s390/mm: fix gmap tlb flush issues
[linux/fpc-iii.git] / mm / gup.c
blob377a5a796242e9dd6d7cfb965c0fecac5782d092
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
6 #include <linux/hugetlb.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched.h>
14 #include <linux/rwsem.h>
15 #include <asm/pgtable.h>
17 #include "internal.h"
19 static struct page *no_page_table(struct vm_area_struct *vma,
20 unsigned int flags)
23 * When core dumping an enormous anonymous area that nobody
24 * has touched so far, we don't want to allocate unnecessary pages or
25 * page tables. Return error instead of NULL to skip handle_mm_fault,
26 * then get_dump_page() will return NULL to leave a hole in the dump.
27 * But we can only make this optimization where a hole would surely
28 * be zero-filled if handle_mm_fault() actually did handle it.
30 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
31 return ERR_PTR(-EFAULT);
32 return NULL;
35 static struct page *follow_page_pte(struct vm_area_struct *vma,
36 unsigned long address, pmd_t *pmd, unsigned int flags)
38 struct mm_struct *mm = vma->vm_mm;
39 struct page *page;
40 spinlock_t *ptl;
41 pte_t *ptep, pte;
43 retry:
44 if (unlikely(pmd_bad(*pmd)))
45 return no_page_table(vma, flags);
47 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
48 pte = *ptep;
49 if (!pte_present(pte)) {
50 swp_entry_t entry;
52 * KSM's break_ksm() relies upon recognizing a ksm page
53 * even while it is being migrated, so for that case we
54 * need migration_entry_wait().
56 if (likely(!(flags & FOLL_MIGRATION)))
57 goto no_page;
58 if (pte_none(pte) || pte_file(pte))
59 goto no_page;
60 entry = pte_to_swp_entry(pte);
61 if (!is_migration_entry(entry))
62 goto no_page;
63 pte_unmap_unlock(ptep, ptl);
64 migration_entry_wait(mm, pmd, address);
65 goto retry;
67 if ((flags & FOLL_NUMA) && pte_numa(pte))
68 goto no_page;
69 if ((flags & FOLL_WRITE) && !pte_write(pte)) {
70 pte_unmap_unlock(ptep, ptl);
71 return NULL;
74 page = vm_normal_page(vma, address, pte);
75 if (unlikely(!page)) {
76 if ((flags & FOLL_DUMP) ||
77 !is_zero_pfn(pte_pfn(pte)))
78 goto bad_page;
79 page = pte_page(pte);
82 if (flags & FOLL_GET)
83 get_page_foll(page);
84 if (flags & FOLL_TOUCH) {
85 if ((flags & FOLL_WRITE) &&
86 !pte_dirty(pte) && !PageDirty(page))
87 set_page_dirty(page);
89 * pte_mkyoung() would be more correct here, but atomic care
90 * is needed to avoid losing the dirty bit: it is easier to use
91 * mark_page_accessed().
93 mark_page_accessed(page);
95 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
97 * The preliminary mapping check is mainly to avoid the
98 * pointless overhead of lock_page on the ZERO_PAGE
99 * which might bounce very badly if there is contention.
101 * If the page is already locked, we don't need to
102 * handle it now - vmscan will handle it later if and
103 * when it attempts to reclaim the page.
105 if (page->mapping && trylock_page(page)) {
106 lru_add_drain(); /* push cached pages to LRU */
108 * Because we lock page here, and migration is
109 * blocked by the pte's page reference, and we
110 * know the page is still mapped, we don't even
111 * need to check for file-cache page truncation.
113 mlock_vma_page(page);
114 unlock_page(page);
117 pte_unmap_unlock(ptep, ptl);
118 return page;
119 bad_page:
120 pte_unmap_unlock(ptep, ptl);
121 return ERR_PTR(-EFAULT);
123 no_page:
124 pte_unmap_unlock(ptep, ptl);
125 if (!pte_none(pte))
126 return NULL;
127 return no_page_table(vma, flags);
131 * follow_page_mask - look up a page descriptor from a user-virtual address
132 * @vma: vm_area_struct mapping @address
133 * @address: virtual address to look up
134 * @flags: flags modifying lookup behaviour
135 * @page_mask: on output, *page_mask is set according to the size of the page
137 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
139 * Returns the mapped (struct page *), %NULL if no mapping exists, or
140 * an error pointer if there is a mapping to something not represented
141 * by a page descriptor (see also vm_normal_page()).
143 struct page *follow_page_mask(struct vm_area_struct *vma,
144 unsigned long address, unsigned int flags,
145 unsigned int *page_mask)
147 pgd_t *pgd;
148 pud_t *pud;
149 pmd_t *pmd;
150 spinlock_t *ptl;
151 struct page *page;
152 struct mm_struct *mm = vma->vm_mm;
154 *page_mask = 0;
156 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
157 if (!IS_ERR(page)) {
158 BUG_ON(flags & FOLL_GET);
159 return page;
162 pgd = pgd_offset(mm, address);
163 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
164 return no_page_table(vma, flags);
166 pud = pud_offset(pgd, address);
167 if (pud_none(*pud))
168 return no_page_table(vma, flags);
169 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
170 page = follow_huge_pud(mm, address, pud, flags);
171 if (page)
172 return page;
173 return no_page_table(vma, flags);
175 if (unlikely(pud_bad(*pud)))
176 return no_page_table(vma, flags);
178 pmd = pmd_offset(pud, address);
179 if (pmd_none(*pmd))
180 return no_page_table(vma, flags);
181 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
182 page = follow_huge_pmd(mm, address, pmd, flags);
183 if (page)
184 return page;
185 return no_page_table(vma, flags);
187 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
188 return no_page_table(vma, flags);
189 if (pmd_trans_huge(*pmd)) {
190 if (flags & FOLL_SPLIT) {
191 split_huge_page_pmd(vma, address, pmd);
192 return follow_page_pte(vma, address, pmd, flags);
194 ptl = pmd_lock(mm, pmd);
195 if (likely(pmd_trans_huge(*pmd))) {
196 if (unlikely(pmd_trans_splitting(*pmd))) {
197 spin_unlock(ptl);
198 wait_split_huge_page(vma->anon_vma, pmd);
199 } else {
200 page = follow_trans_huge_pmd(vma, address,
201 pmd, flags);
202 spin_unlock(ptl);
203 *page_mask = HPAGE_PMD_NR - 1;
204 return page;
206 } else
207 spin_unlock(ptl);
209 return follow_page_pte(vma, address, pmd, flags);
212 static int get_gate_page(struct mm_struct *mm, unsigned long address,
213 unsigned int gup_flags, struct vm_area_struct **vma,
214 struct page **page)
216 pgd_t *pgd;
217 pud_t *pud;
218 pmd_t *pmd;
219 pte_t *pte;
220 int ret = -EFAULT;
222 /* user gate pages are read-only */
223 if (gup_flags & FOLL_WRITE)
224 return -EFAULT;
225 if (address > TASK_SIZE)
226 pgd = pgd_offset_k(address);
227 else
228 pgd = pgd_offset_gate(mm, address);
229 BUG_ON(pgd_none(*pgd));
230 pud = pud_offset(pgd, address);
231 BUG_ON(pud_none(*pud));
232 pmd = pmd_offset(pud, address);
233 if (pmd_none(*pmd))
234 return -EFAULT;
235 VM_BUG_ON(pmd_trans_huge(*pmd));
236 pte = pte_offset_map(pmd, address);
237 if (pte_none(*pte))
238 goto unmap;
239 *vma = get_gate_vma(mm);
240 if (!page)
241 goto out;
242 *page = vm_normal_page(*vma, address, *pte);
243 if (!*page) {
244 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
245 goto unmap;
246 *page = pte_page(*pte);
248 get_page(*page);
249 out:
250 ret = 0;
251 unmap:
252 pte_unmap(pte);
253 return ret;
257 * mmap_sem must be held on entry. If @nonblocking != NULL and
258 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
259 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
261 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
262 unsigned long address, unsigned int *flags, int *nonblocking)
264 struct mm_struct *mm = vma->vm_mm;
265 unsigned int fault_flags = 0;
266 int ret;
268 /* For mlock, just skip the stack guard page. */
269 if ((*flags & FOLL_MLOCK) &&
270 (stack_guard_page_start(vma, address) ||
271 stack_guard_page_end(vma, address + PAGE_SIZE)))
272 return -ENOENT;
273 if (*flags & FOLL_WRITE)
274 fault_flags |= FAULT_FLAG_WRITE;
275 if (nonblocking)
276 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
277 if (*flags & FOLL_NOWAIT)
278 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
279 if (*flags & FOLL_TRIED) {
280 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
281 fault_flags |= FAULT_FLAG_TRIED;
284 ret = handle_mm_fault(mm, vma, address, fault_flags);
285 if (ret & VM_FAULT_ERROR) {
286 if (ret & VM_FAULT_OOM)
287 return -ENOMEM;
288 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
289 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
290 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
291 return -EFAULT;
292 BUG();
295 if (tsk) {
296 if (ret & VM_FAULT_MAJOR)
297 tsk->maj_flt++;
298 else
299 tsk->min_flt++;
302 if (ret & VM_FAULT_RETRY) {
303 if (nonblocking)
304 *nonblocking = 0;
305 return -EBUSY;
309 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
310 * necessary, even if maybe_mkwrite decided not to set pte_write. We
311 * can thus safely do subsequent page lookups as if they were reads.
312 * But only do so when looping for pte_write is futile: in some cases
313 * userspace may also be wanting to write to the gotten user page,
314 * which a read fault here might prevent (a readonly page might get
315 * reCOWed by userspace write).
317 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
318 *flags &= ~FOLL_WRITE;
319 return 0;
322 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
324 vm_flags_t vm_flags = vma->vm_flags;
326 if (vm_flags & (VM_IO | VM_PFNMAP))
327 return -EFAULT;
329 if (gup_flags & FOLL_WRITE) {
330 if (!(vm_flags & VM_WRITE)) {
331 if (!(gup_flags & FOLL_FORCE))
332 return -EFAULT;
334 * We used to let the write,force case do COW in a
335 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
336 * set a breakpoint in a read-only mapping of an
337 * executable, without corrupting the file (yet only
338 * when that file had been opened for writing!).
339 * Anon pages in shared mappings are surprising: now
340 * just reject it.
342 if (!is_cow_mapping(vm_flags)) {
343 WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
344 return -EFAULT;
347 } else if (!(vm_flags & VM_READ)) {
348 if (!(gup_flags & FOLL_FORCE))
349 return -EFAULT;
351 * Is there actually any vma we can reach here which does not
352 * have VM_MAYREAD set?
354 if (!(vm_flags & VM_MAYREAD))
355 return -EFAULT;
357 return 0;
361 * __get_user_pages() - pin user pages in memory
362 * @tsk: task_struct of target task
363 * @mm: mm_struct of target mm
364 * @start: starting user address
365 * @nr_pages: number of pages from start to pin
366 * @gup_flags: flags modifying pin behaviour
367 * @pages: array that receives pointers to the pages pinned.
368 * Should be at least nr_pages long. Or NULL, if caller
369 * only intends to ensure the pages are faulted in.
370 * @vmas: array of pointers to vmas corresponding to each page.
371 * Or NULL if the caller does not require them.
372 * @nonblocking: whether waiting for disk IO or mmap_sem contention
374 * Returns number of pages pinned. This may be fewer than the number
375 * requested. If nr_pages is 0 or negative, returns 0. If no pages
376 * were pinned, returns -errno. Each page returned must be released
377 * with a put_page() call when it is finished with. vmas will only
378 * remain valid while mmap_sem is held.
380 * Must be called with mmap_sem held. It may be released. See below.
382 * __get_user_pages walks a process's page tables and takes a reference to
383 * each struct page that each user address corresponds to at a given
384 * instant. That is, it takes the page that would be accessed if a user
385 * thread accesses the given user virtual address at that instant.
387 * This does not guarantee that the page exists in the user mappings when
388 * __get_user_pages returns, and there may even be a completely different
389 * page there in some cases (eg. if mmapped pagecache has been invalidated
390 * and subsequently re faulted). However it does guarantee that the page
391 * won't be freed completely. And mostly callers simply care that the page
392 * contains data that was valid *at some point in time*. Typically, an IO
393 * or similar operation cannot guarantee anything stronger anyway because
394 * locks can't be held over the syscall boundary.
396 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
397 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
398 * appropriate) must be called after the page is finished with, and
399 * before put_page is called.
401 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
402 * or mmap_sem contention, and if waiting is needed to pin all pages,
403 * *@nonblocking will be set to 0. Further, if @gup_flags does not
404 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
405 * this case.
407 * A caller using such a combination of @nonblocking and @gup_flags
408 * must therefore hold the mmap_sem for reading only, and recognize
409 * when it's been released. Otherwise, it must be held for either
410 * reading or writing and will not be released.
412 * In most cases, get_user_pages or get_user_pages_fast should be used
413 * instead of __get_user_pages. __get_user_pages should be used only if
414 * you need some special @gup_flags.
416 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
417 unsigned long start, unsigned long nr_pages,
418 unsigned int gup_flags, struct page **pages,
419 struct vm_area_struct **vmas, int *nonblocking)
421 long i = 0;
422 unsigned int page_mask;
423 struct vm_area_struct *vma = NULL;
425 if (!nr_pages)
426 return 0;
428 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
431 * If FOLL_FORCE is set then do not force a full fault as the hinting
432 * fault information is unrelated to the reference behaviour of a task
433 * using the address space
435 if (!(gup_flags & FOLL_FORCE))
436 gup_flags |= FOLL_NUMA;
438 do {
439 struct page *page;
440 unsigned int foll_flags = gup_flags;
441 unsigned int page_increm;
443 /* first iteration or cross vma bound */
444 if (!vma || start >= vma->vm_end) {
445 vma = find_extend_vma(mm, start);
446 if (!vma && in_gate_area(mm, start)) {
447 int ret;
448 ret = get_gate_page(mm, start & PAGE_MASK,
449 gup_flags, &vma,
450 pages ? &pages[i] : NULL);
451 if (ret)
452 return i ? : ret;
453 page_mask = 0;
454 goto next_page;
457 if (!vma || check_vma_flags(vma, gup_flags))
458 return i ? : -EFAULT;
459 if (is_vm_hugetlb_page(vma)) {
460 i = follow_hugetlb_page(mm, vma, pages, vmas,
461 &start, &nr_pages, i,
462 gup_flags);
463 continue;
466 retry:
468 * If we have a pending SIGKILL, don't keep faulting pages and
469 * potentially allocating memory.
471 if (unlikely(fatal_signal_pending(current)))
472 return i ? i : -ERESTARTSYS;
473 cond_resched();
474 page = follow_page_mask(vma, start, foll_flags, &page_mask);
475 if (!page) {
476 int ret;
477 ret = faultin_page(tsk, vma, start, &foll_flags,
478 nonblocking);
479 switch (ret) {
480 case 0:
481 goto retry;
482 case -EFAULT:
483 case -ENOMEM:
484 case -EHWPOISON:
485 return i ? i : ret;
486 case -EBUSY:
487 return i;
488 case -ENOENT:
489 goto next_page;
491 BUG();
493 if (IS_ERR(page))
494 return i ? i : PTR_ERR(page);
495 if (pages) {
496 pages[i] = page;
497 flush_anon_page(vma, page, start);
498 flush_dcache_page(page);
499 page_mask = 0;
501 next_page:
502 if (vmas) {
503 vmas[i] = vma;
504 page_mask = 0;
506 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
507 if (page_increm > nr_pages)
508 page_increm = nr_pages;
509 i += page_increm;
510 start += page_increm * PAGE_SIZE;
511 nr_pages -= page_increm;
512 } while (nr_pages);
513 return i;
515 EXPORT_SYMBOL(__get_user_pages);
518 * fixup_user_fault() - manually resolve a user page fault
519 * @tsk: the task_struct to use for page fault accounting, or
520 * NULL if faults are not to be recorded.
521 * @mm: mm_struct of target mm
522 * @address: user address
523 * @fault_flags:flags to pass down to handle_mm_fault()
525 * This is meant to be called in the specific scenario where for locking reasons
526 * we try to access user memory in atomic context (within a pagefault_disable()
527 * section), this returns -EFAULT, and we want to resolve the user fault before
528 * trying again.
530 * Typically this is meant to be used by the futex code.
532 * The main difference with get_user_pages() is that this function will
533 * unconditionally call handle_mm_fault() which will in turn perform all the
534 * necessary SW fixup of the dirty and young bits in the PTE, while
535 * handle_mm_fault() only guarantees to update these in the struct page.
537 * This is important for some architectures where those bits also gate the
538 * access permission to the page because they are maintained in software. On
539 * such architectures, gup() will not be enough to make a subsequent access
540 * succeed.
542 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
544 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
545 unsigned long address, unsigned int fault_flags)
547 struct vm_area_struct *vma;
548 vm_flags_t vm_flags;
549 int ret;
551 vma = find_extend_vma(mm, address);
552 if (!vma || address < vma->vm_start)
553 return -EFAULT;
555 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
556 if (!(vm_flags & vma->vm_flags))
557 return -EFAULT;
559 ret = handle_mm_fault(mm, vma, address, fault_flags);
560 if (ret & VM_FAULT_ERROR) {
561 if (ret & VM_FAULT_OOM)
562 return -ENOMEM;
563 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
564 return -EHWPOISON;
565 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
566 return -EFAULT;
567 BUG();
569 if (tsk) {
570 if (ret & VM_FAULT_MAJOR)
571 tsk->maj_flt++;
572 else
573 tsk->min_flt++;
575 return 0;
579 * get_user_pages() - pin user pages in memory
580 * @tsk: the task_struct to use for page fault accounting, or
581 * NULL if faults are not to be recorded.
582 * @mm: mm_struct of target mm
583 * @start: starting user address
584 * @nr_pages: number of pages from start to pin
585 * @write: whether pages will be written to by the caller
586 * @force: whether to force access even when user mapping is currently
587 * protected (but never forces write access to shared mapping).
588 * @pages: array that receives pointers to the pages pinned.
589 * Should be at least nr_pages long. Or NULL, if caller
590 * only intends to ensure the pages are faulted in.
591 * @vmas: array of pointers to vmas corresponding to each page.
592 * Or NULL if the caller does not require them.
594 * Returns number of pages pinned. This may be fewer than the number
595 * requested. If nr_pages is 0 or negative, returns 0. If no pages
596 * were pinned, returns -errno. Each page returned must be released
597 * with a put_page() call when it is finished with. vmas will only
598 * remain valid while mmap_sem is held.
600 * Must be called with mmap_sem held for read or write.
602 * get_user_pages walks a process's page tables and takes a reference to
603 * each struct page that each user address corresponds to at a given
604 * instant. That is, it takes the page that would be accessed if a user
605 * thread accesses the given user virtual address at that instant.
607 * This does not guarantee that the page exists in the user mappings when
608 * get_user_pages returns, and there may even be a completely different
609 * page there in some cases (eg. if mmapped pagecache has been invalidated
610 * and subsequently re faulted). However it does guarantee that the page
611 * won't be freed completely. And mostly callers simply care that the page
612 * contains data that was valid *at some point in time*. Typically, an IO
613 * or similar operation cannot guarantee anything stronger anyway because
614 * locks can't be held over the syscall boundary.
616 * If write=0, the page must not be written to. If the page is written to,
617 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
618 * after the page is finished with, and before put_page is called.
620 * get_user_pages is typically used for fewer-copy IO operations, to get a
621 * handle on the memory by some means other than accesses via the user virtual
622 * addresses. The pages may be submitted for DMA to devices or accessed via
623 * their kernel linear mapping (via the kmap APIs). Care should be taken to
624 * use the correct cache flushing APIs.
626 * See also get_user_pages_fast, for performance critical applications.
628 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
629 unsigned long start, unsigned long nr_pages, int write,
630 int force, struct page **pages, struct vm_area_struct **vmas)
632 int flags = FOLL_TOUCH;
634 if (pages)
635 flags |= FOLL_GET;
636 if (write)
637 flags |= FOLL_WRITE;
638 if (force)
639 flags |= FOLL_FORCE;
641 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
642 NULL);
644 EXPORT_SYMBOL(get_user_pages);
647 * get_dump_page() - pin user page in memory while writing it to core dump
648 * @addr: user address
650 * Returns struct page pointer of user page pinned for dump,
651 * to be freed afterwards by page_cache_release() or put_page().
653 * Returns NULL on any kind of failure - a hole must then be inserted into
654 * the corefile, to preserve alignment with its headers; and also returns
655 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
656 * allowing a hole to be left in the corefile to save diskspace.
658 * Called without mmap_sem, but after all other threads have been killed.
660 #ifdef CONFIG_ELF_CORE
661 struct page *get_dump_page(unsigned long addr)
663 struct vm_area_struct *vma;
664 struct page *page;
666 if (__get_user_pages(current, current->mm, addr, 1,
667 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
668 NULL) < 1)
669 return NULL;
670 flush_cache_page(vma, addr, page_to_pfn(page));
671 return page;
673 #endif /* CONFIG_ELF_CORE */
676 * Generic RCU Fast GUP
678 * get_user_pages_fast attempts to pin user pages by walking the page
679 * tables directly and avoids taking locks. Thus the walker needs to be
680 * protected from page table pages being freed from under it, and should
681 * block any THP splits.
683 * One way to achieve this is to have the walker disable interrupts, and
684 * rely on IPIs from the TLB flushing code blocking before the page table
685 * pages are freed. This is unsuitable for architectures that do not need
686 * to broadcast an IPI when invalidating TLBs.
688 * Another way to achieve this is to batch up page table containing pages
689 * belonging to more than one mm_user, then rcu_sched a callback to free those
690 * pages. Disabling interrupts will allow the fast_gup walker to both block
691 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
692 * (which is a relatively rare event). The code below adopts this strategy.
694 * Before activating this code, please be aware that the following assumptions
695 * are currently made:
697 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
698 * pages containing page tables.
700 * *) THP splits will broadcast an IPI, this can be achieved by overriding
701 * pmdp_splitting_flush.
703 * *) ptes can be read atomically by the architecture.
705 * *) access_ok is sufficient to validate userspace address ranges.
707 * The last two assumptions can be relaxed by the addition of helper functions.
709 * This code is based heavily on the PowerPC implementation by Nick Piggin.
711 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
713 #ifdef __HAVE_ARCH_PTE_SPECIAL
714 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
715 int write, struct page **pages, int *nr)
717 pte_t *ptep, *ptem;
718 int ret = 0;
720 ptem = ptep = pte_offset_map(&pmd, addr);
721 do {
723 * In the line below we are assuming that the pte can be read
724 * atomically. If this is not the case for your architecture,
725 * please wrap this in a helper function!
727 * for an example see gup_get_pte in arch/x86/mm/gup.c
729 pte_t pte = ACCESS_ONCE(*ptep);
730 struct page *page;
733 * Similar to the PMD case below, NUMA hinting must take slow
734 * path
736 if (!pte_present(pte) || pte_special(pte) ||
737 pte_numa(pte) || (write && !pte_write(pte)))
738 goto pte_unmap;
740 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
741 page = pte_page(pte);
743 if (!page_cache_get_speculative(page))
744 goto pte_unmap;
746 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
747 put_page(page);
748 goto pte_unmap;
751 pages[*nr] = page;
752 (*nr)++;
754 } while (ptep++, addr += PAGE_SIZE, addr != end);
756 ret = 1;
758 pte_unmap:
759 pte_unmap(ptem);
760 return ret;
762 #else
765 * If we can't determine whether or not a pte is special, then fail immediately
766 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
767 * to be special.
769 * For a futex to be placed on a THP tail page, get_futex_key requires a
770 * __get_user_pages_fast implementation that can pin pages. Thus it's still
771 * useful to have gup_huge_pmd even if we can't operate on ptes.
773 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
774 int write, struct page **pages, int *nr)
776 return 0;
778 #endif /* __HAVE_ARCH_PTE_SPECIAL */
780 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
781 unsigned long end, int write, struct page **pages, int *nr)
783 struct page *head, *page, *tail;
784 int refs;
786 if (write && !pmd_write(orig))
787 return 0;
789 refs = 0;
790 head = pmd_page(orig);
791 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
792 tail = page;
793 do {
794 VM_BUG_ON_PAGE(compound_head(page) != head, page);
795 pages[*nr] = page;
796 (*nr)++;
797 page++;
798 refs++;
799 } while (addr += PAGE_SIZE, addr != end);
801 if (!page_cache_add_speculative(head, refs)) {
802 *nr -= refs;
803 return 0;
806 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
807 *nr -= refs;
808 while (refs--)
809 put_page(head);
810 return 0;
814 * Any tail pages need their mapcount reference taken before we
815 * return. (This allows the THP code to bump their ref count when
816 * they are split into base pages).
818 while (refs--) {
819 if (PageTail(tail))
820 get_huge_page_tail(tail);
821 tail++;
824 return 1;
827 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
828 unsigned long end, int write, struct page **pages, int *nr)
830 struct page *head, *page, *tail;
831 int refs;
833 if (write && !pud_write(orig))
834 return 0;
836 refs = 0;
837 head = pud_page(orig);
838 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
839 tail = page;
840 do {
841 VM_BUG_ON_PAGE(compound_head(page) != head, page);
842 pages[*nr] = page;
843 (*nr)++;
844 page++;
845 refs++;
846 } while (addr += PAGE_SIZE, addr != end);
848 if (!page_cache_add_speculative(head, refs)) {
849 *nr -= refs;
850 return 0;
853 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
854 *nr -= refs;
855 while (refs--)
856 put_page(head);
857 return 0;
860 while (refs--) {
861 if (PageTail(tail))
862 get_huge_page_tail(tail);
863 tail++;
866 return 1;
869 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
870 int write, struct page **pages, int *nr)
872 unsigned long next;
873 pmd_t *pmdp;
875 pmdp = pmd_offset(&pud, addr);
876 do {
877 pmd_t pmd = ACCESS_ONCE(*pmdp);
879 next = pmd_addr_end(addr, end);
880 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
881 return 0;
883 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
885 * NUMA hinting faults need to be handled in the GUP
886 * slowpath for accounting purposes and so that they
887 * can be serialised against THP migration.
889 if (pmd_numa(pmd))
890 return 0;
892 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
893 pages, nr))
894 return 0;
896 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
897 return 0;
898 } while (pmdp++, addr = next, addr != end);
900 return 1;
903 static int gup_pud_range(pgd_t *pgdp, unsigned long addr, unsigned long end,
904 int write, struct page **pages, int *nr)
906 unsigned long next;
907 pud_t *pudp;
909 pudp = pud_offset(pgdp, addr);
910 do {
911 pud_t pud = ACCESS_ONCE(*pudp);
913 next = pud_addr_end(addr, end);
914 if (pud_none(pud))
915 return 0;
916 if (pud_huge(pud)) {
917 if (!gup_huge_pud(pud, pudp, addr, next, write,
918 pages, nr))
919 return 0;
920 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
921 return 0;
922 } while (pudp++, addr = next, addr != end);
924 return 1;
928 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
929 * the regular GUP. It will only return non-negative values.
931 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
932 struct page **pages)
934 struct mm_struct *mm = current->mm;
935 unsigned long addr, len, end;
936 unsigned long next, flags;
937 pgd_t *pgdp;
938 int nr = 0;
940 start &= PAGE_MASK;
941 addr = start;
942 len = (unsigned long) nr_pages << PAGE_SHIFT;
943 end = start + len;
945 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
946 start, len)))
947 return 0;
950 * Disable interrupts. We use the nested form as we can already have
951 * interrupts disabled by get_futex_key.
953 * With interrupts disabled, we block page table pages from being
954 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
955 * for more details.
957 * We do not adopt an rcu_read_lock(.) here as we also want to
958 * block IPIs that come from THPs splitting.
961 local_irq_save(flags);
962 pgdp = pgd_offset(mm, addr);
963 do {
964 next = pgd_addr_end(addr, end);
965 if (pgd_none(*pgdp))
966 break;
967 else if (!gup_pud_range(pgdp, addr, next, write, pages, &nr))
968 break;
969 } while (pgdp++, addr = next, addr != end);
970 local_irq_restore(flags);
972 return nr;
976 * get_user_pages_fast() - pin user pages in memory
977 * @start: starting user address
978 * @nr_pages: number of pages from start to pin
979 * @write: whether pages will be written to
980 * @pages: array that receives pointers to the pages pinned.
981 * Should be at least nr_pages long.
983 * Attempt to pin user pages in memory without taking mm->mmap_sem.
984 * If not successful, it will fall back to taking the lock and
985 * calling get_user_pages().
987 * Returns number of pages pinned. This may be fewer than the number
988 * requested. If nr_pages is 0 or negative, returns 0. If no pages
989 * were pinned, returns -errno.
991 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
992 struct page **pages)
994 struct mm_struct *mm = current->mm;
995 int nr, ret;
997 start &= PAGE_MASK;
998 nr = __get_user_pages_fast(start, nr_pages, write, pages);
999 ret = nr;
1001 if (nr < nr_pages) {
1002 /* Try to get the remaining pages with get_user_pages */
1003 start += nr << PAGE_SHIFT;
1004 pages += nr;
1006 down_read(&mm->mmap_sem);
1007 ret = get_user_pages(current, mm, start,
1008 nr_pages - nr, write, 0, pages, NULL);
1009 up_read(&mm->mmap_sem);
1011 /* Have to be a bit careful with return values */
1012 if (nr > 0) {
1013 if (ret < 0)
1014 ret = nr;
1015 else
1016 ret += nr;
1020 return ret;
1023 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */