USB: serial: option: add support for Telit LE922A PIDs 0x1040, 0x1041
[linux/fpc-iii.git] / arch / powerpc / mm / slb.c
blob48fc28bab544771620c8ff48baf2461e5edef41e
1 /*
2 * PowerPC64 SLB support.
4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5 * Based on earlier code written by:
6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7 * Copyright (c) 2001 Dave Engebretsen
8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/smp.h>
24 #include <linux/compiler.h>
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
28 enum slb_index {
29 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
30 VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
31 KSTACK_INDEX = 2, /* Kernel stack map */
34 extern void slb_allocate_realmode(unsigned long ea);
36 static void slb_allocate(unsigned long ea)
38 /* Currently, we do real mode for all SLBs including user, but
39 * that will change if we bring back dynamic VSIDs
41 slb_allocate_realmode(ea);
44 #define slb_esid_mask(ssize) \
45 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
47 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
48 enum slb_index index)
50 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
53 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
54 unsigned long flags)
56 return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
57 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
60 static inline void slb_shadow_update(unsigned long ea, int ssize,
61 unsigned long flags,
62 enum slb_index index)
64 struct slb_shadow *p = get_slb_shadow();
67 * Clear the ESID first so the entry is not valid while we are
68 * updating it. No write barriers are needed here, provided
69 * we only update the current CPU's SLB shadow buffer.
71 p->save_area[index].esid = 0;
72 p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags));
73 p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index));
76 static inline void slb_shadow_clear(enum slb_index index)
78 get_slb_shadow()->save_area[index].esid = 0;
81 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
82 unsigned long flags,
83 enum slb_index index)
86 * Updating the shadow buffer before writing the SLB ensures
87 * we don't get a stale entry here if we get preempted by PHYP
88 * between these two statements.
90 slb_shadow_update(ea, ssize, flags, index);
92 asm volatile("slbmte %0,%1" :
93 : "r" (mk_vsid_data(ea, ssize, flags)),
94 "r" (mk_esid_data(ea, ssize, index))
95 : "memory" );
98 static void __slb_flush_and_rebolt(void)
100 /* If you change this make sure you change SLB_NUM_BOLTED
101 * and PR KVM appropriately too. */
102 unsigned long linear_llp, vmalloc_llp, lflags, vflags;
103 unsigned long ksp_esid_data, ksp_vsid_data;
105 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
106 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
107 lflags = SLB_VSID_KERNEL | linear_llp;
108 vflags = SLB_VSID_KERNEL | vmalloc_llp;
110 ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
111 if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
112 ksp_esid_data &= ~SLB_ESID_V;
113 ksp_vsid_data = 0;
114 slb_shadow_clear(KSTACK_INDEX);
115 } else {
116 /* Update stack entry; others don't change */
117 slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
118 ksp_vsid_data =
119 be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
122 /* We need to do this all in asm, so we're sure we don't touch
123 * the stack between the slbia and rebolting it. */
124 asm volatile("isync\n"
125 "slbia\n"
126 /* Slot 1 - first VMALLOC segment */
127 "slbmte %0,%1\n"
128 /* Slot 2 - kernel stack */
129 "slbmte %2,%3\n"
130 "isync"
131 :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
132 "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
133 "r"(ksp_vsid_data),
134 "r"(ksp_esid_data)
135 : "memory");
138 void slb_flush_and_rebolt(void)
141 WARN_ON(!irqs_disabled());
144 * We can't take a PMU exception in the following code, so hard
145 * disable interrupts.
147 hard_irq_disable();
149 __slb_flush_and_rebolt();
150 get_paca()->slb_cache_ptr = 0;
153 void slb_vmalloc_update(void)
155 unsigned long vflags;
157 vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
158 slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
159 slb_flush_and_rebolt();
162 /* Helper function to compare esids. There are four cases to handle.
163 * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
164 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
165 * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
166 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
168 static inline int esids_match(unsigned long addr1, unsigned long addr2)
170 int esid_1t_count;
172 /* System is not 1T segment size capable. */
173 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
174 return (GET_ESID(addr1) == GET_ESID(addr2));
176 esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
177 ((addr2 >> SID_SHIFT_1T) != 0));
179 /* both addresses are < 1T */
180 if (esid_1t_count == 0)
181 return (GET_ESID(addr1) == GET_ESID(addr2));
183 /* One address < 1T, the other > 1T. Not a match */
184 if (esid_1t_count == 1)
185 return 0;
187 /* Both addresses are > 1T. */
188 return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
191 /* Flush all user entries from the segment table of the current processor. */
192 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
194 unsigned long offset;
195 unsigned long slbie_data = 0;
196 unsigned long pc = KSTK_EIP(tsk);
197 unsigned long stack = KSTK_ESP(tsk);
198 unsigned long exec_base;
201 * We need interrupts hard-disabled here, not just soft-disabled,
202 * so that a PMU interrupt can't occur, which might try to access
203 * user memory (to get a stack trace) and possible cause an SLB miss
204 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
206 hard_irq_disable();
207 offset = get_paca()->slb_cache_ptr;
208 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
209 offset <= SLB_CACHE_ENTRIES) {
210 int i;
211 asm volatile("isync" : : : "memory");
212 for (i = 0; i < offset; i++) {
213 slbie_data = (unsigned long)get_paca()->slb_cache[i]
214 << SID_SHIFT; /* EA */
215 slbie_data |= user_segment_size(slbie_data)
216 << SLBIE_SSIZE_SHIFT;
217 slbie_data |= SLBIE_C; /* C set for user addresses */
218 asm volatile("slbie %0" : : "r" (slbie_data));
220 asm volatile("isync" : : : "memory");
221 } else {
222 __slb_flush_and_rebolt();
225 /* Workaround POWER5 < DD2.1 issue */
226 if (offset == 1 || offset > SLB_CACHE_ENTRIES)
227 asm volatile("slbie %0" : : "r" (slbie_data));
229 get_paca()->slb_cache_ptr = 0;
230 copy_mm_to_paca(&mm->context);
233 * preload some userspace segments into the SLB.
234 * Almost all 32 and 64bit PowerPC executables are linked at
235 * 0x10000000 so it makes sense to preload this segment.
237 exec_base = 0x10000000;
239 if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
240 is_kernel_addr(exec_base))
241 return;
243 slb_allocate(pc);
245 if (!esids_match(pc, stack))
246 slb_allocate(stack);
248 if (!esids_match(pc, exec_base) &&
249 !esids_match(stack, exec_base))
250 slb_allocate(exec_base);
253 static inline void patch_slb_encoding(unsigned int *insn_addr,
254 unsigned int immed)
258 * This function patches either an li or a cmpldi instruction with
259 * a new immediate value. This relies on the fact that both li
260 * (which is actually addi) and cmpldi both take a 16-bit immediate
261 * value, and it is situated in the same location in the instruction,
262 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
263 * The signedness of the immediate operand differs between the two
264 * instructions however this code is only ever patching a small value,
265 * much less than 1 << 15, so we can get away with it.
266 * To patch the value we read the existing instruction, clear the
267 * immediate value, and or in our new value, then write the instruction
268 * back.
270 unsigned int insn = (*insn_addr & 0xffff0000) | immed;
271 patch_instruction(insn_addr, insn);
274 extern u32 slb_miss_kernel_load_linear[];
275 extern u32 slb_miss_kernel_load_io[];
276 extern u32 slb_compare_rr_to_size[];
277 extern u32 slb_miss_kernel_load_vmemmap[];
279 void slb_set_size(u16 size)
281 if (mmu_slb_size == size)
282 return;
284 mmu_slb_size = size;
285 patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
288 void slb_initialize(void)
290 unsigned long linear_llp, vmalloc_llp, io_llp;
291 unsigned long lflags, vflags;
292 static int slb_encoding_inited;
293 #ifdef CONFIG_SPARSEMEM_VMEMMAP
294 unsigned long vmemmap_llp;
295 #endif
297 /* Prepare our SLB miss handler based on our page size */
298 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
299 io_llp = mmu_psize_defs[mmu_io_psize].sllp;
300 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
301 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
302 #ifdef CONFIG_SPARSEMEM_VMEMMAP
303 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
304 #endif
305 if (!slb_encoding_inited) {
306 slb_encoding_inited = 1;
307 patch_slb_encoding(slb_miss_kernel_load_linear,
308 SLB_VSID_KERNEL | linear_llp);
309 patch_slb_encoding(slb_miss_kernel_load_io,
310 SLB_VSID_KERNEL | io_llp);
311 patch_slb_encoding(slb_compare_rr_to_size,
312 mmu_slb_size);
314 pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
315 pr_devel("SLB: io LLP = %04lx\n", io_llp);
317 #ifdef CONFIG_SPARSEMEM_VMEMMAP
318 patch_slb_encoding(slb_miss_kernel_load_vmemmap,
319 SLB_VSID_KERNEL | vmemmap_llp);
320 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
321 #endif
324 get_paca()->stab_rr = SLB_NUM_BOLTED;
326 lflags = SLB_VSID_KERNEL | linear_llp;
327 vflags = SLB_VSID_KERNEL | vmalloc_llp;
329 /* Invalidate the entire SLB (even entry 0) & all the ERATS */
330 asm volatile("isync":::"memory");
331 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
332 asm volatile("isync; slbia; isync":::"memory");
333 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
334 create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
336 /* For the boot cpu, we're running on the stack in init_thread_union,
337 * which is in the first segment of the linear mapping, and also
338 * get_paca()->kstack hasn't been initialized yet.
339 * For secondary cpus, we need to bolt the kernel stack entry now.
341 slb_shadow_clear(KSTACK_INDEX);
342 if (raw_smp_processor_id() != boot_cpuid &&
343 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
344 create_shadowed_slbe(get_paca()->kstack,
345 mmu_kernel_ssize, lflags, KSTACK_INDEX);
347 asm volatile("isync":::"memory");