2 * Simple MTD partitioning layer
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions
);
38 static DEFINE_MUTEX(mtd_partitions_mutex
);
40 /* Our partition node structure */
43 struct mtd_info
*master
;
45 struct list_head list
;
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure with this macro.
52 #define PART(x) ((struct mtd_part *)(x))
56 * MTD methods which simply translate the effective address and pass through
57 * to the _real_ device.
60 static int part_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
61 size_t *retlen
, u_char
*buf
)
63 struct mtd_part
*part
= PART(mtd
);
64 struct mtd_ecc_stats stats
;
67 stats
= part
->master
->ecc_stats
;
68 res
= part
->master
->_read(part
->master
, from
+ part
->offset
, len
,
70 if (unlikely(mtd_is_eccerr(res
)))
71 mtd
->ecc_stats
.failed
+=
72 part
->master
->ecc_stats
.failed
- stats
.failed
;
74 mtd
->ecc_stats
.corrected
+=
75 part
->master
->ecc_stats
.corrected
- stats
.corrected
;
79 static int part_point(struct mtd_info
*mtd
, loff_t from
, size_t len
,
80 size_t *retlen
, void **virt
, resource_size_t
*phys
)
82 struct mtd_part
*part
= PART(mtd
);
84 return part
->master
->_point(part
->master
, from
+ part
->offset
, len
,
88 static int part_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
)
90 struct mtd_part
*part
= PART(mtd
);
92 return part
->master
->_unpoint(part
->master
, from
+ part
->offset
, len
);
95 static unsigned long part_get_unmapped_area(struct mtd_info
*mtd
,
100 struct mtd_part
*part
= PART(mtd
);
102 offset
+= part
->offset
;
103 return part
->master
->_get_unmapped_area(part
->master
, len
, offset
,
107 static int part_read_oob(struct mtd_info
*mtd
, loff_t from
,
108 struct mtd_oob_ops
*ops
)
110 struct mtd_part
*part
= PART(mtd
);
113 if (from
>= mtd
->size
)
115 if (ops
->datbuf
&& from
+ ops
->len
> mtd
->size
)
119 * If OOB is also requested, make sure that we do not read past the end
125 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
129 pages
= mtd_div_by_ws(mtd
->size
, mtd
);
130 pages
-= mtd_div_by_ws(from
, mtd
);
131 if (ops
->ooboffs
+ ops
->ooblen
> pages
* len
)
135 res
= part
->master
->_read_oob(part
->master
, from
+ part
->offset
, ops
);
137 if (mtd_is_bitflip(res
))
138 mtd
->ecc_stats
.corrected
++;
139 if (mtd_is_eccerr(res
))
140 mtd
->ecc_stats
.failed
++;
145 static int part_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
146 size_t len
, size_t *retlen
, u_char
*buf
)
148 struct mtd_part
*part
= PART(mtd
);
149 return part
->master
->_read_user_prot_reg(part
->master
, from
, len
,
153 static int part_get_user_prot_info(struct mtd_info
*mtd
,
154 struct otp_info
*buf
, size_t len
)
156 struct mtd_part
*part
= PART(mtd
);
157 return part
->master
->_get_user_prot_info(part
->master
, buf
, len
);
160 static int part_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
161 size_t len
, size_t *retlen
, u_char
*buf
)
163 struct mtd_part
*part
= PART(mtd
);
164 return part
->master
->_read_fact_prot_reg(part
->master
, from
, len
,
168 static int part_get_fact_prot_info(struct mtd_info
*mtd
, struct otp_info
*buf
,
171 struct mtd_part
*part
= PART(mtd
);
172 return part
->master
->_get_fact_prot_info(part
->master
, buf
, len
);
175 static int part_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
176 size_t *retlen
, const u_char
*buf
)
178 struct mtd_part
*part
= PART(mtd
);
179 return part
->master
->_write(part
->master
, to
+ part
->offset
, len
,
183 static int part_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
184 size_t *retlen
, const u_char
*buf
)
186 struct mtd_part
*part
= PART(mtd
);
187 return part
->master
->_panic_write(part
->master
, to
+ part
->offset
, len
,
191 static int part_write_oob(struct mtd_info
*mtd
, loff_t to
,
192 struct mtd_oob_ops
*ops
)
194 struct mtd_part
*part
= PART(mtd
);
198 if (ops
->datbuf
&& to
+ ops
->len
> mtd
->size
)
200 return part
->master
->_write_oob(part
->master
, to
+ part
->offset
, ops
);
203 static int part_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
204 size_t len
, size_t *retlen
, u_char
*buf
)
206 struct mtd_part
*part
= PART(mtd
);
207 return part
->master
->_write_user_prot_reg(part
->master
, from
, len
,
211 static int part_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
214 struct mtd_part
*part
= PART(mtd
);
215 return part
->master
->_lock_user_prot_reg(part
->master
, from
, len
);
218 static int part_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
219 unsigned long count
, loff_t to
, size_t *retlen
)
221 struct mtd_part
*part
= PART(mtd
);
222 return part
->master
->_writev(part
->master
, vecs
, count
,
223 to
+ part
->offset
, retlen
);
226 static int part_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
228 struct mtd_part
*part
= PART(mtd
);
231 instr
->addr
+= part
->offset
;
232 ret
= part
->master
->_erase(part
->master
, instr
);
234 if (instr
->fail_addr
!= MTD_FAIL_ADDR_UNKNOWN
)
235 instr
->fail_addr
-= part
->offset
;
236 instr
->addr
-= part
->offset
;
241 void mtd_erase_callback(struct erase_info
*instr
)
243 if (instr
->mtd
->_erase
== part_erase
) {
244 struct mtd_part
*part
= PART(instr
->mtd
);
246 if (instr
->fail_addr
!= MTD_FAIL_ADDR_UNKNOWN
)
247 instr
->fail_addr
-= part
->offset
;
248 instr
->addr
-= part
->offset
;
251 instr
->callback(instr
);
253 EXPORT_SYMBOL_GPL(mtd_erase_callback
);
255 static int part_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
257 struct mtd_part
*part
= PART(mtd
);
258 return part
->master
->_lock(part
->master
, ofs
+ part
->offset
, len
);
261 static int part_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
263 struct mtd_part
*part
= PART(mtd
);
264 return part
->master
->_unlock(part
->master
, ofs
+ part
->offset
, len
);
267 static int part_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
269 struct mtd_part
*part
= PART(mtd
);
270 return part
->master
->_is_locked(part
->master
, ofs
+ part
->offset
, len
);
273 static void part_sync(struct mtd_info
*mtd
)
275 struct mtd_part
*part
= PART(mtd
);
276 part
->master
->_sync(part
->master
);
279 static int part_suspend(struct mtd_info
*mtd
)
281 struct mtd_part
*part
= PART(mtd
);
282 return part
->master
->_suspend(part
->master
);
285 static void part_resume(struct mtd_info
*mtd
)
287 struct mtd_part
*part
= PART(mtd
);
288 part
->master
->_resume(part
->master
);
291 static int part_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
293 struct mtd_part
*part
= PART(mtd
);
295 return part
->master
->_block_isbad(part
->master
, ofs
);
298 static int part_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
300 struct mtd_part
*part
= PART(mtd
);
304 res
= part
->master
->_block_markbad(part
->master
, ofs
);
306 mtd
->ecc_stats
.badblocks
++;
310 static inline void free_partition(struct mtd_part
*p
)
317 * This function unregisters and destroy all slave MTD objects which are
318 * attached to the given master MTD object.
321 int del_mtd_partitions(struct mtd_info
*master
)
323 struct mtd_part
*slave
, *next
;
326 mutex_lock(&mtd_partitions_mutex
);
327 list_for_each_entry_safe(slave
, next
, &mtd_partitions
, list
)
328 if (slave
->master
== master
) {
329 ret
= del_mtd_device(&slave
->mtd
);
334 list_del(&slave
->list
);
335 free_partition(slave
);
337 mutex_unlock(&mtd_partitions_mutex
);
342 static struct mtd_part
*allocate_partition(struct mtd_info
*master
,
343 const struct mtd_partition
*part
, int partno
,
346 struct mtd_part
*slave
;
349 /* allocate the partition structure */
350 slave
= kzalloc(sizeof(*slave
), GFP_KERNEL
);
351 name
= kstrdup(part
->name
, GFP_KERNEL
);
352 if (!name
|| !slave
) {
353 printk(KERN_ERR
"memory allocation error while creating partitions for \"%s
\"\n",
357 return ERR_PTR(-ENOMEM);
360 /* set up the MTD object for this partition */
361 slave->mtd.type = master->type;
362 slave->mtd.flags = master->flags & ~part->mask_flags;
363 slave->mtd.size = part->size;
364 slave->mtd.writesize = master->writesize;
365 slave->mtd.writebufsize = master->writebufsize;
366 slave->mtd.oobsize = master->oobsize;
367 slave->mtd.oobavail = master->oobavail;
368 slave->mtd.subpage_sft = master->subpage_sft;
370 slave->mtd.name = name;
371 slave->mtd.owner = master->owner;
372 slave->mtd.backing_dev_info = master->backing_dev_info;
374 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
375 * to have the same data be in two different partitions.
377 slave->mtd.dev.parent = master->dev.parent;
379 slave->mtd._read = part_read;
380 slave->mtd._write = part_write;
382 if (master->_panic_write)
383 slave->mtd._panic_write = part_panic_write;
385 if (master->_point && master->_unpoint) {
386 slave->mtd._point = part_point;
387 slave->mtd._unpoint = part_unpoint;
390 if (master->_get_unmapped_area)
391 slave->mtd._get_unmapped_area = part_get_unmapped_area;
392 if (master->_read_oob)
393 slave->mtd._read_oob = part_read_oob;
394 if (master->_write_oob)
395 slave->mtd._write_oob = part_write_oob;
396 if (master->_read_user_prot_reg)
397 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
398 if (master->_read_fact_prot_reg)
399 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
400 if (master->_write_user_prot_reg)
401 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
402 if (master->_lock_user_prot_reg)
403 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
404 if (master->_get_user_prot_info)
405 slave->mtd._get_user_prot_info = part_get_user_prot_info;
406 if (master->_get_fact_prot_info)
407 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
409 slave->mtd._sync = part_sync;
410 if (!partno && !master->dev.class && master->_suspend &&
412 slave->mtd._suspend = part_suspend;
413 slave->mtd._resume = part_resume;
416 slave->mtd._writev = part_writev;
418 slave->mtd._lock = part_lock;
420 slave->mtd._unlock = part_unlock;
421 if (master->_is_locked)
422 slave->mtd._is_locked = part_is_locked;
423 if (master->_block_isbad)
424 slave->mtd._block_isbad = part_block_isbad;
425 if (master->_block_markbad)
426 slave->mtd._block_markbad = part_block_markbad;
427 slave->mtd._erase = part_erase;
428 slave->master = master;
429 slave->offset = part->offset;
431 if (slave->offset == MTDPART_OFS_APPEND)
432 slave->offset = cur_offset;
433 if (slave->offset == MTDPART_OFS_NXTBLK) {
434 slave->offset = cur_offset;
435 if (mtd_mod_by_eb(cur_offset, master) != 0) {
436 /* Round up to next erasesize */
437 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
438 printk(KERN_NOTICE "Moving partition
%d
: "
439 "0x
%012llx
-> 0x
%012llx
\n", partno,
440 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
443 if (slave->offset == MTDPART_OFS_RETAIN) {
444 slave->offset = cur_offset;
445 if (master->size - slave->offset >= slave->mtd.size) {
446 slave->mtd.size = master->size - slave->offset
449 printk(KERN_ERR "mtd partition
\"%s
\" doesn
't have enough space: %#llx < %#llx, disabled\n",
450 part->name, master->size - slave->offset,
452 /* register to preserve ordering */
456 if (slave->mtd.size == MTDPART_SIZ_FULL)
457 slave->mtd.size = master->size - slave->offset;
459 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
460 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
462 /* let's
do some sanity checks */
463 if (slave
->offset
>= master
->size
) {
464 /* let's register it anyway to preserve ordering */
467 printk(KERN_ERR
"mtd: partition \"%s
\" is out of reach
-- disabled
\n",
471 if (slave->offset + slave->mtd.size > master->size) {
472 slave->mtd.size = master->size - slave->offset;
473 printk(KERN_WARNING"mtd
: partition
\"%s
\" extends beyond the end of device
\"%s
\" -- size truncated to
%#llx\n",
474 part->name, master->name, (unsigned long long)slave->mtd.size);
476 if (master->numeraseregions > 1) {
477 /* Deal with variable erase size stuff */
478 int i, max = master->numeraseregions;
479 u64 end = slave->offset + slave->mtd.size;
480 struct mtd_erase_region_info *regions = master->eraseregions;
482 /* Find the first erase regions which is part of this
484 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
486 /* The loop searched for the region _behind_ the first one */
490 /* Pick biggest erasesize */
491 for (; i < max && regions[i].offset < end; i++) {
492 if (slave->mtd.erasesize < regions[i].erasesize) {
493 slave->mtd.erasesize = regions[i].erasesize;
496 BUG_ON(slave->mtd.erasesize == 0);
498 /* Single erase size */
499 slave->mtd.erasesize = master->erasesize;
502 if ((slave->mtd.flags & MTD_WRITEABLE) &&
503 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
504 /* Doesn't start on a boundary of major erase size */
505 /* FIXME: Let it be writable if it is on a boundary of
506 * _minor_ erase size though */
507 slave->mtd.flags &= ~MTD_WRITEABLE;
508 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
511 if ((slave->mtd.flags & MTD_WRITEABLE) &&
512 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
513 slave->mtd.flags &= ~MTD_WRITEABLE;
514 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
518 slave->mtd.ecclayout = master->ecclayout;
519 slave->mtd.ecc_strength = master->ecc_strength;
520 slave->mtd.bitflip_threshold = master->bitflip_threshold;
522 if (master->_block_isbad) {
525 while (offs < slave->mtd.size) {
526 if (mtd_block_isbad(master, offs + slave->offset))
527 slave->mtd.ecc_stats.badblocks++;
528 offs += slave->mtd.erasesize;
536 int mtd_add_partition(struct mtd_info *master, char *name,
537 long long offset, long long length)
539 struct mtd_partition part;
540 struct mtd_part *p, *new;
544 /* the direct offset is expected */
545 if (offset == MTDPART_OFS_APPEND ||
546 offset == MTDPART_OFS_NXTBLK)
549 if (length == MTDPART_SIZ_FULL)
550 length = master->size - offset;
557 part.offset = offset;
559 part.ecclayout = NULL;
561 new = allocate_partition(master, &part, -1, offset);
566 end = offset + length;
568 mutex_lock(&mtd_partitions_mutex);
569 list_for_each_entry(p, &mtd_partitions, list)
570 if (p->master == master) {
571 if ((start >= p->offset) &&
572 (start < (p->offset + p->mtd.size)))
575 if ((end >= p->offset) &&
576 (end < (p->offset + p->mtd.size)))
580 list_add(&new->list, &mtd_partitions);
581 mutex_unlock(&mtd_partitions_mutex);
583 add_mtd_device(&new->mtd);
587 mutex_unlock(&mtd_partitions_mutex);
591 EXPORT_SYMBOL_GPL(mtd_add_partition);
593 int mtd_del_partition(struct mtd_info *master, int partno)
595 struct mtd_part *slave, *next;
598 mutex_lock(&mtd_partitions_mutex);
599 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
600 if ((slave->master == master) &&
601 (slave->mtd.index == partno)) {
602 ret = del_mtd_device(&slave->mtd);
606 list_del(&slave->list);
607 free_partition(slave);
610 mutex_unlock(&mtd_partitions_mutex);
614 EXPORT_SYMBOL_GPL(mtd_del_partition);
617 * This function, given a master MTD object and a partition table, creates
618 * and registers slave MTD objects which are bound to the master according to
619 * the partition definitions.
621 * We don't register the master, or expect the caller to have done so,
622 * for reasons of data integrity.
625 int add_mtd_partitions(struct mtd_info *master,
626 const struct mtd_partition *parts,
629 struct mtd_part *slave;
630 uint64_t cur_offset = 0;
633 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
635 for (i = 0; i < nbparts; i++) {
636 slave = allocate_partition(master, parts + i, i, cur_offset);
638 return PTR_ERR(slave);
640 mutex_lock(&mtd_partitions_mutex);
641 list_add(&slave->list, &mtd_partitions);
642 mutex_unlock(&mtd_partitions_mutex);
644 add_mtd_device(&slave->mtd);
646 cur_offset = slave->offset + slave->mtd.size;
652 static DEFINE_SPINLOCK(part_parser_lock);
653 static LIST_HEAD(part_parsers);
655 static struct mtd_part_parser *get_partition_parser(const char *name)
657 struct mtd_part_parser *p, *ret = NULL;
659 spin_lock(&part_parser_lock);
661 list_for_each_entry(p, &part_parsers, list)
662 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
667 spin_unlock(&part_parser_lock);
672 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
674 int register_mtd_parser(struct mtd_part_parser *p)
676 spin_lock(&part_parser_lock);
677 list_add(&p->list, &part_parsers);
678 spin_unlock(&part_parser_lock);
682 EXPORT_SYMBOL_GPL(register_mtd_parser);
684 int deregister_mtd_parser(struct mtd_part_parser *p)
686 spin_lock(&part_parser_lock);
688 spin_unlock(&part_parser_lock);
691 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
694 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
695 * are changing this array!
697 static const char *default_mtd_part_types[] = {
704 * parse_mtd_partitions - parse MTD partitions
705 * @master: the master partition (describes whole MTD device)
706 * @types: names of partition parsers to try or %NULL
707 * @pparts: array of partitions found is returned here
708 * @data: MTD partition parser-specific data
710 * This function tries to find partition on MTD device @master. It uses MTD
711 * partition parsers, specified in @types. However, if @types is %NULL, then
712 * the default list of parsers is used. The default list contains only the
713 * "cmdlinepart" and "ofpart" parsers ATM.
715 * This function may return:
716 * o a negative error code in case of failure
717 * o zero if no partitions were found
718 * o a positive number of found partitions, in which case on exit @pparts will
719 * point to an array containing this number of &struct mtd_info objects.
721 int parse_mtd_partitions(struct mtd_info *master, const char **types,
722 struct mtd_partition **pparts,
723 struct mtd_part_parser_data *data)
725 struct mtd_part_parser *parser;
729 types = default_mtd_part_types;
731 for ( ; ret <= 0 && *types; types++) {
732 parser = get_partition_parser(*types);
733 if (!parser && !request_module("%s", *types))
734 parser = get_partition_parser(*types);
737 ret = (*parser->parse_fn)(master, pparts, data);
739 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
740 ret, parser->name, master->name);
742 put_partition_parser(parser);
747 int mtd_is_partition(const struct mtd_info *mtd)
749 struct mtd_part *part;
752 mutex_lock(&mtd_partitions_mutex);
753 list_for_each_entry(part, &mtd_partitions, list)
754 if (&part->mtd == mtd) {
758 mutex_unlock(&mtd_partitions_mutex);
762 EXPORT_SYMBOL_GPL(mtd_is_partition);