USB: serial: option: add support for Telit LE922A PIDs 0x1040, 0x1041
[linux/fpc-iii.git] / arch / powerpc / mm / pgtable-hash64.c
blobc23e286a6b8ff85822cd1eff1c24bd91baa2bfd0
1 /*
2 * Copyright 2005, Paul Mackerras, IBM Corporation.
3 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/sched.h>
13 #include <asm/pgalloc.h>
14 #include <asm/tlb.h>
16 #include "mmu_decl.h"
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/thp.h>
21 #ifdef CONFIG_SPARSEMEM_VMEMMAP
23 * On hash-based CPUs, the vmemmap is bolted in the hash table.
26 int __meminit hash__vmemmap_create_mapping(unsigned long start,
27 unsigned long page_size,
28 unsigned long phys)
30 int rc = htab_bolt_mapping(start, start + page_size, phys,
31 pgprot_val(PAGE_KERNEL),
32 mmu_vmemmap_psize, mmu_kernel_ssize);
33 if (rc < 0) {
34 int rc2 = htab_remove_mapping(start, start + page_size,
35 mmu_vmemmap_psize,
36 mmu_kernel_ssize);
37 BUG_ON(rc2 && (rc2 != -ENOENT));
39 return rc;
42 #ifdef CONFIG_MEMORY_HOTPLUG
43 void hash__vmemmap_remove_mapping(unsigned long start,
44 unsigned long page_size)
46 int rc = htab_remove_mapping(start, start + page_size,
47 mmu_vmemmap_psize,
48 mmu_kernel_ssize);
49 BUG_ON((rc < 0) && (rc != -ENOENT));
50 WARN_ON(rc == -ENOENT);
52 #endif
53 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
56 * map_kernel_page currently only called by __ioremap
57 * map_kernel_page adds an entry to the ioremap page table
58 * and adds an entry to the HPT, possibly bolting it
60 int hash__map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
62 pgd_t *pgdp;
63 pud_t *pudp;
64 pmd_t *pmdp;
65 pte_t *ptep;
67 BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
68 if (slab_is_available()) {
69 pgdp = pgd_offset_k(ea);
70 pudp = pud_alloc(&init_mm, pgdp, ea);
71 if (!pudp)
72 return -ENOMEM;
73 pmdp = pmd_alloc(&init_mm, pudp, ea);
74 if (!pmdp)
75 return -ENOMEM;
76 ptep = pte_alloc_kernel(pmdp, ea);
77 if (!ptep)
78 return -ENOMEM;
79 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
80 __pgprot(flags)));
81 } else {
83 * If the mm subsystem is not fully up, we cannot create a
84 * linux page table entry for this mapping. Simply bolt an
85 * entry in the hardware page table.
88 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
89 mmu_io_psize, mmu_kernel_ssize)) {
90 printk(KERN_ERR "Failed to do bolted mapping IO "
91 "memory at %016lx !\n", pa);
92 return -ENOMEM;
96 smp_wmb();
97 return 0;
100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
102 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
103 pmd_t *pmdp, unsigned long clr,
104 unsigned long set)
106 __be64 old_be, tmp;
107 unsigned long old;
109 #ifdef CONFIG_DEBUG_VM
110 WARN_ON(!pmd_trans_huge(*pmdp));
111 assert_spin_locked(&mm->page_table_lock);
112 #endif
114 __asm__ __volatile__(
115 "1: ldarx %0,0,%3\n\
116 and. %1,%0,%6\n\
117 bne- 1b \n\
118 andc %1,%0,%4 \n\
119 or %1,%1,%7\n\
120 stdcx. %1,0,%3 \n\
121 bne- 1b"
122 : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
123 : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
124 "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
125 : "cc" );
127 old = be64_to_cpu(old_be);
129 trace_hugepage_update(addr, old, clr, set);
130 if (old & H_PAGE_HASHPTE)
131 hpte_do_hugepage_flush(mm, addr, pmdp, old);
132 return old;
135 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
136 pmd_t *pmdp)
138 pmd_t pmd;
140 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
141 VM_BUG_ON(pmd_trans_huge(*pmdp));
143 pmd = *pmdp;
144 pmd_clear(pmdp);
146 * Wait for all pending hash_page to finish. This is needed
147 * in case of subpage collapse. When we collapse normal pages
148 * to hugepage, we first clear the pmd, then invalidate all
149 * the PTE entries. The assumption here is that any low level
150 * page fault will see a none pmd and take the slow path that
151 * will wait on mmap_sem. But we could very well be in a
152 * hash_page with local ptep pointer value. Such a hash page
153 * can result in adding new HPTE entries for normal subpages.
154 * That means we could be modifying the page content as we
155 * copy them to a huge page. So wait for parallel hash_page
156 * to finish before invalidating HPTE entries. We can do this
157 * by sending an IPI to all the cpus and executing a dummy
158 * function there.
160 kick_all_cpus_sync();
162 * Now invalidate the hpte entries in the range
163 * covered by pmd. This make sure we take a
164 * fault and will find the pmd as none, which will
165 * result in a major fault which takes mmap_sem and
166 * hence wait for collapse to complete. Without this
167 * the __collapse_huge_page_copy can result in copying
168 * the old content.
170 flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
171 return pmd;
175 * We want to put the pgtable in pmd and use pgtable for tracking
176 * the base page size hptes
178 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
179 pgtable_t pgtable)
181 pgtable_t *pgtable_slot;
182 assert_spin_locked(&mm->page_table_lock);
184 * we store the pgtable in the second half of PMD
186 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
187 *pgtable_slot = pgtable;
189 * expose the deposited pgtable to other cpus.
190 * before we set the hugepage PTE at pmd level
191 * hash fault code looks at the deposted pgtable
192 * to store hash index values.
194 smp_wmb();
197 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
199 pgtable_t pgtable;
200 pgtable_t *pgtable_slot;
202 assert_spin_locked(&mm->page_table_lock);
203 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
204 pgtable = *pgtable_slot;
206 * Once we withdraw, mark the entry NULL.
208 *pgtable_slot = NULL;
210 * We store HPTE information in the deposited PTE fragment.
211 * zero out the content on withdraw.
213 memset(pgtable, 0, PTE_FRAG_SIZE);
214 return pgtable;
217 void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
218 unsigned long address, pmd_t *pmdp)
220 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
221 VM_BUG_ON(REGION_ID(address) != USER_REGION_ID);
224 * We can't mark the pmd none here, because that will cause a race
225 * against exit_mmap. We need to continue mark pmd TRANS HUGE, while
226 * we spilt, but at the same time we wan't rest of the ppc64 code
227 * not to insert hash pte on this, because we will be modifying
228 * the deposited pgtable in the caller of this function. Hence
229 * clear the _PAGE_USER so that we move the fault handling to
230 * higher level function and that will serialize against ptl.
231 * We need to flush existing hash pte entries here even though,
232 * the translation is still valid, because we will withdraw
233 * pgtable_t after this.
235 pmd_hugepage_update(vma->vm_mm, address, pmdp, 0, _PAGE_PRIVILEGED);
239 * A linux hugepage PMD was changed and the corresponding hash table entries
240 * neesd to be flushed.
242 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
243 pmd_t *pmdp, unsigned long old_pmd)
245 int ssize;
246 unsigned int psize;
247 unsigned long vsid;
248 unsigned long flags = 0;
249 const struct cpumask *tmp;
251 /* get the base page size,vsid and segment size */
252 #ifdef CONFIG_DEBUG_VM
253 psize = get_slice_psize(mm, addr);
254 BUG_ON(psize == MMU_PAGE_16M);
255 #endif
256 if (old_pmd & H_PAGE_COMBO)
257 psize = MMU_PAGE_4K;
258 else
259 psize = MMU_PAGE_64K;
261 if (!is_kernel_addr(addr)) {
262 ssize = user_segment_size(addr);
263 vsid = get_vsid(mm->context.id, addr, ssize);
264 WARN_ON(vsid == 0);
265 } else {
266 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
267 ssize = mmu_kernel_ssize;
270 tmp = cpumask_of(smp_processor_id());
271 if (cpumask_equal(mm_cpumask(mm), tmp))
272 flags |= HPTE_LOCAL_UPDATE;
274 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
277 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
278 unsigned long addr, pmd_t *pmdp)
280 pmd_t old_pmd;
281 pgtable_t pgtable;
282 unsigned long old;
283 pgtable_t *pgtable_slot;
285 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
286 old_pmd = __pmd(old);
288 * We have pmd == none and we are holding page_table_lock.
289 * So we can safely go and clear the pgtable hash
290 * index info.
292 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
293 pgtable = *pgtable_slot;
295 * Let's zero out old valid and hash index details
296 * hash fault look at them.
298 memset(pgtable, 0, PTE_FRAG_SIZE);
300 * Serialize against find_linux_pte_or_hugepte which does lock-less
301 * lookup in page tables with local interrupts disabled. For huge pages
302 * it casts pmd_t to pte_t. Since format of pte_t is different from
303 * pmd_t we want to prevent transit from pmd pointing to page table
304 * to pmd pointing to huge page (and back) while interrupts are disabled.
305 * We clear pmd to possibly replace it with page table pointer in
306 * different code paths. So make sure we wait for the parallel
307 * find_linux_pte_or_hugepage to finish.
309 kick_all_cpus_sync();
310 return old_pmd;
313 int hash__has_transparent_hugepage(void)
316 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
317 return 0;
319 * We support THP only if PMD_SIZE is 16MB.
321 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
322 return 0;
324 * We need to make sure that we support 16MB hugepage in a segement
325 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
326 * of 64K.
329 * If we have 64K HPTE, we will be using that by default
331 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
332 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
333 return 0;
335 * Ok we only have 4K HPTE
337 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
338 return 0;
340 return 1;
342 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */