */
1555 static inline int is_direntry_le_ih(struct item_head *ih)
1557 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1560 static inline int is_direct_le_ih(struct item_head *ih)
1562 return is_direct_le_key(ih_version(ih), &ih->ih_key);
1565 static inline int is_indirect_le_ih(struct item_head *ih)
1567 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1570 static inline int is_statdata_le_ih(struct item_head *ih)
1572 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1575 /* key is pointer to cpu key, result is cpu */
1576 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1578 return key->on_disk_key.k_offset;
1581 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1583 return key->on_disk_key.k_type;
1586 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1588 key->on_disk_key.k_offset = offset;
1591 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1593 key->on_disk_key.k_type = type;
1596 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1598 key->on_disk_key.k_offset--;
1601 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1602 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1603 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1604 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1606 /* are these used ? */
1607 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1608 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1609 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1610 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1612 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1613 (!COMP_SHORT_KEYS(ih, key) && \
1614 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1616 /* maximal length of item */
1617 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1618 #define MIN_ITEM_LEN 1
1620 /* object identifier for root dir */
1621 #define REISERFS_ROOT_OBJECTID 2
1622 #define REISERFS_ROOT_PARENT_OBJECTID 1
1624 extern struct reiserfs_key root_key;
1627 * Picture represents a leaf of the S+tree
1628 * ______________________________________________________
1629 * | | Array of | | |
1630 * |Block | Object-Item | F r e e | Objects- |
1631 * | head | Headers | S p a c e | Items |
1632 * |______|_______________|___________________|___________|
1636 * Header of a disk block. More precisely, header of a formatted leaf
1637 * or internal node, and not the header of an unformatted node.
1639 struct block_head {
1640 __le16 blk_level; /* Level of a block in the tree. */
1641 __le16 blk_nr_item; /* Number of keys/items in a block. */
1642 __le16 blk_free_space; /* Block free space in bytes. */
1643 __le16 blk_reserved;
1644 /* dump this in v4/planA */
1646 /* kept only for compatibility */
1647 struct reiserfs_key blk_right_delim_key;
1650 #define BLKH_SIZE (sizeof(struct block_head))
1651 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
1652 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
1653 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
1654 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
1655 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
1656 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1657 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1658 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1659 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
1660 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
1662 /* values for blk_level field of the struct block_head */
1665 * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
1666 * It is then used to see whether the node is still in the tree
1668 #define FREE_LEVEL 0
1670 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
1673 * Given the buffer head of a formatted node, resolve to the
1674 * block head of that node.
1676 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
1677 /* Number of items that are in buffer. */
1678 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
1679 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
1680 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
1682 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1683 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1684 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1686 /* Get right delimiting key. -- little endian */
1687 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1689 /* Does the buffer contain a disk leaf. */
1690 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1692 /* Does the buffer contain a disk internal node */
1693 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1694 && B_LEVEL(bh) <= MAX_HEIGHT)
1696 /***************************************************************************
1697 * STAT DATA *
1698 ***************************************************************************/
1701 * old stat data is 32 bytes long. We are going to distinguish new one by
1702 * different size
1704 struct stat_data_v1 {
1705 __le16 sd_mode; /* file type, permissions */
1706 __le16 sd_nlink; /* number of hard links */
1707 __le16 sd_uid; /* owner */
1708 __le16 sd_gid; /* group */
1709 __le32 sd_size; /* file size */
1710 __le32 sd_atime; /* time of last access */
1711 __le32 sd_mtime; /* time file was last modified */
1714 * time inode (stat data) was last changed
1715 * (except changes to sd_atime and sd_mtime)
1717 __le32 sd_ctime;
1718 union {
1719 __le32 sd_rdev;
1720 __le32 sd_blocks; /* number of blocks file uses */
1721 } __attribute__ ((__packed__)) u;
1724 * first byte of file which is stored in a direct item: except that if
1725 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
1726 * direct item. The existence of this field really grates on me.
1727 * Let's replace it with a macro based on sd_size and our tail
1728 * suppression policy. Someday. -Hans
1730 __le32 sd_first_direct_byte;
1731 } __attribute__ ((__packed__));
1733 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
1734 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
1735 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1736 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1737 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
1738 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
1739 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
1740 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
1741 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
1742 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
1743 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
1744 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
1745 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1746 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1747 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1748 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1749 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1750 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1751 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1752 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1753 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
1754 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1755 #define sd_v1_first_direct_byte(sdp) \
1756 (le32_to_cpu((sdp)->sd_first_direct_byte))
1757 #define set_sd_v1_first_direct_byte(sdp,v) \
1758 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1760 /* inode flags stored in sd_attrs (nee sd_reserved) */
1763 * we want common flags to have the same values as in ext2,
1764 * so chattr(1) will work without problems
1766 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1767 #define REISERFS_APPEND_FL FS_APPEND_FL
1768 #define REISERFS_SYNC_FL FS_SYNC_FL
1769 #define REISERFS_NOATIME_FL FS_NOATIME_FL
1770 #define REISERFS_NODUMP_FL FS_NODUMP_FL
1771 #define REISERFS_SECRM_FL FS_SECRM_FL
1772 #define REISERFS_UNRM_FL FS_UNRM_FL
1773 #define REISERFS_COMPR_FL FS_COMPR_FL
1774 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
1776 /* persistent flags that file inherits from the parent directory */
1777 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
1778 REISERFS_SYNC_FL | \
1779 REISERFS_NOATIME_FL | \
1780 REISERFS_NODUMP_FL | \
1781 REISERFS_SECRM_FL | \
1782 REISERFS_COMPR_FL | \
1783 REISERFS_NOTAIL_FL )
1786 * Stat Data on disk (reiserfs version of UFS disk inode minus the
1787 * address blocks)
1789 struct stat_data {
1790 __le16 sd_mode; /* file type, permissions */
1791 __le16 sd_attrs; /* persistent inode flags */
1792 __le32 sd_nlink; /* number of hard links */
1793 __le64 sd_size; /* file size */
1794 __le32 sd_uid; /* owner */
1795 __le32 sd_gid; /* group */
1796 __le32 sd_atime; /* time of last access */
1797 __le32 sd_mtime; /* time file was last modified */
1800 * time inode (stat data) was last changed
1801 * (except changes to sd_atime and sd_mtime)
1803 __le32 sd_ctime;
1804 __le32 sd_blocks;
1805 union {
1806 __le32 sd_rdev;
1807 __le32 sd_generation;
1808 } __attribute__ ((__packed__)) u;
1809 } __attribute__ ((__packed__));
1811 /* this is 44 bytes long */
1812 #define SD_SIZE (sizeof(struct stat_data))
1813 #define SD_V2_SIZE SD_SIZE
1814 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
1815 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1816 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1817 /* sd_reserved */
1818 /* set_sd_reserved */
1819 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
1820 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
1821 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
1822 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
1823 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
1824 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
1825 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
1826 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
1827 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1828 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1829 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1830 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1831 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1832 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1833 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
1834 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1835 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1836 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1837 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
1838 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1839 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
1840 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
1842 /***************************************************************************
1843 * DIRECTORY STRUCTURE *
1844 ***************************************************************************/
1846 * Picture represents the structure of directory items
1847 * ________________________________________________
1848 * | Array of | | | | | |
1849 * | directory |N-1| N-2 | .... | 1st |0th|
1850 * | entry headers | | | | | |
1851 * |_______________|___|_____|________|_______|___|
1852 * <---- directory entries ------>
1854 * First directory item has k_offset component 1. We store "." and ".."
1855 * in one item, always, we never split "." and ".." into differing
1856 * items. This makes, among other things, the code for removing
1857 * directories simpler.
1859 #define SD_OFFSET 0
1860 #define SD_UNIQUENESS 0
1861 #define DOT_OFFSET 1
1862 #define DOT_DOT_OFFSET 2
1863 #define DIRENTRY_UNIQUENESS 500
1865 #define FIRST_ITEM_OFFSET 1
1868 * Q: How to get key of object pointed to by entry from entry?
1870 * A: Each directory entry has its header. This header has deh_dir_id
1871 * and deh_objectid fields, those are key of object, entry points to
1875 * NOT IMPLEMENTED:
1876 * Directory will someday contain stat data of object
1879 struct reiserfs_de_head {
1880 __le32 deh_offset; /* third component of the directory entry key */
1883 * objectid of the parent directory of the object, that is referenced
1884 * by directory entry
1886 __le32 deh_dir_id;
1888 /* objectid of the object, that is referenced by directory entry */
1889 __le32 deh_objectid;
1890 __le16 deh_location; /* offset of name in the whole item */
1893 * whether 1) entry contains stat data (for future), and
1894 * 2) whether entry is hidden (unlinked)
1896 __le16 deh_state;
1897 } __attribute__ ((__packed__));
1898 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1899 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1900 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1901 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1902 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1903 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1905 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1906 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1907 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1908 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1909 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1911 /* empty directory contains two entries "." and ".." and their headers */
1912 #define EMPTY_DIR_SIZE \
1913 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1915 /* old format directories have this size when empty */
1916 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1918 #define DEH_Statdata 0 /* not used now */
1919 #define DEH_Visible 2
1921 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1922 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1923 # define ADDR_UNALIGNED_BITS (3)
1924 #endif
1927 * These are only used to manipulate deh_state.
1928 * Because of this, we'll use the ext2_ bit routines,
1929 * since they are little endian
1931 #ifdef ADDR_UNALIGNED_BITS
1933 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1934 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1936 # define set_bit_unaligned(nr, addr) \
1937 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1938 # define clear_bit_unaligned(nr, addr) \
1939 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1940 # define test_bit_unaligned(nr, addr) \
1941 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1943 #else
1945 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr)
1946 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr)
1947 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr)
1949 #endif
1951 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1952 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1953 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1954 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1956 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1957 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1958 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1960 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1961 __le32 par_dirid, __le32 par_objid);
1962 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1963 __le32 par_dirid, __le32 par_objid);
1965 /* two entries per block (at least) */
1966 #define REISERFS_MAX_NAME(block_size) 255
1969 * this structure is used for operations on directory entries. It is
1970 * not a disk structure.
1972 * When reiserfs_find_entry or search_by_entry_key find directory
1973 * entry, they return filled reiserfs_dir_entry structure
1975 struct reiserfs_dir_entry {
1976 struct buffer_head *de_bh;
1977 int de_item_num;
1978 struct item_head *de_ih;
1979 int de_entry_num;
1980 struct reiserfs_de_head *de_deh;
1981 int de_entrylen;
1982 int de_namelen;
1983 char *de_name;
1984 unsigned long *de_gen_number_bit_string;
1986 __u32 de_dir_id;
1987 __u32 de_objectid;
1989 struct cpu_key de_entry_key;
1993 * these defines are useful when a particular member of
1994 * a reiserfs_dir_entry is needed
1997 /* pointer to file name, stored in entry */
1998 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
1999 (ih_item_body(bh, ih) + deh_location(deh))
2001 /* length of name */
2002 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
2003 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
2005 /* hash value occupies bits from 7 up to 30 */
2006 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
2007 /* generation number occupies 7 bits starting from 0 up to 6 */
2008 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
2009 #define MAX_GENERATION_NUMBER 127
2011 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
2014 * Picture represents an internal node of the reiserfs tree
2015 * ______________________________________________________
2016 * | | Array of | Array of | Free |
2017 * |block | keys | pointers | space |
2018 * | head | N | N+1 | |
2019 * |______|_______________|___________________|___________|
2022 /***************************************************************************
2023 * DISK CHILD *
2024 ***************************************************************************/
2026 * Disk child pointer:
2027 * The pointer from an internal node of the tree to a node that is on disk.
2029 struct disk_child {
2030 __le32 dc_block_number; /* Disk child's block number. */
2031 __le16 dc_size; /* Disk child's used space. */
2032 __le16 dc_reserved;
2035 #define DC_SIZE (sizeof(struct disk_child))
2036 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
2037 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
2038 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
2039 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
2041 /* Get disk child by buffer header and position in the tree node. */
2042 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
2043 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
2045 /* Get disk child number by buffer header and position in the tree node. */
2046 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
2047 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
2048 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
2050 /* maximal value of field child_size in structure disk_child */
2051 /* child size is the combined size of all items and their headers */
2052 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
2054 /* amount of used space in buffer (not including block head) */
2055 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
2057 /* max and min number of keys in internal node */
2058 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
2059 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
2061 /***************************************************************************
2062 * PATH STRUCTURES AND DEFINES *
2063 ***************************************************************************/
2066 * search_by_key fills up the path from the root to the leaf as it descends
2067 * the tree looking for the key. It uses reiserfs_bread to try to find
2068 * buffers in the cache given their block number. If it does not find
2069 * them in the cache it reads them from disk. For each node search_by_key
2070 * finds using reiserfs_bread it then uses bin_search to look through that
2071 * node. bin_search will find the position of the block_number of the next
2072 * node if it is looking through an internal node. If it is looking through
2073 * a leaf node bin_search will find the position of the item which has key
2074 * either equal to given key, or which is the maximal key less than the
2075 * given key.
2078 struct path_element {
2079 /* Pointer to the buffer at the path in the tree. */
2080 struct buffer_head *pe_buffer;
2081 /* Position in the tree node which is placed in the buffer above. */
2082 int pe_position;
2086 * maximal height of a tree. don't change this without
2087 * changing JOURNAL_PER_BALANCE_CNT
2089 #define MAX_HEIGHT 5
2091 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
2092 #define EXTENDED_MAX_HEIGHT 7
2094 /* Must be equal to at least 2. */
2095 #define FIRST_PATH_ELEMENT_OFFSET 2
2097 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
2098 #define ILLEGAL_PATH_ELEMENT_OFFSET 1
2100 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
2101 #define MAX_FEB_SIZE 6
2104 * We need to keep track of who the ancestors of nodes are. When we
2105 * perform a search we record which nodes were visited while
2106 * descending the tree looking for the node we searched for. This list
2107 * of nodes is called the path. This information is used while
2108 * performing balancing. Note that this path information may become
2109 * invalid, and this means we must check it when using it to see if it
2110 * is still valid. You'll need to read search_by_key and the comments
2111 * in it, especially about decrement_counters_in_path(), to understand
2112 * this structure.
2114 * Paths make the code so much harder to work with and debug.... An
2115 * enormous number of bugs are due to them, and trying to write or modify
2116 * code that uses them just makes my head hurt. They are based on an
2117 * excessive effort to avoid disturbing the precious VFS code.:-( The
2118 * gods only know how we are going to SMP the code that uses them.
2119 * znodes are the way!
2122 #define PATH_READA 0x1 /* do read ahead */
2123 #define PATH_READA_BACK 0x2 /* read backwards */
2125 struct treepath {
2126 int path_length; /* Length of the array above. */
2127 int reada;
2128 /* Array of the path elements. */
2129 struct path_element path_elements[EXTENDED_MAX_HEIGHT];
2130 int pos_in_item;
2133 #define pos_in_item(path) ((path)->pos_in_item)
2135 #define INITIALIZE_PATH(var) \
2136 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
2138 /* Get path element by path and path position. */
2139 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
2141 /* Get buffer header at the path by path and path position. */
2142 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
2144 /* Get position in the element at the path by path and path position. */
2145 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
2147 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
2150 * you know, to the person who didn't write this the macro name does not
2151 * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or
2152 * maybe we should just focus on dumping paths... -Hans
2154 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
2157 * in do_balance leaf has h == 0 in contrast with path structure,
2158 * where root has level == 0. That is why we need these defines
2161 /* tb->S[h] */
2162 #define PATH_H_PBUFFER(path, h) \
2163 PATH_OFFSET_PBUFFER(path, path->path_length - (h))
2165 /* tb->F[h] or tb->S[0]->b_parent */
2166 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
2168 #define PATH_H_POSITION(path, h) \
2169 PATH_OFFSET_POSITION(path, path->path_length - (h))
2171 /* tb->S[h]->b_item_order */
2172 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
2174 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
2176 static inline void *reiserfs_node_data(const struct buffer_head *bh)
2178 return bh->b_data + sizeof(struct block_head);
2181 /* get key from internal node */
2182 static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
2183 int item_num)
2185 struct reiserfs_key *key = reiserfs_node_data(bh);
2187 return &key[item_num];
2190 /* get the item header from leaf node */
2191 static inline struct item_head *item_head(const struct buffer_head *bh,
2192 int item_num)
2194 struct item_head *ih = reiserfs_node_data(bh);
2196 return &ih[item_num];
2199 /* get the key from leaf node */
2200 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
2201 int item_num)
2203 return &item_head(bh, item_num)->ih_key;
2206 static inline void *ih_item_body(const struct buffer_head *bh,
2207 const struct item_head *ih)
2209 return bh->b_data + ih_location(ih);
2212 /* get item body from leaf node */
2213 static inline void *item_body(const struct buffer_head *bh, int item_num)
2215 return ih_item_body(bh, item_head(bh, item_num));
2218 static inline struct item_head *tp_item_head(const struct treepath *path)
2220 return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2223 static inline void *tp_item_body(const struct treepath *path)
2225 return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2228 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
2229 #define get_item_pos(path) PATH_LAST_POSITION(path)
2230 #define item_moved(ih,path) comp_items(ih, path)
2231 #define path_changed(ih,path) comp_items (ih, path)
2233 /* array of the entry headers */
2234 /* get item body */
2235 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
2238 * length of the directory entry in directory item. This define
2239 * calculates length of i-th directory entry using directory entry
2240 * locations from dir entry head. When it calculates length of 0-th
2241 * directory entry, it uses length of whole item in place of entry
2242 * location of the non-existent following entry in the calculation.
2243 * See picture above.
2245 static inline int entry_length(const struct buffer_head *bh,
2246 const struct item_head *ih, int pos_in_item)
2248 struct reiserfs_de_head *deh;
2250 deh = B_I_DEH(bh, ih) + pos_in_item;
2251 if (pos_in_item)
2252 return deh_location(deh - 1) - deh_location(deh);
2254 return ih_item_len(ih) - deh_location(deh);
2257 /***************************************************************************
2258 * MISC *
2259 ***************************************************************************/
2261 /* Size of pointer to the unformatted node. */
2262 #define UNFM_P_SIZE (sizeof(unp_t))
2263 #define UNFM_P_SHIFT 2
2265 /* in in-core inode key is stored on le form */
2266 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
2268 #define MAX_UL_INT 0xffffffff
2269 #define MAX_INT 0x7ffffff
2270 #define MAX_US_INT 0xffff
2272 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
2273 static inline loff_t max_reiserfs_offset(struct inode *inode)
2275 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
2276 return (loff_t) U32_MAX;
2278 return (loff_t) ((~(__u64) 0) >> 4);
2281 #define MAX_KEY_OBJECTID MAX_UL_INT
2283 #define MAX_B_NUM MAX_UL_INT
2284 #define MAX_FC_NUM MAX_US_INT
2286 /* the purpose is to detect overflow of an unsigned short */
2287 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
2290 * The following defines are used in reiserfs_insert_item
2291 * and reiserfs_append_item
2293 #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */
2294 #define REISERFS_USER_MEM 1 /* user memory mode */
2296 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
2297 #define get_generation(s) atomic_read (&fs_generation(s))
2298 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
2299 #define __fs_changed(gen,s) (gen != get_generation (s))
2300 #define fs_changed(gen,s) \
2301 ({ \
2302 reiserfs_cond_resched(s); \
2303 __fs_changed(gen, s); \
2306 /***************************************************************************
2307 * FIXATE NODES *
2308 ***************************************************************************/
2310 #define VI_TYPE_LEFT_MERGEABLE 1
2311 #define VI_TYPE_RIGHT_MERGEABLE 2
2314 * To make any changes in the tree we always first find node, that
2315 * contains item to be changed/deleted or place to insert a new
2316 * item. We call this node S. To do balancing we need to decide what
2317 * we will shift to left/right neighbor, or to a new node, where new
2318 * item will be etc. To make this analysis simpler we build virtual
2319 * node. Virtual node is an array of items, that will replace items of
2320 * node S. (For instance if we are going to delete an item, virtual
2321 * node does not contain it). Virtual node keeps information about
2322 * item sizes and types, mergeability of first and last items, sizes
2323 * of all entries in directory item. We use this array of items when
2324 * calculating what we can shift to neighbors and how many nodes we
2325 * have to have if we do not any shiftings, if we shift to left/right
2326 * neighbor or to both.
2328 struct virtual_item {
2329 int vi_index; /* index in the array of item operations */
2330 unsigned short vi_type; /* left/right mergeability */
2332 /* length of item that it will have after balancing */
2333 unsigned short vi_item_len;
2335 struct item_head *vi_ih;
2336 const char *vi_item; /* body of item (old or new) */
2337 const void *vi_new_data; /* 0 always but paste mode */
2338 void *vi_uarea; /* item specific area */
2341 struct virtual_node {
2342 /* this is a pointer to the free space in the buffer */
2343 char *vn_free_ptr;
2345 unsigned short vn_nr_item; /* number of items in virtual node */
2348 * size of node , that node would have if it has
2349 * unlimited size and no balancing is performed
2351 short vn_size;
2353 /* mode of balancing (paste, insert, delete, cut) */
2354 short vn_mode;
2356 short vn_affected_item_num;
2357 short vn_pos_in_item;
2359 /* item header of inserted item, 0 for other modes */
2360 struct item_head *vn_ins_ih;
2361 const void *vn_data;
2363 /* array of items (including a new one, excluding item to be deleted) */
2364 struct virtual_item *vn_vi;
2367 /* used by directory items when creating virtual nodes */
2368 struct direntry_uarea {
2369 int flags;
2370 __u16 entry_count;
2371 __u16 entry_sizes[1];
2372 } __attribute__ ((__packed__));
2374 /***************************************************************************
2375 * TREE BALANCE *
2376 ***************************************************************************/
2379 * This temporary structure is used in tree balance algorithms, and
2380 * constructed as we go to the extent that its various parts are
2381 * needed. It contains arrays of nodes that can potentially be
2382 * involved in the balancing of node S, and parameters that define how
2383 * each of the nodes must be balanced. Note that in these algorithms
2384 * for balancing the worst case is to need to balance the current node
2385 * S and the left and right neighbors and all of their parents plus
2386 * create a new node. We implement S1 balancing for the leaf nodes
2387 * and S0 balancing for the internal nodes (S1 and S0 are defined in
2388 * our papers.)
2391 /* size of the array of buffers to free at end of do_balance */
2392 #define MAX_FREE_BLOCK 7
2394 /* maximum number of FEB blocknrs on a single level */
2395 #define MAX_AMOUNT_NEEDED 2
2397 /* someday somebody will prefix every field in this struct with tb_ */
2398 struct tree_balance {
2399 int tb_mode;
2400 int need_balance_dirty;
2401 struct super_block *tb_sb;
2402 struct reiserfs_transaction_handle *transaction_handle;
2403 struct treepath *tb_path;
2405 /* array of left neighbors of nodes in the path */
2406 struct buffer_head *L[MAX_HEIGHT];
2408 /* array of right neighbors of nodes in the path */
2409 struct buffer_head *R[MAX_HEIGHT];
2411 /* array of fathers of the left neighbors */
2412 struct buffer_head *FL[MAX_HEIGHT];
2414 /* array of fathers of the right neighbors */
2415 struct buffer_head *FR[MAX_HEIGHT];
2416 /* array of common parents of center node and its left neighbor */
2417 struct buffer_head *CFL[MAX_HEIGHT];
2419 /* array of common parents of center node and its right neighbor */
2420 struct buffer_head *CFR[MAX_HEIGHT];
2423 * array of empty buffers. Number of buffers in array equals
2424 * cur_blknum.
2426 struct buffer_head *FEB[MAX_FEB_SIZE];
2427 struct buffer_head *used[MAX_FEB_SIZE];
2428 struct buffer_head *thrown[MAX_FEB_SIZE];
2431 * array of number of items which must be shifted to the left in
2432 * order to balance the current node; for leaves includes item that
2433 * will be partially shifted; for internal nodes, it is the number
2434 * of child pointers rather than items. It includes the new item
2435 * being created. The code sometimes subtracts one to get the
2436 * number of wholly shifted items for other purposes.
2438 int lnum[MAX_HEIGHT];
2440 /* substitute right for left in comment above */
2441 int rnum[MAX_HEIGHT];
2444 * array indexed by height h mapping the key delimiting L[h] and
2445 * S[h] to its item number within the node CFL[h]
2447 int lkey[MAX_HEIGHT];
2449 /* substitute r for l in comment above */
2450 int rkey[MAX_HEIGHT];
2453 * the number of bytes by we are trying to add or remove from
2454 * S[h]. A negative value means removing.
2456 int insert_size[MAX_HEIGHT];
2459 * number of nodes that will replace node S[h] after balancing
2460 * on the level h of the tree. If 0 then S is being deleted,
2461 * if 1 then S is remaining and no new nodes are being created,
2462 * if 2 or 3 then 1 or 2 new nodes is being created
2464 int blknum[MAX_HEIGHT];
2466 /* fields that are used only for balancing leaves of the tree */
2468 /* number of empty blocks having been already allocated */
2469 int cur_blknum;
2471 /* number of items that fall into left most node when S[0] splits */
2472 int s0num;
2475 * number of bytes which can flow to the left neighbor from the left
2476 * most liquid item that cannot be shifted from S[0] entirely
2477 * if -1 then nothing will be partially shifted
2479 int lbytes;
2482 * number of bytes which will flow to the right neighbor from the right
2483 * most liquid item that cannot be shifted from S[0] entirely
2484 * if -1 then nothing will be partially shifted
2486 int rbytes;
2490 * index into the array of item headers in
2491 * S[0] of the affected item
2493 int item_pos;
2495 /* new nodes allocated to hold what could not fit into S */
2496 struct buffer_head *S_new[2];
2499 * number of items that will be placed into nodes in S_new
2500 * when S[0] splits
2502 int snum[2];
2505 * number of bytes which flow to nodes in S_new when S[0] splits
2506 * note: if S[0] splits into 3 nodes, then items do not need to be cut
2508 int sbytes[2];
2510 int pos_in_item;
2511 int zeroes_num;
2514 * buffers which are to be freed after do_balance finishes
2515 * by unfix_nodes
2517 struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
2520 * kmalloced memory. Used to create virtual node and keep
2521 * map of dirtied bitmap blocks
2523 char *vn_buf;
2525 int vn_buf_size; /* size of the vn_buf */
2527 /* VN starts after bitmap of bitmap blocks */
2528 struct virtual_node *tb_vn;
2531 * saved value of `reiserfs_generation' counter see
2532 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
2534 int fs_gen;
2536 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2538 * key pointer, to pass to block allocator or
2539 * another low-level subsystem
2541 struct in_core_key key;
2542 #endif
2545 /* These are modes of balancing */
2547 /* When inserting an item. */
2548 #define M_INSERT 'i'
2550 * When inserting into (directories only) or appending onto an already
2551 * existent item.
2553 #define M_PASTE 'p'
2554 /* When deleting an item. */
2555 #define M_DELETE 'd'
2556 /* When truncating an item or removing an entry from a (directory) item. */
2557 #define M_CUT 'c'
2559 /* used when balancing on leaf level skipped (in reiserfsck) */
2560 #define M_INTERNAL 'n'
2563 * When further balancing is not needed, then do_balance does not need
2564 * to be called.
2566 #define M_SKIP_BALANCING 's'
2567 #define M_CONVERT 'v'
2569 /* modes of leaf_move_items */
2570 #define LEAF_FROM_S_TO_L 0
2571 #define LEAF_FROM_S_TO_R 1
2572 #define LEAF_FROM_R_TO_L 2
2573 #define LEAF_FROM_L_TO_R 3
2574 #define LEAF_FROM_S_TO_SNEW 4
2576 #define FIRST_TO_LAST 0
2577 #define LAST_TO_FIRST 1
2580 * used in do_balance for passing parent of node information that has
2581 * been gotten from tb struct
2583 struct buffer_info {
2584 struct tree_balance *tb;
2585 struct buffer_head *bi_bh;
2586 struct buffer_head *bi_parent;
2587 int bi_position;
2590 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2592 return tb ? tb->tb_sb : NULL;
2595 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2597 return bi ? sb_from_tb(bi->tb) : NULL;
2601 * there are 4 types of items: stat data, directory item, indirect, direct.
2602 * +-------------------+------------+--------------+------------+
2603 * | | k_offset | k_uniqueness | mergeable? |
2604 * +-------------------+------------+--------------+------------+
2605 * | stat data | 0 | 0 | no |
2606 * +-------------------+------------+--------------+------------+
2607 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no |
2608 * | non 1st directory | hash value | UNIQUENESS | yes |
2609 * | item | | | |
2610 * +-------------------+------------+--------------+------------+
2611 * | indirect item | offset + 1 |TYPE_INDIRECT | [1] |
2612 * +-------------------+------------+--------------+------------+
2613 * | direct item | offset + 1 |TYPE_DIRECT | [2] |
2614 * +-------------------+------------+--------------+------------+
2616 * [1] if this is not the first indirect item of the object
2617 * [2] if this is not the first direct item of the object
2620 struct item_operations {
2621 int (*bytes_number) (struct item_head * ih, int block_size);
2622 void (*decrement_key) (struct cpu_key *);
2623 int (*is_left_mergeable) (struct reiserfs_key * ih,
2624 unsigned long bsize);
2625 void (*print_item) (struct item_head *, char *item);
2626 void (*check_item) (struct item_head *, char *item);
2628 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2629 int is_affected, int insert_size);
2630 int (*check_left) (struct virtual_item * vi, int free,
2631 int start_skip, int end_skip);
2632 int (*check_right) (struct virtual_item * vi, int free);
2633 int (*part_size) (struct virtual_item * vi, int from, int to);
2634 int (*unit_num) (struct virtual_item * vi);
2635 void (*print_vi) (struct virtual_item * vi);
2638 extern struct item_operations *item_ops[TYPE_ANY + 1];
2640 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2641 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2642 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2643 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2644 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2645 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2646 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
2647 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
2648 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
2649 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
2651 #define COMP_SHORT_KEYS comp_short_keys
2653 /* number of blocks pointed to by the indirect item */
2654 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
2657 * the used space within the unformatted node corresponding
2658 * to pos within the item pointed to by ih
2660 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2663 * number of bytes contained by the direct item or the
2664 * unformatted nodes the indirect item points to
2667 /* following defines use reiserfs buffer header and item header */
2669 /* get stat-data */
2670 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2672 /* this is 3976 for size==4096 */
2673 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2676 * indirect items consist of entries which contain blocknrs, pos
2677 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2678 * blocknr contained by the entry pos points to
2680 #define B_I_POS_UNFM_POINTER(bh, ih, pos) \
2681 le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
2682 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \
2683 (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
2685 struct reiserfs_iget_args {
2686 __u32 objectid;
2687 __u32 dirid;
2690 /***************************************************************************
2691 * FUNCTION DECLARATIONS *
2692 ***************************************************************************/
2694 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2696 #define journal_trans_half(blocksize) \
2697 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2699 /* journal.c see journal.c for all the comments here */
2701 /* first block written in a commit. */
2702 struct reiserfs_journal_desc {
2703 __le32 j_trans_id; /* id of commit */
2705 /* length of commit. len +1 is the commit block */
2706 __le32 j_len;
2708 __le32 j_mount_id; /* mount id of this trans */
2709 __le32 j_realblock[1]; /* real locations for each block */
2712 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
2713 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
2714 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
2716 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2717 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
2718 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2720 /* last block written in a commit */
2721 struct reiserfs_journal_commit {
2722 __le32 j_trans_id; /* must match j_trans_id from the desc block */
2723 __le32 j_len; /* ditto */
2724 __le32 j_realblock[1]; /* real locations for each block */
2727 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2728 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
2729 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2731 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2732 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
2735 * this header block gets written whenever a transaction is considered
2736 * fully flushed, and is more recent than the last fully flushed transaction.
2737 * fully flushed means all the log blocks and all the real blocks are on
2738 * disk, and this transaction does not need to be replayed.
2740 struct reiserfs_journal_header {
2741 /* id of last fully flushed transaction */
2742 __le32 j_last_flush_trans_id;
2744 /* offset in the log of where to start replay after a crash */
2745 __le32 j_first_unflushed_offset;
2747 __le32 j_mount_id;
2748 /* 12 */ struct journal_params jh_journal;
2751 /* biggest tunable defines are right here */
2752 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
2754 /* biggest possible single transaction, don't change for now (8/3/99) */
2755 #define JOURNAL_TRANS_MAX_DEFAULT 1024
2756 #define JOURNAL_TRANS_MIN_DEFAULT 256
2759 * max blocks to batch into one transaction,
2760 * don't make this any bigger than 900
2762 #define JOURNAL_MAX_BATCH_DEFAULT 900
2763 #define JOURNAL_MIN_RATIO 2
2764 #define JOURNAL_MAX_COMMIT_AGE 30
2765 #define JOURNAL_MAX_TRANS_AGE 30
2766 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2767 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
2768 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2769 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2771 #ifdef CONFIG_QUOTA
2772 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2773 /* We need to update data and inode (atime) */
2774 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2775 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2776 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2777 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2778 /* same as with INIT */
2779 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2780 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2781 #else
2782 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2783 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2784 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2785 #endif
2788 * both of these can be as low as 1, or as high as you want. The min is the
2789 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2790 * as needed, and released when transactions are committed. On release, if
2791 * the current number of nodes is > max, the node is freed, otherwise,
2792 * it is put on a free list for faster use later.
2794 #define REISERFS_MIN_BITMAP_NODES 10
2795 #define REISERFS_MAX_BITMAP_NODES 100
2797 /* these are based on journal hash size of 8192 */
2798 #define JBH_HASH_SHIFT 13
2799 #define JBH_HASH_MASK 8191
2801 #define _jhashfn(sb,block) \
2802 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2803 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2804 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2806 /* We need these to make journal.c code more readable */
2807 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2808 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2809 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2811 enum reiserfs_bh_state_bits {
2812 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
2813 BH_JDirty_wait,
2815 * disk block was taken off free list before being in a
2816 * finished transaction, or written to disk. Can be reused immed.
2818 BH_JNew,
2819 BH_JPrepared,
2820 BH_JRestore_dirty,
2821 BH_JTest, /* debugging only will go away */
2824 BUFFER_FNS(JDirty, journaled);
2825 TAS_BUFFER_FNS(JDirty, journaled);
2826 BUFFER_FNS(JDirty_wait, journal_dirty);
2827 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2828 BUFFER_FNS(JNew, journal_new);
2829 TAS_BUFFER_FNS(JNew, journal_new);
2830 BUFFER_FNS(JPrepared, journal_prepared);
2831 TAS_BUFFER_FNS(JPrepared, journal_prepared);
2832 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2833 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2834 BUFFER_FNS(JTest, journal_test);
2835 TAS_BUFFER_FNS(JTest, journal_test);
2837 /* transaction handle which is passed around for all journal calls */
2838 struct reiserfs_transaction_handle {
2840 * super for this FS when journal_begin was called. saves calls to
2841 * reiserfs_get_super also used by nested transactions to make
2842 * sure they are nesting on the right FS _must_ be first
2843 * in the handle
2845 struct super_block *t_super;
2847 int t_refcount;
2848 int t_blocks_logged; /* number of blocks this writer has logged */
2849 int t_blocks_allocated; /* number of blocks this writer allocated */
2851 /* sanity check, equals the current trans id */
2852 unsigned int t_trans_id;
2854 void *t_handle_save; /* save existing current->journal_info */
2857 * if new block allocation occurres, that block
2858 * should be displaced from others
2860 unsigned displace_new_blocks:1;
2862 struct list_head t_list;
2866 * used to keep track of ordered and tail writes, attached to the buffer
2867 * head through b_journal_head.
2869 struct reiserfs_jh {
2870 struct reiserfs_journal_list *jl;
2871 struct buffer_head *bh;
2872 struct list_head list;
2875 void reiserfs_free_jh(struct buffer_head *bh);
2876 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2877 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2878 int journal_mark_dirty(struct reiserfs_transaction_handle *,
2879 struct buffer_head *bh);
2881 static inline int reiserfs_file_data_log(struct inode *inode)
2883 if (reiserfs_data_log(inode->i_sb) ||
2884 (REISERFS_I(inode)->i_flags & i_data_log))
2885 return 1;
2886 return 0;
2889 static inline int reiserfs_transaction_running(struct super_block *s)
2891 struct reiserfs_transaction_handle *th = current->journal_info;
2892 if (th && th->t_super == s)
2893 return 1;
2894 if (th && th->t_super == NULL)
2895 BUG();
2896 return 0;
2899 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2901 return th->t_blocks_allocated - th->t_blocks_logged;
2904 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2905 super_block
2907 int count);
2908 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2909 void reiserfs_vfs_truncate_file(struct inode *inode);
2910 int reiserfs_commit_page(struct inode *inode, struct page *page,
2911 unsigned from, unsigned to);
2912 void reiserfs_flush_old_commits(struct super_block *);
2913 int reiserfs_commit_for_inode(struct inode *);
2914 int reiserfs_inode_needs_commit(struct inode *);
2915 void reiserfs_update_inode_transaction(struct inode *);
2916 void reiserfs_wait_on_write_block(struct super_block *s);
2917 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2918 void reiserfs_allow_writes(struct super_block *s);
2919 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2920 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2921 int wait);
2922 void reiserfs_restore_prepared_buffer(struct super_block *,
2923 struct buffer_head *bh);
2924 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2925 unsigned int);
2926 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2927 int journal_release_error(struct reiserfs_transaction_handle *,
2928 struct super_block *);
2929 int journal_end(struct reiserfs_transaction_handle *);
2930 int journal_end_sync(struct reiserfs_transaction_handle *);
2931 int journal_mark_freed(struct reiserfs_transaction_handle *,
2932 struct super_block *, b_blocknr_t blocknr);
2933 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2934 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2935 int bit_nr, int searchall, b_blocknr_t *next);
2936 int journal_begin(struct reiserfs_transaction_handle *,
2937 struct super_block *sb, unsigned long);
2938 int journal_join_abort(struct reiserfs_transaction_handle *,
2939 struct super_block *sb);
2940 void reiserfs_abort_journal(struct super_block *sb, int errno);
2941 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2942 int reiserfs_allocate_list_bitmaps(struct super_block *s,
2943 struct reiserfs_list_bitmap *, unsigned int);
2945 void reiserfs_schedule_old_flush(struct super_block *s);
2946 void add_save_link(struct reiserfs_transaction_handle *th,
2947 struct inode *inode, int truncate);
2948 int remove_save_link(struct inode *inode, int truncate);
2950 /* objectid.c */
2951 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2952 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2953 __u32 objectid_to_release);
2954 int reiserfs_convert_objectid_map_v1(struct super_block *);
2956 /* stree.c */
2957 int B_IS_IN_TREE(const struct buffer_head *);
2958 extern void copy_item_head(struct item_head *to,
2959 const struct item_head *from);
2961 /* first key is in cpu form, second - le */
2962 extern int comp_short_keys(const struct reiserfs_key *le_key,
2963 const struct cpu_key *cpu_key);
2964 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2966 /* both are in le form */
2967 extern int comp_le_keys(const struct reiserfs_key *,
2968 const struct reiserfs_key *);
2969 extern int comp_short_le_keys(const struct reiserfs_key *,
2970 const struct reiserfs_key *);
2972 /* * get key version from on disk key - kludge */
2973 static inline int le_key_version(const struct reiserfs_key *key)
2975 int type;
2977 type = offset_v2_k_type(&(key->u.k_offset_v2));
2978 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2979 && type != TYPE_DIRENTRY)
2980 return KEY_FORMAT_3_5;
2982 return KEY_FORMAT_3_6;
2986 static inline void copy_key(struct reiserfs_key *to,
2987 const struct reiserfs_key *from)
2989 memcpy(to, from, KEY_SIZE);
2992 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
2993 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
2994 const struct super_block *sb);
2995 int search_by_key(struct super_block *, const struct cpu_key *,
2996 struct treepath *, int);
2997 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
2998 int search_for_position_by_key(struct super_block *sb,
2999 const struct cpu_key *cpu_key,
3000 struct treepath *search_path);
3001 extern void decrement_bcount(struct buffer_head *bh);
3002 void decrement_counters_in_path(struct treepath *search_path);
3003 void pathrelse(struct treepath *search_path);
3004 int reiserfs_check_path(struct treepath *p);
3005 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
3007 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
3008 struct treepath *path,
3009 const struct cpu_key *key,
3010 struct item_head *ih,
3011 struct inode *inode, const char *body);
3013 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
3014 struct treepath *path,
3015 const struct cpu_key *key,
3016 struct inode *inode,
3017 const char *body, int paste_size);
3019 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
3020 struct treepath *path,
3021 struct cpu_key *key,
3022 struct inode *inode,
3023 struct page *page, loff_t new_file_size);
3025 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
3026 struct treepath *path,
3027 const struct cpu_key *key,
3028 struct inode *inode, struct buffer_head *un_bh);
3030 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
3031 struct inode *inode, struct reiserfs_key *key);
3032 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
3033 struct inode *inode);
3034 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
3035 struct inode *inode, struct page *,
3036 int update_timestamps);
3038 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
3039 #define file_size(inode) ((inode)->i_size)
3040 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
3042 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
3043 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
3045 void padd_item(char *item, int total_length, int length);
3047 /* inode.c */
3048 /* args for the create parameter of reiserfs_get_block */
3049 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
3050 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
3051 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
3052 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
3053 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
3054 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
3056 void reiserfs_read_locked_inode(struct inode *inode,
3057 struct reiserfs_iget_args *args);
3058 int reiserfs_find_actor(struct inode *inode, void *p);
3059 int reiserfs_init_locked_inode(struct inode *inode, void *p);
3060 void reiserfs_evict_inode(struct inode *inode);
3061 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3062 int reiserfs_get_block(struct inode *inode, sector_t block,
3063 struct buffer_head *bh_result, int create);
3064 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3065 int fh_len, int fh_type);
3066 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
3067 int fh_len, int fh_type);
3068 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
3069 struct inode *parent);
3071 int reiserfs_truncate_file(struct inode *, int update_timestamps);
3072 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
3073 int type, int key_length);
3074 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
3075 int version,
3076 loff_t offset, int type, int length, int entry_count);
3077 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
3079 struct reiserfs_security_handle;
3080 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
3081 struct inode *dir, umode_t mode,
3082 const char *symname, loff_t i_size,
3083 struct dentry *dentry, struct inode *inode,
3084 struct reiserfs_security_handle *security);
3086 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
3087 struct inode *inode, loff_t size);
3089 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
3090 struct inode *inode)
3092 reiserfs_update_sd_size(th, inode, inode->i_size);
3095 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
3096 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
3097 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
3099 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
3101 /* namei.c */
3102 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
3103 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
3104 struct treepath *path, struct reiserfs_dir_entry *de);
3105 struct dentry *reiserfs_get_parent(struct dentry *);
3107 #ifdef CONFIG_REISERFS_PROC_INFO
3108 int reiserfs_proc_info_init(struct super_block *sb);
3109 int reiserfs_proc_info_done(struct super_block *sb);
3110 int reiserfs_proc_info_global_init(void);
3111 int reiserfs_proc_info_global_done(void);
3113 #define PROC_EXP( e ) e
3115 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
3116 #define PROC_INFO_MAX( sb, field, value ) \
3117 __PINFO( sb ).field = \
3118 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
3119 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
3120 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
3121 #define PROC_INFO_BH_STAT( sb, bh, level ) \
3122 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
3123 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
3124 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
3125 #else
3126 static inline int reiserfs_proc_info_init(struct super_block *sb)
3128 return 0;
3131 static inline int reiserfs_proc_info_done(struct super_block *sb)
3133 return 0;
3136 static inline int reiserfs_proc_info_global_init(void)
3138 return 0;
3141 static inline int reiserfs_proc_info_global_done(void)
3143 return 0;
3146 #define PROC_EXP( e )
3147 #define VOID_V ( ( void ) 0 )
3148 #define PROC_INFO_MAX( sb, field, value ) VOID_V
3149 #define PROC_INFO_INC( sb, field ) VOID_V
3150 #define PROC_INFO_ADD( sb, field, val ) VOID_V
3151 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
3152 #endif
3154 /* dir.c */
3155 extern const struct inode_operations reiserfs_dir_inode_operations;
3156 extern const struct inode_operations reiserfs_symlink_inode_operations;
3157 extern const struct inode_operations reiserfs_special_inode_operations;
3158 extern const struct file_operations reiserfs_dir_operations;
3159 int reiserfs_readdir_inode(struct inode *, struct dir_context *);
3161 /* tail_conversion.c */
3162 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
3163 struct treepath *, struct buffer_head *, loff_t);
3164 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
3165 struct page *, struct treepath *, const struct cpu_key *,
3166 loff_t, char *);
3167 void reiserfs_unmap_buffer(struct buffer_head *);
3169 /* file.c */
3170 extern const struct inode_operations reiserfs_file_inode_operations;
3171 extern const struct file_operations reiserfs_file_operations;
3172 extern const struct address_space_operations reiserfs_address_space_operations;
3174 /* fix_nodes.c */
3176 int fix_nodes(int n_op_mode, struct tree_balance *tb,
3177 struct item_head *ins_ih, const void *);
3178 void unfix_nodes(struct tree_balance *);
3180 /* prints.c */
3181 void __reiserfs_panic(struct super_block *s, const char *id,
3182 const char *function, const char *fmt, ...)
3183 __attribute__ ((noreturn));
3184 #define reiserfs_panic(s, id, fmt, args...) \
3185 __reiserfs_panic(s, id, __func__, fmt, ##args)
3186 void __reiserfs_error(struct super_block *s, const char *id,
3187 const char *function, const char *fmt, ...);
3188 #define reiserfs_error(s, id, fmt, args...) \
3189 __reiserfs_error(s, id, __func__, fmt, ##args)
3190 void reiserfs_info(struct super_block *s, const char *fmt, ...);
3191 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
3192 void print_indirect_item(struct buffer_head *bh, int item_num);
3193 void store_print_tb(struct tree_balance *tb);
3194 void print_cur_tb(char *mes);
3195 void print_de(struct reiserfs_dir_entry *de);
3196 void print_bi(struct buffer_info *bi, char *mes);
3197 #define PRINT_LEAF_ITEMS 1 /* print all items */
3198 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
3199 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
3200 void print_block(struct buffer_head *bh, ...);
3201 void print_bmap(struct super_block *s, int silent);
3202 void print_bmap_block(int i, char *data, int size, int silent);
3203 /*void print_super_block (struct super_block * s, char * mes);*/
3204 void print_objectid_map(struct super_block *s);
3205 void print_block_head(struct buffer_head *bh, char *mes);
3206 void check_leaf(struct buffer_head *bh);
3207 void check_internal(struct buffer_head *bh);
3208 void print_statistics(struct super_block *s);
3209 char *reiserfs_hashname(int code);
3211 /* lbalance.c */
3212 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
3213 int mov_bytes, struct buffer_head *Snew);
3214 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
3215 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
3216 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
3217 int del_num, int del_bytes);
3218 void leaf_insert_into_buf(struct buffer_info *bi, int before,
3219 struct item_head *inserted_item_ih,
3220 const char *inserted_item_body, int zeros_number);
3221 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
3222 int pos_in_item, int paste_size, const char *body,
3223 int zeros_number);
3224 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
3225 int pos_in_item, int cut_size);
3226 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
3227 int new_entry_count, struct reiserfs_de_head *new_dehs,
3228 const char *records, int paste_size);
3229 /* ibalance.c */
3230 int balance_internal(struct tree_balance *, int, int, struct item_head *,
3231 struct buffer_head **);
3233 /* do_balance.c */
3234 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
3235 struct buffer_head *bh, int flag);
3236 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
3237 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
3239 void do_balance(struct tree_balance *tb, struct item_head *ih,
3240 const char *body, int flag);
3241 void reiserfs_invalidate_buffer(struct tree_balance *tb,
3242 struct buffer_head *bh);
3244 int get_left_neighbor_position(struct tree_balance *tb, int h);
3245 int get_right_neighbor_position(struct tree_balance *tb, int h);
3246 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
3247 struct buffer_head *, int);
3248 void make_empty_node(struct buffer_info *);
3249 struct buffer_head *get_FEB(struct tree_balance *);
3251 /* bitmap.c */
3254 * structure contains hints for block allocator, and it is a container for
3255 * arguments, such as node, search path, transaction_handle, etc.
3257 struct __reiserfs_blocknr_hint {
3258 /* inode passed to allocator, if we allocate unf. nodes */
3259 struct inode *inode;
3261 sector_t block; /* file offset, in blocks */
3262 struct in_core_key key;
3265 * search path, used by allocator to deternine search_start by
3266 * various ways
3268 struct treepath *path;
3271 * transaction handle is needed to log super blocks
3272 * and bitmap blocks changes
3274 struct reiserfs_transaction_handle *th;
3276 b_blocknr_t beg, end;
3279 * a field used to transfer search start value (block number)
3280 * between different block allocator procedures
3281 * (determine_search_start() and others)
3283 b_blocknr_t search_start;
3286 * is set in determine_prealloc_size() function,
3287 * used by underlayed function that do actual allocation
3289 int prealloc_size;
3292 * the allocator uses different polices for getting disk
3293 * space for formatted/unformatted blocks with/without preallocation
3295 unsigned formatted_node:1;
3296 unsigned preallocate:1;
3299 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
3301 int reiserfs_parse_alloc_options(struct super_block *, char *);
3302 void reiserfs_init_alloc_options(struct super_block *s);
3305 * given a directory, this will tell you what packing locality
3306 * to use for a new object underneat it. The locality is returned
3307 * in disk byte order (le).
3309 __le32 reiserfs_choose_packing(struct inode *dir);
3311 void show_alloc_options(struct seq_file *seq, struct super_block *s);
3312 int reiserfs_init_bitmap_cache(struct super_block *sb);
3313 void reiserfs_free_bitmap_cache(struct super_block *sb);
3314 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
3315 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
3316 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
3317 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
3318 b_blocknr_t, int for_unformatted);
3319 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
3320 int);
3321 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
3322 b_blocknr_t * new_blocknrs,
3323 int amount_needed)
3325 reiserfs_blocknr_hint_t hint = {
3326 .th = tb->transaction_handle,
3327 .path = tb->tb_path,
3328 .inode = NULL,
3329 .key = tb->key,
3330 .block = 0,
3331 .formatted_node = 1
3333 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
3337 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
3338 *th, struct inode *inode,
3339 b_blocknr_t * new_blocknrs,
3340 struct treepath *path,
3341 sector_t block)
3343 reiserfs_blocknr_hint_t hint = {
3344 .th = th,
3345 .path = path,
3346 .inode = inode,
3347 .block = block,
3348 .formatted_node = 0,
3349 .preallocate = 0
3351 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3354 #ifdef REISERFS_PREALLOCATE
3355 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
3356 *th, struct inode *inode,
3357 b_blocknr_t * new_blocknrs,
3358 struct treepath *path,
3359 sector_t block)
3361 reiserfs_blocknr_hint_t hint = {
3362 .th = th,
3363 .path = path,
3364 .inode = inode,
3365 .block = block,
3366 .formatted_node = 0,
3367 .preallocate = 1
3369 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3372 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
3373 struct inode *inode);
3374 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
3375 #endif
3377 /* hashes.c */
3378 __u32 keyed_hash(const signed char *msg, int len);
3379 __u32 yura_hash(const signed char *msg, int len);
3380 __u32 r5_hash(const signed char *msg, int len);
3382 #define reiserfs_set_le_bit __set_bit_le
3383 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le
3384 #define reiserfs_clear_le_bit __clear_bit_le
3385 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le
3386 #define reiserfs_test_le_bit test_bit_le
3387 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le
3390 * sometimes reiserfs_truncate may require to allocate few new blocks
3391 * to perform indirect2direct conversion. People probably used to
3392 * think, that truncate should work without problems on a filesystem
3393 * without free disk space. They may complain that they can not
3394 * truncate due to lack of free disk space. This spare space allows us
3395 * to not worry about it. 500 is probably too much, but it should be
3396 * absolutely safe
3398 #define SPARE_SPACE 500
3400 /* prototypes from ioctl.c */
3401 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3402 long reiserfs_compat_ioctl(struct file *filp,
3403 unsigned int cmd, unsigned long arg);
3404 int reiserfs_unpack(struct inode *inode, struct file *filp);