2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
27 #include <asm/pgtable.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
36 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
37 unsigned long hugepages_treat_as_movable
;
39 int hugetlb_max_hstate __read_mostly
;
40 unsigned int default_hstate_idx
;
41 struct hstate hstates
[HUGE_MAX_HSTATE
];
43 __initdata
LIST_HEAD(huge_boot_pages
);
45 /* for command line parsing */
46 static struct hstate
* __initdata parsed_hstate
;
47 static unsigned long __initdata default_hstate_max_huge_pages
;
48 static unsigned long __initdata default_hstate_size
;
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
54 DEFINE_SPINLOCK(hugetlb_lock
);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
58 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
60 spin_unlock(&spool
->lock
);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
70 struct hugepage_subpool
*spool
;
72 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
76 spin_lock_init(&spool
->lock
);
78 spool
->max_hpages
= nr_blocks
;
79 spool
->used_hpages
= 0;
84 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
86 spin_lock(&spool
->lock
);
87 BUG_ON(!spool
->count
);
89 unlock_or_release_subpool(spool
);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
100 spin_lock(&spool
->lock
);
101 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
102 spool
->used_hpages
+= delta
;
106 spin_unlock(&spool
->lock
);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
117 spin_lock(&spool
->lock
);
118 spool
->used_hpages
-= delta
;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool
);
124 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
126 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
129 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
131 return subpool_inode(file_inode(vma
->vm_file
));
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link
;
154 static long region_add(struct list_head
*head
, long f
, long t
)
156 struct file_region
*rg
, *nrg
, *trg
;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg
, head
, link
)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
170 if (&rg
->link
== head
)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head
*head
, long f
, long t
)
192 struct file_region
*rg
, *nrg
;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg
, head
, link
)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg
->link
== head
|| t
< rg
->from
) {
204 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
209 INIT_LIST_HEAD(&nrg
->link
);
210 list_add(&nrg
->link
, rg
->link
.prev
);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
222 if (&rg
->link
== head
)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg
-= rg
->to
- rg
->from
;
239 static long region_truncate(struct list_head
*head
, long end
)
241 struct file_region
*rg
, *trg
;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg
, head
, link
)
248 if (&rg
->link
== head
)
251 /* If we are in the middle of a region then adjust it. */
252 if (end
> rg
->from
) {
255 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
260 if (&rg
->link
== head
)
262 chg
+= rg
->to
- rg
->from
;
269 static long region_count(struct list_head
*head
, long f
, long t
)
271 struct file_region
*rg
;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg
, head
, link
) {
284 seg_from
= max(rg
->from
, f
);
285 seg_to
= min(rg
->to
, t
);
287 chg
+= seg_to
- seg_from
;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
298 struct vm_area_struct
*vma
, unsigned long address
)
300 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
301 (vma
->vm_pgoff
>> huge_page_order(h
));
304 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
305 unsigned long address
)
307 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
316 struct hstate
*hstate
;
318 if (!is_vm_hugetlb_page(vma
))
321 hstate
= hstate_vma(vma
);
323 return 1UL << huge_page_shift(hstate
);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
336 return vma_kernel_pagesize(vma
);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
370 return (unsigned long)vma
->vm_private_data
;
373 static void set_vma_private_data(struct vm_area_struct
*vma
,
376 vma
->vm_private_data
= (void *)value
;
381 struct list_head regions
;
384 static struct resv_map
*resv_map_alloc(void)
386 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
390 kref_init(&resv_map
->refs
);
391 INIT_LIST_HEAD(&resv_map
->regions
);
396 static void resv_map_release(struct kref
*ref
)
398 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map
->regions
, 0);
405 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
408 if (!(vma
->vm_flags
& VM_MAYSHARE
))
409 return (struct resv_map
*)(get_vma_private_data(vma
) &
414 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
417 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
419 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
420 HPAGE_RESV_MASK
) | (unsigned long)map
);
423 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
426 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
428 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
431 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
435 return (get_vma_private_data(vma
) & flag
) != 0;
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
441 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
442 if (!(vma
->vm_flags
& VM_MAYSHARE
))
443 vma
->vm_private_data
= (void *)0;
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
449 if (vma
->vm_flags
& VM_NORESERVE
) {
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
459 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
465 /* Shared mappings always use reserves */
466 if (vma
->vm_flags
& VM_MAYSHARE
)
470 * Only the process that called mmap() has reserves for
473 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
479 static void copy_gigantic_page(struct page
*dst
, struct page
*src
)
482 struct hstate
*h
= page_hstate(src
);
483 struct page
*dst_base
= dst
;
484 struct page
*src_base
= src
;
486 for (i
= 0; i
< pages_per_huge_page(h
); ) {
488 copy_highpage(dst
, src
);
491 dst
= mem_map_next(dst
, dst_base
, i
);
492 src
= mem_map_next(src
, src_base
, i
);
496 void copy_huge_page(struct page
*dst
, struct page
*src
)
499 struct hstate
*h
= page_hstate(src
);
501 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
502 copy_gigantic_page(dst
, src
);
507 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
509 copy_highpage(dst
+ i
, src
+ i
);
513 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
515 int nid
= page_to_nid(page
);
516 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
517 h
->free_huge_pages
++;
518 h
->free_huge_pages_node
[nid
]++;
521 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
525 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
526 if (!is_migrate_isolate_page(page
))
529 * if 'non-isolated free hugepage' not found on the list,
530 * the allocation fails.
532 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
534 list_move(&page
->lru
, &h
->hugepage_activelist
);
535 set_page_refcounted(page
);
536 h
->free_huge_pages
--;
537 h
->free_huge_pages_node
[nid
]--;
541 /* Movability of hugepages depends on migration support. */
542 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
544 if (hugepages_treat_as_movable
|| hugepage_migration_support(h
))
545 return GFP_HIGHUSER_MOVABLE
;
550 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
551 struct vm_area_struct
*vma
,
552 unsigned long address
, int avoid_reserve
,
555 struct page
*page
= NULL
;
556 struct mempolicy
*mpol
;
557 nodemask_t
*nodemask
;
558 struct zonelist
*zonelist
;
561 unsigned int cpuset_mems_cookie
;
564 * A child process with MAP_PRIVATE mappings created by their parent
565 * have no page reserves. This check ensures that reservations are
566 * not "stolen". The child may still get SIGKILLed
568 if (!vma_has_reserves(vma
, chg
) &&
569 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
572 /* If reserves cannot be used, ensure enough pages are in the pool */
573 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
577 cpuset_mems_cookie
= get_mems_allowed();
578 zonelist
= huge_zonelist(vma
, address
,
579 htlb_alloc_mask(h
), &mpol
, &nodemask
);
581 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
582 MAX_NR_ZONES
- 1, nodemask
) {
583 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask(h
))) {
584 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
588 if (!vma_has_reserves(vma
, chg
))
591 SetPagePrivate(page
);
592 h
->resv_huge_pages
--;
599 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
607 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
611 VM_BUG_ON(h
->order
>= MAX_ORDER
);
614 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
615 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
616 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
617 1 << PG_referenced
| 1 << PG_dirty
|
618 1 << PG_active
| 1 << PG_reserved
|
619 1 << PG_private
| 1 << PG_writeback
);
621 VM_BUG_ON(hugetlb_cgroup_from_page(page
));
622 set_compound_page_dtor(page
, NULL
);
623 set_page_refcounted(page
);
624 arch_release_hugepage(page
);
625 __free_pages(page
, huge_page_order(h
));
628 struct hstate
*size_to_hstate(unsigned long size
)
633 if (huge_page_size(h
) == size
)
639 static void free_huge_page(struct page
*page
)
642 * Can't pass hstate in here because it is called from the
643 * compound page destructor.
645 struct hstate
*h
= page_hstate(page
);
646 int nid
= page_to_nid(page
);
647 struct hugepage_subpool
*spool
=
648 (struct hugepage_subpool
*)page_private(page
);
649 bool restore_reserve
;
651 set_page_private(page
, 0);
652 page
->mapping
= NULL
;
653 BUG_ON(page_count(page
));
654 BUG_ON(page_mapcount(page
));
655 restore_reserve
= PagePrivate(page
);
657 spin_lock(&hugetlb_lock
);
658 hugetlb_cgroup_uncharge_page(hstate_index(h
),
659 pages_per_huge_page(h
), page
);
661 h
->resv_huge_pages
++;
663 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
664 /* remove the page from active list */
665 list_del(&page
->lru
);
666 update_and_free_page(h
, page
);
667 h
->surplus_huge_pages
--;
668 h
->surplus_huge_pages_node
[nid
]--;
670 arch_clear_hugepage_flags(page
);
671 enqueue_huge_page(h
, page
);
673 spin_unlock(&hugetlb_lock
);
674 hugepage_subpool_put_pages(spool
, 1);
677 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
679 INIT_LIST_HEAD(&page
->lru
);
680 set_compound_page_dtor(page
, free_huge_page
);
681 spin_lock(&hugetlb_lock
);
682 set_hugetlb_cgroup(page
, NULL
);
684 h
->nr_huge_pages_node
[nid
]++;
685 spin_unlock(&hugetlb_lock
);
686 put_page(page
); /* free it into the hugepage allocator */
689 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
692 int nr_pages
= 1 << order
;
693 struct page
*p
= page
+ 1;
695 /* we rely on prep_new_huge_page to set the destructor */
696 set_compound_order(page
, order
);
698 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
700 set_page_count(p
, 0);
701 p
->first_page
= page
;
706 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
707 * transparent huge pages. See the PageTransHuge() documentation for more
710 int PageHuge(struct page
*page
)
712 compound_page_dtor
*dtor
;
714 if (!PageCompound(page
))
717 page
= compound_head(page
);
718 dtor
= get_compound_page_dtor(page
);
720 return dtor
== free_huge_page
;
722 EXPORT_SYMBOL_GPL(PageHuge
);
724 pgoff_t
__basepage_index(struct page
*page
)
726 struct page
*page_head
= compound_head(page
);
727 pgoff_t index
= page_index(page_head
);
728 unsigned long compound_idx
;
730 if (!PageHuge(page_head
))
731 return page_index(page
);
733 if (compound_order(page_head
) >= MAX_ORDER
)
734 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
736 compound_idx
= page
- page_head
;
738 return (index
<< compound_order(page_head
)) + compound_idx
;
741 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
745 if (h
->order
>= MAX_ORDER
)
748 page
= alloc_pages_exact_node(nid
,
749 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
750 __GFP_REPEAT
|__GFP_NOWARN
,
753 if (arch_prepare_hugepage(page
)) {
754 __free_pages(page
, huge_page_order(h
));
757 prep_new_huge_page(h
, page
, nid
);
764 * common helper functions for hstate_next_node_to_{alloc|free}.
765 * We may have allocated or freed a huge page based on a different
766 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
767 * be outside of *nodes_allowed. Ensure that we use an allowed
768 * node for alloc or free.
770 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
772 nid
= next_node(nid
, *nodes_allowed
);
773 if (nid
== MAX_NUMNODES
)
774 nid
= first_node(*nodes_allowed
);
775 VM_BUG_ON(nid
>= MAX_NUMNODES
);
780 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
782 if (!node_isset(nid
, *nodes_allowed
))
783 nid
= next_node_allowed(nid
, nodes_allowed
);
788 * returns the previously saved node ["this node"] from which to
789 * allocate a persistent huge page for the pool and advance the
790 * next node from which to allocate, handling wrap at end of node
793 static int hstate_next_node_to_alloc(struct hstate
*h
,
794 nodemask_t
*nodes_allowed
)
798 VM_BUG_ON(!nodes_allowed
);
800 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
801 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
807 * helper for free_pool_huge_page() - return the previously saved
808 * node ["this node"] from which to free a huge page. Advance the
809 * next node id whether or not we find a free huge page to free so
810 * that the next attempt to free addresses the next node.
812 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
816 VM_BUG_ON(!nodes_allowed
);
818 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
819 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
824 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
825 for (nr_nodes = nodes_weight(*mask); \
827 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
830 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
831 for (nr_nodes = nodes_weight(*mask); \
833 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
836 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
842 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
843 page
= alloc_fresh_huge_page_node(h
, node
);
851 count_vm_event(HTLB_BUDDY_PGALLOC
);
853 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
859 * Free huge page from pool from next node to free.
860 * Attempt to keep persistent huge pages more or less
861 * balanced over allowed nodes.
862 * Called with hugetlb_lock locked.
864 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
870 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
872 * If we're returning unused surplus pages, only examine
873 * nodes with surplus pages.
875 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
876 !list_empty(&h
->hugepage_freelists
[node
])) {
878 list_entry(h
->hugepage_freelists
[node
].next
,
880 list_del(&page
->lru
);
881 h
->free_huge_pages
--;
882 h
->free_huge_pages_node
[node
]--;
884 h
->surplus_huge_pages
--;
885 h
->surplus_huge_pages_node
[node
]--;
887 update_and_free_page(h
, page
);
897 * Dissolve a given free hugepage into free buddy pages. This function does
898 * nothing for in-use (including surplus) hugepages.
900 static void dissolve_free_huge_page(struct page
*page
)
902 spin_lock(&hugetlb_lock
);
903 if (PageHuge(page
) && !page_count(page
)) {
904 struct hstate
*h
= page_hstate(page
);
905 int nid
= page_to_nid(page
);
906 list_del(&page
->lru
);
907 h
->free_huge_pages
--;
908 h
->free_huge_pages_node
[nid
]--;
909 update_and_free_page(h
, page
);
911 spin_unlock(&hugetlb_lock
);
915 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
916 * make specified memory blocks removable from the system.
917 * Note that start_pfn should aligned with (minimum) hugepage size.
919 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
921 unsigned int order
= 8 * sizeof(void *);
925 /* Set scan step to minimum hugepage size */
927 if (order
> huge_page_order(h
))
928 order
= huge_page_order(h
);
929 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << order
));
930 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << order
)
931 dissolve_free_huge_page(pfn_to_page(pfn
));
934 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
939 if (h
->order
>= MAX_ORDER
)
943 * Assume we will successfully allocate the surplus page to
944 * prevent racing processes from causing the surplus to exceed
947 * This however introduces a different race, where a process B
948 * tries to grow the static hugepage pool while alloc_pages() is
949 * called by process A. B will only examine the per-node
950 * counters in determining if surplus huge pages can be
951 * converted to normal huge pages in adjust_pool_surplus(). A
952 * won't be able to increment the per-node counter, until the
953 * lock is dropped by B, but B doesn't drop hugetlb_lock until
954 * no more huge pages can be converted from surplus to normal
955 * state (and doesn't try to convert again). Thus, we have a
956 * case where a surplus huge page exists, the pool is grown, and
957 * the surplus huge page still exists after, even though it
958 * should just have been converted to a normal huge page. This
959 * does not leak memory, though, as the hugepage will be freed
960 * once it is out of use. It also does not allow the counters to
961 * go out of whack in adjust_pool_surplus() as we don't modify
962 * the node values until we've gotten the hugepage and only the
963 * per-node value is checked there.
965 spin_lock(&hugetlb_lock
);
966 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
967 spin_unlock(&hugetlb_lock
);
971 h
->surplus_huge_pages
++;
973 spin_unlock(&hugetlb_lock
);
975 if (nid
== NUMA_NO_NODE
)
976 page
= alloc_pages(htlb_alloc_mask(h
)|__GFP_COMP
|
977 __GFP_REPEAT
|__GFP_NOWARN
,
980 page
= alloc_pages_exact_node(nid
,
981 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
982 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
984 if (page
&& arch_prepare_hugepage(page
)) {
985 __free_pages(page
, huge_page_order(h
));
989 spin_lock(&hugetlb_lock
);
991 INIT_LIST_HEAD(&page
->lru
);
992 r_nid
= page_to_nid(page
);
993 set_compound_page_dtor(page
, free_huge_page
);
994 set_hugetlb_cgroup(page
, NULL
);
996 * We incremented the global counters already
998 h
->nr_huge_pages_node
[r_nid
]++;
999 h
->surplus_huge_pages_node
[r_nid
]++;
1000 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1003 h
->surplus_huge_pages
--;
1004 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1006 spin_unlock(&hugetlb_lock
);
1012 * This allocation function is useful in the context where vma is irrelevant.
1013 * E.g. soft-offlining uses this function because it only cares physical
1014 * address of error page.
1016 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1018 struct page
*page
= NULL
;
1020 spin_lock(&hugetlb_lock
);
1021 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1022 page
= dequeue_huge_page_node(h
, nid
);
1023 spin_unlock(&hugetlb_lock
);
1026 page
= alloc_buddy_huge_page(h
, nid
);
1032 * Increase the hugetlb pool such that it can accommodate a reservation
1035 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1037 struct list_head surplus_list
;
1038 struct page
*page
, *tmp
;
1040 int needed
, allocated
;
1041 bool alloc_ok
= true;
1043 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1045 h
->resv_huge_pages
+= delta
;
1050 INIT_LIST_HEAD(&surplus_list
);
1054 spin_unlock(&hugetlb_lock
);
1055 for (i
= 0; i
< needed
; i
++) {
1056 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1061 list_add(&page
->lru
, &surplus_list
);
1066 * After retaking hugetlb_lock, we need to recalculate 'needed'
1067 * because either resv_huge_pages or free_huge_pages may have changed.
1069 spin_lock(&hugetlb_lock
);
1070 needed
= (h
->resv_huge_pages
+ delta
) -
1071 (h
->free_huge_pages
+ allocated
);
1076 * We were not able to allocate enough pages to
1077 * satisfy the entire reservation so we free what
1078 * we've allocated so far.
1083 * The surplus_list now contains _at_least_ the number of extra pages
1084 * needed to accommodate the reservation. Add the appropriate number
1085 * of pages to the hugetlb pool and free the extras back to the buddy
1086 * allocator. Commit the entire reservation here to prevent another
1087 * process from stealing the pages as they are added to the pool but
1088 * before they are reserved.
1090 needed
+= allocated
;
1091 h
->resv_huge_pages
+= delta
;
1094 /* Free the needed pages to the hugetlb pool */
1095 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1099 * This page is now managed by the hugetlb allocator and has
1100 * no users -- drop the buddy allocator's reference.
1102 put_page_testzero(page
);
1103 VM_BUG_ON(page_count(page
));
1104 enqueue_huge_page(h
, page
);
1107 spin_unlock(&hugetlb_lock
);
1109 /* Free unnecessary surplus pages to the buddy allocator */
1110 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1112 spin_lock(&hugetlb_lock
);
1118 * When releasing a hugetlb pool reservation, any surplus pages that were
1119 * allocated to satisfy the reservation must be explicitly freed if they were
1121 * Called with hugetlb_lock held.
1123 static void return_unused_surplus_pages(struct hstate
*h
,
1124 unsigned long unused_resv_pages
)
1126 unsigned long nr_pages
;
1128 /* Uncommit the reservation */
1129 h
->resv_huge_pages
-= unused_resv_pages
;
1131 /* Cannot return gigantic pages currently */
1132 if (h
->order
>= MAX_ORDER
)
1135 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1138 * We want to release as many surplus pages as possible, spread
1139 * evenly across all nodes with memory. Iterate across these nodes
1140 * until we can no longer free unreserved surplus pages. This occurs
1141 * when the nodes with surplus pages have no free pages.
1142 * free_pool_huge_page() will balance the the freed pages across the
1143 * on-line nodes with memory and will handle the hstate accounting.
1145 while (nr_pages
--) {
1146 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1152 * Determine if the huge page at addr within the vma has an associated
1153 * reservation. Where it does not we will need to logically increase
1154 * reservation and actually increase subpool usage before an allocation
1155 * can occur. Where any new reservation would be required the
1156 * reservation change is prepared, but not committed. Once the page
1157 * has been allocated from the subpool and instantiated the change should
1158 * be committed via vma_commit_reservation. No action is required on
1161 static long vma_needs_reservation(struct hstate
*h
,
1162 struct vm_area_struct
*vma
, unsigned long addr
)
1164 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1165 struct inode
*inode
= mapping
->host
;
1167 if (vma
->vm_flags
& VM_MAYSHARE
) {
1168 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1169 return region_chg(&inode
->i_mapping
->private_list
,
1172 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1177 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1178 struct resv_map
*resv
= vma_resv_map(vma
);
1180 err
= region_chg(&resv
->regions
, idx
, idx
+ 1);
1186 static void vma_commit_reservation(struct hstate
*h
,
1187 struct vm_area_struct
*vma
, unsigned long addr
)
1189 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1190 struct inode
*inode
= mapping
->host
;
1192 if (vma
->vm_flags
& VM_MAYSHARE
) {
1193 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1194 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1196 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1197 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1198 struct resv_map
*resv
= vma_resv_map(vma
);
1200 /* Mark this page used in the map. */
1201 region_add(&resv
->regions
, idx
, idx
+ 1);
1205 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1206 unsigned long addr
, int avoid_reserve
)
1208 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1209 struct hstate
*h
= hstate_vma(vma
);
1213 struct hugetlb_cgroup
*h_cg
;
1215 idx
= hstate_index(h
);
1217 * Processes that did not create the mapping will have no
1218 * reserves and will not have accounted against subpool
1219 * limit. Check that the subpool limit can be made before
1220 * satisfying the allocation MAP_NORESERVE mappings may also
1221 * need pages and subpool limit allocated allocated if no reserve
1224 chg
= vma_needs_reservation(h
, vma
, addr
);
1226 return ERR_PTR(-ENOMEM
);
1227 if (chg
|| avoid_reserve
)
1228 if (hugepage_subpool_get_pages(spool
, 1))
1229 return ERR_PTR(-ENOSPC
);
1231 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1233 if (chg
|| avoid_reserve
)
1234 hugepage_subpool_put_pages(spool
, 1);
1235 return ERR_PTR(-ENOSPC
);
1237 spin_lock(&hugetlb_lock
);
1238 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, chg
);
1240 spin_unlock(&hugetlb_lock
);
1241 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1243 hugetlb_cgroup_uncharge_cgroup(idx
,
1244 pages_per_huge_page(h
),
1246 if (chg
|| avoid_reserve
)
1247 hugepage_subpool_put_pages(spool
, 1);
1248 return ERR_PTR(-ENOSPC
);
1250 spin_lock(&hugetlb_lock
);
1251 list_move(&page
->lru
, &h
->hugepage_activelist
);
1254 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1255 spin_unlock(&hugetlb_lock
);
1257 set_page_private(page
, (unsigned long)spool
);
1259 vma_commit_reservation(h
, vma
, addr
);
1264 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1265 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1266 * where no ERR_VALUE is expected to be returned.
1268 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1269 unsigned long addr
, int avoid_reserve
)
1271 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1277 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1279 struct huge_bootmem_page
*m
;
1282 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1285 addr
= __alloc_bootmem_node_nopanic(NODE_DATA(node
),
1286 huge_page_size(h
), huge_page_size(h
), 0);
1290 * Use the beginning of the huge page to store the
1291 * huge_bootmem_page struct (until gather_bootmem
1292 * puts them into the mem_map).
1301 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1302 /* Put them into a private list first because mem_map is not up yet */
1303 list_add(&m
->list
, &huge_boot_pages
);
1308 static void prep_compound_huge_page(struct page
*page
, int order
)
1310 if (unlikely(order
> (MAX_ORDER
- 1)))
1311 prep_compound_gigantic_page(page
, order
);
1313 prep_compound_page(page
, order
);
1316 /* Put bootmem huge pages into the standard lists after mem_map is up */
1317 static void __init
gather_bootmem_prealloc(void)
1319 struct huge_bootmem_page
*m
;
1321 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1322 struct hstate
*h
= m
->hstate
;
1325 #ifdef CONFIG_HIGHMEM
1326 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1327 free_bootmem_late((unsigned long)m
,
1328 sizeof(struct huge_bootmem_page
));
1330 page
= virt_to_page(m
);
1332 __ClearPageReserved(page
);
1333 WARN_ON(page_count(page
) != 1);
1334 prep_compound_huge_page(page
, h
->order
);
1335 prep_new_huge_page(h
, page
, page_to_nid(page
));
1337 * If we had gigantic hugepages allocated at boot time, we need
1338 * to restore the 'stolen' pages to totalram_pages in order to
1339 * fix confusing memory reports from free(1) and another
1340 * side-effects, like CommitLimit going negative.
1342 if (h
->order
> (MAX_ORDER
- 1))
1343 adjust_managed_page_count(page
, 1 << h
->order
);
1347 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1351 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1352 if (h
->order
>= MAX_ORDER
) {
1353 if (!alloc_bootmem_huge_page(h
))
1355 } else if (!alloc_fresh_huge_page(h
,
1356 &node_states
[N_MEMORY
]))
1359 h
->max_huge_pages
= i
;
1362 static void __init
hugetlb_init_hstates(void)
1366 for_each_hstate(h
) {
1367 /* oversize hugepages were init'ed in early boot */
1368 if (h
->order
< MAX_ORDER
)
1369 hugetlb_hstate_alloc_pages(h
);
1373 static char * __init
memfmt(char *buf
, unsigned long n
)
1375 if (n
>= (1UL << 30))
1376 sprintf(buf
, "%lu GB", n
>> 30);
1377 else if (n
>= (1UL << 20))
1378 sprintf(buf
, "%lu MB", n
>> 20);
1380 sprintf(buf
, "%lu KB", n
>> 10);
1384 static void __init
report_hugepages(void)
1388 for_each_hstate(h
) {
1390 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1391 memfmt(buf
, huge_page_size(h
)),
1392 h
->free_huge_pages
);
1396 #ifdef CONFIG_HIGHMEM
1397 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1398 nodemask_t
*nodes_allowed
)
1402 if (h
->order
>= MAX_ORDER
)
1405 for_each_node_mask(i
, *nodes_allowed
) {
1406 struct page
*page
, *next
;
1407 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1408 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1409 if (count
>= h
->nr_huge_pages
)
1411 if (PageHighMem(page
))
1413 list_del(&page
->lru
);
1414 update_and_free_page(h
, page
);
1415 h
->free_huge_pages
--;
1416 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1421 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1422 nodemask_t
*nodes_allowed
)
1428 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1429 * balanced by operating on them in a round-robin fashion.
1430 * Returns 1 if an adjustment was made.
1432 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1437 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1440 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1441 if (h
->surplus_huge_pages_node
[node
])
1445 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1446 if (h
->surplus_huge_pages_node
[node
] <
1447 h
->nr_huge_pages_node
[node
])
1454 h
->surplus_huge_pages
+= delta
;
1455 h
->surplus_huge_pages_node
[node
] += delta
;
1459 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1460 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1461 nodemask_t
*nodes_allowed
)
1463 unsigned long min_count
, ret
;
1465 if (h
->order
>= MAX_ORDER
)
1466 return h
->max_huge_pages
;
1469 * Increase the pool size
1470 * First take pages out of surplus state. Then make up the
1471 * remaining difference by allocating fresh huge pages.
1473 * We might race with alloc_buddy_huge_page() here and be unable
1474 * to convert a surplus huge page to a normal huge page. That is
1475 * not critical, though, it just means the overall size of the
1476 * pool might be one hugepage larger than it needs to be, but
1477 * within all the constraints specified by the sysctls.
1479 spin_lock(&hugetlb_lock
);
1480 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1481 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1485 while (count
> persistent_huge_pages(h
)) {
1487 * If this allocation races such that we no longer need the
1488 * page, free_huge_page will handle it by freeing the page
1489 * and reducing the surplus.
1491 spin_unlock(&hugetlb_lock
);
1492 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1493 spin_lock(&hugetlb_lock
);
1497 /* Bail for signals. Probably ctrl-c from user */
1498 if (signal_pending(current
))
1503 * Decrease the pool size
1504 * First return free pages to the buddy allocator (being careful
1505 * to keep enough around to satisfy reservations). Then place
1506 * pages into surplus state as needed so the pool will shrink
1507 * to the desired size as pages become free.
1509 * By placing pages into the surplus state independent of the
1510 * overcommit value, we are allowing the surplus pool size to
1511 * exceed overcommit. There are few sane options here. Since
1512 * alloc_buddy_huge_page() is checking the global counter,
1513 * though, we'll note that we're not allowed to exceed surplus
1514 * and won't grow the pool anywhere else. Not until one of the
1515 * sysctls are changed, or the surplus pages go out of use.
1517 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1518 min_count
= max(count
, min_count
);
1519 try_to_free_low(h
, min_count
, nodes_allowed
);
1520 while (min_count
< persistent_huge_pages(h
)) {
1521 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1524 while (count
< persistent_huge_pages(h
)) {
1525 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1529 ret
= persistent_huge_pages(h
);
1530 spin_unlock(&hugetlb_lock
);
1534 #define HSTATE_ATTR_RO(_name) \
1535 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1537 #define HSTATE_ATTR(_name) \
1538 static struct kobj_attribute _name##_attr = \
1539 __ATTR(_name, 0644, _name##_show, _name##_store)
1541 static struct kobject
*hugepages_kobj
;
1542 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1544 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1546 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1550 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1551 if (hstate_kobjs
[i
] == kobj
) {
1553 *nidp
= NUMA_NO_NODE
;
1557 return kobj_to_node_hstate(kobj
, nidp
);
1560 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1561 struct kobj_attribute
*attr
, char *buf
)
1564 unsigned long nr_huge_pages
;
1567 h
= kobj_to_hstate(kobj
, &nid
);
1568 if (nid
== NUMA_NO_NODE
)
1569 nr_huge_pages
= h
->nr_huge_pages
;
1571 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1573 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1576 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1577 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1578 const char *buf
, size_t len
)
1582 unsigned long count
;
1584 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1586 err
= kstrtoul(buf
, 10, &count
);
1590 h
= kobj_to_hstate(kobj
, &nid
);
1591 if (h
->order
>= MAX_ORDER
) {
1596 if (nid
== NUMA_NO_NODE
) {
1598 * global hstate attribute
1600 if (!(obey_mempolicy
&&
1601 init_nodemask_of_mempolicy(nodes_allowed
))) {
1602 NODEMASK_FREE(nodes_allowed
);
1603 nodes_allowed
= &node_states
[N_MEMORY
];
1605 } else if (nodes_allowed
) {
1607 * per node hstate attribute: adjust count to global,
1608 * but restrict alloc/free to the specified node.
1610 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1611 init_nodemask_of_node(nodes_allowed
, nid
);
1613 nodes_allowed
= &node_states
[N_MEMORY
];
1615 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1617 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1618 NODEMASK_FREE(nodes_allowed
);
1622 NODEMASK_FREE(nodes_allowed
);
1626 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1627 struct kobj_attribute
*attr
, char *buf
)
1629 return nr_hugepages_show_common(kobj
, attr
, buf
);
1632 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1633 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1635 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1637 HSTATE_ATTR(nr_hugepages
);
1642 * hstate attribute for optionally mempolicy-based constraint on persistent
1643 * huge page alloc/free.
1645 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1646 struct kobj_attribute
*attr
, char *buf
)
1648 return nr_hugepages_show_common(kobj
, attr
, buf
);
1651 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1652 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1654 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1656 HSTATE_ATTR(nr_hugepages_mempolicy
);
1660 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1661 struct kobj_attribute
*attr
, char *buf
)
1663 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1664 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1667 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1668 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1671 unsigned long input
;
1672 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1674 if (h
->order
>= MAX_ORDER
)
1677 err
= kstrtoul(buf
, 10, &input
);
1681 spin_lock(&hugetlb_lock
);
1682 h
->nr_overcommit_huge_pages
= input
;
1683 spin_unlock(&hugetlb_lock
);
1687 HSTATE_ATTR(nr_overcommit_hugepages
);
1689 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1690 struct kobj_attribute
*attr
, char *buf
)
1693 unsigned long free_huge_pages
;
1696 h
= kobj_to_hstate(kobj
, &nid
);
1697 if (nid
== NUMA_NO_NODE
)
1698 free_huge_pages
= h
->free_huge_pages
;
1700 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1702 return sprintf(buf
, "%lu\n", free_huge_pages
);
1704 HSTATE_ATTR_RO(free_hugepages
);
1706 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1707 struct kobj_attribute
*attr
, char *buf
)
1709 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1710 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1712 HSTATE_ATTR_RO(resv_hugepages
);
1714 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1715 struct kobj_attribute
*attr
, char *buf
)
1718 unsigned long surplus_huge_pages
;
1721 h
= kobj_to_hstate(kobj
, &nid
);
1722 if (nid
== NUMA_NO_NODE
)
1723 surplus_huge_pages
= h
->surplus_huge_pages
;
1725 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1727 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1729 HSTATE_ATTR_RO(surplus_hugepages
);
1731 static struct attribute
*hstate_attrs
[] = {
1732 &nr_hugepages_attr
.attr
,
1733 &nr_overcommit_hugepages_attr
.attr
,
1734 &free_hugepages_attr
.attr
,
1735 &resv_hugepages_attr
.attr
,
1736 &surplus_hugepages_attr
.attr
,
1738 &nr_hugepages_mempolicy_attr
.attr
,
1743 static struct attribute_group hstate_attr_group
= {
1744 .attrs
= hstate_attrs
,
1747 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1748 struct kobject
**hstate_kobjs
,
1749 struct attribute_group
*hstate_attr_group
)
1752 int hi
= hstate_index(h
);
1754 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1755 if (!hstate_kobjs
[hi
])
1758 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1760 kobject_put(hstate_kobjs
[hi
]);
1765 static void __init
hugetlb_sysfs_init(void)
1770 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1771 if (!hugepages_kobj
)
1774 for_each_hstate(h
) {
1775 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1776 hstate_kobjs
, &hstate_attr_group
);
1778 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
1785 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1786 * with node devices in node_devices[] using a parallel array. The array
1787 * index of a node device or _hstate == node id.
1788 * This is here to avoid any static dependency of the node device driver, in
1789 * the base kernel, on the hugetlb module.
1791 struct node_hstate
{
1792 struct kobject
*hugepages_kobj
;
1793 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1795 struct node_hstate node_hstates
[MAX_NUMNODES
];
1798 * A subset of global hstate attributes for node devices
1800 static struct attribute
*per_node_hstate_attrs
[] = {
1801 &nr_hugepages_attr
.attr
,
1802 &free_hugepages_attr
.attr
,
1803 &surplus_hugepages_attr
.attr
,
1807 static struct attribute_group per_node_hstate_attr_group
= {
1808 .attrs
= per_node_hstate_attrs
,
1812 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1813 * Returns node id via non-NULL nidp.
1815 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1819 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1820 struct node_hstate
*nhs
= &node_hstates
[nid
];
1822 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1823 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1835 * Unregister hstate attributes from a single node device.
1836 * No-op if no hstate attributes attached.
1838 static void hugetlb_unregister_node(struct node
*node
)
1841 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1843 if (!nhs
->hugepages_kobj
)
1844 return; /* no hstate attributes */
1846 for_each_hstate(h
) {
1847 int idx
= hstate_index(h
);
1848 if (nhs
->hstate_kobjs
[idx
]) {
1849 kobject_put(nhs
->hstate_kobjs
[idx
]);
1850 nhs
->hstate_kobjs
[idx
] = NULL
;
1854 kobject_put(nhs
->hugepages_kobj
);
1855 nhs
->hugepages_kobj
= NULL
;
1859 * hugetlb module exit: unregister hstate attributes from node devices
1862 static void hugetlb_unregister_all_nodes(void)
1867 * disable node device registrations.
1869 register_hugetlbfs_with_node(NULL
, NULL
);
1872 * remove hstate attributes from any nodes that have them.
1874 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1875 hugetlb_unregister_node(node_devices
[nid
]);
1879 * Register hstate attributes for a single node device.
1880 * No-op if attributes already registered.
1882 static void hugetlb_register_node(struct node
*node
)
1885 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1888 if (nhs
->hugepages_kobj
)
1889 return; /* already allocated */
1891 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1893 if (!nhs
->hugepages_kobj
)
1896 for_each_hstate(h
) {
1897 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1899 &per_node_hstate_attr_group
);
1901 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1902 h
->name
, node
->dev
.id
);
1903 hugetlb_unregister_node(node
);
1910 * hugetlb init time: register hstate attributes for all registered node
1911 * devices of nodes that have memory. All on-line nodes should have
1912 * registered their associated device by this time.
1914 static void hugetlb_register_all_nodes(void)
1918 for_each_node_state(nid
, N_MEMORY
) {
1919 struct node
*node
= node_devices
[nid
];
1920 if (node
->dev
.id
== nid
)
1921 hugetlb_register_node(node
);
1925 * Let the node device driver know we're here so it can
1926 * [un]register hstate attributes on node hotplug.
1928 register_hugetlbfs_with_node(hugetlb_register_node
,
1929 hugetlb_unregister_node
);
1931 #else /* !CONFIG_NUMA */
1933 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1941 static void hugetlb_unregister_all_nodes(void) { }
1943 static void hugetlb_register_all_nodes(void) { }
1947 static void __exit
hugetlb_exit(void)
1951 hugetlb_unregister_all_nodes();
1953 for_each_hstate(h
) {
1954 kobject_put(hstate_kobjs
[hstate_index(h
)]);
1957 kobject_put(hugepages_kobj
);
1959 module_exit(hugetlb_exit
);
1961 static int __init
hugetlb_init(void)
1963 /* Some platform decide whether they support huge pages at boot
1964 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1965 * there is no such support
1967 if (HPAGE_SHIFT
== 0)
1970 if (!size_to_hstate(default_hstate_size
)) {
1971 default_hstate_size
= HPAGE_SIZE
;
1972 if (!size_to_hstate(default_hstate_size
))
1973 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1975 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
1976 if (default_hstate_max_huge_pages
)
1977 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1979 hugetlb_init_hstates();
1980 gather_bootmem_prealloc();
1983 hugetlb_sysfs_init();
1984 hugetlb_register_all_nodes();
1985 hugetlb_cgroup_file_init();
1989 module_init(hugetlb_init
);
1991 /* Should be called on processing a hugepagesz=... option */
1992 void __init
hugetlb_add_hstate(unsigned order
)
1997 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1998 pr_warning("hugepagesz= specified twice, ignoring\n");
2001 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2003 h
= &hstates
[hugetlb_max_hstate
++];
2005 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2006 h
->nr_huge_pages
= 0;
2007 h
->free_huge_pages
= 0;
2008 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2009 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2010 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2011 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2012 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2013 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2014 huge_page_size(h
)/1024);
2019 static int __init
hugetlb_nrpages_setup(char *s
)
2022 static unsigned long *last_mhp
;
2025 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2026 * so this hugepages= parameter goes to the "default hstate".
2028 if (!hugetlb_max_hstate
)
2029 mhp
= &default_hstate_max_huge_pages
;
2031 mhp
= &parsed_hstate
->max_huge_pages
;
2033 if (mhp
== last_mhp
) {
2034 pr_warning("hugepages= specified twice without "
2035 "interleaving hugepagesz=, ignoring\n");
2039 if (sscanf(s
, "%lu", mhp
) <= 0)
2043 * Global state is always initialized later in hugetlb_init.
2044 * But we need to allocate >= MAX_ORDER hstates here early to still
2045 * use the bootmem allocator.
2047 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2048 hugetlb_hstate_alloc_pages(parsed_hstate
);
2054 __setup("hugepages=", hugetlb_nrpages_setup
);
2056 static int __init
hugetlb_default_setup(char *s
)
2058 default_hstate_size
= memparse(s
, &s
);
2061 __setup("default_hugepagesz=", hugetlb_default_setup
);
2063 static unsigned int cpuset_mems_nr(unsigned int *array
)
2066 unsigned int nr
= 0;
2068 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2074 #ifdef CONFIG_SYSCTL
2075 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2076 struct ctl_table
*table
, int write
,
2077 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2079 struct hstate
*h
= &default_hstate
;
2083 tmp
= h
->max_huge_pages
;
2085 if (write
&& h
->order
>= MAX_ORDER
)
2089 table
->maxlen
= sizeof(unsigned long);
2090 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2095 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
2096 GFP_KERNEL
| __GFP_NORETRY
);
2097 if (!(obey_mempolicy
&&
2098 init_nodemask_of_mempolicy(nodes_allowed
))) {
2099 NODEMASK_FREE(nodes_allowed
);
2100 nodes_allowed
= &node_states
[N_MEMORY
];
2102 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
2104 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2105 NODEMASK_FREE(nodes_allowed
);
2111 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2112 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2115 return hugetlb_sysctl_handler_common(false, table
, write
,
2116 buffer
, length
, ppos
);
2120 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2121 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2123 return hugetlb_sysctl_handler_common(true, table
, write
,
2124 buffer
, length
, ppos
);
2126 #endif /* CONFIG_NUMA */
2128 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2129 void __user
*buffer
,
2130 size_t *length
, loff_t
*ppos
)
2132 struct hstate
*h
= &default_hstate
;
2136 tmp
= h
->nr_overcommit_huge_pages
;
2138 if (write
&& h
->order
>= MAX_ORDER
)
2142 table
->maxlen
= sizeof(unsigned long);
2143 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2148 spin_lock(&hugetlb_lock
);
2149 h
->nr_overcommit_huge_pages
= tmp
;
2150 spin_unlock(&hugetlb_lock
);
2156 #endif /* CONFIG_SYSCTL */
2158 void hugetlb_report_meminfo(struct seq_file
*m
)
2160 struct hstate
*h
= &default_hstate
;
2162 "HugePages_Total: %5lu\n"
2163 "HugePages_Free: %5lu\n"
2164 "HugePages_Rsvd: %5lu\n"
2165 "HugePages_Surp: %5lu\n"
2166 "Hugepagesize: %8lu kB\n",
2170 h
->surplus_huge_pages
,
2171 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2174 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2176 struct hstate
*h
= &default_hstate
;
2178 "Node %d HugePages_Total: %5u\n"
2179 "Node %d HugePages_Free: %5u\n"
2180 "Node %d HugePages_Surp: %5u\n",
2181 nid
, h
->nr_huge_pages_node
[nid
],
2182 nid
, h
->free_huge_pages_node
[nid
],
2183 nid
, h
->surplus_huge_pages_node
[nid
]);
2186 void hugetlb_show_meminfo(void)
2191 for_each_node_state(nid
, N_MEMORY
)
2193 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2195 h
->nr_huge_pages_node
[nid
],
2196 h
->free_huge_pages_node
[nid
],
2197 h
->surplus_huge_pages_node
[nid
],
2198 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2201 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2202 unsigned long hugetlb_total_pages(void)
2205 unsigned long nr_total_pages
= 0;
2208 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2209 return nr_total_pages
;
2212 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2216 spin_lock(&hugetlb_lock
);
2218 * When cpuset is configured, it breaks the strict hugetlb page
2219 * reservation as the accounting is done on a global variable. Such
2220 * reservation is completely rubbish in the presence of cpuset because
2221 * the reservation is not checked against page availability for the
2222 * current cpuset. Application can still potentially OOM'ed by kernel
2223 * with lack of free htlb page in cpuset that the task is in.
2224 * Attempt to enforce strict accounting with cpuset is almost
2225 * impossible (or too ugly) because cpuset is too fluid that
2226 * task or memory node can be dynamically moved between cpusets.
2228 * The change of semantics for shared hugetlb mapping with cpuset is
2229 * undesirable. However, in order to preserve some of the semantics,
2230 * we fall back to check against current free page availability as
2231 * a best attempt and hopefully to minimize the impact of changing
2232 * semantics that cpuset has.
2235 if (gather_surplus_pages(h
, delta
) < 0)
2238 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2239 return_unused_surplus_pages(h
, delta
);
2246 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2249 spin_unlock(&hugetlb_lock
);
2253 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2255 struct resv_map
*resv
= vma_resv_map(vma
);
2258 * This new VMA should share its siblings reservation map if present.
2259 * The VMA will only ever have a valid reservation map pointer where
2260 * it is being copied for another still existing VMA. As that VMA
2261 * has a reference to the reservation map it cannot disappear until
2262 * after this open call completes. It is therefore safe to take a
2263 * new reference here without additional locking.
2266 kref_get(&resv
->refs
);
2269 static void resv_map_put(struct vm_area_struct
*vma
)
2271 struct resv_map
*resv
= vma_resv_map(vma
);
2275 kref_put(&resv
->refs
, resv_map_release
);
2278 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2280 struct hstate
*h
= hstate_vma(vma
);
2281 struct resv_map
*resv
= vma_resv_map(vma
);
2282 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2283 unsigned long reserve
;
2284 unsigned long start
;
2288 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2289 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2291 reserve
= (end
- start
) -
2292 region_count(&resv
->regions
, start
, end
);
2297 hugetlb_acct_memory(h
, -reserve
);
2298 hugepage_subpool_put_pages(spool
, reserve
);
2304 * We cannot handle pagefaults against hugetlb pages at all. They cause
2305 * handle_mm_fault() to try to instantiate regular-sized pages in the
2306 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2309 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2315 const struct vm_operations_struct hugetlb_vm_ops
= {
2316 .fault
= hugetlb_vm_op_fault
,
2317 .open
= hugetlb_vm_op_open
,
2318 .close
= hugetlb_vm_op_close
,
2321 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2327 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2328 vma
->vm_page_prot
)));
2330 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2331 vma
->vm_page_prot
));
2333 entry
= pte_mkyoung(entry
);
2334 entry
= pte_mkhuge(entry
);
2335 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2340 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2341 unsigned long address
, pte_t
*ptep
)
2345 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2346 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2347 update_mmu_cache(vma
, address
, ptep
);
2351 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2352 struct vm_area_struct
*vma
)
2354 pte_t
*src_pte
, *dst_pte
, entry
;
2355 struct page
*ptepage
;
2358 struct hstate
*h
= hstate_vma(vma
);
2359 unsigned long sz
= huge_page_size(h
);
2361 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2363 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2364 src_pte
= huge_pte_offset(src
, addr
);
2367 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2371 /* If the pagetables are shared don't copy or take references */
2372 if (dst_pte
== src_pte
)
2375 spin_lock(&dst
->page_table_lock
);
2376 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2377 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2379 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2380 entry
= huge_ptep_get(src_pte
);
2381 ptepage
= pte_page(entry
);
2383 page_dup_rmap(ptepage
);
2384 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2386 spin_unlock(&src
->page_table_lock
);
2387 spin_unlock(&dst
->page_table_lock
);
2395 static int is_hugetlb_entry_migration(pte_t pte
)
2399 if (huge_pte_none(pte
) || pte_present(pte
))
2401 swp
= pte_to_swp_entry(pte
);
2402 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2408 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2412 if (huge_pte_none(pte
) || pte_present(pte
))
2414 swp
= pte_to_swp_entry(pte
);
2415 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2421 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2422 unsigned long start
, unsigned long end
,
2423 struct page
*ref_page
)
2425 int force_flush
= 0;
2426 struct mm_struct
*mm
= vma
->vm_mm
;
2427 unsigned long address
;
2431 struct hstate
*h
= hstate_vma(vma
);
2432 unsigned long sz
= huge_page_size(h
);
2433 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2434 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2436 WARN_ON(!is_vm_hugetlb_page(vma
));
2437 BUG_ON(start
& ~huge_page_mask(h
));
2438 BUG_ON(end
& ~huge_page_mask(h
));
2440 tlb_start_vma(tlb
, vma
);
2441 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2443 spin_lock(&mm
->page_table_lock
);
2444 for (address
= start
; address
< end
; address
+= sz
) {
2445 ptep
= huge_pte_offset(mm
, address
);
2449 if (huge_pmd_unshare(mm
, &address
, ptep
))
2452 pte
= huge_ptep_get(ptep
);
2453 if (huge_pte_none(pte
))
2457 * HWPoisoned hugepage is already unmapped and dropped reference
2459 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
2460 huge_pte_clear(mm
, address
, ptep
);
2464 page
= pte_page(pte
);
2466 * If a reference page is supplied, it is because a specific
2467 * page is being unmapped, not a range. Ensure the page we
2468 * are about to unmap is the actual page of interest.
2471 if (page
!= ref_page
)
2475 * Mark the VMA as having unmapped its page so that
2476 * future faults in this VMA will fail rather than
2477 * looking like data was lost
2479 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2482 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2483 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2484 if (huge_pte_dirty(pte
))
2485 set_page_dirty(page
);
2487 page_remove_rmap(page
);
2488 force_flush
= !__tlb_remove_page(tlb
, page
);
2491 /* Bail out after unmapping reference page if supplied */
2495 spin_unlock(&mm
->page_table_lock
);
2497 * mmu_gather ran out of room to batch pages, we break out of
2498 * the PTE lock to avoid doing the potential expensive TLB invalidate
2499 * and page-free while holding it.
2504 if (address
< end
&& !ref_page
)
2507 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2508 tlb_end_vma(tlb
, vma
);
2511 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2512 struct vm_area_struct
*vma
, unsigned long start
,
2513 unsigned long end
, struct page
*ref_page
)
2515 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2518 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2519 * test will fail on a vma being torn down, and not grab a page table
2520 * on its way out. We're lucky that the flag has such an appropriate
2521 * name, and can in fact be safely cleared here. We could clear it
2522 * before the __unmap_hugepage_range above, but all that's necessary
2523 * is to clear it before releasing the i_mmap_mutex. This works
2524 * because in the context this is called, the VMA is about to be
2525 * destroyed and the i_mmap_mutex is held.
2527 vma
->vm_flags
&= ~VM_MAYSHARE
;
2530 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2531 unsigned long end
, struct page
*ref_page
)
2533 struct mm_struct
*mm
;
2534 struct mmu_gather tlb
;
2538 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2539 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2540 tlb_finish_mmu(&tlb
, start
, end
);
2544 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2545 * mappping it owns the reserve page for. The intention is to unmap the page
2546 * from other VMAs and let the children be SIGKILLed if they are faulting the
2549 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2550 struct page
*page
, unsigned long address
)
2552 struct hstate
*h
= hstate_vma(vma
);
2553 struct vm_area_struct
*iter_vma
;
2554 struct address_space
*mapping
;
2558 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2559 * from page cache lookup which is in HPAGE_SIZE units.
2561 address
= address
& huge_page_mask(h
);
2562 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2564 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2567 * Take the mapping lock for the duration of the table walk. As
2568 * this mapping should be shared between all the VMAs,
2569 * __unmap_hugepage_range() is called as the lock is already held
2571 mutex_lock(&mapping
->i_mmap_mutex
);
2572 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2573 /* Do not unmap the current VMA */
2574 if (iter_vma
== vma
)
2578 * Unmap the page from other VMAs without their own reserves.
2579 * They get marked to be SIGKILLed if they fault in these
2580 * areas. This is because a future no-page fault on this VMA
2581 * could insert a zeroed page instead of the data existing
2582 * from the time of fork. This would look like data corruption
2584 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2585 unmap_hugepage_range(iter_vma
, address
,
2586 address
+ huge_page_size(h
), page
);
2588 mutex_unlock(&mapping
->i_mmap_mutex
);
2594 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2595 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2596 * cannot race with other handlers or page migration.
2597 * Keep the pte_same checks anyway to make transition from the mutex easier.
2599 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2600 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2601 struct page
*pagecache_page
)
2603 struct hstate
*h
= hstate_vma(vma
);
2604 struct page
*old_page
, *new_page
;
2605 int outside_reserve
= 0;
2606 unsigned long mmun_start
; /* For mmu_notifiers */
2607 unsigned long mmun_end
; /* For mmu_notifiers */
2609 old_page
= pte_page(pte
);
2612 /* If no-one else is actually using this page, avoid the copy
2613 * and just make the page writable */
2614 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
2615 page_move_anon_rmap(old_page
, vma
, address
);
2616 set_huge_ptep_writable(vma
, address
, ptep
);
2621 * If the process that created a MAP_PRIVATE mapping is about to
2622 * perform a COW due to a shared page count, attempt to satisfy
2623 * the allocation without using the existing reserves. The pagecache
2624 * page is used to determine if the reserve at this address was
2625 * consumed or not. If reserves were used, a partial faulted mapping
2626 * at the time of fork() could consume its reserves on COW instead
2627 * of the full address range.
2629 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2630 old_page
!= pagecache_page
)
2631 outside_reserve
= 1;
2633 page_cache_get(old_page
);
2635 /* Drop page_table_lock as buddy allocator may be called */
2636 spin_unlock(&mm
->page_table_lock
);
2637 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2639 if (IS_ERR(new_page
)) {
2640 long err
= PTR_ERR(new_page
);
2641 page_cache_release(old_page
);
2644 * If a process owning a MAP_PRIVATE mapping fails to COW,
2645 * it is due to references held by a child and an insufficient
2646 * huge page pool. To guarantee the original mappers
2647 * reliability, unmap the page from child processes. The child
2648 * may get SIGKILLed if it later faults.
2650 if (outside_reserve
) {
2651 BUG_ON(huge_pte_none(pte
));
2652 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2653 BUG_ON(huge_pte_none(pte
));
2654 spin_lock(&mm
->page_table_lock
);
2655 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2656 if (likely(pte_same(huge_ptep_get(ptep
), pte
)))
2657 goto retry_avoidcopy
;
2659 * race occurs while re-acquiring page_table_lock, and
2667 /* Caller expects lock to be held */
2668 spin_lock(&mm
->page_table_lock
);
2670 return VM_FAULT_OOM
;
2672 return VM_FAULT_SIGBUS
;
2676 * When the original hugepage is shared one, it does not have
2677 * anon_vma prepared.
2679 if (unlikely(anon_vma_prepare(vma
))) {
2680 page_cache_release(new_page
);
2681 page_cache_release(old_page
);
2682 /* Caller expects lock to be held */
2683 spin_lock(&mm
->page_table_lock
);
2684 return VM_FAULT_OOM
;
2687 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2688 pages_per_huge_page(h
));
2689 __SetPageUptodate(new_page
);
2691 mmun_start
= address
& huge_page_mask(h
);
2692 mmun_end
= mmun_start
+ huge_page_size(h
);
2693 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2695 * Retake the page_table_lock to check for racing updates
2696 * before the page tables are altered
2698 spin_lock(&mm
->page_table_lock
);
2699 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2700 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2701 ClearPagePrivate(new_page
);
2704 huge_ptep_clear_flush(vma
, address
, ptep
);
2705 set_huge_pte_at(mm
, address
, ptep
,
2706 make_huge_pte(vma
, new_page
, 1));
2707 page_remove_rmap(old_page
);
2708 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2709 /* Make the old page be freed below */
2710 new_page
= old_page
;
2712 spin_unlock(&mm
->page_table_lock
);
2713 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2714 page_cache_release(new_page
);
2715 page_cache_release(old_page
);
2717 /* Caller expects lock to be held */
2718 spin_lock(&mm
->page_table_lock
);
2722 /* Return the pagecache page at a given address within a VMA */
2723 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2724 struct vm_area_struct
*vma
, unsigned long address
)
2726 struct address_space
*mapping
;
2729 mapping
= vma
->vm_file
->f_mapping
;
2730 idx
= vma_hugecache_offset(h
, vma
, address
);
2732 return find_lock_page(mapping
, idx
);
2736 * Return whether there is a pagecache page to back given address within VMA.
2737 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2739 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2740 struct vm_area_struct
*vma
, unsigned long address
)
2742 struct address_space
*mapping
;
2746 mapping
= vma
->vm_file
->f_mapping
;
2747 idx
= vma_hugecache_offset(h
, vma
, address
);
2749 page
= find_get_page(mapping
, idx
);
2752 return page
!= NULL
;
2755 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2756 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2758 struct hstate
*h
= hstate_vma(vma
);
2759 int ret
= VM_FAULT_SIGBUS
;
2764 struct address_space
*mapping
;
2768 * Currently, we are forced to kill the process in the event the
2769 * original mapper has unmapped pages from the child due to a failed
2770 * COW. Warn that such a situation has occurred as it may not be obvious
2772 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2773 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2778 mapping
= vma
->vm_file
->f_mapping
;
2779 idx
= vma_hugecache_offset(h
, vma
, address
);
2782 * Use page lock to guard against racing truncation
2783 * before we get page_table_lock.
2786 page
= find_lock_page(mapping
, idx
);
2788 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2791 page
= alloc_huge_page(vma
, address
, 0);
2793 ret
= PTR_ERR(page
);
2797 ret
= VM_FAULT_SIGBUS
;
2800 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2801 __SetPageUptodate(page
);
2803 if (vma
->vm_flags
& VM_MAYSHARE
) {
2805 struct inode
*inode
= mapping
->host
;
2807 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2814 ClearPagePrivate(page
);
2816 spin_lock(&inode
->i_lock
);
2817 inode
->i_blocks
+= blocks_per_huge_page(h
);
2818 spin_unlock(&inode
->i_lock
);
2821 if (unlikely(anon_vma_prepare(vma
))) {
2823 goto backout_unlocked
;
2829 * If memory error occurs between mmap() and fault, some process
2830 * don't have hwpoisoned swap entry for errored virtual address.
2831 * So we need to block hugepage fault by PG_hwpoison bit check.
2833 if (unlikely(PageHWPoison(page
))) {
2834 ret
= VM_FAULT_HWPOISON
|
2835 VM_FAULT_SET_HINDEX(hstate_index(h
));
2836 goto backout_unlocked
;
2841 * If we are going to COW a private mapping later, we examine the
2842 * pending reservations for this page now. This will ensure that
2843 * any allocations necessary to record that reservation occur outside
2846 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2847 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2849 goto backout_unlocked
;
2852 spin_lock(&mm
->page_table_lock
);
2853 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2858 if (!huge_pte_none(huge_ptep_get(ptep
)))
2862 ClearPagePrivate(page
);
2863 hugepage_add_new_anon_rmap(page
, vma
, address
);
2866 page_dup_rmap(page
);
2867 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2868 && (vma
->vm_flags
& VM_SHARED
)));
2869 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2871 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2872 /* Optimization, do the COW without a second fault */
2873 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2876 spin_unlock(&mm
->page_table_lock
);
2882 spin_unlock(&mm
->page_table_lock
);
2889 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2890 unsigned long address
, unsigned int flags
)
2895 struct page
*page
= NULL
;
2896 struct page
*pagecache_page
= NULL
;
2897 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2898 struct hstate
*h
= hstate_vma(vma
);
2900 address
&= huge_page_mask(h
);
2902 ptep
= huge_pte_offset(mm
, address
);
2904 entry
= huge_ptep_get(ptep
);
2905 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2906 migration_entry_wait_huge(mm
, ptep
);
2908 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2909 return VM_FAULT_HWPOISON_LARGE
|
2910 VM_FAULT_SET_HINDEX(hstate_index(h
));
2913 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2915 return VM_FAULT_OOM
;
2918 * Serialize hugepage allocation and instantiation, so that we don't
2919 * get spurious allocation failures if two CPUs race to instantiate
2920 * the same page in the page cache.
2922 mutex_lock(&hugetlb_instantiation_mutex
);
2923 entry
= huge_ptep_get(ptep
);
2924 if (huge_pte_none(entry
)) {
2925 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2932 * If we are going to COW the mapping later, we examine the pending
2933 * reservations for this page now. This will ensure that any
2934 * allocations necessary to record that reservation occur outside the
2935 * spinlock. For private mappings, we also lookup the pagecache
2936 * page now as it is used to determine if a reservation has been
2939 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
2940 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2945 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2946 pagecache_page
= hugetlbfs_pagecache_page(h
,
2951 * hugetlb_cow() requires page locks of pte_page(entry) and
2952 * pagecache_page, so here we need take the former one
2953 * when page != pagecache_page or !pagecache_page.
2954 * Note that locking order is always pagecache_page -> page,
2955 * so no worry about deadlock.
2957 page
= pte_page(entry
);
2959 if (page
!= pagecache_page
)
2962 spin_lock(&mm
->page_table_lock
);
2963 /* Check for a racing update before calling hugetlb_cow */
2964 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2965 goto out_page_table_lock
;
2968 if (flags
& FAULT_FLAG_WRITE
) {
2969 if (!huge_pte_write(entry
)) {
2970 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2972 goto out_page_table_lock
;
2974 entry
= huge_pte_mkdirty(entry
);
2976 entry
= pte_mkyoung(entry
);
2977 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2978 flags
& FAULT_FLAG_WRITE
))
2979 update_mmu_cache(vma
, address
, ptep
);
2981 out_page_table_lock
:
2982 spin_unlock(&mm
->page_table_lock
);
2984 if (pagecache_page
) {
2985 unlock_page(pagecache_page
);
2986 put_page(pagecache_page
);
2988 if (page
!= pagecache_page
)
2993 mutex_unlock(&hugetlb_instantiation_mutex
);
2998 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2999 struct page
**pages
, struct vm_area_struct
**vmas
,
3000 unsigned long *position
, unsigned long *nr_pages
,
3001 long i
, unsigned int flags
)
3003 unsigned long pfn_offset
;
3004 unsigned long vaddr
= *position
;
3005 unsigned long remainder
= *nr_pages
;
3006 struct hstate
*h
= hstate_vma(vma
);
3008 spin_lock(&mm
->page_table_lock
);
3009 while (vaddr
< vma
->vm_end
&& remainder
) {
3015 * Some archs (sparc64, sh*) have multiple pte_ts to
3016 * each hugepage. We have to make sure we get the
3017 * first, for the page indexing below to work.
3019 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3020 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3023 * When coredumping, it suits get_dump_page if we just return
3024 * an error where there's an empty slot with no huge pagecache
3025 * to back it. This way, we avoid allocating a hugepage, and
3026 * the sparse dumpfile avoids allocating disk blocks, but its
3027 * huge holes still show up with zeroes where they need to be.
3029 if (absent
&& (flags
& FOLL_DUMP
) &&
3030 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3036 * We need call hugetlb_fault for both hugepages under migration
3037 * (in which case hugetlb_fault waits for the migration,) and
3038 * hwpoisoned hugepages (in which case we need to prevent the
3039 * caller from accessing to them.) In order to do this, we use
3040 * here is_swap_pte instead of is_hugetlb_entry_migration and
3041 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3042 * both cases, and because we can't follow correct pages
3043 * directly from any kind of swap entries.
3045 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3046 ((flags
& FOLL_WRITE
) &&
3047 !huge_pte_write(huge_ptep_get(pte
)))) {
3050 spin_unlock(&mm
->page_table_lock
);
3051 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3052 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3053 spin_lock(&mm
->page_table_lock
);
3054 if (!(ret
& VM_FAULT_ERROR
))
3061 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3062 page
= pte_page(huge_ptep_get(pte
));
3065 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3076 if (vaddr
< vma
->vm_end
&& remainder
&&
3077 pfn_offset
< pages_per_huge_page(h
)) {
3079 * We use pfn_offset to avoid touching the pageframes
3080 * of this compound page.
3085 spin_unlock(&mm
->page_table_lock
);
3086 *nr_pages
= remainder
;
3089 return i
? i
: -EFAULT
;
3092 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3093 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3095 struct mm_struct
*mm
= vma
->vm_mm
;
3096 unsigned long start
= address
;
3099 struct hstate
*h
= hstate_vma(vma
);
3100 unsigned long pages
= 0;
3102 BUG_ON(address
>= end
);
3103 flush_cache_range(vma
, address
, end
);
3105 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3106 spin_lock(&mm
->page_table_lock
);
3107 for (; address
< end
; address
+= huge_page_size(h
)) {
3108 ptep
= huge_pte_offset(mm
, address
);
3111 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3115 if (!huge_pte_none(huge_ptep_get(ptep
))) {
3116 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3117 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3118 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3119 set_huge_pte_at(mm
, address
, ptep
, pte
);
3123 spin_unlock(&mm
->page_table_lock
);
3125 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3126 * may have cleared our pud entry and done put_page on the page table:
3127 * once we release i_mmap_mutex, another task can do the final put_page
3128 * and that page table be reused and filled with junk.
3130 flush_tlb_range(vma
, start
, end
);
3131 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3133 return pages
<< h
->order
;
3136 int hugetlb_reserve_pages(struct inode
*inode
,
3138 struct vm_area_struct
*vma
,
3139 vm_flags_t vm_flags
)
3142 struct hstate
*h
= hstate_inode(inode
);
3143 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3146 * Only apply hugepage reservation if asked. At fault time, an
3147 * attempt will be made for VM_NORESERVE to allocate a page
3148 * without using reserves
3150 if (vm_flags
& VM_NORESERVE
)
3154 * Shared mappings base their reservation on the number of pages that
3155 * are already allocated on behalf of the file. Private mappings need
3156 * to reserve the full area even if read-only as mprotect() may be
3157 * called to make the mapping read-write. Assume !vma is a shm mapping
3159 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3160 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
3162 struct resv_map
*resv_map
= resv_map_alloc();
3168 set_vma_resv_map(vma
, resv_map
);
3169 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3177 /* There must be enough pages in the subpool for the mapping */
3178 if (hugepage_subpool_get_pages(spool
, chg
)) {
3184 * Check enough hugepages are available for the reservation.
3185 * Hand the pages back to the subpool if there are not
3187 ret
= hugetlb_acct_memory(h
, chg
);
3189 hugepage_subpool_put_pages(spool
, chg
);
3194 * Account for the reservations made. Shared mappings record regions
3195 * that have reservations as they are shared by multiple VMAs.
3196 * When the last VMA disappears, the region map says how much
3197 * the reservation was and the page cache tells how much of
3198 * the reservation was consumed. Private mappings are per-VMA and
3199 * only the consumed reservations are tracked. When the VMA
3200 * disappears, the original reservation is the VMA size and the
3201 * consumed reservations are stored in the map. Hence, nothing
3202 * else has to be done for private mappings here
3204 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3205 region_add(&inode
->i_mapping
->private_list
, from
, to
);
3213 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3215 struct hstate
*h
= hstate_inode(inode
);
3216 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
3217 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3219 spin_lock(&inode
->i_lock
);
3220 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3221 spin_unlock(&inode
->i_lock
);
3223 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3224 hugetlb_acct_memory(h
, -(chg
- freed
));
3227 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3228 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3229 struct vm_area_struct
*vma
,
3230 unsigned long addr
, pgoff_t idx
)
3232 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3234 unsigned long sbase
= saddr
& PUD_MASK
;
3235 unsigned long s_end
= sbase
+ PUD_SIZE
;
3237 /* Allow segments to share if only one is marked locked */
3238 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3239 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3242 * match the virtual addresses, permission and the alignment of the
3245 if (pmd_index(addr
) != pmd_index(saddr
) ||
3246 vm_flags
!= svm_flags
||
3247 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3253 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3255 unsigned long base
= addr
& PUD_MASK
;
3256 unsigned long end
= base
+ PUD_SIZE
;
3259 * check on proper vm_flags and page table alignment
3261 if (vma
->vm_flags
& VM_MAYSHARE
&&
3262 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3268 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3269 * and returns the corresponding pte. While this is not necessary for the
3270 * !shared pmd case because we can allocate the pmd later as well, it makes the
3271 * code much cleaner. pmd allocation is essential for the shared case because
3272 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3273 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3274 * bad pmd for sharing.
3276 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3278 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3279 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3280 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3282 struct vm_area_struct
*svma
;
3283 unsigned long saddr
;
3287 if (!vma_shareable(vma
, addr
))
3288 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3290 mutex_lock(&mapping
->i_mmap_mutex
);
3291 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3295 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3297 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3299 get_page(virt_to_page(spte
));
3308 spin_lock(&mm
->page_table_lock
);
3310 pud_populate(mm
, pud
,
3311 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3313 put_page(virt_to_page(spte
));
3314 spin_unlock(&mm
->page_table_lock
);
3316 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3317 mutex_unlock(&mapping
->i_mmap_mutex
);
3322 * unmap huge page backed by shared pte.
3324 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3325 * indicated by page_count > 1, unmap is achieved by clearing pud and
3326 * decrementing the ref count. If count == 1, the pte page is not shared.
3328 * called with vma->vm_mm->page_table_lock held.
3330 * returns: 1 successfully unmapped a shared pte page
3331 * 0 the underlying pte page is not shared, or it is the last user
3333 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3335 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3336 pud_t
*pud
= pud_offset(pgd
, *addr
);
3338 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3339 if (page_count(virt_to_page(ptep
)) == 1)
3343 put_page(virt_to_page(ptep
));
3344 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3347 #define want_pmd_share() (1)
3348 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3349 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3353 #define want_pmd_share() (0)
3354 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3356 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3357 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3358 unsigned long addr
, unsigned long sz
)
3364 pgd
= pgd_offset(mm
, addr
);
3365 pud
= pud_alloc(mm
, pgd
, addr
);
3367 if (sz
== PUD_SIZE
) {
3370 BUG_ON(sz
!= PMD_SIZE
);
3371 if (want_pmd_share() && pud_none(*pud
))
3372 pte
= huge_pmd_share(mm
, addr
, pud
);
3374 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3377 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3382 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3388 pgd
= pgd_offset(mm
, addr
);
3389 if (pgd_present(*pgd
)) {
3390 pud
= pud_offset(pgd
, addr
);
3391 if (pud_present(*pud
)) {
3393 return (pte_t
*)pud
;
3394 pmd
= pmd_offset(pud
, addr
);
3397 return (pte_t
*) pmd
;
3401 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3402 pmd_t
*pmd
, int write
)
3406 page
= pte_page(*(pte_t
*)pmd
);
3408 page
+= ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3413 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3414 pud_t
*pud
, int write
)
3418 page
= pte_page(*(pte_t
*)pud
);
3420 page
+= ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3424 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3426 /* Can be overriden by architectures */
3427 __attribute__((weak
)) struct page
*
3428 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3429 pud_t
*pud
, int write
)
3435 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3437 #ifdef CONFIG_MEMORY_FAILURE
3439 /* Should be called in hugetlb_lock */
3440 static int is_hugepage_on_freelist(struct page
*hpage
)
3444 struct hstate
*h
= page_hstate(hpage
);
3445 int nid
= page_to_nid(hpage
);
3447 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3454 * This function is called from memory failure code.
3455 * Assume the caller holds page lock of the head page.
3457 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3459 struct hstate
*h
= page_hstate(hpage
);
3460 int nid
= page_to_nid(hpage
);
3463 spin_lock(&hugetlb_lock
);
3464 if (is_hugepage_on_freelist(hpage
)) {
3466 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3467 * but dangling hpage->lru can trigger list-debug warnings
3468 * (this happens when we call unpoison_memory() on it),
3469 * so let it point to itself with list_del_init().
3471 list_del_init(&hpage
->lru
);
3472 set_page_refcounted(hpage
);
3473 h
->free_huge_pages
--;
3474 h
->free_huge_pages_node
[nid
]--;
3477 spin_unlock(&hugetlb_lock
);
3482 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
3484 VM_BUG_ON(!PageHead(page
));
3485 if (!get_page_unless_zero(page
))
3487 spin_lock(&hugetlb_lock
);
3488 list_move_tail(&page
->lru
, list
);
3489 spin_unlock(&hugetlb_lock
);
3493 void putback_active_hugepage(struct page
*page
)
3495 VM_BUG_ON(!PageHead(page
));
3496 spin_lock(&hugetlb_lock
);
3497 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
3498 spin_unlock(&hugetlb_lock
);
3502 bool is_hugepage_active(struct page
*page
)
3504 VM_BUG_ON(!PageHuge(page
));
3506 * This function can be called for a tail page because the caller,
3507 * scan_movable_pages, scans through a given pfn-range which typically
3508 * covers one memory block. In systems using gigantic hugepage (1GB
3509 * for x86_64,) a hugepage is larger than a memory block, and we don't
3510 * support migrating such large hugepages for now, so return false
3511 * when called for tail pages.
3516 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3517 * so we should return false for them.
3519 if (unlikely(PageHWPoison(page
)))
3521 return page_count(page
) > 0;