staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / sound / x86 / intel_hdmi_audio.c
blob5fd4e32247a6d6967591ce058eb86acfb53167ab
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_hdmi_audio.c - Intel HDMI audio driver
5 * Copyright (C) 2016 Intel Corp
6 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7 * Ramesh Babu K V <ramesh.babu@intel.com>
8 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9 * Jerome Anand <jerome.anand@intel.com>
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 * ALSA driver for Intel HDMI audio
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <sound/core.h>
26 #include <sound/asoundef.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/initval.h>
30 #include <sound/control.h>
31 #include <sound/jack.h>
32 #include <drm/drm_edid.h>
33 #include <drm/intel_lpe_audio.h>
34 #include "intel_hdmi_audio.h"
36 #define for_each_pipe(card_ctx, pipe) \
37 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
38 #define for_each_port(card_ctx, port) \
39 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
41 /*standard module options for ALSA. This module supports only one card*/
42 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
43 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
44 static bool single_port;
46 module_param_named(index, hdmi_card_index, int, 0444);
47 MODULE_PARM_DESC(index,
48 "Index value for INTEL Intel HDMI Audio controller.");
49 module_param_named(id, hdmi_card_id, charp, 0444);
50 MODULE_PARM_DESC(id,
51 "ID string for INTEL Intel HDMI Audio controller.");
52 module_param(single_port, bool, 0444);
53 MODULE_PARM_DESC(single_port,
54 "Single-port mode (for compatibility)");
57 * ELD SA bits in the CEA Speaker Allocation data block
59 static const int eld_speaker_allocation_bits[] = {
60 [0] = FL | FR,
61 [1] = LFE,
62 [2] = FC,
63 [3] = RL | RR,
64 [4] = RC,
65 [5] = FLC | FRC,
66 [6] = RLC | RRC,
67 /* the following are not defined in ELD yet */
68 [7] = 0,
72 * This is an ordered list!
74 * The preceding ones have better chances to be selected by
75 * hdmi_channel_allocation().
77 static struct cea_channel_speaker_allocation channel_allocations[] = {
78 /* channel: 7 6 5 4 3 2 1 0 */
79 { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
80 /* 2.1 */
81 { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
82 /* Dolby Surround */
83 { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
84 /* surround40 */
85 { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
86 /* surround41 */
87 { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
88 /* surround50 */
89 { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
90 /* surround51 */
91 { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
92 /* 6.1 */
93 { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
94 /* surround71 */
95 { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
97 { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
98 { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
99 { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
100 { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
101 { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
102 { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
103 { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
104 { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
105 { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
106 { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
107 { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
108 { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
109 { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
110 { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
111 { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
112 { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
113 { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
114 { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
115 { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
116 { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
117 { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
118 { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
119 { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
122 static const struct channel_map_table map_tables[] = {
123 { SNDRV_CHMAP_FL, 0x00, FL },
124 { SNDRV_CHMAP_FR, 0x01, FR },
125 { SNDRV_CHMAP_RL, 0x04, RL },
126 { SNDRV_CHMAP_RR, 0x05, RR },
127 { SNDRV_CHMAP_LFE, 0x02, LFE },
128 { SNDRV_CHMAP_FC, 0x03, FC },
129 { SNDRV_CHMAP_RLC, 0x06, RLC },
130 { SNDRV_CHMAP_RRC, 0x07, RRC },
131 {} /* terminator */
134 /* hardware capability structure */
135 static const struct snd_pcm_hardware had_pcm_hardware = {
136 .info = (SNDRV_PCM_INFO_INTERLEAVED |
137 SNDRV_PCM_INFO_MMAP |
138 SNDRV_PCM_INFO_MMAP_VALID |
139 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
140 .formats = (SNDRV_PCM_FMTBIT_S16_LE |
141 SNDRV_PCM_FMTBIT_S24_LE |
142 SNDRV_PCM_FMTBIT_S32_LE),
143 .rates = SNDRV_PCM_RATE_32000 |
144 SNDRV_PCM_RATE_44100 |
145 SNDRV_PCM_RATE_48000 |
146 SNDRV_PCM_RATE_88200 |
147 SNDRV_PCM_RATE_96000 |
148 SNDRV_PCM_RATE_176400 |
149 SNDRV_PCM_RATE_192000,
150 .rate_min = HAD_MIN_RATE,
151 .rate_max = HAD_MAX_RATE,
152 .channels_min = HAD_MIN_CHANNEL,
153 .channels_max = HAD_MAX_CHANNEL,
154 .buffer_bytes_max = HAD_MAX_BUFFER,
155 .period_bytes_min = HAD_MIN_PERIOD_BYTES,
156 .period_bytes_max = HAD_MAX_PERIOD_BYTES,
157 .periods_min = HAD_MIN_PERIODS,
158 .periods_max = HAD_MAX_PERIODS,
159 .fifo_size = HAD_FIFO_SIZE,
162 /* Get the active PCM substream;
163 * Call had_substream_put() for unreferecing.
164 * Don't call this inside had_spinlock, as it takes by itself
166 static struct snd_pcm_substream *
167 had_substream_get(struct snd_intelhad *intelhaddata)
169 struct snd_pcm_substream *substream;
170 unsigned long flags;
172 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
173 substream = intelhaddata->stream_info.substream;
174 if (substream)
175 intelhaddata->stream_info.substream_refcount++;
176 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
177 return substream;
180 /* Unref the active PCM substream;
181 * Don't call this inside had_spinlock, as it takes by itself
183 static void had_substream_put(struct snd_intelhad *intelhaddata)
185 unsigned long flags;
187 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
188 intelhaddata->stream_info.substream_refcount--;
189 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
192 static u32 had_config_offset(int pipe)
194 switch (pipe) {
195 default:
196 case 0:
197 return AUDIO_HDMI_CONFIG_A;
198 case 1:
199 return AUDIO_HDMI_CONFIG_B;
200 case 2:
201 return AUDIO_HDMI_CONFIG_C;
205 /* Register access functions */
206 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
207 int pipe, u32 reg)
209 return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
212 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
213 int pipe, u32 reg, u32 val)
215 iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
218 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
220 if (!ctx->connected)
221 *val = 0;
222 else
223 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
226 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
228 if (ctx->connected)
229 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
233 * enable / disable audio configuration
235 * The normal read/modify should not directly be used on VLV2 for
236 * updating AUD_CONFIG register.
237 * This is because:
238 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
239 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
240 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
241 * register. This field should be 1xy binary for configuration with 6 or
242 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
243 * causes the "channels" field to be updated as 0xy binary resulting in
244 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
245 * appropriate value when doing read-modify of AUD_CONFIG register.
247 static void had_enable_audio(struct snd_intelhad *intelhaddata,
248 bool enable)
250 /* update the cached value */
251 intelhaddata->aud_config.regx.aud_en = enable;
252 had_write_register(intelhaddata, AUD_CONFIG,
253 intelhaddata->aud_config.regval);
256 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
257 static void had_ack_irqs(struct snd_intelhad *ctx)
259 u32 status_reg;
261 if (!ctx->connected)
262 return;
263 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
264 status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
265 had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
266 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
269 /* Reset buffer pointers */
270 static void had_reset_audio(struct snd_intelhad *intelhaddata)
272 had_write_register(intelhaddata, AUD_HDMI_STATUS,
273 AUD_HDMI_STATUSG_MASK_FUNCRST);
274 had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
278 * initialize audio channel status registers
279 * This function is called in the prepare callback
281 static int had_prog_status_reg(struct snd_pcm_substream *substream,
282 struct snd_intelhad *intelhaddata)
284 union aud_ch_status_0 ch_stat0 = {.regval = 0};
285 union aud_ch_status_1 ch_stat1 = {.regval = 0};
287 ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
288 IEC958_AES0_NONAUDIO) >> 1;
289 ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
290 IEC958_AES3_CON_CLOCK) >> 4;
292 switch (substream->runtime->rate) {
293 case AUD_SAMPLE_RATE_32:
294 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
295 break;
297 case AUD_SAMPLE_RATE_44_1:
298 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
299 break;
300 case AUD_SAMPLE_RATE_48:
301 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
302 break;
303 case AUD_SAMPLE_RATE_88_2:
304 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
305 break;
306 case AUD_SAMPLE_RATE_96:
307 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
308 break;
309 case AUD_SAMPLE_RATE_176_4:
310 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
311 break;
312 case AUD_SAMPLE_RATE_192:
313 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
314 break;
316 default:
317 /* control should never come here */
318 return -EINVAL;
321 had_write_register(intelhaddata,
322 AUD_CH_STATUS_0, ch_stat0.regval);
324 switch (substream->runtime->format) {
325 case SNDRV_PCM_FORMAT_S16_LE:
326 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
327 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
328 break;
329 case SNDRV_PCM_FORMAT_S24_LE:
330 case SNDRV_PCM_FORMAT_S32_LE:
331 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
332 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
333 break;
334 default:
335 return -EINVAL;
338 had_write_register(intelhaddata,
339 AUD_CH_STATUS_1, ch_stat1.regval);
340 return 0;
344 * function to initialize audio
345 * registers and buffer confgiuration registers
346 * This function is called in the prepare callback
348 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
349 struct snd_intelhad *intelhaddata)
351 union aud_cfg cfg_val = {.regval = 0};
352 union aud_buf_config buf_cfg = {.regval = 0};
353 u8 channels;
355 had_prog_status_reg(substream, intelhaddata);
357 buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
358 buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
359 buf_cfg.regx.aud_delay = 0;
360 had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
362 channels = substream->runtime->channels;
363 cfg_val.regx.num_ch = channels - 2;
364 if (channels <= 2)
365 cfg_val.regx.layout = LAYOUT0;
366 else
367 cfg_val.regx.layout = LAYOUT1;
369 if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
370 cfg_val.regx.packet_mode = 1;
372 if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
373 cfg_val.regx.left_align = 1;
375 cfg_val.regx.val_bit = 1;
377 /* fix up the DP bits */
378 if (intelhaddata->dp_output) {
379 cfg_val.regx.dp_modei = 1;
380 cfg_val.regx.set = 1;
383 had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
384 intelhaddata->aud_config = cfg_val;
385 return 0;
389 * Compute derived values in channel_allocations[].
391 static void init_channel_allocations(void)
393 int i, j;
394 struct cea_channel_speaker_allocation *p;
396 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
397 p = channel_allocations + i;
398 p->channels = 0;
399 p->spk_mask = 0;
400 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
401 if (p->speakers[j]) {
402 p->channels++;
403 p->spk_mask |= p->speakers[j];
409 * The transformation takes two steps:
411 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
412 * spk_mask => (channel_allocations[]) => ai->CA
414 * TODO: it could select the wrong CA from multiple candidates.
416 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
417 int channels)
419 int i;
420 int ca = 0;
421 int spk_mask = 0;
424 * CA defaults to 0 for basic stereo audio
426 if (channels <= 2)
427 return 0;
430 * expand ELD's speaker allocation mask
432 * ELD tells the speaker mask in a compact(paired) form,
433 * expand ELD's notions to match the ones used by Audio InfoFrame.
436 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
437 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
438 spk_mask |= eld_speaker_allocation_bits[i];
441 /* search for the first working match in the CA table */
442 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
443 if (channels == channel_allocations[i].channels &&
444 (spk_mask & channel_allocations[i].spk_mask) ==
445 channel_allocations[i].spk_mask) {
446 ca = channel_allocations[i].ca_index;
447 break;
451 dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
453 return ca;
456 /* from speaker bit mask to ALSA API channel position */
457 static int spk_to_chmap(int spk)
459 const struct channel_map_table *t = map_tables;
461 for (; t->map; t++) {
462 if (t->spk_mask == spk)
463 return t->map;
465 return 0;
468 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
470 int i, c;
471 int spk_mask = 0;
472 struct snd_pcm_chmap_elem *chmap;
473 u8 eld_high, eld_high_mask = 0xF0;
474 u8 high_msb;
476 kfree(intelhaddata->chmap->chmap);
477 intelhaddata->chmap->chmap = NULL;
479 chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
480 if (!chmap)
481 return;
483 dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
484 intelhaddata->eld[DRM_ELD_SPEAKER]);
486 /* WA: Fix the max channel supported to 8 */
489 * Sink may support more than 8 channels, if eld_high has more than
490 * one bit set. SOC supports max 8 channels.
491 * Refer eld_speaker_allocation_bits, for sink speaker allocation
494 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
495 eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
496 if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
497 /* eld_high & (eld_high-1): if more than 1 bit set */
498 /* 0x1F: 7 channels */
499 for (i = 1; i < 4; i++) {
500 high_msb = eld_high & (0x80 >> i);
501 if (high_msb) {
502 intelhaddata->eld[DRM_ELD_SPEAKER] &=
503 high_msb | 0xF;
504 break;
509 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
510 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
511 spk_mask |= eld_speaker_allocation_bits[i];
514 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
515 if (spk_mask == channel_allocations[i].spk_mask) {
516 for (c = 0; c < channel_allocations[i].channels; c++) {
517 chmap->map[c] = spk_to_chmap(
518 channel_allocations[i].speakers[
519 (MAX_SPEAKERS - 1) - c]);
521 chmap->channels = channel_allocations[i].channels;
522 intelhaddata->chmap->chmap = chmap;
523 break;
526 if (i >= ARRAY_SIZE(channel_allocations))
527 kfree(chmap);
531 * ALSA API channel-map control callbacks
533 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
534 struct snd_ctl_elem_info *uinfo)
536 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
537 uinfo->count = HAD_MAX_CHANNEL;
538 uinfo->value.integer.min = 0;
539 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
540 return 0;
543 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
544 struct snd_ctl_elem_value *ucontrol)
546 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
547 struct snd_intelhad *intelhaddata = info->private_data;
548 int i;
549 const struct snd_pcm_chmap_elem *chmap;
551 memset(ucontrol->value.integer.value, 0,
552 sizeof(long) * HAD_MAX_CHANNEL);
553 mutex_lock(&intelhaddata->mutex);
554 if (!intelhaddata->chmap->chmap) {
555 mutex_unlock(&intelhaddata->mutex);
556 return 0;
559 chmap = intelhaddata->chmap->chmap;
560 for (i = 0; i < chmap->channels; i++)
561 ucontrol->value.integer.value[i] = chmap->map[i];
562 mutex_unlock(&intelhaddata->mutex);
564 return 0;
567 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
568 struct snd_pcm *pcm)
570 int err;
572 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
573 NULL, 0, (unsigned long)intelhaddata,
574 &intelhaddata->chmap);
575 if (err < 0)
576 return err;
578 intelhaddata->chmap->private_data = intelhaddata;
579 intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
580 intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
581 intelhaddata->chmap->chmap = NULL;
582 return 0;
586 * Initialize Data Island Packets registers
587 * This function is called in the prepare callback
589 static void had_prog_dip(struct snd_pcm_substream *substream,
590 struct snd_intelhad *intelhaddata)
592 int i;
593 union aud_ctrl_st ctrl_state = {.regval = 0};
594 union aud_info_frame2 frame2 = {.regval = 0};
595 union aud_info_frame3 frame3 = {.regval = 0};
596 u8 checksum = 0;
597 u32 info_frame;
598 int channels;
599 int ca;
601 channels = substream->runtime->channels;
603 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
605 ca = had_channel_allocation(intelhaddata, channels);
606 if (intelhaddata->dp_output) {
607 info_frame = DP_INFO_FRAME_WORD1;
608 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
609 } else {
610 info_frame = HDMI_INFO_FRAME_WORD1;
611 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
612 frame3.regx.chnl_alloc = ca;
614 /* Calculte the byte wide checksum for all valid DIP words */
615 for (i = 0; i < BYTES_PER_WORD; i++)
616 checksum += (info_frame >> (i * 8)) & 0xff;
617 for (i = 0; i < BYTES_PER_WORD; i++)
618 checksum += (frame2.regval >> (i * 8)) & 0xff;
619 for (i = 0; i < BYTES_PER_WORD; i++)
620 checksum += (frame3.regval >> (i * 8)) & 0xff;
622 frame2.regx.chksum = -(checksum);
625 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
626 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
627 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
629 /* program remaining DIP words with zero */
630 for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
631 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
633 ctrl_state.regx.dip_freq = 1;
634 ctrl_state.regx.dip_en_sta = 1;
635 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
638 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
640 u32 maud_val;
642 /* Select maud according to DP 1.2 spec */
643 if (link_rate == DP_2_7_GHZ) {
644 switch (aud_samp_freq) {
645 case AUD_SAMPLE_RATE_32:
646 maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
647 break;
649 case AUD_SAMPLE_RATE_44_1:
650 maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
651 break;
653 case AUD_SAMPLE_RATE_48:
654 maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
655 break;
657 case AUD_SAMPLE_RATE_88_2:
658 maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
659 break;
661 case AUD_SAMPLE_RATE_96:
662 maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
663 break;
665 case AUD_SAMPLE_RATE_176_4:
666 maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
667 break;
669 case HAD_MAX_RATE:
670 maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
671 break;
673 default:
674 maud_val = -EINVAL;
675 break;
677 } else if (link_rate == DP_1_62_GHZ) {
678 switch (aud_samp_freq) {
679 case AUD_SAMPLE_RATE_32:
680 maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
681 break;
683 case AUD_SAMPLE_RATE_44_1:
684 maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
685 break;
687 case AUD_SAMPLE_RATE_48:
688 maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
689 break;
691 case AUD_SAMPLE_RATE_88_2:
692 maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
693 break;
695 case AUD_SAMPLE_RATE_96:
696 maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
697 break;
699 case AUD_SAMPLE_RATE_176_4:
700 maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
701 break;
703 case HAD_MAX_RATE:
704 maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
705 break;
707 default:
708 maud_val = -EINVAL;
709 break;
711 } else
712 maud_val = -EINVAL;
714 return maud_val;
718 * Program HDMI audio CTS value
720 * @aud_samp_freq: sampling frequency of audio data
721 * @tmds: sampling frequency of the display data
722 * @link_rate: DP link rate
723 * @n_param: N value, depends on aud_samp_freq
724 * @intelhaddata: substream private data
726 * Program CTS register based on the audio and display sampling frequency
728 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
729 u32 n_param, struct snd_intelhad *intelhaddata)
731 u32 cts_val;
732 u64 dividend, divisor;
734 if (intelhaddata->dp_output) {
735 /* Substitute cts_val with Maud according to DP 1.2 spec*/
736 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
737 } else {
738 /* Calculate CTS according to HDMI 1.3a spec*/
739 dividend = (u64)tmds * n_param*1000;
740 divisor = 128 * aud_samp_freq;
741 cts_val = div64_u64(dividend, divisor);
743 dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
744 tmds, n_param, cts_val);
745 had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
748 static int had_calculate_n_value(u32 aud_samp_freq)
750 int n_val;
752 /* Select N according to HDMI 1.3a spec*/
753 switch (aud_samp_freq) {
754 case AUD_SAMPLE_RATE_32:
755 n_val = 4096;
756 break;
758 case AUD_SAMPLE_RATE_44_1:
759 n_val = 6272;
760 break;
762 case AUD_SAMPLE_RATE_48:
763 n_val = 6144;
764 break;
766 case AUD_SAMPLE_RATE_88_2:
767 n_val = 12544;
768 break;
770 case AUD_SAMPLE_RATE_96:
771 n_val = 12288;
772 break;
774 case AUD_SAMPLE_RATE_176_4:
775 n_val = 25088;
776 break;
778 case HAD_MAX_RATE:
779 n_val = 24576;
780 break;
782 default:
783 n_val = -EINVAL;
784 break;
786 return n_val;
790 * Program HDMI audio N value
792 * @aud_samp_freq: sampling frequency of audio data
793 * @n_param: N value, depends on aud_samp_freq
794 * @intelhaddata: substream private data
796 * This function is called in the prepare callback.
797 * It programs based on the audio and display sampling frequency
799 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
800 struct snd_intelhad *intelhaddata)
802 int n_val;
804 if (intelhaddata->dp_output) {
806 * According to DP specs, Maud and Naud values hold
807 * a relationship, which is stated as:
808 * Maud/Naud = 512 * fs / f_LS_Clk
809 * where, fs is the sampling frequency of the audio stream
810 * and Naud is 32768 for Async clock.
813 n_val = DP_NAUD_VAL;
814 } else
815 n_val = had_calculate_n_value(aud_samp_freq);
817 if (n_val < 0)
818 return n_val;
820 had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
821 *n_param = n_val;
822 return 0;
826 * PCM ring buffer handling
828 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
829 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
830 * moves at each period elapsed. The below illustrates how it works:
832 * At time=0
833 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
834 * BD | 0 | 1 | 2 | 3 |
836 * At time=1 (period elapsed)
837 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
838 * BD | 1 | 2 | 3 | 0 |
840 * At time=2 (second period elapsed)
841 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
842 * BD | 2 | 3 | 0 | 1 |
844 * The bd_head field points to the index of the BD to be read. It's also the
845 * position to be filled at next. The pcm_head and the pcm_filled fields
846 * point to the indices of the current position and of the next position to
847 * be filled, respectively. For PCM buffer there are both _head and _filled
848 * because they may be difference when nperiods > 4. For example, in the
849 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
851 * pcm_head (=1) --v v-- pcm_filled (=5)
852 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
853 * BD | 1 | 2 | 3 | 0 |
854 * bd_head (=1) --^ ^-- next to fill (= bd_head)
856 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
857 * the hardware skips those BDs in the loop.
859 * An exceptional setup is the case with nperiods=1. Since we have to update
860 * BDs after finishing one BD processing, we'd need at least two BDs, where
861 * both BDs point to the same content, the same address, the same size of the
862 * whole PCM buffer.
865 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
866 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
868 /* Set up a buffer descriptor at the "filled" position */
869 static void had_prog_bd(struct snd_pcm_substream *substream,
870 struct snd_intelhad *intelhaddata)
872 int idx = intelhaddata->bd_head;
873 int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
874 u32 addr = substream->runtime->dma_addr + ofs;
876 addr |= AUD_BUF_VALID;
877 if (!substream->runtime->no_period_wakeup)
878 addr |= AUD_BUF_INTR_EN;
879 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
880 had_write_register(intelhaddata, AUD_BUF_LEN(idx),
881 intelhaddata->period_bytes);
883 /* advance the indices to the next */
884 intelhaddata->bd_head++;
885 intelhaddata->bd_head %= intelhaddata->num_bds;
886 intelhaddata->pcmbuf_filled++;
887 intelhaddata->pcmbuf_filled %= substream->runtime->periods;
890 /* invalidate a buffer descriptor with the given index */
891 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
892 int idx)
894 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
895 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
898 /* Initial programming of ring buffer */
899 static void had_init_ringbuf(struct snd_pcm_substream *substream,
900 struct snd_intelhad *intelhaddata)
902 struct snd_pcm_runtime *runtime = substream->runtime;
903 int i, num_periods;
905 num_periods = runtime->periods;
906 intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
907 /* set the minimum 2 BDs for num_periods=1 */
908 intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
909 intelhaddata->period_bytes =
910 frames_to_bytes(runtime, runtime->period_size);
911 WARN_ON(intelhaddata->period_bytes & 0x3f);
913 intelhaddata->bd_head = 0;
914 intelhaddata->pcmbuf_head = 0;
915 intelhaddata->pcmbuf_filled = 0;
917 for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
918 if (i < intelhaddata->num_bds)
919 had_prog_bd(substream, intelhaddata);
920 else /* invalidate the rest */
921 had_invalidate_bd(intelhaddata, i);
924 intelhaddata->bd_head = 0; /* reset at head again before starting */
927 /* process a bd, advance to the next */
928 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
929 struct snd_intelhad *intelhaddata)
931 int num_periods = substream->runtime->periods;
933 /* reprogram the next buffer */
934 had_prog_bd(substream, intelhaddata);
936 /* proceed to next */
937 intelhaddata->pcmbuf_head++;
938 intelhaddata->pcmbuf_head %= num_periods;
941 /* process the current BD(s);
942 * returns the current PCM buffer byte position, or -EPIPE for underrun.
944 static int had_process_ringbuf(struct snd_pcm_substream *substream,
945 struct snd_intelhad *intelhaddata)
947 int len, processed;
948 unsigned long flags;
950 processed = 0;
951 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
952 for (;;) {
953 /* get the remaining bytes on the buffer */
954 had_read_register(intelhaddata,
955 AUD_BUF_LEN(intelhaddata->bd_head),
956 &len);
957 if (len < 0 || len > intelhaddata->period_bytes) {
958 dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
959 len);
960 len = -EPIPE;
961 goto out;
964 if (len > 0) /* OK, this is the current buffer */
965 break;
967 /* len=0 => already empty, check the next buffer */
968 if (++processed >= intelhaddata->num_bds) {
969 len = -EPIPE; /* all empty? - report underrun */
970 goto out;
972 had_advance_ringbuf(substream, intelhaddata);
975 len = intelhaddata->period_bytes - len;
976 len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
977 out:
978 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
979 return len;
982 /* called from irq handler */
983 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
985 struct snd_pcm_substream *substream;
987 substream = had_substream_get(intelhaddata);
988 if (!substream)
989 return; /* no stream? - bail out */
991 if (!intelhaddata->connected) {
992 snd_pcm_stop_xrun(substream);
993 goto out; /* disconnected? - bail out */
996 /* process or stop the stream */
997 if (had_process_ringbuf(substream, intelhaddata) < 0)
998 snd_pcm_stop_xrun(substream);
999 else
1000 snd_pcm_period_elapsed(substream);
1002 out:
1003 had_substream_put(intelhaddata);
1007 * The interrupt status 'sticky' bits might not be cleared by
1008 * setting '1' to that bit once...
1010 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1012 int i;
1013 u32 val;
1015 for (i = 0; i < 100; i++) {
1016 /* clear bit30, 31 AUD_HDMI_STATUS */
1017 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1018 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1019 return;
1020 udelay(100);
1021 cond_resched();
1022 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1024 dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1027 /* Perform some reset procedure but only when need_reset is set;
1028 * this is called from prepare or hw_free callbacks once after trigger STOP
1029 * or underrun has been processed in order to settle down the h/w state.
1031 static void had_do_reset(struct snd_intelhad *intelhaddata)
1033 if (!intelhaddata->need_reset || !intelhaddata->connected)
1034 return;
1036 /* Reset buffer pointers */
1037 had_reset_audio(intelhaddata);
1038 wait_clear_underrun_bit(intelhaddata);
1039 intelhaddata->need_reset = false;
1042 /* called from irq handler */
1043 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1045 struct snd_pcm_substream *substream;
1047 /* Report UNDERRUN error to above layers */
1048 substream = had_substream_get(intelhaddata);
1049 if (substream) {
1050 snd_pcm_stop_xrun(substream);
1051 had_substream_put(intelhaddata);
1053 intelhaddata->need_reset = true;
1057 * ALSA PCM open callback
1059 static int had_pcm_open(struct snd_pcm_substream *substream)
1061 struct snd_intelhad *intelhaddata;
1062 struct snd_pcm_runtime *runtime;
1063 int retval;
1065 intelhaddata = snd_pcm_substream_chip(substream);
1066 runtime = substream->runtime;
1068 pm_runtime_get_sync(intelhaddata->dev);
1070 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1071 runtime->hw = had_pcm_hardware;
1073 retval = snd_pcm_hw_constraint_integer(runtime,
1074 SNDRV_PCM_HW_PARAM_PERIODS);
1075 if (retval < 0)
1076 goto error;
1078 /* Make sure, that the period size is always aligned
1079 * 64byte boundary
1081 retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1082 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1083 if (retval < 0)
1084 goto error;
1086 retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1087 if (retval < 0)
1088 goto error;
1090 /* expose PCM substream */
1091 spin_lock_irq(&intelhaddata->had_spinlock);
1092 intelhaddata->stream_info.substream = substream;
1093 intelhaddata->stream_info.substream_refcount++;
1094 spin_unlock_irq(&intelhaddata->had_spinlock);
1096 return retval;
1097 error:
1098 pm_runtime_mark_last_busy(intelhaddata->dev);
1099 pm_runtime_put_autosuspend(intelhaddata->dev);
1100 return retval;
1104 * ALSA PCM close callback
1106 static int had_pcm_close(struct snd_pcm_substream *substream)
1108 struct snd_intelhad *intelhaddata;
1110 intelhaddata = snd_pcm_substream_chip(substream);
1112 /* unreference and sync with the pending PCM accesses */
1113 spin_lock_irq(&intelhaddata->had_spinlock);
1114 intelhaddata->stream_info.substream = NULL;
1115 intelhaddata->stream_info.substream_refcount--;
1116 while (intelhaddata->stream_info.substream_refcount > 0) {
1117 spin_unlock_irq(&intelhaddata->had_spinlock);
1118 cpu_relax();
1119 spin_lock_irq(&intelhaddata->had_spinlock);
1121 spin_unlock_irq(&intelhaddata->had_spinlock);
1123 pm_runtime_mark_last_busy(intelhaddata->dev);
1124 pm_runtime_put_autosuspend(intelhaddata->dev);
1125 return 0;
1129 * ALSA PCM hw_params callback
1131 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1132 struct snd_pcm_hw_params *hw_params)
1134 struct snd_intelhad *intelhaddata;
1135 int buf_size, retval;
1137 intelhaddata = snd_pcm_substream_chip(substream);
1138 buf_size = params_buffer_bytes(hw_params);
1139 retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1140 if (retval < 0)
1141 return retval;
1142 dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1143 __func__, buf_size);
1144 return retval;
1148 * ALSA PCM hw_free callback
1150 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1152 struct snd_intelhad *intelhaddata;
1154 intelhaddata = snd_pcm_substream_chip(substream);
1155 had_do_reset(intelhaddata);
1157 return snd_pcm_lib_free_pages(substream);
1161 * ALSA PCM trigger callback
1163 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1165 int retval = 0;
1166 struct snd_intelhad *intelhaddata;
1168 intelhaddata = snd_pcm_substream_chip(substream);
1170 spin_lock(&intelhaddata->had_spinlock);
1171 switch (cmd) {
1172 case SNDRV_PCM_TRIGGER_START:
1173 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1174 case SNDRV_PCM_TRIGGER_RESUME:
1175 /* Enable Audio */
1176 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1177 had_enable_audio(intelhaddata, true);
1178 break;
1180 case SNDRV_PCM_TRIGGER_STOP:
1181 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1182 /* Disable Audio */
1183 had_enable_audio(intelhaddata, false);
1184 intelhaddata->need_reset = true;
1185 break;
1187 default:
1188 retval = -EINVAL;
1190 spin_unlock(&intelhaddata->had_spinlock);
1191 return retval;
1195 * ALSA PCM prepare callback
1197 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1199 int retval;
1200 u32 disp_samp_freq, n_param;
1201 u32 link_rate = 0;
1202 struct snd_intelhad *intelhaddata;
1203 struct snd_pcm_runtime *runtime;
1205 intelhaddata = snd_pcm_substream_chip(substream);
1206 runtime = substream->runtime;
1208 dev_dbg(intelhaddata->dev, "period_size=%d\n",
1209 (int)frames_to_bytes(runtime, runtime->period_size));
1210 dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1211 dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1212 (int)snd_pcm_lib_buffer_bytes(substream));
1213 dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1214 dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1216 had_do_reset(intelhaddata);
1218 /* Get N value in KHz */
1219 disp_samp_freq = intelhaddata->tmds_clock_speed;
1221 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1222 if (retval) {
1223 dev_err(intelhaddata->dev,
1224 "programming N value failed %#x\n", retval);
1225 goto prep_end;
1228 if (intelhaddata->dp_output)
1229 link_rate = intelhaddata->link_rate;
1231 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1232 n_param, intelhaddata);
1234 had_prog_dip(substream, intelhaddata);
1236 retval = had_init_audio_ctrl(substream, intelhaddata);
1238 /* Prog buffer address */
1239 had_init_ringbuf(substream, intelhaddata);
1242 * Program channel mapping in following order:
1243 * FL, FR, C, LFE, RL, RR
1246 had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1248 prep_end:
1249 return retval;
1253 * ALSA PCM pointer callback
1255 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1257 struct snd_intelhad *intelhaddata;
1258 int len;
1260 intelhaddata = snd_pcm_substream_chip(substream);
1262 if (!intelhaddata->connected)
1263 return SNDRV_PCM_POS_XRUN;
1265 len = had_process_ringbuf(substream, intelhaddata);
1266 if (len < 0)
1267 return SNDRV_PCM_POS_XRUN;
1268 len = bytes_to_frames(substream->runtime, len);
1269 /* wrapping may happen when periods=1 */
1270 len %= substream->runtime->buffer_size;
1271 return len;
1275 * ALSA PCM mmap callback
1277 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1278 struct vm_area_struct *vma)
1280 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1281 return remap_pfn_range(vma, vma->vm_start,
1282 substream->dma_buffer.addr >> PAGE_SHIFT,
1283 vma->vm_end - vma->vm_start, vma->vm_page_prot);
1287 * ALSA PCM ops
1289 static const struct snd_pcm_ops had_pcm_ops = {
1290 .open = had_pcm_open,
1291 .close = had_pcm_close,
1292 .ioctl = snd_pcm_lib_ioctl,
1293 .hw_params = had_pcm_hw_params,
1294 .hw_free = had_pcm_hw_free,
1295 .prepare = had_pcm_prepare,
1296 .trigger = had_pcm_trigger,
1297 .pointer = had_pcm_pointer,
1298 .mmap = had_pcm_mmap,
1301 /* process mode change of the running stream; called in mutex */
1302 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1304 struct snd_pcm_substream *substream;
1305 int retval = 0;
1306 u32 disp_samp_freq, n_param;
1307 u32 link_rate = 0;
1309 substream = had_substream_get(intelhaddata);
1310 if (!substream)
1311 return 0;
1313 /* Disable Audio */
1314 had_enable_audio(intelhaddata, false);
1316 /* Update CTS value */
1317 disp_samp_freq = intelhaddata->tmds_clock_speed;
1319 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1320 if (retval) {
1321 dev_err(intelhaddata->dev,
1322 "programming N value failed %#x\n", retval);
1323 goto out;
1326 if (intelhaddata->dp_output)
1327 link_rate = intelhaddata->link_rate;
1329 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1330 n_param, intelhaddata);
1332 /* Enable Audio */
1333 had_enable_audio(intelhaddata, true);
1335 out:
1336 had_substream_put(intelhaddata);
1337 return retval;
1340 /* process hot plug, called from wq with mutex locked */
1341 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1343 struct snd_pcm_substream *substream;
1345 spin_lock_irq(&intelhaddata->had_spinlock);
1346 if (intelhaddata->connected) {
1347 dev_dbg(intelhaddata->dev, "Device already connected\n");
1348 spin_unlock_irq(&intelhaddata->had_spinlock);
1349 return;
1352 /* Disable Audio */
1353 had_enable_audio(intelhaddata, false);
1355 intelhaddata->connected = true;
1356 dev_dbg(intelhaddata->dev,
1357 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1358 __func__, __LINE__);
1359 spin_unlock_irq(&intelhaddata->had_spinlock);
1361 had_build_channel_allocation_map(intelhaddata);
1363 /* Report to above ALSA layer */
1364 substream = had_substream_get(intelhaddata);
1365 if (substream) {
1366 snd_pcm_stop_xrun(substream);
1367 had_substream_put(intelhaddata);
1370 snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1373 /* process hot unplug, called from wq with mutex locked */
1374 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1376 struct snd_pcm_substream *substream;
1378 spin_lock_irq(&intelhaddata->had_spinlock);
1379 if (!intelhaddata->connected) {
1380 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1381 spin_unlock_irq(&intelhaddata->had_spinlock);
1382 return;
1386 /* Disable Audio */
1387 had_enable_audio(intelhaddata, false);
1389 intelhaddata->connected = false;
1390 dev_dbg(intelhaddata->dev,
1391 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1392 __func__, __LINE__);
1393 spin_unlock_irq(&intelhaddata->had_spinlock);
1395 kfree(intelhaddata->chmap->chmap);
1396 intelhaddata->chmap->chmap = NULL;
1398 /* Report to above ALSA layer */
1399 substream = had_substream_get(intelhaddata);
1400 if (substream) {
1401 snd_pcm_stop_xrun(substream);
1402 had_substream_put(intelhaddata);
1405 snd_jack_report(intelhaddata->jack, 0);
1409 * ALSA iec958 and ELD controls
1412 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1413 struct snd_ctl_elem_info *uinfo)
1415 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1416 uinfo->count = 1;
1417 return 0;
1420 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1421 struct snd_ctl_elem_value *ucontrol)
1423 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1425 mutex_lock(&intelhaddata->mutex);
1426 ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1427 ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1428 ucontrol->value.iec958.status[2] =
1429 (intelhaddata->aes_bits >> 16) & 0xff;
1430 ucontrol->value.iec958.status[3] =
1431 (intelhaddata->aes_bits >> 24) & 0xff;
1432 mutex_unlock(&intelhaddata->mutex);
1433 return 0;
1436 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1437 struct snd_ctl_elem_value *ucontrol)
1439 ucontrol->value.iec958.status[0] = 0xff;
1440 ucontrol->value.iec958.status[1] = 0xff;
1441 ucontrol->value.iec958.status[2] = 0xff;
1442 ucontrol->value.iec958.status[3] = 0xff;
1443 return 0;
1446 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1447 struct snd_ctl_elem_value *ucontrol)
1449 unsigned int val;
1450 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1451 int changed = 0;
1453 val = (ucontrol->value.iec958.status[0] << 0) |
1454 (ucontrol->value.iec958.status[1] << 8) |
1455 (ucontrol->value.iec958.status[2] << 16) |
1456 (ucontrol->value.iec958.status[3] << 24);
1457 mutex_lock(&intelhaddata->mutex);
1458 if (intelhaddata->aes_bits != val) {
1459 intelhaddata->aes_bits = val;
1460 changed = 1;
1462 mutex_unlock(&intelhaddata->mutex);
1463 return changed;
1466 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1467 struct snd_ctl_elem_info *uinfo)
1469 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1470 uinfo->count = HDMI_MAX_ELD_BYTES;
1471 return 0;
1474 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1475 struct snd_ctl_elem_value *ucontrol)
1477 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1479 mutex_lock(&intelhaddata->mutex);
1480 memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1481 HDMI_MAX_ELD_BYTES);
1482 mutex_unlock(&intelhaddata->mutex);
1483 return 0;
1486 static const struct snd_kcontrol_new had_controls[] = {
1488 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1489 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1490 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1491 .info = had_iec958_info, /* shared */
1492 .get = had_iec958_mask_get,
1495 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1496 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1497 .info = had_iec958_info,
1498 .get = had_iec958_get,
1499 .put = had_iec958_put,
1502 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1503 SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1504 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1505 .name = "ELD",
1506 .info = had_ctl_eld_info,
1507 .get = had_ctl_eld_get,
1512 * audio interrupt handler
1514 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1516 struct snd_intelhad_card *card_ctx = dev_id;
1517 u32 audio_stat[3] = {};
1518 int pipe, port;
1520 for_each_pipe(card_ctx, pipe) {
1521 /* use raw register access to ack IRQs even while disconnected */
1522 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1523 AUD_HDMI_STATUS) &
1524 (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1526 if (audio_stat[pipe])
1527 had_write_register_raw(card_ctx, pipe,
1528 AUD_HDMI_STATUS, audio_stat[pipe]);
1531 for_each_port(card_ctx, port) {
1532 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1533 int pipe = ctx->pipe;
1535 if (pipe < 0)
1536 continue;
1538 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1539 had_process_buffer_done(ctx);
1540 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1541 had_process_buffer_underrun(ctx);
1544 return IRQ_HANDLED;
1548 * monitor plug/unplug notification from i915; just kick off the work
1550 static void notify_audio_lpe(struct platform_device *pdev, int port)
1552 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1553 struct snd_intelhad *ctx;
1555 ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1556 if (single_port)
1557 ctx->port = port;
1559 schedule_work(&ctx->hdmi_audio_wq);
1562 /* the work to handle monitor hot plug/unplug */
1563 static void had_audio_wq(struct work_struct *work)
1565 struct snd_intelhad *ctx =
1566 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1567 struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1568 struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1570 pm_runtime_get_sync(ctx->dev);
1571 mutex_lock(&ctx->mutex);
1572 if (ppdata->pipe < 0) {
1573 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1574 __func__, ctx->port);
1576 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1578 ctx->dp_output = false;
1579 ctx->tmds_clock_speed = 0;
1580 ctx->link_rate = 0;
1582 /* Shut down the stream */
1583 had_process_hot_unplug(ctx);
1585 ctx->pipe = -1;
1586 } else {
1587 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1588 __func__, ctx->port, ppdata->ls_clock);
1590 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1592 ctx->dp_output = ppdata->dp_output;
1593 if (ctx->dp_output) {
1594 ctx->tmds_clock_speed = 0;
1595 ctx->link_rate = ppdata->ls_clock;
1596 } else {
1597 ctx->tmds_clock_speed = ppdata->ls_clock;
1598 ctx->link_rate = 0;
1602 * Shut down the stream before we change
1603 * the pipe assignment for this pcm device
1605 had_process_hot_plug(ctx);
1607 ctx->pipe = ppdata->pipe;
1609 /* Restart the stream if necessary */
1610 had_process_mode_change(ctx);
1613 mutex_unlock(&ctx->mutex);
1614 pm_runtime_mark_last_busy(ctx->dev);
1615 pm_runtime_put_autosuspend(ctx->dev);
1619 * Jack interface
1621 static int had_create_jack(struct snd_intelhad *ctx,
1622 struct snd_pcm *pcm)
1624 char hdmi_str[32];
1625 int err;
1627 snprintf(hdmi_str, sizeof(hdmi_str),
1628 "HDMI/DP,pcm=%d", pcm->device);
1630 err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1631 SND_JACK_AVOUT, &ctx->jack,
1632 true, false);
1633 if (err < 0)
1634 return err;
1635 ctx->jack->private_data = ctx;
1636 return 0;
1640 * PM callbacks
1643 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1645 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1647 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1649 return 0;
1652 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1654 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1656 pm_runtime_mark_last_busy(dev);
1658 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1660 return 0;
1663 /* release resources */
1664 static void hdmi_lpe_audio_free(struct snd_card *card)
1666 struct snd_intelhad_card *card_ctx = card->private_data;
1667 struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1668 int port;
1670 spin_lock_irq(&pdata->lpe_audio_slock);
1671 pdata->notify_audio_lpe = NULL;
1672 spin_unlock_irq(&pdata->lpe_audio_slock);
1674 for_each_port(card_ctx, port) {
1675 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1677 cancel_work_sync(&ctx->hdmi_audio_wq);
1680 if (card_ctx->mmio_start)
1681 iounmap(card_ctx->mmio_start);
1682 if (card_ctx->irq >= 0)
1683 free_irq(card_ctx->irq, card_ctx);
1687 * hdmi_lpe_audio_probe - start bridge with i915
1689 * This function is called when the i915 driver creates the
1690 * hdmi-lpe-audio platform device.
1692 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1694 struct snd_card *card;
1695 struct snd_intelhad_card *card_ctx;
1696 struct snd_intelhad *ctx;
1697 struct snd_pcm *pcm;
1698 struct intel_hdmi_lpe_audio_pdata *pdata;
1699 int irq;
1700 struct resource *res_mmio;
1701 int port, ret;
1703 pdata = pdev->dev.platform_data;
1704 if (!pdata) {
1705 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1706 return -EINVAL;
1709 /* get resources */
1710 irq = platform_get_irq(pdev, 0);
1711 if (irq < 0) {
1712 dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1713 return irq;
1716 res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1717 if (!res_mmio) {
1718 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1719 return -ENXIO;
1722 /* create a card instance with ALSA framework */
1723 ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1724 THIS_MODULE, sizeof(*card_ctx), &card);
1725 if (ret)
1726 return ret;
1728 card_ctx = card->private_data;
1729 card_ctx->dev = &pdev->dev;
1730 card_ctx->card = card;
1731 strcpy(card->driver, INTEL_HAD);
1732 strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1733 strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1735 card_ctx->irq = -1;
1737 card->private_free = hdmi_lpe_audio_free;
1739 platform_set_drvdata(pdev, card_ctx);
1741 card_ctx->num_pipes = pdata->num_pipes;
1742 card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1744 for_each_port(card_ctx, port) {
1745 ctx = &card_ctx->pcm_ctx[port];
1746 ctx->card_ctx = card_ctx;
1747 ctx->dev = card_ctx->dev;
1748 ctx->port = single_port ? -1 : port;
1749 ctx->pipe = -1;
1751 spin_lock_init(&ctx->had_spinlock);
1752 mutex_init(&ctx->mutex);
1753 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1756 dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1757 __func__, (unsigned int)res_mmio->start,
1758 (unsigned int)res_mmio->end);
1760 card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1761 (size_t)(resource_size(res_mmio)));
1762 if (!card_ctx->mmio_start) {
1763 dev_err(&pdev->dev, "Could not get ioremap\n");
1764 ret = -EACCES;
1765 goto err;
1768 /* setup interrupt handler */
1769 ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1770 pdev->name, card_ctx);
1771 if (ret < 0) {
1772 dev_err(&pdev->dev, "request_irq failed\n");
1773 goto err;
1776 card_ctx->irq = irq;
1778 /* only 32bit addressable */
1779 dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1780 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1782 init_channel_allocations();
1784 card_ctx->num_pipes = pdata->num_pipes;
1785 card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1787 for_each_port(card_ctx, port) {
1788 int i;
1790 ctx = &card_ctx->pcm_ctx[port];
1791 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1792 MAX_CAP_STREAMS, &pcm);
1793 if (ret)
1794 goto err;
1796 /* setup private data which can be retrieved when required */
1797 pcm->private_data = ctx;
1798 pcm->info_flags = 0;
1799 strlcpy(pcm->name, card->shortname, strlen(card->shortname));
1800 /* setup the ops for playabck */
1801 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1803 /* allocate dma pages;
1804 * try to allocate 600k buffer as default which is large enough
1806 snd_pcm_lib_preallocate_pages_for_all(pcm,
1807 SNDRV_DMA_TYPE_DEV_UC,
1808 card->dev,
1809 HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1811 /* create controls */
1812 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1813 struct snd_kcontrol *kctl;
1815 kctl = snd_ctl_new1(&had_controls[i], ctx);
1816 if (!kctl) {
1817 ret = -ENOMEM;
1818 goto err;
1821 kctl->id.device = pcm->device;
1823 ret = snd_ctl_add(card, kctl);
1824 if (ret < 0)
1825 goto err;
1828 /* Register channel map controls */
1829 ret = had_register_chmap_ctls(ctx, pcm);
1830 if (ret < 0)
1831 goto err;
1833 ret = had_create_jack(ctx, pcm);
1834 if (ret < 0)
1835 goto err;
1838 ret = snd_card_register(card);
1839 if (ret)
1840 goto err;
1842 spin_lock_irq(&pdata->lpe_audio_slock);
1843 pdata->notify_audio_lpe = notify_audio_lpe;
1844 spin_unlock_irq(&pdata->lpe_audio_slock);
1846 pm_runtime_use_autosuspend(&pdev->dev);
1847 pm_runtime_mark_last_busy(&pdev->dev);
1849 dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1850 for_each_port(card_ctx, port) {
1851 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1853 schedule_work(&ctx->hdmi_audio_wq);
1856 return 0;
1858 err:
1859 snd_card_free(card);
1860 return ret;
1864 * hdmi_lpe_audio_remove - stop bridge with i915
1866 * This function is called when the platform device is destroyed.
1868 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1870 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1872 snd_card_free(card_ctx->card);
1873 return 0;
1876 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1877 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1880 static struct platform_driver hdmi_lpe_audio_driver = {
1881 .driver = {
1882 .name = "hdmi-lpe-audio",
1883 .pm = &hdmi_lpe_audio_pm,
1885 .probe = hdmi_lpe_audio_probe,
1886 .remove = hdmi_lpe_audio_remove,
1889 module_platform_driver(hdmi_lpe_audio_driver);
1890 MODULE_ALIAS("platform:hdmi_lpe_audio");
1892 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1893 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1894 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1895 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1896 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1897 MODULE_LICENSE("GPL v2");
1898 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");