2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
6 #include <linux/slab.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
21 #include <linux/memcontrol.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
28 enum slab_state slab_state
;
29 LIST_HEAD(slab_caches
);
30 DEFINE_MUTEX(slab_mutex
);
31 struct kmem_cache
*kmem_cache
;
34 * Set of flags that will prevent slab merging
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 SLAB_NOTRACK | SLAB_ACCOUNT)
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
47 static int slab_nomerge
;
49 static int __init
setup_slab_nomerge(char *str
)
56 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
59 __setup("slab_nomerge", setup_slab_nomerge
);
62 * Determine the size of a slab object
64 unsigned int kmem_cache_size(struct kmem_cache
*s
)
66 return s
->object_size
;
68 EXPORT_SYMBOL(kmem_cache_size
);
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name
, size_t size
)
73 struct kmem_cache
*s
= NULL
;
75 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
76 size
> KMALLOC_MAX_SIZE
) {
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
81 list_for_each_entry(s
, &slab_caches
, list
) {
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
90 res
= probe_kernel_address(s
->name
, tmp
);
92 pr_err("Slab cache with size %d has lost its name\n",
98 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
102 static inline int kmem_cache_sanity_check(const char *name
, size_t size
)
108 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
112 for (i
= 0; i
< nr
; i
++)
113 kmem_cache_free(s
, p
[i
]);
116 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
121 for (i
= 0; i
< nr
; i
++) {
122 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
124 __kmem_cache_free_bulk(s
, i
, p
);
131 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
132 void slab_init_memcg_params(struct kmem_cache
*s
)
134 s
->memcg_params
.is_root_cache
= true;
135 INIT_LIST_HEAD(&s
->memcg_params
.list
);
136 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
139 static int init_memcg_params(struct kmem_cache
*s
,
140 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
142 struct memcg_cache_array
*arr
;
145 s
->memcg_params
.is_root_cache
= false;
146 s
->memcg_params
.memcg
= memcg
;
147 s
->memcg_params
.root_cache
= root_cache
;
151 slab_init_memcg_params(s
);
153 if (!memcg_nr_cache_ids
)
156 arr
= kzalloc(sizeof(struct memcg_cache_array
) +
157 memcg_nr_cache_ids
* sizeof(void *),
162 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
166 static void destroy_memcg_params(struct kmem_cache
*s
)
168 if (is_root_cache(s
))
169 kfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
172 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
174 struct memcg_cache_array
*old
, *new;
176 if (!is_root_cache(s
))
179 new = kzalloc(sizeof(struct memcg_cache_array
) +
180 new_array_size
* sizeof(void *), GFP_KERNEL
);
184 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
185 lockdep_is_held(&slab_mutex
));
187 memcpy(new->entries
, old
->entries
,
188 memcg_nr_cache_ids
* sizeof(void *));
190 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
196 int memcg_update_all_caches(int num_memcgs
)
198 struct kmem_cache
*s
;
201 mutex_lock(&slab_mutex
);
202 list_for_each_entry(s
, &slab_caches
, list
) {
203 ret
= update_memcg_params(s
, num_memcgs
);
205 * Instead of freeing the memory, we'll just leave the caches
206 * up to this point in an updated state.
211 mutex_unlock(&slab_mutex
);
215 static inline int init_memcg_params(struct kmem_cache
*s
,
216 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
221 static inline void destroy_memcg_params(struct kmem_cache
*s
)
224 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
227 * Find a mergeable slab cache
229 int slab_unmergeable(struct kmem_cache
*s
)
231 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
234 if (!is_root_cache(s
))
241 * We may have set a slab to be unmergeable during bootstrap.
249 struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
250 unsigned long flags
, const char *name
, void (*ctor
)(void *))
252 struct kmem_cache
*s
;
254 if (slab_nomerge
|| (flags
& SLAB_NEVER_MERGE
))
260 size
= ALIGN(size
, sizeof(void *));
261 align
= calculate_alignment(flags
, align
, size
);
262 size
= ALIGN(size
, align
);
263 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
265 list_for_each_entry_reverse(s
, &slab_caches
, list
) {
266 if (slab_unmergeable(s
))
272 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
275 * Check if alignment is compatible.
276 * Courtesy of Adrian Drzewiecki
278 if ((s
->size
& ~(align
- 1)) != s
->size
)
281 if (s
->size
- size
>= sizeof(void *))
284 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
285 (align
> s
->align
|| s
->align
% align
))
294 * Figure out what the alignment of the objects will be given a set of
295 * flags, a user specified alignment and the size of the objects.
297 unsigned long calculate_alignment(unsigned long flags
,
298 unsigned long align
, unsigned long size
)
301 * If the user wants hardware cache aligned objects then follow that
302 * suggestion if the object is sufficiently large.
304 * The hardware cache alignment cannot override the specified
305 * alignment though. If that is greater then use it.
307 if (flags
& SLAB_HWCACHE_ALIGN
) {
308 unsigned long ralign
= cache_line_size();
309 while (size
<= ralign
/ 2)
311 align
= max(align
, ralign
);
314 if (align
< ARCH_SLAB_MINALIGN
)
315 align
= ARCH_SLAB_MINALIGN
;
317 return ALIGN(align
, sizeof(void *));
320 static struct kmem_cache
*create_cache(const char *name
,
321 size_t object_size
, size_t size
, size_t align
,
322 unsigned long flags
, void (*ctor
)(void *),
323 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
325 struct kmem_cache
*s
;
329 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
334 s
->object_size
= object_size
;
339 err
= init_memcg_params(s
, memcg
, root_cache
);
343 err
= __kmem_cache_create(s
, flags
);
348 list_add(&s
->list
, &slab_caches
);
355 destroy_memcg_params(s
);
356 kmem_cache_free(kmem_cache
, s
);
361 * kmem_cache_create - Create a cache.
362 * @name: A string which is used in /proc/slabinfo to identify this cache.
363 * @size: The size of objects to be created in this cache.
364 * @align: The required alignment for the objects.
366 * @ctor: A constructor for the objects.
368 * Returns a ptr to the cache on success, NULL on failure.
369 * Cannot be called within a interrupt, but can be interrupted.
370 * The @ctor is run when new pages are allocated by the cache.
374 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375 * to catch references to uninitialised memory.
377 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
378 * for buffer overruns.
380 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381 * cacheline. This can be beneficial if you're counting cycles as closely
385 kmem_cache_create(const char *name
, size_t size
, size_t align
,
386 unsigned long flags
, void (*ctor
)(void *))
388 struct kmem_cache
*s
= NULL
;
389 const char *cache_name
;
394 memcg_get_cache_ids();
396 mutex_lock(&slab_mutex
);
398 err
= kmem_cache_sanity_check(name
, size
);
404 * Some allocators will constraint the set of valid flags to a subset
405 * of all flags. We expect them to define CACHE_CREATE_MASK in this
406 * case, and we'll just provide them with a sanitized version of the
409 flags
&= CACHE_CREATE_MASK
;
411 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
415 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
421 s
= create_cache(cache_name
, size
, size
,
422 calculate_alignment(flags
, align
, size
),
423 flags
, ctor
, NULL
, NULL
);
426 kfree_const(cache_name
);
430 mutex_unlock(&slab_mutex
);
432 memcg_put_cache_ids();
437 if (flags
& SLAB_PANIC
)
438 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
441 printk(KERN_WARNING
"kmem_cache_create(%s) failed with error %d",
449 EXPORT_SYMBOL(kmem_cache_create
);
451 static int shutdown_cache(struct kmem_cache
*s
,
452 struct list_head
*release
, bool *need_rcu_barrier
)
454 if (__kmem_cache_shutdown(s
) != 0)
457 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
458 *need_rcu_barrier
= true;
460 list_move(&s
->list
, release
);
464 static void release_caches(struct list_head
*release
, bool need_rcu_barrier
)
466 struct kmem_cache
*s
, *s2
;
468 if (need_rcu_barrier
)
471 list_for_each_entry_safe(s
, s2
, release
, list
) {
472 #ifdef SLAB_SUPPORTS_SYSFS
473 sysfs_slab_remove(s
);
475 slab_kmem_cache_release(s
);
480 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
482 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
483 * @memcg: The memory cgroup the new cache is for.
484 * @root_cache: The parent of the new cache.
486 * This function attempts to create a kmem cache that will serve allocation
487 * requests going from @memcg to @root_cache. The new cache inherits properties
490 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
491 struct kmem_cache
*root_cache
)
493 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
494 struct cgroup_subsys_state
*css
= &memcg
->css
;
495 struct memcg_cache_array
*arr
;
496 struct kmem_cache
*s
= NULL
;
503 mutex_lock(&slab_mutex
);
506 * The memory cgroup could have been offlined while the cache
507 * creation work was pending.
509 if (!memcg_kmem_online(memcg
))
512 idx
= memcg_cache_id(memcg
);
513 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
514 lockdep_is_held(&slab_mutex
));
517 * Since per-memcg caches are created asynchronously on first
518 * allocation (see memcg_kmem_get_cache()), several threads can try to
519 * create the same cache, but only one of them may succeed.
521 if (arr
->entries
[idx
])
524 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
525 cache_name
= kasprintf(GFP_KERNEL
, "%s(%d:%s)", root_cache
->name
,
526 css
->id
, memcg_name_buf
);
530 s
= create_cache(cache_name
, root_cache
->object_size
,
531 root_cache
->size
, root_cache
->align
,
532 root_cache
->flags
, root_cache
->ctor
,
535 * If we could not create a memcg cache, do not complain, because
536 * that's not critical at all as we can always proceed with the root
544 list_add(&s
->memcg_params
.list
, &root_cache
->memcg_params
.list
);
547 * Since readers won't lock (see cache_from_memcg_idx()), we need a
548 * barrier here to ensure nobody will see the kmem_cache partially
552 arr
->entries
[idx
] = s
;
555 mutex_unlock(&slab_mutex
);
561 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
)
564 struct memcg_cache_array
*arr
;
565 struct kmem_cache
*s
, *c
;
567 idx
= memcg_cache_id(memcg
);
572 mutex_lock(&slab_mutex
);
573 list_for_each_entry(s
, &slab_caches
, list
) {
574 if (!is_root_cache(s
))
577 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
578 lockdep_is_held(&slab_mutex
));
579 c
= arr
->entries
[idx
];
583 __kmem_cache_shrink(c
, true);
584 arr
->entries
[idx
] = NULL
;
586 mutex_unlock(&slab_mutex
);
592 static int __shutdown_memcg_cache(struct kmem_cache
*s
,
593 struct list_head
*release
, bool *need_rcu_barrier
)
595 BUG_ON(is_root_cache(s
));
597 if (shutdown_cache(s
, release
, need_rcu_barrier
))
600 list_del(&s
->memcg_params
.list
);
604 void memcg_destroy_kmem_caches(struct mem_cgroup
*memcg
)
607 bool need_rcu_barrier
= false;
608 struct kmem_cache
*s
, *s2
;
613 mutex_lock(&slab_mutex
);
614 list_for_each_entry_safe(s
, s2
, &slab_caches
, list
) {
615 if (is_root_cache(s
) || s
->memcg_params
.memcg
!= memcg
)
618 * The cgroup is about to be freed and therefore has no charges
619 * left. Hence, all its caches must be empty by now.
621 BUG_ON(__shutdown_memcg_cache(s
, &release
, &need_rcu_barrier
));
623 mutex_unlock(&slab_mutex
);
628 release_caches(&release
, need_rcu_barrier
);
631 static int shutdown_memcg_caches(struct kmem_cache
*s
,
632 struct list_head
*release
, bool *need_rcu_barrier
)
634 struct memcg_cache_array
*arr
;
635 struct kmem_cache
*c
, *c2
;
639 BUG_ON(!is_root_cache(s
));
642 * First, shutdown active caches, i.e. caches that belong to online
645 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
646 lockdep_is_held(&slab_mutex
));
647 for_each_memcg_cache_index(i
) {
651 if (__shutdown_memcg_cache(c
, release
, need_rcu_barrier
))
653 * The cache still has objects. Move it to a temporary
654 * list so as not to try to destroy it for a second
655 * time while iterating over inactive caches below.
657 list_move(&c
->memcg_params
.list
, &busy
);
660 * The cache is empty and will be destroyed soon. Clear
661 * the pointer to it in the memcg_caches array so that
662 * it will never be accessed even if the root cache
665 arr
->entries
[i
] = NULL
;
669 * Second, shutdown all caches left from memory cgroups that are now
672 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.list
,
674 __shutdown_memcg_cache(c
, release
, need_rcu_barrier
);
676 list_splice(&busy
, &s
->memcg_params
.list
);
679 * A cache being destroyed must be empty. In particular, this means
680 * that all per memcg caches attached to it must be empty too.
682 if (!list_empty(&s
->memcg_params
.list
))
687 static inline int shutdown_memcg_caches(struct kmem_cache
*s
,
688 struct list_head
*release
, bool *need_rcu_barrier
)
692 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
694 void slab_kmem_cache_release(struct kmem_cache
*s
)
696 destroy_memcg_params(s
);
697 kfree_const(s
->name
);
698 kmem_cache_free(kmem_cache
, s
);
701 void kmem_cache_destroy(struct kmem_cache
*s
)
704 bool need_rcu_barrier
= false;
713 mutex_lock(&slab_mutex
);
719 err
= shutdown_memcg_caches(s
, &release
, &need_rcu_barrier
);
721 err
= shutdown_cache(s
, &release
, &need_rcu_barrier
);
724 pr_err("kmem_cache_destroy %s: "
725 "Slab cache still has objects\n", s
->name
);
729 mutex_unlock(&slab_mutex
);
734 release_caches(&release
, need_rcu_barrier
);
736 EXPORT_SYMBOL(kmem_cache_destroy
);
739 * kmem_cache_shrink - Shrink a cache.
740 * @cachep: The cache to shrink.
742 * Releases as many slabs as possible for a cache.
743 * To help debugging, a zero exit status indicates all slabs were released.
745 int kmem_cache_shrink(struct kmem_cache
*cachep
)
751 ret
= __kmem_cache_shrink(cachep
, false);
756 EXPORT_SYMBOL(kmem_cache_shrink
);
758 bool slab_is_available(void)
760 return slab_state
>= UP
;
764 /* Create a cache during boot when no slab services are available yet */
765 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
, size_t size
,
771 s
->size
= s
->object_size
= size
;
772 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
774 slab_init_memcg_params(s
);
776 err
= __kmem_cache_create(s
, flags
);
779 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
782 s
->refcount
= -1; /* Exempt from merging for now */
785 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
, size_t size
,
788 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
791 panic("Out of memory when creating slab %s\n", name
);
793 create_boot_cache(s
, name
, size
, flags
);
794 list_add(&s
->list
, &slab_caches
);
799 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
800 EXPORT_SYMBOL(kmalloc_caches
);
802 #ifdef CONFIG_ZONE_DMA
803 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
804 EXPORT_SYMBOL(kmalloc_dma_caches
);
808 * Conversion table for small slabs sizes / 8 to the index in the
809 * kmalloc array. This is necessary for slabs < 192 since we have non power
810 * of two cache sizes there. The size of larger slabs can be determined using
813 static s8 size_index
[24] = {
840 static inline int size_index_elem(size_t bytes
)
842 return (bytes
- 1) / 8;
846 * Find the kmem_cache structure that serves a given size of
849 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
853 if (unlikely(size
> KMALLOC_MAX_SIZE
)) {
854 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
860 return ZERO_SIZE_PTR
;
862 index
= size_index
[size_index_elem(size
)];
864 index
= fls(size
- 1);
866 #ifdef CONFIG_ZONE_DMA
867 if (unlikely((flags
& GFP_DMA
)))
868 return kmalloc_dma_caches
[index
];
871 return kmalloc_caches
[index
];
875 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
876 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
882 } const kmalloc_info
[] __initconst
= {
883 {NULL
, 0}, {"kmalloc-96", 96},
884 {"kmalloc-192", 192}, {"kmalloc-8", 8},
885 {"kmalloc-16", 16}, {"kmalloc-32", 32},
886 {"kmalloc-64", 64}, {"kmalloc-128", 128},
887 {"kmalloc-256", 256}, {"kmalloc-512", 512},
888 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
889 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
890 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
891 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
892 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
893 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
894 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
895 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
896 {"kmalloc-67108864", 67108864}
900 * Patch up the size_index table if we have strange large alignment
901 * requirements for the kmalloc array. This is only the case for
902 * MIPS it seems. The standard arches will not generate any code here.
904 * Largest permitted alignment is 256 bytes due to the way we
905 * handle the index determination for the smaller caches.
907 * Make sure that nothing crazy happens if someone starts tinkering
908 * around with ARCH_KMALLOC_MINALIGN
910 void __init
setup_kmalloc_cache_index_table(void)
914 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
915 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
917 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
918 int elem
= size_index_elem(i
);
920 if (elem
>= ARRAY_SIZE(size_index
))
922 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
925 if (KMALLOC_MIN_SIZE
>= 64) {
927 * The 96 byte size cache is not used if the alignment
930 for (i
= 64 + 8; i
<= 96; i
+= 8)
931 size_index
[size_index_elem(i
)] = 7;
935 if (KMALLOC_MIN_SIZE
>= 128) {
937 * The 192 byte sized cache is not used if the alignment
938 * is 128 byte. Redirect kmalloc to use the 256 byte cache
941 for (i
= 128 + 8; i
<= 192; i
+= 8)
942 size_index
[size_index_elem(i
)] = 8;
946 static void __init
new_kmalloc_cache(int idx
, unsigned long flags
)
948 kmalloc_caches
[idx
] = create_kmalloc_cache(kmalloc_info
[idx
].name
,
949 kmalloc_info
[idx
].size
, flags
);
953 * Create the kmalloc array. Some of the regular kmalloc arrays
954 * may already have been created because they were needed to
955 * enable allocations for slab creation.
957 void __init
create_kmalloc_caches(unsigned long flags
)
961 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
962 if (!kmalloc_caches
[i
])
963 new_kmalloc_cache(i
, flags
);
966 * Caches that are not of the two-to-the-power-of size.
967 * These have to be created immediately after the
968 * earlier power of two caches
970 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
971 new_kmalloc_cache(1, flags
);
972 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
973 new_kmalloc_cache(2, flags
);
976 /* Kmalloc array is now usable */
979 #ifdef CONFIG_ZONE_DMA
980 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
981 struct kmem_cache
*s
= kmalloc_caches
[i
];
984 int size
= kmalloc_size(i
);
985 char *n
= kasprintf(GFP_NOWAIT
,
986 "dma-kmalloc-%d", size
);
989 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
990 size
, SLAB_CACHE_DMA
| flags
);
995 #endif /* !CONFIG_SLOB */
998 * To avoid unnecessary overhead, we pass through large allocation requests
999 * directly to the page allocator. We use __GFP_COMP, because we will need to
1000 * know the allocation order to free the pages properly in kfree.
1002 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1007 flags
|= __GFP_COMP
;
1008 page
= alloc_kmem_pages(flags
, order
);
1009 ret
= page
? page_address(page
) : NULL
;
1010 kmemleak_alloc(ret
, size
, 1, flags
);
1011 kasan_kmalloc_large(ret
, size
);
1014 EXPORT_SYMBOL(kmalloc_order
);
1016 #ifdef CONFIG_TRACING
1017 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1019 void *ret
= kmalloc_order(size
, flags
, order
);
1020 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1023 EXPORT_SYMBOL(kmalloc_order_trace
);
1026 #ifdef CONFIG_SLABINFO
1029 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1031 #define SLABINFO_RIGHTS S_IRUSR
1034 static void print_slabinfo_header(struct seq_file
*m
)
1037 * Output format version, so at least we can change it
1038 * without _too_ many complaints.
1040 #ifdef CONFIG_DEBUG_SLAB
1041 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1043 seq_puts(m
, "slabinfo - version: 2.1\n");
1045 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
1046 "<objperslab> <pagesperslab>");
1047 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1048 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1049 #ifdef CONFIG_DEBUG_SLAB
1050 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
1051 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1052 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1057 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1059 mutex_lock(&slab_mutex
);
1060 return seq_list_start(&slab_caches
, *pos
);
1063 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1065 return seq_list_next(p
, &slab_caches
, pos
);
1068 void slab_stop(struct seq_file
*m
, void *p
)
1070 mutex_unlock(&slab_mutex
);
1074 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1076 struct kmem_cache
*c
;
1077 struct slabinfo sinfo
;
1079 if (!is_root_cache(s
))
1082 for_each_memcg_cache(c
, s
) {
1083 memset(&sinfo
, 0, sizeof(sinfo
));
1084 get_slabinfo(c
, &sinfo
);
1086 info
->active_slabs
+= sinfo
.active_slabs
;
1087 info
->num_slabs
+= sinfo
.num_slabs
;
1088 info
->shared_avail
+= sinfo
.shared_avail
;
1089 info
->active_objs
+= sinfo
.active_objs
;
1090 info
->num_objs
+= sinfo
.num_objs
;
1094 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1096 struct slabinfo sinfo
;
1098 memset(&sinfo
, 0, sizeof(sinfo
));
1099 get_slabinfo(s
, &sinfo
);
1101 memcg_accumulate_slabinfo(s
, &sinfo
);
1103 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1104 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1105 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1107 seq_printf(m
, " : tunables %4u %4u %4u",
1108 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1109 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1110 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1111 slabinfo_show_stats(m
, s
);
1115 static int slab_show(struct seq_file
*m
, void *p
)
1117 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, list
);
1119 if (p
== slab_caches
.next
)
1120 print_slabinfo_header(m
);
1121 if (is_root_cache(s
))
1126 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1127 int memcg_slab_show(struct seq_file
*m
, void *p
)
1129 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, list
);
1130 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1132 if (p
== slab_caches
.next
)
1133 print_slabinfo_header(m
);
1134 if (!is_root_cache(s
) && s
->memcg_params
.memcg
== memcg
)
1141 * slabinfo_op - iterator that generates /proc/slabinfo
1150 * num-pages-per-slab
1151 * + further values on SMP and with statistics enabled
1153 static const struct seq_operations slabinfo_op
= {
1154 .start
= slab_start
,
1160 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1162 return seq_open(file
, &slabinfo_op
);
1165 static const struct file_operations proc_slabinfo_operations
= {
1166 .open
= slabinfo_open
,
1168 .write
= slabinfo_write
,
1169 .llseek
= seq_lseek
,
1170 .release
= seq_release
,
1173 static int __init
slab_proc_init(void)
1175 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
1176 &proc_slabinfo_operations
);
1179 module_init(slab_proc_init
);
1180 #endif /* CONFIG_SLABINFO */
1182 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1191 if (ks
>= new_size
) {
1192 kasan_krealloc((void *)p
, new_size
);
1196 ret
= kmalloc_track_caller(new_size
, flags
);
1204 * __krealloc - like krealloc() but don't free @p.
1205 * @p: object to reallocate memory for.
1206 * @new_size: how many bytes of memory are required.
1207 * @flags: the type of memory to allocate.
1209 * This function is like krealloc() except it never frees the originally
1210 * allocated buffer. Use this if you don't want to free the buffer immediately
1211 * like, for example, with RCU.
1213 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1215 if (unlikely(!new_size
))
1216 return ZERO_SIZE_PTR
;
1218 return __do_krealloc(p
, new_size
, flags
);
1221 EXPORT_SYMBOL(__krealloc
);
1224 * krealloc - reallocate memory. The contents will remain unchanged.
1225 * @p: object to reallocate memory for.
1226 * @new_size: how many bytes of memory are required.
1227 * @flags: the type of memory to allocate.
1229 * The contents of the object pointed to are preserved up to the
1230 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1231 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1232 * %NULL pointer, the object pointed to is freed.
1234 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1238 if (unlikely(!new_size
)) {
1240 return ZERO_SIZE_PTR
;
1243 ret
= __do_krealloc(p
, new_size
, flags
);
1244 if (ret
&& p
!= ret
)
1249 EXPORT_SYMBOL(krealloc
);
1252 * kzfree - like kfree but zero memory
1253 * @p: object to free memory of
1255 * The memory of the object @p points to is zeroed before freed.
1256 * If @p is %NULL, kzfree() does nothing.
1258 * Note: this function zeroes the whole allocated buffer which can be a good
1259 * deal bigger than the requested buffer size passed to kmalloc(). So be
1260 * careful when using this function in performance sensitive code.
1262 void kzfree(const void *p
)
1265 void *mem
= (void *)p
;
1267 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1273 EXPORT_SYMBOL(kzfree
);
1275 /* Tracepoints definitions. */
1276 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1277 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1278 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1279 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1280 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1281 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);