Merge tag 'for-5.8/dm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blobc0a331e2feb02454a10f111b4d7f7f6c1cc29f09
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
8 /*
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
22 * MUSTDO:
23 * - test ext4_ext_search_left() and ext4_ext_search_right()
24 * - search for metadata in few groups
26 * TODO v4:
27 * - normalization should take into account whether file is still open
28 * - discard preallocations if no free space left (policy?)
29 * - don't normalize tails
30 * - quota
31 * - reservation for superuser
33 * TODO v3:
34 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
35 * - track min/max extents in each group for better group selection
36 * - mb_mark_used() may allocate chunk right after splitting buddy
37 * - tree of groups sorted by number of free blocks
38 * - error handling
42 * The allocation request involve request for multiple number of blocks
43 * near to the goal(block) value specified.
45 * During initialization phase of the allocator we decide to use the
46 * group preallocation or inode preallocation depending on the size of
47 * the file. The size of the file could be the resulting file size we
48 * would have after allocation, or the current file size, which ever
49 * is larger. If the size is less than sbi->s_mb_stream_request we
50 * select to use the group preallocation. The default value of
51 * s_mb_stream_request is 16 blocks. This can also be tuned via
52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53 * terms of number of blocks.
55 * The main motivation for having small file use group preallocation is to
56 * ensure that we have small files closer together on the disk.
58 * First stage the allocator looks at the inode prealloc list,
59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60 * spaces for this particular inode. The inode prealloc space is
61 * represented as:
63 * pa_lstart -> the logical start block for this prealloc space
64 * pa_pstart -> the physical start block for this prealloc space
65 * pa_len -> length for this prealloc space (in clusters)
66 * pa_free -> free space available in this prealloc space (in clusters)
68 * The inode preallocation space is used looking at the _logical_ start
69 * block. If only the logical file block falls within the range of prealloc
70 * space we will consume the particular prealloc space. This makes sure that
71 * we have contiguous physical blocks representing the file blocks
73 * The important thing to be noted in case of inode prealloc space is that
74 * we don't modify the values associated to inode prealloc space except
75 * pa_free.
77 * If we are not able to find blocks in the inode prealloc space and if we
78 * have the group allocation flag set then we look at the locality group
79 * prealloc space. These are per CPU prealloc list represented as
81 * ext4_sb_info.s_locality_groups[smp_processor_id()]
83 * The reason for having a per cpu locality group is to reduce the contention
84 * between CPUs. It is possible to get scheduled at this point.
86 * The locality group prealloc space is used looking at whether we have
87 * enough free space (pa_free) within the prealloc space.
89 * If we can't allocate blocks via inode prealloc or/and locality group
90 * prealloc then we look at the buddy cache. The buddy cache is represented
91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92 * mapped to the buddy and bitmap information regarding different
93 * groups. The buddy information is attached to buddy cache inode so that
94 * we can access them through the page cache. The information regarding
95 * each group is loaded via ext4_mb_load_buddy. The information involve
96 * block bitmap and buddy information. The information are stored in the
97 * inode as:
99 * { page }
100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 * one block each for bitmap and buddy information. So for each group we
104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105 * blocksize) blocks. So it can have information regarding groups_per_page
106 * which is blocks_per_page/2
108 * The buddy cache inode is not stored on disk. The inode is thrown
109 * away when the filesystem is unmounted.
111 * We look for count number of blocks in the buddy cache. If we were able
112 * to locate that many free blocks we return with additional information
113 * regarding rest of the contiguous physical block available
115 * Before allocating blocks via buddy cache we normalize the request
116 * blocks. This ensure we ask for more blocks that we needed. The extra
117 * blocks that we get after allocation is added to the respective prealloc
118 * list. In case of inode preallocation we follow a list of heuristics
119 * based on file size. This can be found in ext4_mb_normalize_request. If
120 * we are doing a group prealloc we try to normalize the request to
121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
122 * dependent on the cluster size; for non-bigalloc file systems, it is
123 * 512 blocks. This can be tuned via
124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125 * terms of number of blocks. If we have mounted the file system with -O
126 * stripe=<value> option the group prealloc request is normalized to the
127 * the smallest multiple of the stripe value (sbi->s_stripe) which is
128 * greater than the default mb_group_prealloc.
130 * The regular allocator (using the buddy cache) supports a few tunables.
132 * /sys/fs/ext4/<partition>/mb_min_to_scan
133 * /sys/fs/ext4/<partition>/mb_max_to_scan
134 * /sys/fs/ext4/<partition>/mb_order2_req
136 * The regular allocator uses buddy scan only if the request len is power of
137 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138 * value of s_mb_order2_reqs can be tuned via
139 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
140 * stripe size (sbi->s_stripe), we try to search for contiguous block in
141 * stripe size. This should result in better allocation on RAID setups. If
142 * not, we search in the specific group using bitmap for best extents. The
143 * tunable min_to_scan and max_to_scan control the behaviour here.
144 * min_to_scan indicate how long the mballoc __must__ look for a best
145 * extent and max_to_scan indicates how long the mballoc __can__ look for a
146 * best extent in the found extents. Searching for the blocks starts with
147 * the group specified as the goal value in allocation context via
148 * ac_g_ex. Each group is first checked based on the criteria whether it
149 * can be used for allocation. ext4_mb_good_group explains how the groups are
150 * checked.
152 * Both the prealloc space are getting populated as above. So for the first
153 * request we will hit the buddy cache which will result in this prealloc
154 * space getting filled. The prealloc space is then later used for the
155 * subsequent request.
159 * mballoc operates on the following data:
160 * - on-disk bitmap
161 * - in-core buddy (actually includes buddy and bitmap)
162 * - preallocation descriptors (PAs)
164 * there are two types of preallocations:
165 * - inode
166 * assiged to specific inode and can be used for this inode only.
167 * it describes part of inode's space preallocated to specific
168 * physical blocks. any block from that preallocated can be used
169 * independent. the descriptor just tracks number of blocks left
170 * unused. so, before taking some block from descriptor, one must
171 * make sure corresponded logical block isn't allocated yet. this
172 * also means that freeing any block within descriptor's range
173 * must discard all preallocated blocks.
174 * - locality group
175 * assigned to specific locality group which does not translate to
176 * permanent set of inodes: inode can join and leave group. space
177 * from this type of preallocation can be used for any inode. thus
178 * it's consumed from the beginning to the end.
180 * relation between them can be expressed as:
181 * in-core buddy = on-disk bitmap + preallocation descriptors
183 * this mean blocks mballoc considers used are:
184 * - allocated blocks (persistent)
185 * - preallocated blocks (non-persistent)
187 * consistency in mballoc world means that at any time a block is either
188 * free or used in ALL structures. notice: "any time" should not be read
189 * literally -- time is discrete and delimited by locks.
191 * to keep it simple, we don't use block numbers, instead we count number of
192 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194 * all operations can be expressed as:
195 * - init buddy: buddy = on-disk + PAs
196 * - new PA: buddy += N; PA = N
197 * - use inode PA: on-disk += N; PA -= N
198 * - discard inode PA buddy -= on-disk - PA; PA = 0
199 * - use locality group PA on-disk += N; PA -= N
200 * - discard locality group PA buddy -= PA; PA = 0
201 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202 * is used in real operation because we can't know actual used
203 * bits from PA, only from on-disk bitmap
205 * if we follow this strict logic, then all operations above should be atomic.
206 * given some of them can block, we'd have to use something like semaphores
207 * killing performance on high-end SMP hardware. let's try to relax it using
208 * the following knowledge:
209 * 1) if buddy is referenced, it's already initialized
210 * 2) while block is used in buddy and the buddy is referenced,
211 * nobody can re-allocate that block
212 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213 * bit set and PA claims same block, it's OK. IOW, one can set bit in
214 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
215 * block
217 * so, now we're building a concurrency table:
218 * - init buddy vs.
219 * - new PA
220 * blocks for PA are allocated in the buddy, buddy must be referenced
221 * until PA is linked to allocation group to avoid concurrent buddy init
222 * - use inode PA
223 * we need to make sure that either on-disk bitmap or PA has uptodate data
224 * given (3) we care that PA-=N operation doesn't interfere with init
225 * - discard inode PA
226 * the simplest way would be to have buddy initialized by the discard
227 * - use locality group PA
228 * again PA-=N must be serialized with init
229 * - discard locality group PA
230 * the simplest way would be to have buddy initialized by the discard
231 * - new PA vs.
232 * - use inode PA
233 * i_data_sem serializes them
234 * - discard inode PA
235 * discard process must wait until PA isn't used by another process
236 * - use locality group PA
237 * some mutex should serialize them
238 * - discard locality group PA
239 * discard process must wait until PA isn't used by another process
240 * - use inode PA
241 * - use inode PA
242 * i_data_sem or another mutex should serializes them
243 * - discard inode PA
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * nothing wrong here -- they're different PAs covering different blocks
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
250 * now we're ready to make few consequences:
251 * - PA is referenced and while it is no discard is possible
252 * - PA is referenced until block isn't marked in on-disk bitmap
253 * - PA changes only after on-disk bitmap
254 * - discard must not compete with init. either init is done before
255 * any discard or they're serialized somehow
256 * - buddy init as sum of on-disk bitmap and PAs is done atomically
258 * a special case when we've used PA to emptiness. no need to modify buddy
259 * in this case, but we should care about concurrent init
264 * Logic in few words:
266 * - allocation:
267 * load group
268 * find blocks
269 * mark bits in on-disk bitmap
270 * release group
272 * - use preallocation:
273 * find proper PA (per-inode or group)
274 * load group
275 * mark bits in on-disk bitmap
276 * release group
277 * release PA
279 * - free:
280 * load group
281 * mark bits in on-disk bitmap
282 * release group
284 * - discard preallocations in group:
285 * mark PAs deleted
286 * move them onto local list
287 * load on-disk bitmap
288 * load group
289 * remove PA from object (inode or locality group)
290 * mark free blocks in-core
292 * - discard inode's preallocations:
296 * Locking rules
298 * Locks:
299 * - bitlock on a group (group)
300 * - object (inode/locality) (object)
301 * - per-pa lock (pa)
303 * Paths:
304 * - new pa
305 * object
306 * group
308 * - find and use pa:
309 * pa
311 * - release consumed pa:
312 * pa
313 * group
314 * object
316 * - generate in-core bitmap:
317 * group
318 * pa
320 * - discard all for given object (inode, locality group):
321 * object
322 * pa
323 * group
325 * - discard all for given group:
326 * group
327 * pa
328 * group
329 * object
332 static struct kmem_cache *ext4_pspace_cachep;
333 static struct kmem_cache *ext4_ac_cachep;
334 static struct kmem_cache *ext4_free_data_cachep;
336 /* We create slab caches for groupinfo data structures based on the
337 * superblock block size. There will be one per mounted filesystem for
338 * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
343 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
349 ext4_group_t group);
350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
351 ext4_group_t group);
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
355 * The algorithm using this percpu seq counter goes below:
356 * 1. We sample the percpu discard_pa_seq counter before trying for block
357 * allocation in ext4_mb_new_blocks().
358 * 2. We increment this percpu discard_pa_seq counter when we either allocate
359 * or free these blocks i.e. while marking those blocks as used/free in
360 * mb_mark_used()/mb_free_blocks().
361 * 3. We also increment this percpu seq counter when we successfully identify
362 * that the bb_prealloc_list is not empty and hence proceed for discarding
363 * of those PAs inside ext4_mb_discard_group_preallocations().
365 * Now to make sure that the regular fast path of block allocation is not
366 * affected, as a small optimization we only sample the percpu seq counter
367 * on that cpu. Only when the block allocation fails and when freed blocks
368 * found were 0, that is when we sample percpu seq counter for all cpus using
369 * below function ext4_get_discard_pa_seq_sum(). This happens after making
370 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
372 static DEFINE_PER_CPU(u64, discard_pa_seq);
373 static inline u64 ext4_get_discard_pa_seq_sum(void)
375 int __cpu;
376 u64 __seq = 0;
378 for_each_possible_cpu(__cpu)
379 __seq += per_cpu(discard_pa_seq, __cpu);
380 return __seq;
383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
385 #if BITS_PER_LONG == 64
386 *bit += ((unsigned long) addr & 7UL) << 3;
387 addr = (void *) ((unsigned long) addr & ~7UL);
388 #elif BITS_PER_LONG == 32
389 *bit += ((unsigned long) addr & 3UL) << 3;
390 addr = (void *) ((unsigned long) addr & ~3UL);
391 #else
392 #error "how many bits you are?!"
393 #endif
394 return addr;
397 static inline int mb_test_bit(int bit, void *addr)
400 * ext4_test_bit on architecture like powerpc
401 * needs unsigned long aligned address
403 addr = mb_correct_addr_and_bit(&bit, addr);
404 return ext4_test_bit(bit, addr);
407 static inline void mb_set_bit(int bit, void *addr)
409 addr = mb_correct_addr_and_bit(&bit, addr);
410 ext4_set_bit(bit, addr);
413 static inline void mb_clear_bit(int bit, void *addr)
415 addr = mb_correct_addr_and_bit(&bit, addr);
416 ext4_clear_bit(bit, addr);
419 static inline int mb_test_and_clear_bit(int bit, void *addr)
421 addr = mb_correct_addr_and_bit(&bit, addr);
422 return ext4_test_and_clear_bit(bit, addr);
425 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
427 int fix = 0, ret, tmpmax;
428 addr = mb_correct_addr_and_bit(&fix, addr);
429 tmpmax = max + fix;
430 start += fix;
432 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
433 if (ret > max)
434 return max;
435 return ret;
438 static inline int mb_find_next_bit(void *addr, int max, int start)
440 int fix = 0, ret, tmpmax;
441 addr = mb_correct_addr_and_bit(&fix, addr);
442 tmpmax = max + fix;
443 start += fix;
445 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
446 if (ret > max)
447 return max;
448 return ret;
451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
453 char *bb;
455 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
456 BUG_ON(max == NULL);
458 if (order > e4b->bd_blkbits + 1) {
459 *max = 0;
460 return NULL;
463 /* at order 0 we see each particular block */
464 if (order == 0) {
465 *max = 1 << (e4b->bd_blkbits + 3);
466 return e4b->bd_bitmap;
469 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
470 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
472 return bb;
475 #ifdef DOUBLE_CHECK
476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
477 int first, int count)
479 int i;
480 struct super_block *sb = e4b->bd_sb;
482 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 return;
484 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
485 for (i = 0; i < count; i++) {
486 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
487 ext4_fsblk_t blocknr;
489 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
490 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
491 ext4_grp_locked_error(sb, e4b->bd_group,
492 inode ? inode->i_ino : 0,
493 blocknr,
494 "freeing block already freed "
495 "(bit %u)",
496 first + i);
497 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
498 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
500 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
506 int i;
508 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
509 return;
510 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
511 for (i = 0; i < count; i++) {
512 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
513 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
519 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
520 return;
521 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
522 unsigned char *b1, *b2;
523 int i;
524 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
525 b2 = (unsigned char *) bitmap;
526 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
527 if (b1[i] != b2[i]) {
528 ext4_msg(e4b->bd_sb, KERN_ERR,
529 "corruption in group %u "
530 "at byte %u(%u): %x in copy != %x "
531 "on disk/prealloc",
532 e4b->bd_group, i, i * 8, b1[i], b2[i]);
533 BUG();
539 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
540 struct ext4_group_info *grp, ext4_group_t group)
542 struct buffer_head *bh;
544 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
545 if (!grp->bb_bitmap)
546 return;
548 bh = ext4_read_block_bitmap(sb, group);
549 if (IS_ERR_OR_NULL(bh)) {
550 kfree(grp->bb_bitmap);
551 grp->bb_bitmap = NULL;
552 return;
555 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
556 put_bh(bh);
559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
561 kfree(grp->bb_bitmap);
564 #else
565 static inline void mb_free_blocks_double(struct inode *inode,
566 struct ext4_buddy *e4b, int first, int count)
568 return;
570 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
571 int first, int count)
573 return;
575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
577 return;
580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
581 struct ext4_group_info *grp, ext4_group_t group)
583 return;
586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
588 return;
590 #endif
592 #ifdef AGGRESSIVE_CHECK
594 #define MB_CHECK_ASSERT(assert) \
595 do { \
596 if (!(assert)) { \
597 printk(KERN_EMERG \
598 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
599 function, file, line, # assert); \
600 BUG(); \
602 } while (0)
604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
605 const char *function, int line)
607 struct super_block *sb = e4b->bd_sb;
608 int order = e4b->bd_blkbits + 1;
609 int max;
610 int max2;
611 int i;
612 int j;
613 int k;
614 int count;
615 struct ext4_group_info *grp;
616 int fragments = 0;
617 int fstart;
618 struct list_head *cur;
619 void *buddy;
620 void *buddy2;
623 static int mb_check_counter;
624 if (mb_check_counter++ % 100 != 0)
625 return 0;
628 while (order > 1) {
629 buddy = mb_find_buddy(e4b, order, &max);
630 MB_CHECK_ASSERT(buddy);
631 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
632 MB_CHECK_ASSERT(buddy2);
633 MB_CHECK_ASSERT(buddy != buddy2);
634 MB_CHECK_ASSERT(max * 2 == max2);
636 count = 0;
637 for (i = 0; i < max; i++) {
639 if (mb_test_bit(i, buddy)) {
640 /* only single bit in buddy2 may be 1 */
641 if (!mb_test_bit(i << 1, buddy2)) {
642 MB_CHECK_ASSERT(
643 mb_test_bit((i<<1)+1, buddy2));
644 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
645 MB_CHECK_ASSERT(
646 mb_test_bit(i << 1, buddy2));
648 continue;
651 /* both bits in buddy2 must be 1 */
652 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
653 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
655 for (j = 0; j < (1 << order); j++) {
656 k = (i * (1 << order)) + j;
657 MB_CHECK_ASSERT(
658 !mb_test_bit(k, e4b->bd_bitmap));
660 count++;
662 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
663 order--;
666 fstart = -1;
667 buddy = mb_find_buddy(e4b, 0, &max);
668 for (i = 0; i < max; i++) {
669 if (!mb_test_bit(i, buddy)) {
670 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
671 if (fstart == -1) {
672 fragments++;
673 fstart = i;
675 continue;
677 fstart = -1;
678 /* check used bits only */
679 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
680 buddy2 = mb_find_buddy(e4b, j, &max2);
681 k = i >> j;
682 MB_CHECK_ASSERT(k < max2);
683 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
686 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
687 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
689 grp = ext4_get_group_info(sb, e4b->bd_group);
690 list_for_each(cur, &grp->bb_prealloc_list) {
691 ext4_group_t groupnr;
692 struct ext4_prealloc_space *pa;
693 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
694 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
695 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
696 for (i = 0; i < pa->pa_len; i++)
697 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
699 return 0;
701 #undef MB_CHECK_ASSERT
702 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
703 __FILE__, __func__, __LINE__)
704 #else
705 #define mb_check_buddy(e4b)
706 #endif
709 * Divide blocks started from @first with length @len into
710 * smaller chunks with power of 2 blocks.
711 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
712 * then increase bb_counters[] for corresponded chunk size.
714 static void ext4_mb_mark_free_simple(struct super_block *sb,
715 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
716 struct ext4_group_info *grp)
718 struct ext4_sb_info *sbi = EXT4_SB(sb);
719 ext4_grpblk_t min;
720 ext4_grpblk_t max;
721 ext4_grpblk_t chunk;
722 unsigned int border;
724 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
726 border = 2 << sb->s_blocksize_bits;
728 while (len > 0) {
729 /* find how many blocks can be covered since this position */
730 max = ffs(first | border) - 1;
732 /* find how many blocks of power 2 we need to mark */
733 min = fls(len) - 1;
735 if (max < min)
736 min = max;
737 chunk = 1 << min;
739 /* mark multiblock chunks only */
740 grp->bb_counters[min]++;
741 if (min > 0)
742 mb_clear_bit(first >> min,
743 buddy + sbi->s_mb_offsets[min]);
745 len -= chunk;
746 first += chunk;
751 * Cache the order of the largest free extent we have available in this block
752 * group.
754 static void
755 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
757 int i;
758 int bits;
760 grp->bb_largest_free_order = -1; /* uninit */
762 bits = sb->s_blocksize_bits + 1;
763 for (i = bits; i >= 0; i--) {
764 if (grp->bb_counters[i] > 0) {
765 grp->bb_largest_free_order = i;
766 break;
771 static noinline_for_stack
772 void ext4_mb_generate_buddy(struct super_block *sb,
773 void *buddy, void *bitmap, ext4_group_t group)
775 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
776 struct ext4_sb_info *sbi = EXT4_SB(sb);
777 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
778 ext4_grpblk_t i = 0;
779 ext4_grpblk_t first;
780 ext4_grpblk_t len;
781 unsigned free = 0;
782 unsigned fragments = 0;
783 unsigned long long period = get_cycles();
785 /* initialize buddy from bitmap which is aggregation
786 * of on-disk bitmap and preallocations */
787 i = mb_find_next_zero_bit(bitmap, max, 0);
788 grp->bb_first_free = i;
789 while (i < max) {
790 fragments++;
791 first = i;
792 i = mb_find_next_bit(bitmap, max, i);
793 len = i - first;
794 free += len;
795 if (len > 1)
796 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
797 else
798 grp->bb_counters[0]++;
799 if (i < max)
800 i = mb_find_next_zero_bit(bitmap, max, i);
802 grp->bb_fragments = fragments;
804 if (free != grp->bb_free) {
805 ext4_grp_locked_error(sb, group, 0, 0,
806 "block bitmap and bg descriptor "
807 "inconsistent: %u vs %u free clusters",
808 free, grp->bb_free);
810 * If we intend to continue, we consider group descriptor
811 * corrupt and update bb_free using bitmap value
813 grp->bb_free = free;
814 ext4_mark_group_bitmap_corrupted(sb, group,
815 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
817 mb_set_largest_free_order(sb, grp);
819 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
821 period = get_cycles() - period;
822 spin_lock(&sbi->s_bal_lock);
823 sbi->s_mb_buddies_generated++;
824 sbi->s_mb_generation_time += period;
825 spin_unlock(&sbi->s_bal_lock);
828 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
830 int count;
831 int order = 1;
832 void *buddy;
834 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
835 ext4_set_bits(buddy, 0, count);
837 e4b->bd_info->bb_fragments = 0;
838 memset(e4b->bd_info->bb_counters, 0,
839 sizeof(*e4b->bd_info->bb_counters) *
840 (e4b->bd_sb->s_blocksize_bits + 2));
842 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
843 e4b->bd_bitmap, e4b->bd_group);
846 /* The buddy information is attached the buddy cache inode
847 * for convenience. The information regarding each group
848 * is loaded via ext4_mb_load_buddy. The information involve
849 * block bitmap and buddy information. The information are
850 * stored in the inode as
852 * { page }
853 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
856 * one block each for bitmap and buddy information.
857 * So for each group we take up 2 blocks. A page can
858 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
859 * So it can have information regarding groups_per_page which
860 * is blocks_per_page/2
862 * Locking note: This routine takes the block group lock of all groups
863 * for this page; do not hold this lock when calling this routine!
866 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
868 ext4_group_t ngroups;
869 int blocksize;
870 int blocks_per_page;
871 int groups_per_page;
872 int err = 0;
873 int i;
874 ext4_group_t first_group, group;
875 int first_block;
876 struct super_block *sb;
877 struct buffer_head *bhs;
878 struct buffer_head **bh = NULL;
879 struct inode *inode;
880 char *data;
881 char *bitmap;
882 struct ext4_group_info *grinfo;
884 inode = page->mapping->host;
885 sb = inode->i_sb;
886 ngroups = ext4_get_groups_count(sb);
887 blocksize = i_blocksize(inode);
888 blocks_per_page = PAGE_SIZE / blocksize;
890 mb_debug(sb, "init page %lu\n", page->index);
892 groups_per_page = blocks_per_page >> 1;
893 if (groups_per_page == 0)
894 groups_per_page = 1;
896 /* allocate buffer_heads to read bitmaps */
897 if (groups_per_page > 1) {
898 i = sizeof(struct buffer_head *) * groups_per_page;
899 bh = kzalloc(i, gfp);
900 if (bh == NULL) {
901 err = -ENOMEM;
902 goto out;
904 } else
905 bh = &bhs;
907 first_group = page->index * blocks_per_page / 2;
909 /* read all groups the page covers into the cache */
910 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
911 if (group >= ngroups)
912 break;
914 grinfo = ext4_get_group_info(sb, group);
916 * If page is uptodate then we came here after online resize
917 * which added some new uninitialized group info structs, so
918 * we must skip all initialized uptodate buddies on the page,
919 * which may be currently in use by an allocating task.
921 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
922 bh[i] = NULL;
923 continue;
925 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
926 if (IS_ERR(bh[i])) {
927 err = PTR_ERR(bh[i]);
928 bh[i] = NULL;
929 goto out;
931 mb_debug(sb, "read bitmap for group %u\n", group);
934 /* wait for I/O completion */
935 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
936 int err2;
938 if (!bh[i])
939 continue;
940 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
941 if (!err)
942 err = err2;
945 first_block = page->index * blocks_per_page;
946 for (i = 0; i < blocks_per_page; i++) {
947 group = (first_block + i) >> 1;
948 if (group >= ngroups)
949 break;
951 if (!bh[group - first_group])
952 /* skip initialized uptodate buddy */
953 continue;
955 if (!buffer_verified(bh[group - first_group]))
956 /* Skip faulty bitmaps */
957 continue;
958 err = 0;
961 * data carry information regarding this
962 * particular group in the format specified
963 * above
966 data = page_address(page) + (i * blocksize);
967 bitmap = bh[group - first_group]->b_data;
970 * We place the buddy block and bitmap block
971 * close together
973 if ((first_block + i) & 1) {
974 /* this is block of buddy */
975 BUG_ON(incore == NULL);
976 mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
977 group, page->index, i * blocksize);
978 trace_ext4_mb_buddy_bitmap_load(sb, group);
979 grinfo = ext4_get_group_info(sb, group);
980 grinfo->bb_fragments = 0;
981 memset(grinfo->bb_counters, 0,
982 sizeof(*grinfo->bb_counters) *
983 (sb->s_blocksize_bits+2));
985 * incore got set to the group block bitmap below
987 ext4_lock_group(sb, group);
988 /* init the buddy */
989 memset(data, 0xff, blocksize);
990 ext4_mb_generate_buddy(sb, data, incore, group);
991 ext4_unlock_group(sb, group);
992 incore = NULL;
993 } else {
994 /* this is block of bitmap */
995 BUG_ON(incore != NULL);
996 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
997 group, page->index, i * blocksize);
998 trace_ext4_mb_bitmap_load(sb, group);
1000 /* see comments in ext4_mb_put_pa() */
1001 ext4_lock_group(sb, group);
1002 memcpy(data, bitmap, blocksize);
1004 /* mark all preallocated blks used in in-core bitmap */
1005 ext4_mb_generate_from_pa(sb, data, group);
1006 ext4_mb_generate_from_freelist(sb, data, group);
1007 ext4_unlock_group(sb, group);
1009 /* set incore so that the buddy information can be
1010 * generated using this
1012 incore = data;
1015 SetPageUptodate(page);
1017 out:
1018 if (bh) {
1019 for (i = 0; i < groups_per_page; i++)
1020 brelse(bh[i]);
1021 if (bh != &bhs)
1022 kfree(bh);
1024 return err;
1028 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1029 * on the same buddy page doesn't happen whild holding the buddy page lock.
1030 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1031 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1033 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1034 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1036 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1037 int block, pnum, poff;
1038 int blocks_per_page;
1039 struct page *page;
1041 e4b->bd_buddy_page = NULL;
1042 e4b->bd_bitmap_page = NULL;
1044 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1046 * the buddy cache inode stores the block bitmap
1047 * and buddy information in consecutive blocks.
1048 * So for each group we need two blocks.
1050 block = group * 2;
1051 pnum = block / blocks_per_page;
1052 poff = block % blocks_per_page;
1053 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1054 if (!page)
1055 return -ENOMEM;
1056 BUG_ON(page->mapping != inode->i_mapping);
1057 e4b->bd_bitmap_page = page;
1058 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1060 if (blocks_per_page >= 2) {
1061 /* buddy and bitmap are on the same page */
1062 return 0;
1065 block++;
1066 pnum = block / blocks_per_page;
1067 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1068 if (!page)
1069 return -ENOMEM;
1070 BUG_ON(page->mapping != inode->i_mapping);
1071 e4b->bd_buddy_page = page;
1072 return 0;
1075 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1077 if (e4b->bd_bitmap_page) {
1078 unlock_page(e4b->bd_bitmap_page);
1079 put_page(e4b->bd_bitmap_page);
1081 if (e4b->bd_buddy_page) {
1082 unlock_page(e4b->bd_buddy_page);
1083 put_page(e4b->bd_buddy_page);
1088 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1089 * block group lock of all groups for this page; do not hold the BG lock when
1090 * calling this routine!
1092 static noinline_for_stack
1093 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1096 struct ext4_group_info *this_grp;
1097 struct ext4_buddy e4b;
1098 struct page *page;
1099 int ret = 0;
1101 might_sleep();
1102 mb_debug(sb, "init group %u\n", group);
1103 this_grp = ext4_get_group_info(sb, group);
1105 * This ensures that we don't reinit the buddy cache
1106 * page which map to the group from which we are already
1107 * allocating. If we are looking at the buddy cache we would
1108 * have taken a reference using ext4_mb_load_buddy and that
1109 * would have pinned buddy page to page cache.
1110 * The call to ext4_mb_get_buddy_page_lock will mark the
1111 * page accessed.
1113 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1114 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1116 * somebody initialized the group
1117 * return without doing anything
1119 goto err;
1122 page = e4b.bd_bitmap_page;
1123 ret = ext4_mb_init_cache(page, NULL, gfp);
1124 if (ret)
1125 goto err;
1126 if (!PageUptodate(page)) {
1127 ret = -EIO;
1128 goto err;
1131 if (e4b.bd_buddy_page == NULL) {
1133 * If both the bitmap and buddy are in
1134 * the same page we don't need to force
1135 * init the buddy
1137 ret = 0;
1138 goto err;
1140 /* init buddy cache */
1141 page = e4b.bd_buddy_page;
1142 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1143 if (ret)
1144 goto err;
1145 if (!PageUptodate(page)) {
1146 ret = -EIO;
1147 goto err;
1149 err:
1150 ext4_mb_put_buddy_page_lock(&e4b);
1151 return ret;
1155 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1156 * block group lock of all groups for this page; do not hold the BG lock when
1157 * calling this routine!
1159 static noinline_for_stack int
1160 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1161 struct ext4_buddy *e4b, gfp_t gfp)
1163 int blocks_per_page;
1164 int block;
1165 int pnum;
1166 int poff;
1167 struct page *page;
1168 int ret;
1169 struct ext4_group_info *grp;
1170 struct ext4_sb_info *sbi = EXT4_SB(sb);
1171 struct inode *inode = sbi->s_buddy_cache;
1173 might_sleep();
1174 mb_debug(sb, "load group %u\n", group);
1176 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1177 grp = ext4_get_group_info(sb, group);
1179 e4b->bd_blkbits = sb->s_blocksize_bits;
1180 e4b->bd_info = grp;
1181 e4b->bd_sb = sb;
1182 e4b->bd_group = group;
1183 e4b->bd_buddy_page = NULL;
1184 e4b->bd_bitmap_page = NULL;
1186 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1188 * we need full data about the group
1189 * to make a good selection
1191 ret = ext4_mb_init_group(sb, group, gfp);
1192 if (ret)
1193 return ret;
1197 * the buddy cache inode stores the block bitmap
1198 * and buddy information in consecutive blocks.
1199 * So for each group we need two blocks.
1201 block = group * 2;
1202 pnum = block / blocks_per_page;
1203 poff = block % blocks_per_page;
1205 /* we could use find_or_create_page(), but it locks page
1206 * what we'd like to avoid in fast path ... */
1207 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1208 if (page == NULL || !PageUptodate(page)) {
1209 if (page)
1211 * drop the page reference and try
1212 * to get the page with lock. If we
1213 * are not uptodate that implies
1214 * somebody just created the page but
1215 * is yet to initialize the same. So
1216 * wait for it to initialize.
1218 put_page(page);
1219 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1220 if (page) {
1221 BUG_ON(page->mapping != inode->i_mapping);
1222 if (!PageUptodate(page)) {
1223 ret = ext4_mb_init_cache(page, NULL, gfp);
1224 if (ret) {
1225 unlock_page(page);
1226 goto err;
1228 mb_cmp_bitmaps(e4b, page_address(page) +
1229 (poff * sb->s_blocksize));
1231 unlock_page(page);
1234 if (page == NULL) {
1235 ret = -ENOMEM;
1236 goto err;
1238 if (!PageUptodate(page)) {
1239 ret = -EIO;
1240 goto err;
1243 /* Pages marked accessed already */
1244 e4b->bd_bitmap_page = page;
1245 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1247 block++;
1248 pnum = block / blocks_per_page;
1249 poff = block % blocks_per_page;
1251 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1252 if (page == NULL || !PageUptodate(page)) {
1253 if (page)
1254 put_page(page);
1255 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1256 if (page) {
1257 BUG_ON(page->mapping != inode->i_mapping);
1258 if (!PageUptodate(page)) {
1259 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1260 gfp);
1261 if (ret) {
1262 unlock_page(page);
1263 goto err;
1266 unlock_page(page);
1269 if (page == NULL) {
1270 ret = -ENOMEM;
1271 goto err;
1273 if (!PageUptodate(page)) {
1274 ret = -EIO;
1275 goto err;
1278 /* Pages marked accessed already */
1279 e4b->bd_buddy_page = page;
1280 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1282 BUG_ON(e4b->bd_bitmap_page == NULL);
1283 BUG_ON(e4b->bd_buddy_page == NULL);
1285 return 0;
1287 err:
1288 if (page)
1289 put_page(page);
1290 if (e4b->bd_bitmap_page)
1291 put_page(e4b->bd_bitmap_page);
1292 if (e4b->bd_buddy_page)
1293 put_page(e4b->bd_buddy_page);
1294 e4b->bd_buddy = NULL;
1295 e4b->bd_bitmap = NULL;
1296 return ret;
1299 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1300 struct ext4_buddy *e4b)
1302 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1305 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1307 if (e4b->bd_bitmap_page)
1308 put_page(e4b->bd_bitmap_page);
1309 if (e4b->bd_buddy_page)
1310 put_page(e4b->bd_buddy_page);
1314 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1316 int order = 1;
1317 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1318 void *bb;
1320 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1321 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1323 bb = e4b->bd_buddy;
1324 while (order <= e4b->bd_blkbits + 1) {
1325 block = block >> 1;
1326 if (!mb_test_bit(block, bb)) {
1327 /* this block is part of buddy of order 'order' */
1328 return order;
1330 bb += bb_incr;
1331 bb_incr >>= 1;
1332 order++;
1334 return 0;
1337 static void mb_clear_bits(void *bm, int cur, int len)
1339 __u32 *addr;
1341 len = cur + len;
1342 while (cur < len) {
1343 if ((cur & 31) == 0 && (len - cur) >= 32) {
1344 /* fast path: clear whole word at once */
1345 addr = bm + (cur >> 3);
1346 *addr = 0;
1347 cur += 32;
1348 continue;
1350 mb_clear_bit(cur, bm);
1351 cur++;
1355 /* clear bits in given range
1356 * will return first found zero bit if any, -1 otherwise
1358 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1360 __u32 *addr;
1361 int zero_bit = -1;
1363 len = cur + len;
1364 while (cur < len) {
1365 if ((cur & 31) == 0 && (len - cur) >= 32) {
1366 /* fast path: clear whole word at once */
1367 addr = bm + (cur >> 3);
1368 if (*addr != (__u32)(-1) && zero_bit == -1)
1369 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1370 *addr = 0;
1371 cur += 32;
1372 continue;
1374 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1375 zero_bit = cur;
1376 cur++;
1379 return zero_bit;
1382 void ext4_set_bits(void *bm, int cur, int len)
1384 __u32 *addr;
1386 len = cur + len;
1387 while (cur < len) {
1388 if ((cur & 31) == 0 && (len - cur) >= 32) {
1389 /* fast path: set whole word at once */
1390 addr = bm + (cur >> 3);
1391 *addr = 0xffffffff;
1392 cur += 32;
1393 continue;
1395 mb_set_bit(cur, bm);
1396 cur++;
1401 * _________________________________________________________________ */
1403 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1405 if (mb_test_bit(*bit + side, bitmap)) {
1406 mb_clear_bit(*bit, bitmap);
1407 (*bit) -= side;
1408 return 1;
1410 else {
1411 (*bit) += side;
1412 mb_set_bit(*bit, bitmap);
1413 return -1;
1417 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1419 int max;
1420 int order = 1;
1421 void *buddy = mb_find_buddy(e4b, order, &max);
1423 while (buddy) {
1424 void *buddy2;
1426 /* Bits in range [first; last] are known to be set since
1427 * corresponding blocks were allocated. Bits in range
1428 * (first; last) will stay set because they form buddies on
1429 * upper layer. We just deal with borders if they don't
1430 * align with upper layer and then go up.
1431 * Releasing entire group is all about clearing
1432 * single bit of highest order buddy.
1435 /* Example:
1436 * ---------------------------------
1437 * | 1 | 1 | 1 | 1 |
1438 * ---------------------------------
1439 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1440 * ---------------------------------
1441 * 0 1 2 3 4 5 6 7
1442 * \_____________________/
1444 * Neither [1] nor [6] is aligned to above layer.
1445 * Left neighbour [0] is free, so mark it busy,
1446 * decrease bb_counters and extend range to
1447 * [0; 6]
1448 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1449 * mark [6] free, increase bb_counters and shrink range to
1450 * [0; 5].
1451 * Then shift range to [0; 2], go up and do the same.
1455 if (first & 1)
1456 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1457 if (!(last & 1))
1458 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1459 if (first > last)
1460 break;
1461 order++;
1463 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1464 mb_clear_bits(buddy, first, last - first + 1);
1465 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1466 break;
1468 first >>= 1;
1469 last >>= 1;
1470 buddy = buddy2;
1474 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1475 int first, int count)
1477 int left_is_free = 0;
1478 int right_is_free = 0;
1479 int block;
1480 int last = first + count - 1;
1481 struct super_block *sb = e4b->bd_sb;
1483 if (WARN_ON(count == 0))
1484 return;
1485 BUG_ON(last >= (sb->s_blocksize << 3));
1486 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1487 /* Don't bother if the block group is corrupt. */
1488 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1489 return;
1491 mb_check_buddy(e4b);
1492 mb_free_blocks_double(inode, e4b, first, count);
1494 this_cpu_inc(discard_pa_seq);
1495 e4b->bd_info->bb_free += count;
1496 if (first < e4b->bd_info->bb_first_free)
1497 e4b->bd_info->bb_first_free = first;
1499 /* access memory sequentially: check left neighbour,
1500 * clear range and then check right neighbour
1502 if (first != 0)
1503 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1504 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1505 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1506 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1508 if (unlikely(block != -1)) {
1509 struct ext4_sb_info *sbi = EXT4_SB(sb);
1510 ext4_fsblk_t blocknr;
1512 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1513 blocknr += EXT4_C2B(sbi, block);
1514 ext4_grp_locked_error(sb, e4b->bd_group,
1515 inode ? inode->i_ino : 0,
1516 blocknr,
1517 "freeing already freed block "
1518 "(bit %u); block bitmap corrupt.",
1519 block);
1520 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1521 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1522 mb_regenerate_buddy(e4b);
1523 goto done;
1526 /* let's maintain fragments counter */
1527 if (left_is_free && right_is_free)
1528 e4b->bd_info->bb_fragments--;
1529 else if (!left_is_free && !right_is_free)
1530 e4b->bd_info->bb_fragments++;
1532 /* buddy[0] == bd_bitmap is a special case, so handle
1533 * it right away and let mb_buddy_mark_free stay free of
1534 * zero order checks.
1535 * Check if neighbours are to be coaleasced,
1536 * adjust bitmap bb_counters and borders appropriately.
1538 if (first & 1) {
1539 first += !left_is_free;
1540 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1542 if (!(last & 1)) {
1543 last -= !right_is_free;
1544 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1547 if (first <= last)
1548 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1550 done:
1551 mb_set_largest_free_order(sb, e4b->bd_info);
1552 mb_check_buddy(e4b);
1555 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1556 int needed, struct ext4_free_extent *ex)
1558 int next = block;
1559 int max, order;
1560 void *buddy;
1562 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1563 BUG_ON(ex == NULL);
1565 buddy = mb_find_buddy(e4b, 0, &max);
1566 BUG_ON(buddy == NULL);
1567 BUG_ON(block >= max);
1568 if (mb_test_bit(block, buddy)) {
1569 ex->fe_len = 0;
1570 ex->fe_start = 0;
1571 ex->fe_group = 0;
1572 return 0;
1575 /* find actual order */
1576 order = mb_find_order_for_block(e4b, block);
1577 block = block >> order;
1579 ex->fe_len = 1 << order;
1580 ex->fe_start = block << order;
1581 ex->fe_group = e4b->bd_group;
1583 /* calc difference from given start */
1584 next = next - ex->fe_start;
1585 ex->fe_len -= next;
1586 ex->fe_start += next;
1588 while (needed > ex->fe_len &&
1589 mb_find_buddy(e4b, order, &max)) {
1591 if (block + 1 >= max)
1592 break;
1594 next = (block + 1) * (1 << order);
1595 if (mb_test_bit(next, e4b->bd_bitmap))
1596 break;
1598 order = mb_find_order_for_block(e4b, next);
1600 block = next >> order;
1601 ex->fe_len += 1 << order;
1604 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1605 /* Should never happen! (but apparently sometimes does?!?) */
1606 WARN_ON(1);
1607 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1608 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1609 block, order, needed, ex->fe_group, ex->fe_start,
1610 ex->fe_len, ex->fe_logical);
1611 ex->fe_len = 0;
1612 ex->fe_start = 0;
1613 ex->fe_group = 0;
1615 return ex->fe_len;
1618 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1620 int ord;
1621 int mlen = 0;
1622 int max = 0;
1623 int cur;
1624 int start = ex->fe_start;
1625 int len = ex->fe_len;
1626 unsigned ret = 0;
1627 int len0 = len;
1628 void *buddy;
1630 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1631 BUG_ON(e4b->bd_group != ex->fe_group);
1632 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1633 mb_check_buddy(e4b);
1634 mb_mark_used_double(e4b, start, len);
1636 this_cpu_inc(discard_pa_seq);
1637 e4b->bd_info->bb_free -= len;
1638 if (e4b->bd_info->bb_first_free == start)
1639 e4b->bd_info->bb_first_free += len;
1641 /* let's maintain fragments counter */
1642 if (start != 0)
1643 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1644 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1645 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1646 if (mlen && max)
1647 e4b->bd_info->bb_fragments++;
1648 else if (!mlen && !max)
1649 e4b->bd_info->bb_fragments--;
1651 /* let's maintain buddy itself */
1652 while (len) {
1653 ord = mb_find_order_for_block(e4b, start);
1655 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1656 /* the whole chunk may be allocated at once! */
1657 mlen = 1 << ord;
1658 buddy = mb_find_buddy(e4b, ord, &max);
1659 BUG_ON((start >> ord) >= max);
1660 mb_set_bit(start >> ord, buddy);
1661 e4b->bd_info->bb_counters[ord]--;
1662 start += mlen;
1663 len -= mlen;
1664 BUG_ON(len < 0);
1665 continue;
1668 /* store for history */
1669 if (ret == 0)
1670 ret = len | (ord << 16);
1672 /* we have to split large buddy */
1673 BUG_ON(ord <= 0);
1674 buddy = mb_find_buddy(e4b, ord, &max);
1675 mb_set_bit(start >> ord, buddy);
1676 e4b->bd_info->bb_counters[ord]--;
1678 ord--;
1679 cur = (start >> ord) & ~1U;
1680 buddy = mb_find_buddy(e4b, ord, &max);
1681 mb_clear_bit(cur, buddy);
1682 mb_clear_bit(cur + 1, buddy);
1683 e4b->bd_info->bb_counters[ord]++;
1684 e4b->bd_info->bb_counters[ord]++;
1686 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1688 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1689 mb_check_buddy(e4b);
1691 return ret;
1695 * Must be called under group lock!
1697 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1698 struct ext4_buddy *e4b)
1700 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1701 int ret;
1703 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1704 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1706 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1707 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1708 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1710 /* preallocation can change ac_b_ex, thus we store actually
1711 * allocated blocks for history */
1712 ac->ac_f_ex = ac->ac_b_ex;
1714 ac->ac_status = AC_STATUS_FOUND;
1715 ac->ac_tail = ret & 0xffff;
1716 ac->ac_buddy = ret >> 16;
1719 * take the page reference. We want the page to be pinned
1720 * so that we don't get a ext4_mb_init_cache_call for this
1721 * group until we update the bitmap. That would mean we
1722 * double allocate blocks. The reference is dropped
1723 * in ext4_mb_release_context
1725 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1726 get_page(ac->ac_bitmap_page);
1727 ac->ac_buddy_page = e4b->bd_buddy_page;
1728 get_page(ac->ac_buddy_page);
1729 /* store last allocated for subsequent stream allocation */
1730 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1731 spin_lock(&sbi->s_md_lock);
1732 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1733 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1734 spin_unlock(&sbi->s_md_lock);
1737 * As we've just preallocated more space than
1738 * user requested originally, we store allocated
1739 * space in a special descriptor.
1741 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
1742 ext4_mb_new_preallocation(ac);
1747 * regular allocator, for general purposes allocation
1750 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1751 struct ext4_buddy *e4b,
1752 int finish_group)
1754 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1755 struct ext4_free_extent *bex = &ac->ac_b_ex;
1756 struct ext4_free_extent *gex = &ac->ac_g_ex;
1757 struct ext4_free_extent ex;
1758 int max;
1760 if (ac->ac_status == AC_STATUS_FOUND)
1761 return;
1763 * We don't want to scan for a whole year
1765 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1766 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1767 ac->ac_status = AC_STATUS_BREAK;
1768 return;
1772 * Haven't found good chunk so far, let's continue
1774 if (bex->fe_len < gex->fe_len)
1775 return;
1777 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1778 && bex->fe_group == e4b->bd_group) {
1779 /* recheck chunk's availability - we don't know
1780 * when it was found (within this lock-unlock
1781 * period or not) */
1782 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1783 if (max >= gex->fe_len) {
1784 ext4_mb_use_best_found(ac, e4b);
1785 return;
1791 * The routine checks whether found extent is good enough. If it is,
1792 * then the extent gets marked used and flag is set to the context
1793 * to stop scanning. Otherwise, the extent is compared with the
1794 * previous found extent and if new one is better, then it's stored
1795 * in the context. Later, the best found extent will be used, if
1796 * mballoc can't find good enough extent.
1798 * FIXME: real allocation policy is to be designed yet!
1800 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1801 struct ext4_free_extent *ex,
1802 struct ext4_buddy *e4b)
1804 struct ext4_free_extent *bex = &ac->ac_b_ex;
1805 struct ext4_free_extent *gex = &ac->ac_g_ex;
1807 BUG_ON(ex->fe_len <= 0);
1808 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1809 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1810 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1812 ac->ac_found++;
1815 * The special case - take what you catch first
1817 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1818 *bex = *ex;
1819 ext4_mb_use_best_found(ac, e4b);
1820 return;
1824 * Let's check whether the chuck is good enough
1826 if (ex->fe_len == gex->fe_len) {
1827 *bex = *ex;
1828 ext4_mb_use_best_found(ac, e4b);
1829 return;
1833 * If this is first found extent, just store it in the context
1835 if (bex->fe_len == 0) {
1836 *bex = *ex;
1837 return;
1841 * If new found extent is better, store it in the context
1843 if (bex->fe_len < gex->fe_len) {
1844 /* if the request isn't satisfied, any found extent
1845 * larger than previous best one is better */
1846 if (ex->fe_len > bex->fe_len)
1847 *bex = *ex;
1848 } else if (ex->fe_len > gex->fe_len) {
1849 /* if the request is satisfied, then we try to find
1850 * an extent that still satisfy the request, but is
1851 * smaller than previous one */
1852 if (ex->fe_len < bex->fe_len)
1853 *bex = *ex;
1856 ext4_mb_check_limits(ac, e4b, 0);
1859 static noinline_for_stack
1860 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1861 struct ext4_buddy *e4b)
1863 struct ext4_free_extent ex = ac->ac_b_ex;
1864 ext4_group_t group = ex.fe_group;
1865 int max;
1866 int err;
1868 BUG_ON(ex.fe_len <= 0);
1869 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1870 if (err)
1871 return err;
1873 ext4_lock_group(ac->ac_sb, group);
1874 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1876 if (max > 0) {
1877 ac->ac_b_ex = ex;
1878 ext4_mb_use_best_found(ac, e4b);
1881 ext4_unlock_group(ac->ac_sb, group);
1882 ext4_mb_unload_buddy(e4b);
1884 return 0;
1887 static noinline_for_stack
1888 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1889 struct ext4_buddy *e4b)
1891 ext4_group_t group = ac->ac_g_ex.fe_group;
1892 int max;
1893 int err;
1894 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1895 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1896 struct ext4_free_extent ex;
1898 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1899 return 0;
1900 if (grp->bb_free == 0)
1901 return 0;
1903 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1904 if (err)
1905 return err;
1907 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1908 ext4_mb_unload_buddy(e4b);
1909 return 0;
1912 ext4_lock_group(ac->ac_sb, group);
1913 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1914 ac->ac_g_ex.fe_len, &ex);
1915 ex.fe_logical = 0xDEADFA11; /* debug value */
1917 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1918 ext4_fsblk_t start;
1920 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1921 ex.fe_start;
1922 /* use do_div to get remainder (would be 64-bit modulo) */
1923 if (do_div(start, sbi->s_stripe) == 0) {
1924 ac->ac_found++;
1925 ac->ac_b_ex = ex;
1926 ext4_mb_use_best_found(ac, e4b);
1928 } else if (max >= ac->ac_g_ex.fe_len) {
1929 BUG_ON(ex.fe_len <= 0);
1930 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1931 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1932 ac->ac_found++;
1933 ac->ac_b_ex = ex;
1934 ext4_mb_use_best_found(ac, e4b);
1935 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1936 /* Sometimes, caller may want to merge even small
1937 * number of blocks to an existing extent */
1938 BUG_ON(ex.fe_len <= 0);
1939 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1940 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1941 ac->ac_found++;
1942 ac->ac_b_ex = ex;
1943 ext4_mb_use_best_found(ac, e4b);
1945 ext4_unlock_group(ac->ac_sb, group);
1946 ext4_mb_unload_buddy(e4b);
1948 return 0;
1952 * The routine scans buddy structures (not bitmap!) from given order
1953 * to max order and tries to find big enough chunk to satisfy the req
1955 static noinline_for_stack
1956 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1957 struct ext4_buddy *e4b)
1959 struct super_block *sb = ac->ac_sb;
1960 struct ext4_group_info *grp = e4b->bd_info;
1961 void *buddy;
1962 int i;
1963 int k;
1964 int max;
1966 BUG_ON(ac->ac_2order <= 0);
1967 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1968 if (grp->bb_counters[i] == 0)
1969 continue;
1971 buddy = mb_find_buddy(e4b, i, &max);
1972 BUG_ON(buddy == NULL);
1974 k = mb_find_next_zero_bit(buddy, max, 0);
1975 if (k >= max) {
1976 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1977 "%d free clusters of order %d. But found 0",
1978 grp->bb_counters[i], i);
1979 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1980 e4b->bd_group,
1981 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1982 break;
1984 ac->ac_found++;
1986 ac->ac_b_ex.fe_len = 1 << i;
1987 ac->ac_b_ex.fe_start = k << i;
1988 ac->ac_b_ex.fe_group = e4b->bd_group;
1990 ext4_mb_use_best_found(ac, e4b);
1992 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
1994 if (EXT4_SB(sb)->s_mb_stats)
1995 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1997 break;
2002 * The routine scans the group and measures all found extents.
2003 * In order to optimize scanning, caller must pass number of
2004 * free blocks in the group, so the routine can know upper limit.
2006 static noinline_for_stack
2007 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2008 struct ext4_buddy *e4b)
2010 struct super_block *sb = ac->ac_sb;
2011 void *bitmap = e4b->bd_bitmap;
2012 struct ext4_free_extent ex;
2013 int i;
2014 int free;
2016 free = e4b->bd_info->bb_free;
2017 if (WARN_ON(free <= 0))
2018 return;
2020 i = e4b->bd_info->bb_first_free;
2022 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2023 i = mb_find_next_zero_bit(bitmap,
2024 EXT4_CLUSTERS_PER_GROUP(sb), i);
2025 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2027 * IF we have corrupt bitmap, we won't find any
2028 * free blocks even though group info says we
2029 * we have free blocks
2031 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2032 "%d free clusters as per "
2033 "group info. But bitmap says 0",
2034 free);
2035 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2036 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2037 break;
2040 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2041 if (WARN_ON(ex.fe_len <= 0))
2042 break;
2043 if (free < ex.fe_len) {
2044 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2045 "%d free clusters as per "
2046 "group info. But got %d blocks",
2047 free, ex.fe_len);
2048 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2049 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2051 * The number of free blocks differs. This mostly
2052 * indicate that the bitmap is corrupt. So exit
2053 * without claiming the space.
2055 break;
2057 ex.fe_logical = 0xDEADC0DE; /* debug value */
2058 ext4_mb_measure_extent(ac, &ex, e4b);
2060 i += ex.fe_len;
2061 free -= ex.fe_len;
2064 ext4_mb_check_limits(ac, e4b, 1);
2068 * This is a special case for storages like raid5
2069 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2071 static noinline_for_stack
2072 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2073 struct ext4_buddy *e4b)
2075 struct super_block *sb = ac->ac_sb;
2076 struct ext4_sb_info *sbi = EXT4_SB(sb);
2077 void *bitmap = e4b->bd_bitmap;
2078 struct ext4_free_extent ex;
2079 ext4_fsblk_t first_group_block;
2080 ext4_fsblk_t a;
2081 ext4_grpblk_t i;
2082 int max;
2084 BUG_ON(sbi->s_stripe == 0);
2086 /* find first stripe-aligned block in group */
2087 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2089 a = first_group_block + sbi->s_stripe - 1;
2090 do_div(a, sbi->s_stripe);
2091 i = (a * sbi->s_stripe) - first_group_block;
2093 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2094 if (!mb_test_bit(i, bitmap)) {
2095 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2096 if (max >= sbi->s_stripe) {
2097 ac->ac_found++;
2098 ex.fe_logical = 0xDEADF00D; /* debug value */
2099 ac->ac_b_ex = ex;
2100 ext4_mb_use_best_found(ac, e4b);
2101 break;
2104 i += sbi->s_stripe;
2109 * This is also called BEFORE we load the buddy bitmap.
2110 * Returns either 1 or 0 indicating that the group is either suitable
2111 * for the allocation or not.
2113 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2114 ext4_group_t group, int cr)
2116 ext4_grpblk_t free, fragments;
2117 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2118 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2120 BUG_ON(cr < 0 || cr >= 4);
2122 free = grp->bb_free;
2123 if (free == 0)
2124 return false;
2125 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2126 return false;
2128 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2129 return false;
2131 fragments = grp->bb_fragments;
2132 if (fragments == 0)
2133 return false;
2135 switch (cr) {
2136 case 0:
2137 BUG_ON(ac->ac_2order == 0);
2139 /* Avoid using the first bg of a flexgroup for data files */
2140 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2141 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2142 ((group % flex_size) == 0))
2143 return false;
2145 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2146 (free / fragments) >= ac->ac_g_ex.fe_len)
2147 return true;
2149 if (grp->bb_largest_free_order < ac->ac_2order)
2150 return false;
2152 return true;
2153 case 1:
2154 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2155 return true;
2156 break;
2157 case 2:
2158 if (free >= ac->ac_g_ex.fe_len)
2159 return true;
2160 break;
2161 case 3:
2162 return true;
2163 default:
2164 BUG();
2167 return false;
2171 * This could return negative error code if something goes wrong
2172 * during ext4_mb_init_group(). This should not be called with
2173 * ext4_lock_group() held.
2175 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2176 ext4_group_t group, int cr)
2178 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2179 struct super_block *sb = ac->ac_sb;
2180 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2181 ext4_grpblk_t free;
2182 int ret = 0;
2184 if (should_lock)
2185 ext4_lock_group(sb, group);
2186 free = grp->bb_free;
2187 if (free == 0)
2188 goto out;
2189 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2190 goto out;
2191 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2192 goto out;
2193 if (should_lock)
2194 ext4_unlock_group(sb, group);
2196 /* We only do this if the grp has never been initialized */
2197 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2198 ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2199 if (ret)
2200 return ret;
2203 if (should_lock)
2204 ext4_lock_group(sb, group);
2205 ret = ext4_mb_good_group(ac, group, cr);
2206 out:
2207 if (should_lock)
2208 ext4_unlock_group(sb, group);
2209 return ret;
2212 static noinline_for_stack int
2213 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2215 ext4_group_t ngroups, group, i;
2216 int cr = -1;
2217 int err = 0, first_err = 0;
2218 struct ext4_sb_info *sbi;
2219 struct super_block *sb;
2220 struct ext4_buddy e4b;
2222 sb = ac->ac_sb;
2223 sbi = EXT4_SB(sb);
2224 ngroups = ext4_get_groups_count(sb);
2225 /* non-extent files are limited to low blocks/groups */
2226 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2227 ngroups = sbi->s_blockfile_groups;
2229 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2231 /* first, try the goal */
2232 err = ext4_mb_find_by_goal(ac, &e4b);
2233 if (err || ac->ac_status == AC_STATUS_FOUND)
2234 goto out;
2236 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2237 goto out;
2240 * ac->ac2_order is set only if the fe_len is a power of 2
2241 * if ac2_order is set we also set criteria to 0 so that we
2242 * try exact allocation using buddy.
2244 i = fls(ac->ac_g_ex.fe_len);
2245 ac->ac_2order = 0;
2247 * We search using buddy data only if the order of the request
2248 * is greater than equal to the sbi_s_mb_order2_reqs
2249 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2250 * We also support searching for power-of-two requests only for
2251 * requests upto maximum buddy size we have constructed.
2253 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2255 * This should tell if fe_len is exactly power of 2
2257 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2258 ac->ac_2order = array_index_nospec(i - 1,
2259 sb->s_blocksize_bits + 2);
2262 /* if stream allocation is enabled, use global goal */
2263 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2264 /* TBD: may be hot point */
2265 spin_lock(&sbi->s_md_lock);
2266 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2267 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2268 spin_unlock(&sbi->s_md_lock);
2271 /* Let's just scan groups to find more-less suitable blocks */
2272 cr = ac->ac_2order ? 0 : 1;
2274 * cr == 0 try to get exact allocation,
2275 * cr == 3 try to get anything
2277 repeat:
2278 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2279 ac->ac_criteria = cr;
2281 * searching for the right group start
2282 * from the goal value specified
2284 group = ac->ac_g_ex.fe_group;
2286 for (i = 0; i < ngroups; group++, i++) {
2287 int ret = 0;
2288 cond_resched();
2290 * Artificially restricted ngroups for non-extent
2291 * files makes group > ngroups possible on first loop.
2293 if (group >= ngroups)
2294 group = 0;
2296 /* This now checks without needing the buddy page */
2297 ret = ext4_mb_good_group_nolock(ac, group, cr);
2298 if (ret <= 0) {
2299 if (!first_err)
2300 first_err = ret;
2301 continue;
2304 err = ext4_mb_load_buddy(sb, group, &e4b);
2305 if (err)
2306 goto out;
2308 ext4_lock_group(sb, group);
2311 * We need to check again after locking the
2312 * block group
2314 ret = ext4_mb_good_group(ac, group, cr);
2315 if (ret == 0) {
2316 ext4_unlock_group(sb, group);
2317 ext4_mb_unload_buddy(&e4b);
2318 continue;
2321 ac->ac_groups_scanned++;
2322 if (cr == 0)
2323 ext4_mb_simple_scan_group(ac, &e4b);
2324 else if (cr == 1 && sbi->s_stripe &&
2325 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2326 ext4_mb_scan_aligned(ac, &e4b);
2327 else
2328 ext4_mb_complex_scan_group(ac, &e4b);
2330 ext4_unlock_group(sb, group);
2331 ext4_mb_unload_buddy(&e4b);
2333 if (ac->ac_status != AC_STATUS_CONTINUE)
2334 break;
2338 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2339 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2341 * We've been searching too long. Let's try to allocate
2342 * the best chunk we've found so far
2345 ext4_mb_try_best_found(ac, &e4b);
2346 if (ac->ac_status != AC_STATUS_FOUND) {
2348 * Someone more lucky has already allocated it.
2349 * The only thing we can do is just take first
2350 * found block(s)
2351 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2353 ac->ac_b_ex.fe_group = 0;
2354 ac->ac_b_ex.fe_start = 0;
2355 ac->ac_b_ex.fe_len = 0;
2356 ac->ac_status = AC_STATUS_CONTINUE;
2357 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2358 cr = 3;
2359 atomic_inc(&sbi->s_mb_lost_chunks);
2360 goto repeat;
2363 out:
2364 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2365 err = first_err;
2367 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2368 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2369 ac->ac_flags, cr, err);
2370 return err;
2373 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2375 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2376 ext4_group_t group;
2378 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2379 return NULL;
2380 group = *pos + 1;
2381 return (void *) ((unsigned long) group);
2384 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2386 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2387 ext4_group_t group;
2389 ++*pos;
2390 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2391 return NULL;
2392 group = *pos + 1;
2393 return (void *) ((unsigned long) group);
2396 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2398 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2399 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2400 int i;
2401 int err, buddy_loaded = 0;
2402 struct ext4_buddy e4b;
2403 struct ext4_group_info *grinfo;
2404 unsigned char blocksize_bits = min_t(unsigned char,
2405 sb->s_blocksize_bits,
2406 EXT4_MAX_BLOCK_LOG_SIZE);
2407 struct sg {
2408 struct ext4_group_info info;
2409 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2410 } sg;
2412 group--;
2413 if (group == 0)
2414 seq_puts(seq, "#group: free frags first ["
2415 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2416 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2418 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2419 sizeof(struct ext4_group_info);
2421 grinfo = ext4_get_group_info(sb, group);
2422 /* Load the group info in memory only if not already loaded. */
2423 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2424 err = ext4_mb_load_buddy(sb, group, &e4b);
2425 if (err) {
2426 seq_printf(seq, "#%-5u: I/O error\n", group);
2427 return 0;
2429 buddy_loaded = 1;
2432 memcpy(&sg, ext4_get_group_info(sb, group), i);
2434 if (buddy_loaded)
2435 ext4_mb_unload_buddy(&e4b);
2437 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2438 sg.info.bb_fragments, sg.info.bb_first_free);
2439 for (i = 0; i <= 13; i++)
2440 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2441 sg.info.bb_counters[i] : 0);
2442 seq_printf(seq, " ]\n");
2444 return 0;
2447 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2451 const struct seq_operations ext4_mb_seq_groups_ops = {
2452 .start = ext4_mb_seq_groups_start,
2453 .next = ext4_mb_seq_groups_next,
2454 .stop = ext4_mb_seq_groups_stop,
2455 .show = ext4_mb_seq_groups_show,
2458 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2460 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2461 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2463 BUG_ON(!cachep);
2464 return cachep;
2468 * Allocate the top-level s_group_info array for the specified number
2469 * of groups
2471 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2473 struct ext4_sb_info *sbi = EXT4_SB(sb);
2474 unsigned size;
2475 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2477 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2478 EXT4_DESC_PER_BLOCK_BITS(sb);
2479 if (size <= sbi->s_group_info_size)
2480 return 0;
2482 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2483 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2484 if (!new_groupinfo) {
2485 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2486 return -ENOMEM;
2488 rcu_read_lock();
2489 old_groupinfo = rcu_dereference(sbi->s_group_info);
2490 if (old_groupinfo)
2491 memcpy(new_groupinfo, old_groupinfo,
2492 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2493 rcu_read_unlock();
2494 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2495 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2496 if (old_groupinfo)
2497 ext4_kvfree_array_rcu(old_groupinfo);
2498 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2499 sbi->s_group_info_size);
2500 return 0;
2503 /* Create and initialize ext4_group_info data for the given group. */
2504 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2505 struct ext4_group_desc *desc)
2507 int i;
2508 int metalen = 0;
2509 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2510 struct ext4_sb_info *sbi = EXT4_SB(sb);
2511 struct ext4_group_info **meta_group_info;
2512 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2515 * First check if this group is the first of a reserved block.
2516 * If it's true, we have to allocate a new table of pointers
2517 * to ext4_group_info structures
2519 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2520 metalen = sizeof(*meta_group_info) <<
2521 EXT4_DESC_PER_BLOCK_BITS(sb);
2522 meta_group_info = kmalloc(metalen, GFP_NOFS);
2523 if (meta_group_info == NULL) {
2524 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2525 "for a buddy group");
2526 goto exit_meta_group_info;
2528 rcu_read_lock();
2529 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2530 rcu_read_unlock();
2533 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2534 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2536 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2537 if (meta_group_info[i] == NULL) {
2538 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2539 goto exit_group_info;
2541 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2542 &(meta_group_info[i]->bb_state));
2545 * initialize bb_free to be able to skip
2546 * empty groups without initialization
2548 if (ext4_has_group_desc_csum(sb) &&
2549 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2550 meta_group_info[i]->bb_free =
2551 ext4_free_clusters_after_init(sb, group, desc);
2552 } else {
2553 meta_group_info[i]->bb_free =
2554 ext4_free_group_clusters(sb, desc);
2557 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2558 init_rwsem(&meta_group_info[i]->alloc_sem);
2559 meta_group_info[i]->bb_free_root = RB_ROOT;
2560 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2562 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
2563 return 0;
2565 exit_group_info:
2566 /* If a meta_group_info table has been allocated, release it now */
2567 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2568 struct ext4_group_info ***group_info;
2570 rcu_read_lock();
2571 group_info = rcu_dereference(sbi->s_group_info);
2572 kfree(group_info[idx]);
2573 group_info[idx] = NULL;
2574 rcu_read_unlock();
2576 exit_meta_group_info:
2577 return -ENOMEM;
2578 } /* ext4_mb_add_groupinfo */
2580 static int ext4_mb_init_backend(struct super_block *sb)
2582 ext4_group_t ngroups = ext4_get_groups_count(sb);
2583 ext4_group_t i;
2584 struct ext4_sb_info *sbi = EXT4_SB(sb);
2585 int err;
2586 struct ext4_group_desc *desc;
2587 struct ext4_group_info ***group_info;
2588 struct kmem_cache *cachep;
2590 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2591 if (err)
2592 return err;
2594 sbi->s_buddy_cache = new_inode(sb);
2595 if (sbi->s_buddy_cache == NULL) {
2596 ext4_msg(sb, KERN_ERR, "can't get new inode");
2597 goto err_freesgi;
2599 /* To avoid potentially colliding with an valid on-disk inode number,
2600 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2601 * not in the inode hash, so it should never be found by iget(), but
2602 * this will avoid confusion if it ever shows up during debugging. */
2603 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2604 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2605 for (i = 0; i < ngroups; i++) {
2606 cond_resched();
2607 desc = ext4_get_group_desc(sb, i, NULL);
2608 if (desc == NULL) {
2609 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2610 goto err_freebuddy;
2612 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2613 goto err_freebuddy;
2616 return 0;
2618 err_freebuddy:
2619 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2620 while (i-- > 0)
2621 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2622 i = sbi->s_group_info_size;
2623 rcu_read_lock();
2624 group_info = rcu_dereference(sbi->s_group_info);
2625 while (i-- > 0)
2626 kfree(group_info[i]);
2627 rcu_read_unlock();
2628 iput(sbi->s_buddy_cache);
2629 err_freesgi:
2630 rcu_read_lock();
2631 kvfree(rcu_dereference(sbi->s_group_info));
2632 rcu_read_unlock();
2633 return -ENOMEM;
2636 static void ext4_groupinfo_destroy_slabs(void)
2638 int i;
2640 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2641 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2642 ext4_groupinfo_caches[i] = NULL;
2646 static int ext4_groupinfo_create_slab(size_t size)
2648 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2649 int slab_size;
2650 int blocksize_bits = order_base_2(size);
2651 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2652 struct kmem_cache *cachep;
2654 if (cache_index >= NR_GRPINFO_CACHES)
2655 return -EINVAL;
2657 if (unlikely(cache_index < 0))
2658 cache_index = 0;
2660 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2661 if (ext4_groupinfo_caches[cache_index]) {
2662 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2663 return 0; /* Already created */
2666 slab_size = offsetof(struct ext4_group_info,
2667 bb_counters[blocksize_bits + 2]);
2669 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2670 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2671 NULL);
2673 ext4_groupinfo_caches[cache_index] = cachep;
2675 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2676 if (!cachep) {
2677 printk(KERN_EMERG
2678 "EXT4-fs: no memory for groupinfo slab cache\n");
2679 return -ENOMEM;
2682 return 0;
2685 int ext4_mb_init(struct super_block *sb)
2687 struct ext4_sb_info *sbi = EXT4_SB(sb);
2688 unsigned i, j;
2689 unsigned offset, offset_incr;
2690 unsigned max;
2691 int ret;
2693 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2695 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2696 if (sbi->s_mb_offsets == NULL) {
2697 ret = -ENOMEM;
2698 goto out;
2701 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2702 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2703 if (sbi->s_mb_maxs == NULL) {
2704 ret = -ENOMEM;
2705 goto out;
2708 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2709 if (ret < 0)
2710 goto out;
2712 /* order 0 is regular bitmap */
2713 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2714 sbi->s_mb_offsets[0] = 0;
2716 i = 1;
2717 offset = 0;
2718 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2719 max = sb->s_blocksize << 2;
2720 do {
2721 sbi->s_mb_offsets[i] = offset;
2722 sbi->s_mb_maxs[i] = max;
2723 offset += offset_incr;
2724 offset_incr = offset_incr >> 1;
2725 max = max >> 1;
2726 i++;
2727 } while (i <= sb->s_blocksize_bits + 1);
2729 spin_lock_init(&sbi->s_md_lock);
2730 spin_lock_init(&sbi->s_bal_lock);
2731 sbi->s_mb_free_pending = 0;
2732 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2734 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2735 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2736 sbi->s_mb_stats = MB_DEFAULT_STATS;
2737 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2738 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2740 * The default group preallocation is 512, which for 4k block
2741 * sizes translates to 2 megabytes. However for bigalloc file
2742 * systems, this is probably too big (i.e, if the cluster size
2743 * is 1 megabyte, then group preallocation size becomes half a
2744 * gigabyte!). As a default, we will keep a two megabyte
2745 * group pralloc size for cluster sizes up to 64k, and after
2746 * that, we will force a minimum group preallocation size of
2747 * 32 clusters. This translates to 8 megs when the cluster
2748 * size is 256k, and 32 megs when the cluster size is 1 meg,
2749 * which seems reasonable as a default.
2751 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2752 sbi->s_cluster_bits, 32);
2754 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2755 * to the lowest multiple of s_stripe which is bigger than
2756 * the s_mb_group_prealloc as determined above. We want
2757 * the preallocation size to be an exact multiple of the
2758 * RAID stripe size so that preallocations don't fragment
2759 * the stripes.
2761 if (sbi->s_stripe > 1) {
2762 sbi->s_mb_group_prealloc = roundup(
2763 sbi->s_mb_group_prealloc, sbi->s_stripe);
2766 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2767 if (sbi->s_locality_groups == NULL) {
2768 ret = -ENOMEM;
2769 goto out;
2771 for_each_possible_cpu(i) {
2772 struct ext4_locality_group *lg;
2773 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2774 mutex_init(&lg->lg_mutex);
2775 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2776 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2777 spin_lock_init(&lg->lg_prealloc_lock);
2780 /* init file for buddy data */
2781 ret = ext4_mb_init_backend(sb);
2782 if (ret != 0)
2783 goto out_free_locality_groups;
2785 return 0;
2787 out_free_locality_groups:
2788 free_percpu(sbi->s_locality_groups);
2789 sbi->s_locality_groups = NULL;
2790 out:
2791 kfree(sbi->s_mb_offsets);
2792 sbi->s_mb_offsets = NULL;
2793 kfree(sbi->s_mb_maxs);
2794 sbi->s_mb_maxs = NULL;
2795 return ret;
2798 /* need to called with the ext4 group lock held */
2799 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2801 struct ext4_prealloc_space *pa;
2802 struct list_head *cur, *tmp;
2803 int count = 0;
2805 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2806 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2807 list_del(&pa->pa_group_list);
2808 count++;
2809 kmem_cache_free(ext4_pspace_cachep, pa);
2811 return count;
2814 int ext4_mb_release(struct super_block *sb)
2816 ext4_group_t ngroups = ext4_get_groups_count(sb);
2817 ext4_group_t i;
2818 int num_meta_group_infos;
2819 struct ext4_group_info *grinfo, ***group_info;
2820 struct ext4_sb_info *sbi = EXT4_SB(sb);
2821 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2822 int count;
2824 if (sbi->s_group_info) {
2825 for (i = 0; i < ngroups; i++) {
2826 cond_resched();
2827 grinfo = ext4_get_group_info(sb, i);
2828 mb_group_bb_bitmap_free(grinfo);
2829 ext4_lock_group(sb, i);
2830 count = ext4_mb_cleanup_pa(grinfo);
2831 if (count)
2832 mb_debug(sb, "mballoc: %d PAs left\n",
2833 count);
2834 ext4_unlock_group(sb, i);
2835 kmem_cache_free(cachep, grinfo);
2837 num_meta_group_infos = (ngroups +
2838 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2839 EXT4_DESC_PER_BLOCK_BITS(sb);
2840 rcu_read_lock();
2841 group_info = rcu_dereference(sbi->s_group_info);
2842 for (i = 0; i < num_meta_group_infos; i++)
2843 kfree(group_info[i]);
2844 kvfree(group_info);
2845 rcu_read_unlock();
2847 kfree(sbi->s_mb_offsets);
2848 kfree(sbi->s_mb_maxs);
2849 iput(sbi->s_buddy_cache);
2850 if (sbi->s_mb_stats) {
2851 ext4_msg(sb, KERN_INFO,
2852 "mballoc: %u blocks %u reqs (%u success)",
2853 atomic_read(&sbi->s_bal_allocated),
2854 atomic_read(&sbi->s_bal_reqs),
2855 atomic_read(&sbi->s_bal_success));
2856 ext4_msg(sb, KERN_INFO,
2857 "mballoc: %u extents scanned, %u goal hits, "
2858 "%u 2^N hits, %u breaks, %u lost",
2859 atomic_read(&sbi->s_bal_ex_scanned),
2860 atomic_read(&sbi->s_bal_goals),
2861 atomic_read(&sbi->s_bal_2orders),
2862 atomic_read(&sbi->s_bal_breaks),
2863 atomic_read(&sbi->s_mb_lost_chunks));
2864 ext4_msg(sb, KERN_INFO,
2865 "mballoc: %lu generated and it took %Lu",
2866 sbi->s_mb_buddies_generated,
2867 sbi->s_mb_generation_time);
2868 ext4_msg(sb, KERN_INFO,
2869 "mballoc: %u preallocated, %u discarded",
2870 atomic_read(&sbi->s_mb_preallocated),
2871 atomic_read(&sbi->s_mb_discarded));
2874 free_percpu(sbi->s_locality_groups);
2876 return 0;
2879 static inline int ext4_issue_discard(struct super_block *sb,
2880 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2881 struct bio **biop)
2883 ext4_fsblk_t discard_block;
2885 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2886 ext4_group_first_block_no(sb, block_group));
2887 count = EXT4_C2B(EXT4_SB(sb), count);
2888 trace_ext4_discard_blocks(sb,
2889 (unsigned long long) discard_block, count);
2890 if (biop) {
2891 return __blkdev_issue_discard(sb->s_bdev,
2892 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2893 (sector_t)count << (sb->s_blocksize_bits - 9),
2894 GFP_NOFS, 0, biop);
2895 } else
2896 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2899 static void ext4_free_data_in_buddy(struct super_block *sb,
2900 struct ext4_free_data *entry)
2902 struct ext4_buddy e4b;
2903 struct ext4_group_info *db;
2904 int err, count = 0, count2 = 0;
2906 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
2907 entry->efd_count, entry->efd_group, entry);
2909 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2910 /* we expect to find existing buddy because it's pinned */
2911 BUG_ON(err != 0);
2913 spin_lock(&EXT4_SB(sb)->s_md_lock);
2914 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2915 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2917 db = e4b.bd_info;
2918 /* there are blocks to put in buddy to make them really free */
2919 count += entry->efd_count;
2920 count2++;
2921 ext4_lock_group(sb, entry->efd_group);
2922 /* Take it out of per group rb tree */
2923 rb_erase(&entry->efd_node, &(db->bb_free_root));
2924 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2927 * Clear the trimmed flag for the group so that the next
2928 * ext4_trim_fs can trim it.
2929 * If the volume is mounted with -o discard, online discard
2930 * is supported and the free blocks will be trimmed online.
2932 if (!test_opt(sb, DISCARD))
2933 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2935 if (!db->bb_free_root.rb_node) {
2936 /* No more items in the per group rb tree
2937 * balance refcounts from ext4_mb_free_metadata()
2939 put_page(e4b.bd_buddy_page);
2940 put_page(e4b.bd_bitmap_page);
2942 ext4_unlock_group(sb, entry->efd_group);
2943 kmem_cache_free(ext4_free_data_cachep, entry);
2944 ext4_mb_unload_buddy(&e4b);
2946 mb_debug(sb, "freed %d blocks in %d structures\n", count,
2947 count2);
2951 * This function is called by the jbd2 layer once the commit has finished,
2952 * so we know we can free the blocks that were released with that commit.
2954 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2956 struct ext4_sb_info *sbi = EXT4_SB(sb);
2957 struct ext4_free_data *entry, *tmp;
2958 struct bio *discard_bio = NULL;
2959 struct list_head freed_data_list;
2960 struct list_head *cut_pos = NULL;
2961 int err;
2963 INIT_LIST_HEAD(&freed_data_list);
2965 spin_lock(&sbi->s_md_lock);
2966 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2967 if (entry->efd_tid != commit_tid)
2968 break;
2969 cut_pos = &entry->efd_list;
2971 if (cut_pos)
2972 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2973 cut_pos);
2974 spin_unlock(&sbi->s_md_lock);
2976 if (test_opt(sb, DISCARD)) {
2977 list_for_each_entry(entry, &freed_data_list, efd_list) {
2978 err = ext4_issue_discard(sb, entry->efd_group,
2979 entry->efd_start_cluster,
2980 entry->efd_count,
2981 &discard_bio);
2982 if (err && err != -EOPNOTSUPP) {
2983 ext4_msg(sb, KERN_WARNING, "discard request in"
2984 " group:%d block:%d count:%d failed"
2985 " with %d", entry->efd_group,
2986 entry->efd_start_cluster,
2987 entry->efd_count, err);
2988 } else if (err == -EOPNOTSUPP)
2989 break;
2992 if (discard_bio) {
2993 submit_bio_wait(discard_bio);
2994 bio_put(discard_bio);
2998 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2999 ext4_free_data_in_buddy(sb, entry);
3002 int __init ext4_init_mballoc(void)
3004 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3005 SLAB_RECLAIM_ACCOUNT);
3006 if (ext4_pspace_cachep == NULL)
3007 goto out;
3009 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3010 SLAB_RECLAIM_ACCOUNT);
3011 if (ext4_ac_cachep == NULL)
3012 goto out_pa_free;
3014 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3015 SLAB_RECLAIM_ACCOUNT);
3016 if (ext4_free_data_cachep == NULL)
3017 goto out_ac_free;
3019 return 0;
3021 out_ac_free:
3022 kmem_cache_destroy(ext4_ac_cachep);
3023 out_pa_free:
3024 kmem_cache_destroy(ext4_pspace_cachep);
3025 out:
3026 return -ENOMEM;
3029 void ext4_exit_mballoc(void)
3032 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3033 * before destroying the slab cache.
3035 rcu_barrier();
3036 kmem_cache_destroy(ext4_pspace_cachep);
3037 kmem_cache_destroy(ext4_ac_cachep);
3038 kmem_cache_destroy(ext4_free_data_cachep);
3039 ext4_groupinfo_destroy_slabs();
3044 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3045 * Returns 0 if success or error code
3047 static noinline_for_stack int
3048 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3049 handle_t *handle, unsigned int reserv_clstrs)
3051 struct buffer_head *bitmap_bh = NULL;
3052 struct ext4_group_desc *gdp;
3053 struct buffer_head *gdp_bh;
3054 struct ext4_sb_info *sbi;
3055 struct super_block *sb;
3056 ext4_fsblk_t block;
3057 int err, len;
3059 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3060 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3062 sb = ac->ac_sb;
3063 sbi = EXT4_SB(sb);
3065 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3066 if (IS_ERR(bitmap_bh)) {
3067 err = PTR_ERR(bitmap_bh);
3068 bitmap_bh = NULL;
3069 goto out_err;
3072 BUFFER_TRACE(bitmap_bh, "getting write access");
3073 err = ext4_journal_get_write_access(handle, bitmap_bh);
3074 if (err)
3075 goto out_err;
3077 err = -EIO;
3078 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3079 if (!gdp)
3080 goto out_err;
3082 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3083 ext4_free_group_clusters(sb, gdp));
3085 BUFFER_TRACE(gdp_bh, "get_write_access");
3086 err = ext4_journal_get_write_access(handle, gdp_bh);
3087 if (err)
3088 goto out_err;
3090 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3092 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3093 if (!ext4_data_block_valid(sbi, block, len)) {
3094 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3095 "fs metadata", block, block+len);
3096 /* File system mounted not to panic on error
3097 * Fix the bitmap and return EFSCORRUPTED
3098 * We leak some of the blocks here.
3100 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3101 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3102 ac->ac_b_ex.fe_len);
3103 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3104 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3105 if (!err)
3106 err = -EFSCORRUPTED;
3107 goto out_err;
3110 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3111 #ifdef AGGRESSIVE_CHECK
3113 int i;
3114 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3115 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3116 bitmap_bh->b_data));
3119 #endif
3120 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3121 ac->ac_b_ex.fe_len);
3122 if (ext4_has_group_desc_csum(sb) &&
3123 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3124 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3125 ext4_free_group_clusters_set(sb, gdp,
3126 ext4_free_clusters_after_init(sb,
3127 ac->ac_b_ex.fe_group, gdp));
3129 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3130 ext4_free_group_clusters_set(sb, gdp, len);
3131 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3132 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3134 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3135 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3137 * Now reduce the dirty block count also. Should not go negative
3139 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3140 /* release all the reserved blocks if non delalloc */
3141 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3142 reserv_clstrs);
3144 if (sbi->s_log_groups_per_flex) {
3145 ext4_group_t flex_group = ext4_flex_group(sbi,
3146 ac->ac_b_ex.fe_group);
3147 atomic64_sub(ac->ac_b_ex.fe_len,
3148 &sbi_array_rcu_deref(sbi, s_flex_groups,
3149 flex_group)->free_clusters);
3152 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3153 if (err)
3154 goto out_err;
3155 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3157 out_err:
3158 brelse(bitmap_bh);
3159 return err;
3163 * here we normalize request for locality group
3164 * Group request are normalized to s_mb_group_prealloc, which goes to
3165 * s_strip if we set the same via mount option.
3166 * s_mb_group_prealloc can be configured via
3167 * /sys/fs/ext4/<partition>/mb_group_prealloc
3169 * XXX: should we try to preallocate more than the group has now?
3171 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3173 struct super_block *sb = ac->ac_sb;
3174 struct ext4_locality_group *lg = ac->ac_lg;
3176 BUG_ON(lg == NULL);
3177 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3178 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3182 * Normalization means making request better in terms of
3183 * size and alignment
3185 static noinline_for_stack void
3186 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3187 struct ext4_allocation_request *ar)
3189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3190 int bsbits, max;
3191 ext4_lblk_t end;
3192 loff_t size, start_off;
3193 loff_t orig_size __maybe_unused;
3194 ext4_lblk_t start;
3195 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3196 struct ext4_prealloc_space *pa;
3198 /* do normalize only data requests, metadata requests
3199 do not need preallocation */
3200 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3201 return;
3203 /* sometime caller may want exact blocks */
3204 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3205 return;
3207 /* caller may indicate that preallocation isn't
3208 * required (it's a tail, for example) */
3209 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3210 return;
3212 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3213 ext4_mb_normalize_group_request(ac);
3214 return ;
3217 bsbits = ac->ac_sb->s_blocksize_bits;
3219 /* first, let's learn actual file size
3220 * given current request is allocated */
3221 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3222 size = size << bsbits;
3223 if (size < i_size_read(ac->ac_inode))
3224 size = i_size_read(ac->ac_inode);
3225 orig_size = size;
3227 /* max size of free chunks */
3228 max = 2 << bsbits;
3230 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3231 (req <= (size) || max <= (chunk_size))
3233 /* first, try to predict filesize */
3234 /* XXX: should this table be tunable? */
3235 start_off = 0;
3236 if (size <= 16 * 1024) {
3237 size = 16 * 1024;
3238 } else if (size <= 32 * 1024) {
3239 size = 32 * 1024;
3240 } else if (size <= 64 * 1024) {
3241 size = 64 * 1024;
3242 } else if (size <= 128 * 1024) {
3243 size = 128 * 1024;
3244 } else if (size <= 256 * 1024) {
3245 size = 256 * 1024;
3246 } else if (size <= 512 * 1024) {
3247 size = 512 * 1024;
3248 } else if (size <= 1024 * 1024) {
3249 size = 1024 * 1024;
3250 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3251 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3252 (21 - bsbits)) << 21;
3253 size = 2 * 1024 * 1024;
3254 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3255 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3256 (22 - bsbits)) << 22;
3257 size = 4 * 1024 * 1024;
3258 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3259 (8<<20)>>bsbits, max, 8 * 1024)) {
3260 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3261 (23 - bsbits)) << 23;
3262 size = 8 * 1024 * 1024;
3263 } else {
3264 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3265 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3266 ac->ac_o_ex.fe_len) << bsbits;
3268 size = size >> bsbits;
3269 start = start_off >> bsbits;
3271 /* don't cover already allocated blocks in selected range */
3272 if (ar->pleft && start <= ar->lleft) {
3273 size -= ar->lleft + 1 - start;
3274 start = ar->lleft + 1;
3276 if (ar->pright && start + size - 1 >= ar->lright)
3277 size -= start + size - ar->lright;
3280 * Trim allocation request for filesystems with artificially small
3281 * groups.
3283 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3284 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3286 end = start + size;
3288 /* check we don't cross already preallocated blocks */
3289 rcu_read_lock();
3290 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3291 ext4_lblk_t pa_end;
3293 if (pa->pa_deleted)
3294 continue;
3295 spin_lock(&pa->pa_lock);
3296 if (pa->pa_deleted) {
3297 spin_unlock(&pa->pa_lock);
3298 continue;
3301 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3302 pa->pa_len);
3304 /* PA must not overlap original request */
3305 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3306 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3308 /* skip PAs this normalized request doesn't overlap with */
3309 if (pa->pa_lstart >= end || pa_end <= start) {
3310 spin_unlock(&pa->pa_lock);
3311 continue;
3313 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3315 /* adjust start or end to be adjacent to this pa */
3316 if (pa_end <= ac->ac_o_ex.fe_logical) {
3317 BUG_ON(pa_end < start);
3318 start = pa_end;
3319 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3320 BUG_ON(pa->pa_lstart > end);
3321 end = pa->pa_lstart;
3323 spin_unlock(&pa->pa_lock);
3325 rcu_read_unlock();
3326 size = end - start;
3328 /* XXX: extra loop to check we really don't overlap preallocations */
3329 rcu_read_lock();
3330 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3331 ext4_lblk_t pa_end;
3333 spin_lock(&pa->pa_lock);
3334 if (pa->pa_deleted == 0) {
3335 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3336 pa->pa_len);
3337 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3339 spin_unlock(&pa->pa_lock);
3341 rcu_read_unlock();
3343 if (start + size <= ac->ac_o_ex.fe_logical &&
3344 start > ac->ac_o_ex.fe_logical) {
3345 ext4_msg(ac->ac_sb, KERN_ERR,
3346 "start %lu, size %lu, fe_logical %lu",
3347 (unsigned long) start, (unsigned long) size,
3348 (unsigned long) ac->ac_o_ex.fe_logical);
3349 BUG();
3351 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3353 /* now prepare goal request */
3355 /* XXX: is it better to align blocks WRT to logical
3356 * placement or satisfy big request as is */
3357 ac->ac_g_ex.fe_logical = start;
3358 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3360 /* define goal start in order to merge */
3361 if (ar->pright && (ar->lright == (start + size))) {
3362 /* merge to the right */
3363 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3364 &ac->ac_f_ex.fe_group,
3365 &ac->ac_f_ex.fe_start);
3366 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3368 if (ar->pleft && (ar->lleft + 1 == start)) {
3369 /* merge to the left */
3370 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3371 &ac->ac_f_ex.fe_group,
3372 &ac->ac_f_ex.fe_start);
3373 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3376 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
3377 orig_size, start);
3380 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3382 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3384 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3385 atomic_inc(&sbi->s_bal_reqs);
3386 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3387 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3388 atomic_inc(&sbi->s_bal_success);
3389 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3390 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3391 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3392 atomic_inc(&sbi->s_bal_goals);
3393 if (ac->ac_found > sbi->s_mb_max_to_scan)
3394 atomic_inc(&sbi->s_bal_breaks);
3397 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3398 trace_ext4_mballoc_alloc(ac);
3399 else
3400 trace_ext4_mballoc_prealloc(ac);
3404 * Called on failure; free up any blocks from the inode PA for this
3405 * context. We don't need this for MB_GROUP_PA because we only change
3406 * pa_free in ext4_mb_release_context(), but on failure, we've already
3407 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3409 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3411 struct ext4_prealloc_space *pa = ac->ac_pa;
3412 struct ext4_buddy e4b;
3413 int err;
3415 if (pa == NULL) {
3416 if (ac->ac_f_ex.fe_len == 0)
3417 return;
3418 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3419 if (err) {
3421 * This should never happen since we pin the
3422 * pages in the ext4_allocation_context so
3423 * ext4_mb_load_buddy() should never fail.
3425 WARN(1, "mb_load_buddy failed (%d)", err);
3426 return;
3428 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3429 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3430 ac->ac_f_ex.fe_len);
3431 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3432 ext4_mb_unload_buddy(&e4b);
3433 return;
3435 if (pa->pa_type == MB_INODE_PA)
3436 pa->pa_free += ac->ac_b_ex.fe_len;
3440 * use blocks preallocated to inode
3442 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3443 struct ext4_prealloc_space *pa)
3445 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3446 ext4_fsblk_t start;
3447 ext4_fsblk_t end;
3448 int len;
3450 /* found preallocated blocks, use them */
3451 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3452 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3453 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3454 len = EXT4_NUM_B2C(sbi, end - start);
3455 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3456 &ac->ac_b_ex.fe_start);
3457 ac->ac_b_ex.fe_len = len;
3458 ac->ac_status = AC_STATUS_FOUND;
3459 ac->ac_pa = pa;
3461 BUG_ON(start < pa->pa_pstart);
3462 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3463 BUG_ON(pa->pa_free < len);
3464 pa->pa_free -= len;
3466 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
3470 * use blocks preallocated to locality group
3472 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3473 struct ext4_prealloc_space *pa)
3475 unsigned int len = ac->ac_o_ex.fe_len;
3477 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3478 &ac->ac_b_ex.fe_group,
3479 &ac->ac_b_ex.fe_start);
3480 ac->ac_b_ex.fe_len = len;
3481 ac->ac_status = AC_STATUS_FOUND;
3482 ac->ac_pa = pa;
3484 /* we don't correct pa_pstart or pa_plen here to avoid
3485 * possible race when the group is being loaded concurrently
3486 * instead we correct pa later, after blocks are marked
3487 * in on-disk bitmap -- see ext4_mb_release_context()
3488 * Other CPUs are prevented from allocating from this pa by lg_mutex
3490 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
3491 pa->pa_lstart-len, len, pa);
3495 * Return the prealloc space that have minimal distance
3496 * from the goal block. @cpa is the prealloc
3497 * space that is having currently known minimal distance
3498 * from the goal block.
3500 static struct ext4_prealloc_space *
3501 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3502 struct ext4_prealloc_space *pa,
3503 struct ext4_prealloc_space *cpa)
3505 ext4_fsblk_t cur_distance, new_distance;
3507 if (cpa == NULL) {
3508 atomic_inc(&pa->pa_count);
3509 return pa;
3511 cur_distance = abs(goal_block - cpa->pa_pstart);
3512 new_distance = abs(goal_block - pa->pa_pstart);
3514 if (cur_distance <= new_distance)
3515 return cpa;
3517 /* drop the previous reference */
3518 atomic_dec(&cpa->pa_count);
3519 atomic_inc(&pa->pa_count);
3520 return pa;
3524 * search goal blocks in preallocated space
3526 static noinline_for_stack bool
3527 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3529 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3530 int order, i;
3531 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3532 struct ext4_locality_group *lg;
3533 struct ext4_prealloc_space *pa, *cpa = NULL;
3534 ext4_fsblk_t goal_block;
3536 /* only data can be preallocated */
3537 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3538 return false;
3540 /* first, try per-file preallocation */
3541 rcu_read_lock();
3542 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3544 /* all fields in this condition don't change,
3545 * so we can skip locking for them */
3546 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3547 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3548 EXT4_C2B(sbi, pa->pa_len)))
3549 continue;
3551 /* non-extent files can't have physical blocks past 2^32 */
3552 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3553 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3554 EXT4_MAX_BLOCK_FILE_PHYS))
3555 continue;
3557 /* found preallocated blocks, use them */
3558 spin_lock(&pa->pa_lock);
3559 if (pa->pa_deleted == 0 && pa->pa_free) {
3560 atomic_inc(&pa->pa_count);
3561 ext4_mb_use_inode_pa(ac, pa);
3562 spin_unlock(&pa->pa_lock);
3563 ac->ac_criteria = 10;
3564 rcu_read_unlock();
3565 return true;
3567 spin_unlock(&pa->pa_lock);
3569 rcu_read_unlock();
3571 /* can we use group allocation? */
3572 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3573 return false;
3575 /* inode may have no locality group for some reason */
3576 lg = ac->ac_lg;
3577 if (lg == NULL)
3578 return false;
3579 order = fls(ac->ac_o_ex.fe_len) - 1;
3580 if (order > PREALLOC_TB_SIZE - 1)
3581 /* The max size of hash table is PREALLOC_TB_SIZE */
3582 order = PREALLOC_TB_SIZE - 1;
3584 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3586 * search for the prealloc space that is having
3587 * minimal distance from the goal block.
3589 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3590 rcu_read_lock();
3591 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3592 pa_inode_list) {
3593 spin_lock(&pa->pa_lock);
3594 if (pa->pa_deleted == 0 &&
3595 pa->pa_free >= ac->ac_o_ex.fe_len) {
3597 cpa = ext4_mb_check_group_pa(goal_block,
3598 pa, cpa);
3600 spin_unlock(&pa->pa_lock);
3602 rcu_read_unlock();
3604 if (cpa) {
3605 ext4_mb_use_group_pa(ac, cpa);
3606 ac->ac_criteria = 20;
3607 return true;
3609 return false;
3613 * the function goes through all block freed in the group
3614 * but not yet committed and marks them used in in-core bitmap.
3615 * buddy must be generated from this bitmap
3616 * Need to be called with the ext4 group lock held
3618 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3619 ext4_group_t group)
3621 struct rb_node *n;
3622 struct ext4_group_info *grp;
3623 struct ext4_free_data *entry;
3625 grp = ext4_get_group_info(sb, group);
3626 n = rb_first(&(grp->bb_free_root));
3628 while (n) {
3629 entry = rb_entry(n, struct ext4_free_data, efd_node);
3630 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3631 n = rb_next(n);
3633 return;
3637 * the function goes through all preallocation in this group and marks them
3638 * used in in-core bitmap. buddy must be generated from this bitmap
3639 * Need to be called with ext4 group lock held
3641 static noinline_for_stack
3642 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3643 ext4_group_t group)
3645 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3646 struct ext4_prealloc_space *pa;
3647 struct list_head *cur;
3648 ext4_group_t groupnr;
3649 ext4_grpblk_t start;
3650 int preallocated = 0;
3651 int len;
3653 /* all form of preallocation discards first load group,
3654 * so the only competing code is preallocation use.
3655 * we don't need any locking here
3656 * notice we do NOT ignore preallocations with pa_deleted
3657 * otherwise we could leave used blocks available for
3658 * allocation in buddy when concurrent ext4_mb_put_pa()
3659 * is dropping preallocation
3661 list_for_each(cur, &grp->bb_prealloc_list) {
3662 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3663 spin_lock(&pa->pa_lock);
3664 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3665 &groupnr, &start);
3666 len = pa->pa_len;
3667 spin_unlock(&pa->pa_lock);
3668 if (unlikely(len == 0))
3669 continue;
3670 BUG_ON(groupnr != group);
3671 ext4_set_bits(bitmap, start, len);
3672 preallocated += len;
3674 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
3677 static void ext4_mb_pa_callback(struct rcu_head *head)
3679 struct ext4_prealloc_space *pa;
3680 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3682 BUG_ON(atomic_read(&pa->pa_count));
3683 BUG_ON(pa->pa_deleted == 0);
3684 kmem_cache_free(ext4_pspace_cachep, pa);
3688 * drops a reference to preallocated space descriptor
3689 * if this was the last reference and the space is consumed
3691 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3692 struct super_block *sb, struct ext4_prealloc_space *pa)
3694 ext4_group_t grp;
3695 ext4_fsblk_t grp_blk;
3697 /* in this short window concurrent discard can set pa_deleted */
3698 spin_lock(&pa->pa_lock);
3699 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3700 spin_unlock(&pa->pa_lock);
3701 return;
3704 if (pa->pa_deleted == 1) {
3705 spin_unlock(&pa->pa_lock);
3706 return;
3709 pa->pa_deleted = 1;
3710 spin_unlock(&pa->pa_lock);
3712 grp_blk = pa->pa_pstart;
3714 * If doing group-based preallocation, pa_pstart may be in the
3715 * next group when pa is used up
3717 if (pa->pa_type == MB_GROUP_PA)
3718 grp_blk--;
3720 grp = ext4_get_group_number(sb, grp_blk);
3723 * possible race:
3725 * P1 (buddy init) P2 (regular allocation)
3726 * find block B in PA
3727 * copy on-disk bitmap to buddy
3728 * mark B in on-disk bitmap
3729 * drop PA from group
3730 * mark all PAs in buddy
3732 * thus, P1 initializes buddy with B available. to prevent this
3733 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3734 * against that pair
3736 ext4_lock_group(sb, grp);
3737 list_del(&pa->pa_group_list);
3738 ext4_unlock_group(sb, grp);
3740 spin_lock(pa->pa_obj_lock);
3741 list_del_rcu(&pa->pa_inode_list);
3742 spin_unlock(pa->pa_obj_lock);
3744 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3748 * creates new preallocated space for given inode
3750 static noinline_for_stack void
3751 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3753 struct super_block *sb = ac->ac_sb;
3754 struct ext4_sb_info *sbi = EXT4_SB(sb);
3755 struct ext4_prealloc_space *pa;
3756 struct ext4_group_info *grp;
3757 struct ext4_inode_info *ei;
3759 /* preallocate only when found space is larger then requested */
3760 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3761 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3762 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3763 BUG_ON(ac->ac_pa == NULL);
3765 pa = ac->ac_pa;
3767 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3768 int winl;
3769 int wins;
3770 int win;
3771 int offs;
3773 /* we can't allocate as much as normalizer wants.
3774 * so, found space must get proper lstart
3775 * to cover original request */
3776 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3777 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3779 /* we're limited by original request in that
3780 * logical block must be covered any way
3781 * winl is window we can move our chunk within */
3782 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3784 /* also, we should cover whole original request */
3785 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3787 /* the smallest one defines real window */
3788 win = min(winl, wins);
3790 offs = ac->ac_o_ex.fe_logical %
3791 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3792 if (offs && offs < win)
3793 win = offs;
3795 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3796 EXT4_NUM_B2C(sbi, win);
3797 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3798 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3801 /* preallocation can change ac_b_ex, thus we store actually
3802 * allocated blocks for history */
3803 ac->ac_f_ex = ac->ac_b_ex;
3805 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3806 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3807 pa->pa_len = ac->ac_b_ex.fe_len;
3808 pa->pa_free = pa->pa_len;
3809 spin_lock_init(&pa->pa_lock);
3810 INIT_LIST_HEAD(&pa->pa_inode_list);
3811 INIT_LIST_HEAD(&pa->pa_group_list);
3812 pa->pa_deleted = 0;
3813 pa->pa_type = MB_INODE_PA;
3815 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
3816 pa->pa_len, pa->pa_lstart);
3817 trace_ext4_mb_new_inode_pa(ac, pa);
3819 ext4_mb_use_inode_pa(ac, pa);
3820 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3822 ei = EXT4_I(ac->ac_inode);
3823 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3825 pa->pa_obj_lock = &ei->i_prealloc_lock;
3826 pa->pa_inode = ac->ac_inode;
3828 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3830 spin_lock(pa->pa_obj_lock);
3831 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3832 spin_unlock(pa->pa_obj_lock);
3836 * creates new preallocated space for locality group inodes belongs to
3838 static noinline_for_stack void
3839 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3841 struct super_block *sb = ac->ac_sb;
3842 struct ext4_locality_group *lg;
3843 struct ext4_prealloc_space *pa;
3844 struct ext4_group_info *grp;
3846 /* preallocate only when found space is larger then requested */
3847 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3848 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3849 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3850 BUG_ON(ac->ac_pa == NULL);
3852 pa = ac->ac_pa;
3854 /* preallocation can change ac_b_ex, thus we store actually
3855 * allocated blocks for history */
3856 ac->ac_f_ex = ac->ac_b_ex;
3858 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3859 pa->pa_lstart = pa->pa_pstart;
3860 pa->pa_len = ac->ac_b_ex.fe_len;
3861 pa->pa_free = pa->pa_len;
3862 spin_lock_init(&pa->pa_lock);
3863 INIT_LIST_HEAD(&pa->pa_inode_list);
3864 INIT_LIST_HEAD(&pa->pa_group_list);
3865 pa->pa_deleted = 0;
3866 pa->pa_type = MB_GROUP_PA;
3868 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
3869 pa->pa_len, pa->pa_lstart);
3870 trace_ext4_mb_new_group_pa(ac, pa);
3872 ext4_mb_use_group_pa(ac, pa);
3873 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3875 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3876 lg = ac->ac_lg;
3877 BUG_ON(lg == NULL);
3879 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3880 pa->pa_inode = NULL;
3882 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3885 * We will later add the new pa to the right bucket
3886 * after updating the pa_free in ext4_mb_release_context
3890 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3892 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3893 ext4_mb_new_group_pa(ac);
3894 else
3895 ext4_mb_new_inode_pa(ac);
3899 * finds all unused blocks in on-disk bitmap, frees them in
3900 * in-core bitmap and buddy.
3901 * @pa must be unlinked from inode and group lists, so that
3902 * nobody else can find/use it.
3903 * the caller MUST hold group/inode locks.
3904 * TODO: optimize the case when there are no in-core structures yet
3906 static noinline_for_stack int
3907 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3908 struct ext4_prealloc_space *pa)
3910 struct super_block *sb = e4b->bd_sb;
3911 struct ext4_sb_info *sbi = EXT4_SB(sb);
3912 unsigned int end;
3913 unsigned int next;
3914 ext4_group_t group;
3915 ext4_grpblk_t bit;
3916 unsigned long long grp_blk_start;
3917 int free = 0;
3919 BUG_ON(pa->pa_deleted == 0);
3920 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3921 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3922 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3923 end = bit + pa->pa_len;
3925 while (bit < end) {
3926 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3927 if (bit >= end)
3928 break;
3929 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3930 mb_debug(sb, "free preallocated %u/%u in group %u\n",
3931 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3932 (unsigned) next - bit, (unsigned) group);
3933 free += next - bit;
3935 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3936 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3937 EXT4_C2B(sbi, bit)),
3938 next - bit);
3939 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3940 bit = next + 1;
3942 if (free != pa->pa_free) {
3943 ext4_msg(e4b->bd_sb, KERN_CRIT,
3944 "pa %p: logic %lu, phys. %lu, len %d",
3945 pa, (unsigned long) pa->pa_lstart,
3946 (unsigned long) pa->pa_pstart,
3947 pa->pa_len);
3948 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3949 free, pa->pa_free);
3951 * pa is already deleted so we use the value obtained
3952 * from the bitmap and continue.
3955 atomic_add(free, &sbi->s_mb_discarded);
3957 return 0;
3960 static noinline_for_stack int
3961 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3962 struct ext4_prealloc_space *pa)
3964 struct super_block *sb = e4b->bd_sb;
3965 ext4_group_t group;
3966 ext4_grpblk_t bit;
3968 trace_ext4_mb_release_group_pa(sb, pa);
3969 BUG_ON(pa->pa_deleted == 0);
3970 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3971 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3972 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3973 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3974 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3976 return 0;
3980 * releases all preallocations in given group
3982 * first, we need to decide discard policy:
3983 * - when do we discard
3984 * 1) ENOSPC
3985 * - how many do we discard
3986 * 1) how many requested
3988 static noinline_for_stack int
3989 ext4_mb_discard_group_preallocations(struct super_block *sb,
3990 ext4_group_t group, int needed)
3992 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3993 struct buffer_head *bitmap_bh = NULL;
3994 struct ext4_prealloc_space *pa, *tmp;
3995 struct list_head list;
3996 struct ext4_buddy e4b;
3997 int err;
3998 int busy = 0;
3999 int free = 0;
4001 mb_debug(sb, "discard preallocation for group %u\n", group);
4002 if (list_empty(&grp->bb_prealloc_list))
4003 goto out_dbg;
4005 bitmap_bh = ext4_read_block_bitmap(sb, group);
4006 if (IS_ERR(bitmap_bh)) {
4007 err = PTR_ERR(bitmap_bh);
4008 ext4_error_err(sb, -err,
4009 "Error %d reading block bitmap for %u",
4010 err, group);
4011 goto out_dbg;
4014 err = ext4_mb_load_buddy(sb, group, &e4b);
4015 if (err) {
4016 ext4_warning(sb, "Error %d loading buddy information for %u",
4017 err, group);
4018 put_bh(bitmap_bh);
4019 goto out_dbg;
4022 if (needed == 0)
4023 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4025 INIT_LIST_HEAD(&list);
4026 repeat:
4027 ext4_lock_group(sb, group);
4028 this_cpu_inc(discard_pa_seq);
4029 list_for_each_entry_safe(pa, tmp,
4030 &grp->bb_prealloc_list, pa_group_list) {
4031 spin_lock(&pa->pa_lock);
4032 if (atomic_read(&pa->pa_count)) {
4033 spin_unlock(&pa->pa_lock);
4034 busy = 1;
4035 continue;
4037 if (pa->pa_deleted) {
4038 spin_unlock(&pa->pa_lock);
4039 continue;
4042 /* seems this one can be freed ... */
4043 pa->pa_deleted = 1;
4045 /* we can trust pa_free ... */
4046 free += pa->pa_free;
4048 spin_unlock(&pa->pa_lock);
4050 list_del(&pa->pa_group_list);
4051 list_add(&pa->u.pa_tmp_list, &list);
4054 /* if we still need more blocks and some PAs were used, try again */
4055 if (free < needed && busy) {
4056 busy = 0;
4057 ext4_unlock_group(sb, group);
4058 cond_resched();
4059 goto repeat;
4062 /* found anything to free? */
4063 if (list_empty(&list)) {
4064 BUG_ON(free != 0);
4065 mb_debug(sb, "Someone else may have freed PA for this group %u\n",
4066 group);
4067 goto out;
4070 /* now free all selected PAs */
4071 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4073 /* remove from object (inode or locality group) */
4074 spin_lock(pa->pa_obj_lock);
4075 list_del_rcu(&pa->pa_inode_list);
4076 spin_unlock(pa->pa_obj_lock);
4078 if (pa->pa_type == MB_GROUP_PA)
4079 ext4_mb_release_group_pa(&e4b, pa);
4080 else
4081 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4083 list_del(&pa->u.pa_tmp_list);
4084 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4087 out:
4088 ext4_unlock_group(sb, group);
4089 ext4_mb_unload_buddy(&e4b);
4090 put_bh(bitmap_bh);
4091 out_dbg:
4092 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4093 free, group, grp->bb_free);
4094 return free;
4098 * releases all non-used preallocated blocks for given inode
4100 * It's important to discard preallocations under i_data_sem
4101 * We don't want another block to be served from the prealloc
4102 * space when we are discarding the inode prealloc space.
4104 * FIXME!! Make sure it is valid at all the call sites
4106 void ext4_discard_preallocations(struct inode *inode)
4108 struct ext4_inode_info *ei = EXT4_I(inode);
4109 struct super_block *sb = inode->i_sb;
4110 struct buffer_head *bitmap_bh = NULL;
4111 struct ext4_prealloc_space *pa, *tmp;
4112 ext4_group_t group = 0;
4113 struct list_head list;
4114 struct ext4_buddy e4b;
4115 int err;
4117 if (!S_ISREG(inode->i_mode)) {
4118 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4119 return;
4122 mb_debug(sb, "discard preallocation for inode %lu\n",
4123 inode->i_ino);
4124 trace_ext4_discard_preallocations(inode);
4126 INIT_LIST_HEAD(&list);
4128 repeat:
4129 /* first, collect all pa's in the inode */
4130 spin_lock(&ei->i_prealloc_lock);
4131 while (!list_empty(&ei->i_prealloc_list)) {
4132 pa = list_entry(ei->i_prealloc_list.next,
4133 struct ext4_prealloc_space, pa_inode_list);
4134 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4135 spin_lock(&pa->pa_lock);
4136 if (atomic_read(&pa->pa_count)) {
4137 /* this shouldn't happen often - nobody should
4138 * use preallocation while we're discarding it */
4139 spin_unlock(&pa->pa_lock);
4140 spin_unlock(&ei->i_prealloc_lock);
4141 ext4_msg(sb, KERN_ERR,
4142 "uh-oh! used pa while discarding");
4143 WARN_ON(1);
4144 schedule_timeout_uninterruptible(HZ);
4145 goto repeat;
4148 if (pa->pa_deleted == 0) {
4149 pa->pa_deleted = 1;
4150 spin_unlock(&pa->pa_lock);
4151 list_del_rcu(&pa->pa_inode_list);
4152 list_add(&pa->u.pa_tmp_list, &list);
4153 continue;
4156 /* someone is deleting pa right now */
4157 spin_unlock(&pa->pa_lock);
4158 spin_unlock(&ei->i_prealloc_lock);
4160 /* we have to wait here because pa_deleted
4161 * doesn't mean pa is already unlinked from
4162 * the list. as we might be called from
4163 * ->clear_inode() the inode will get freed
4164 * and concurrent thread which is unlinking
4165 * pa from inode's list may access already
4166 * freed memory, bad-bad-bad */
4168 /* XXX: if this happens too often, we can
4169 * add a flag to force wait only in case
4170 * of ->clear_inode(), but not in case of
4171 * regular truncate */
4172 schedule_timeout_uninterruptible(HZ);
4173 goto repeat;
4175 spin_unlock(&ei->i_prealloc_lock);
4177 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4178 BUG_ON(pa->pa_type != MB_INODE_PA);
4179 group = ext4_get_group_number(sb, pa->pa_pstart);
4181 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4182 GFP_NOFS|__GFP_NOFAIL);
4183 if (err) {
4184 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4185 err, group);
4186 continue;
4189 bitmap_bh = ext4_read_block_bitmap(sb, group);
4190 if (IS_ERR(bitmap_bh)) {
4191 err = PTR_ERR(bitmap_bh);
4192 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4193 err, group);
4194 ext4_mb_unload_buddy(&e4b);
4195 continue;
4198 ext4_lock_group(sb, group);
4199 list_del(&pa->pa_group_list);
4200 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4201 ext4_unlock_group(sb, group);
4203 ext4_mb_unload_buddy(&e4b);
4204 put_bh(bitmap_bh);
4206 list_del(&pa->u.pa_tmp_list);
4207 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4211 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4213 struct ext4_prealloc_space *pa;
4215 BUG_ON(ext4_pspace_cachep == NULL);
4216 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4217 if (!pa)
4218 return -ENOMEM;
4219 atomic_set(&pa->pa_count, 1);
4220 ac->ac_pa = pa;
4221 return 0;
4224 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4226 struct ext4_prealloc_space *pa = ac->ac_pa;
4228 BUG_ON(!pa);
4229 ac->ac_pa = NULL;
4230 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4231 kmem_cache_free(ext4_pspace_cachep, pa);
4234 #ifdef CONFIG_EXT4_DEBUG
4235 static inline void ext4_mb_show_pa(struct super_block *sb)
4237 ext4_group_t i, ngroups;
4239 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
4240 return;
4242 ngroups = ext4_get_groups_count(sb);
4243 mb_debug(sb, "groups: ");
4244 for (i = 0; i < ngroups; i++) {
4245 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4246 struct ext4_prealloc_space *pa;
4247 ext4_grpblk_t start;
4248 struct list_head *cur;
4249 ext4_lock_group(sb, i);
4250 list_for_each(cur, &grp->bb_prealloc_list) {
4251 pa = list_entry(cur, struct ext4_prealloc_space,
4252 pa_group_list);
4253 spin_lock(&pa->pa_lock);
4254 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4255 NULL, &start);
4256 spin_unlock(&pa->pa_lock);
4257 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
4258 pa->pa_len);
4260 ext4_unlock_group(sb, i);
4261 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
4262 grp->bb_fragments);
4266 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4268 struct super_block *sb = ac->ac_sb;
4270 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
4271 return;
4273 mb_debug(sb, "Can't allocate:"
4274 " Allocation context details:");
4275 mb_debug(sb, "status %u flags 0x%x",
4276 ac->ac_status, ac->ac_flags);
4277 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
4278 "goal %lu/%lu/%lu@%lu, "
4279 "best %lu/%lu/%lu@%lu cr %d",
4280 (unsigned long)ac->ac_o_ex.fe_group,
4281 (unsigned long)ac->ac_o_ex.fe_start,
4282 (unsigned long)ac->ac_o_ex.fe_len,
4283 (unsigned long)ac->ac_o_ex.fe_logical,
4284 (unsigned long)ac->ac_g_ex.fe_group,
4285 (unsigned long)ac->ac_g_ex.fe_start,
4286 (unsigned long)ac->ac_g_ex.fe_len,
4287 (unsigned long)ac->ac_g_ex.fe_logical,
4288 (unsigned long)ac->ac_b_ex.fe_group,
4289 (unsigned long)ac->ac_b_ex.fe_start,
4290 (unsigned long)ac->ac_b_ex.fe_len,
4291 (unsigned long)ac->ac_b_ex.fe_logical,
4292 (int)ac->ac_criteria);
4293 mb_debug(sb, "%u found", ac->ac_found);
4294 ext4_mb_show_pa(sb);
4296 #else
4297 static inline void ext4_mb_show_pa(struct super_block *sb)
4299 return;
4301 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4303 ext4_mb_show_pa(ac->ac_sb);
4304 return;
4306 #endif
4309 * We use locality group preallocation for small size file. The size of the
4310 * file is determined by the current size or the resulting size after
4311 * allocation which ever is larger
4313 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4315 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4317 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4318 int bsbits = ac->ac_sb->s_blocksize_bits;
4319 loff_t size, isize;
4321 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4322 return;
4324 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4325 return;
4327 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4328 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4329 >> bsbits;
4331 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4332 !inode_is_open_for_write(ac->ac_inode)) {
4333 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4334 return;
4337 if (sbi->s_mb_group_prealloc <= 0) {
4338 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4339 return;
4342 /* don't use group allocation for large files */
4343 size = max(size, isize);
4344 if (size > sbi->s_mb_stream_request) {
4345 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4346 return;
4349 BUG_ON(ac->ac_lg != NULL);
4351 * locality group prealloc space are per cpu. The reason for having
4352 * per cpu locality group is to reduce the contention between block
4353 * request from multiple CPUs.
4355 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4357 /* we're going to use group allocation */
4358 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4360 /* serialize all allocations in the group */
4361 mutex_lock(&ac->ac_lg->lg_mutex);
4364 static noinline_for_stack int
4365 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4366 struct ext4_allocation_request *ar)
4368 struct super_block *sb = ar->inode->i_sb;
4369 struct ext4_sb_info *sbi = EXT4_SB(sb);
4370 struct ext4_super_block *es = sbi->s_es;
4371 ext4_group_t group;
4372 unsigned int len;
4373 ext4_fsblk_t goal;
4374 ext4_grpblk_t block;
4376 /* we can't allocate > group size */
4377 len = ar->len;
4379 /* just a dirty hack to filter too big requests */
4380 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4381 len = EXT4_CLUSTERS_PER_GROUP(sb);
4383 /* start searching from the goal */
4384 goal = ar->goal;
4385 if (goal < le32_to_cpu(es->s_first_data_block) ||
4386 goal >= ext4_blocks_count(es))
4387 goal = le32_to_cpu(es->s_first_data_block);
4388 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4390 /* set up allocation goals */
4391 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4392 ac->ac_status = AC_STATUS_CONTINUE;
4393 ac->ac_sb = sb;
4394 ac->ac_inode = ar->inode;
4395 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4396 ac->ac_o_ex.fe_group = group;
4397 ac->ac_o_ex.fe_start = block;
4398 ac->ac_o_ex.fe_len = len;
4399 ac->ac_g_ex = ac->ac_o_ex;
4400 ac->ac_flags = ar->flags;
4402 /* we have to define context: we'll we work with a file or
4403 * locality group. this is a policy, actually */
4404 ext4_mb_group_or_file(ac);
4406 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4407 "left: %u/%u, right %u/%u to %swritable\n",
4408 (unsigned) ar->len, (unsigned) ar->logical,
4409 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4410 (unsigned) ar->lleft, (unsigned) ar->pleft,
4411 (unsigned) ar->lright, (unsigned) ar->pright,
4412 inode_is_open_for_write(ar->inode) ? "" : "non-");
4413 return 0;
4417 static noinline_for_stack void
4418 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4419 struct ext4_locality_group *lg,
4420 int order, int total_entries)
4422 ext4_group_t group = 0;
4423 struct ext4_buddy e4b;
4424 struct list_head discard_list;
4425 struct ext4_prealloc_space *pa, *tmp;
4427 mb_debug(sb, "discard locality group preallocation\n");
4429 INIT_LIST_HEAD(&discard_list);
4431 spin_lock(&lg->lg_prealloc_lock);
4432 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4433 pa_inode_list,
4434 lockdep_is_held(&lg->lg_prealloc_lock)) {
4435 spin_lock(&pa->pa_lock);
4436 if (atomic_read(&pa->pa_count)) {
4438 * This is the pa that we just used
4439 * for block allocation. So don't
4440 * free that
4442 spin_unlock(&pa->pa_lock);
4443 continue;
4445 if (pa->pa_deleted) {
4446 spin_unlock(&pa->pa_lock);
4447 continue;
4449 /* only lg prealloc space */
4450 BUG_ON(pa->pa_type != MB_GROUP_PA);
4452 /* seems this one can be freed ... */
4453 pa->pa_deleted = 1;
4454 spin_unlock(&pa->pa_lock);
4456 list_del_rcu(&pa->pa_inode_list);
4457 list_add(&pa->u.pa_tmp_list, &discard_list);
4459 total_entries--;
4460 if (total_entries <= 5) {
4462 * we want to keep only 5 entries
4463 * allowing it to grow to 8. This
4464 * mak sure we don't call discard
4465 * soon for this list.
4467 break;
4470 spin_unlock(&lg->lg_prealloc_lock);
4472 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4473 int err;
4475 group = ext4_get_group_number(sb, pa->pa_pstart);
4476 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4477 GFP_NOFS|__GFP_NOFAIL);
4478 if (err) {
4479 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4480 err, group);
4481 continue;
4483 ext4_lock_group(sb, group);
4484 list_del(&pa->pa_group_list);
4485 ext4_mb_release_group_pa(&e4b, pa);
4486 ext4_unlock_group(sb, group);
4488 ext4_mb_unload_buddy(&e4b);
4489 list_del(&pa->u.pa_tmp_list);
4490 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4495 * We have incremented pa_count. So it cannot be freed at this
4496 * point. Also we hold lg_mutex. So no parallel allocation is
4497 * possible from this lg. That means pa_free cannot be updated.
4499 * A parallel ext4_mb_discard_group_preallocations is possible.
4500 * which can cause the lg_prealloc_list to be updated.
4503 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4505 int order, added = 0, lg_prealloc_count = 1;
4506 struct super_block *sb = ac->ac_sb;
4507 struct ext4_locality_group *lg = ac->ac_lg;
4508 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4510 order = fls(pa->pa_free) - 1;
4511 if (order > PREALLOC_TB_SIZE - 1)
4512 /* The max size of hash table is PREALLOC_TB_SIZE */
4513 order = PREALLOC_TB_SIZE - 1;
4514 /* Add the prealloc space to lg */
4515 spin_lock(&lg->lg_prealloc_lock);
4516 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4517 pa_inode_list,
4518 lockdep_is_held(&lg->lg_prealloc_lock)) {
4519 spin_lock(&tmp_pa->pa_lock);
4520 if (tmp_pa->pa_deleted) {
4521 spin_unlock(&tmp_pa->pa_lock);
4522 continue;
4524 if (!added && pa->pa_free < tmp_pa->pa_free) {
4525 /* Add to the tail of the previous entry */
4526 list_add_tail_rcu(&pa->pa_inode_list,
4527 &tmp_pa->pa_inode_list);
4528 added = 1;
4530 * we want to count the total
4531 * number of entries in the list
4534 spin_unlock(&tmp_pa->pa_lock);
4535 lg_prealloc_count++;
4537 if (!added)
4538 list_add_tail_rcu(&pa->pa_inode_list,
4539 &lg->lg_prealloc_list[order]);
4540 spin_unlock(&lg->lg_prealloc_lock);
4542 /* Now trim the list to be not more than 8 elements */
4543 if (lg_prealloc_count > 8) {
4544 ext4_mb_discard_lg_preallocations(sb, lg,
4545 order, lg_prealloc_count);
4546 return;
4548 return ;
4552 * release all resource we used in allocation
4554 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4556 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4557 struct ext4_prealloc_space *pa = ac->ac_pa;
4558 if (pa) {
4559 if (pa->pa_type == MB_GROUP_PA) {
4560 /* see comment in ext4_mb_use_group_pa() */
4561 spin_lock(&pa->pa_lock);
4562 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4563 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4564 pa->pa_free -= ac->ac_b_ex.fe_len;
4565 pa->pa_len -= ac->ac_b_ex.fe_len;
4566 spin_unlock(&pa->pa_lock);
4569 if (pa) {
4571 * We want to add the pa to the right bucket.
4572 * Remove it from the list and while adding
4573 * make sure the list to which we are adding
4574 * doesn't grow big.
4576 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4577 spin_lock(pa->pa_obj_lock);
4578 list_del_rcu(&pa->pa_inode_list);
4579 spin_unlock(pa->pa_obj_lock);
4580 ext4_mb_add_n_trim(ac);
4582 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4584 if (ac->ac_bitmap_page)
4585 put_page(ac->ac_bitmap_page);
4586 if (ac->ac_buddy_page)
4587 put_page(ac->ac_buddy_page);
4588 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4589 mutex_unlock(&ac->ac_lg->lg_mutex);
4590 ext4_mb_collect_stats(ac);
4591 return 0;
4594 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4596 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4597 int ret;
4598 int freed = 0;
4600 trace_ext4_mb_discard_preallocations(sb, needed);
4601 for (i = 0; i < ngroups && needed > 0; i++) {
4602 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4603 freed += ret;
4604 needed -= ret;
4607 return freed;
4610 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
4611 struct ext4_allocation_context *ac, u64 *seq)
4613 int freed;
4614 u64 seq_retry = 0;
4615 bool ret = false;
4617 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4618 if (freed) {
4619 ret = true;
4620 goto out_dbg;
4622 seq_retry = ext4_get_discard_pa_seq_sum();
4623 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
4624 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
4625 *seq = seq_retry;
4626 ret = true;
4629 out_dbg:
4630 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
4631 return ret;
4635 * Main entry point into mballoc to allocate blocks
4636 * it tries to use preallocation first, then falls back
4637 * to usual allocation
4639 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4640 struct ext4_allocation_request *ar, int *errp)
4642 struct ext4_allocation_context *ac = NULL;
4643 struct ext4_sb_info *sbi;
4644 struct super_block *sb;
4645 ext4_fsblk_t block = 0;
4646 unsigned int inquota = 0;
4647 unsigned int reserv_clstrs = 0;
4648 u64 seq;
4650 might_sleep();
4651 sb = ar->inode->i_sb;
4652 sbi = EXT4_SB(sb);
4654 trace_ext4_request_blocks(ar);
4656 /* Allow to use superuser reservation for quota file */
4657 if (ext4_is_quota_file(ar->inode))
4658 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4660 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4661 /* Without delayed allocation we need to verify
4662 * there is enough free blocks to do block allocation
4663 * and verify allocation doesn't exceed the quota limits.
4665 while (ar->len &&
4666 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4668 /* let others to free the space */
4669 cond_resched();
4670 ar->len = ar->len >> 1;
4672 if (!ar->len) {
4673 ext4_mb_show_pa(sb);
4674 *errp = -ENOSPC;
4675 return 0;
4677 reserv_clstrs = ar->len;
4678 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4679 dquot_alloc_block_nofail(ar->inode,
4680 EXT4_C2B(sbi, ar->len));
4681 } else {
4682 while (ar->len &&
4683 dquot_alloc_block(ar->inode,
4684 EXT4_C2B(sbi, ar->len))) {
4686 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4687 ar->len--;
4690 inquota = ar->len;
4691 if (ar->len == 0) {
4692 *errp = -EDQUOT;
4693 goto out;
4697 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4698 if (!ac) {
4699 ar->len = 0;
4700 *errp = -ENOMEM;
4701 goto out;
4704 *errp = ext4_mb_initialize_context(ac, ar);
4705 if (*errp) {
4706 ar->len = 0;
4707 goto out;
4710 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4711 seq = this_cpu_read(discard_pa_seq);
4712 if (!ext4_mb_use_preallocated(ac)) {
4713 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4714 ext4_mb_normalize_request(ac, ar);
4716 *errp = ext4_mb_pa_alloc(ac);
4717 if (*errp)
4718 goto errout;
4719 repeat:
4720 /* allocate space in core */
4721 *errp = ext4_mb_regular_allocator(ac);
4723 * pa allocated above is added to grp->bb_prealloc_list only
4724 * when we were able to allocate some block i.e. when
4725 * ac->ac_status == AC_STATUS_FOUND.
4726 * And error from above mean ac->ac_status != AC_STATUS_FOUND
4727 * So we have to free this pa here itself.
4729 if (*errp) {
4730 ext4_mb_pa_free(ac);
4731 ext4_discard_allocated_blocks(ac);
4732 goto errout;
4734 if (ac->ac_status == AC_STATUS_FOUND &&
4735 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
4736 ext4_mb_pa_free(ac);
4738 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4739 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4740 if (*errp) {
4741 ext4_discard_allocated_blocks(ac);
4742 goto errout;
4743 } else {
4744 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4745 ar->len = ac->ac_b_ex.fe_len;
4747 } else {
4748 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
4749 goto repeat;
4751 * If block allocation fails then the pa allocated above
4752 * needs to be freed here itself.
4754 ext4_mb_pa_free(ac);
4755 *errp = -ENOSPC;
4758 errout:
4759 if (*errp) {
4760 ac->ac_b_ex.fe_len = 0;
4761 ar->len = 0;
4762 ext4_mb_show_ac(ac);
4764 ext4_mb_release_context(ac);
4765 out:
4766 if (ac)
4767 kmem_cache_free(ext4_ac_cachep, ac);
4768 if (inquota && ar->len < inquota)
4769 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4770 if (!ar->len) {
4771 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4772 /* release all the reserved blocks if non delalloc */
4773 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4774 reserv_clstrs);
4777 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4779 return block;
4783 * We can merge two free data extents only if the physical blocks
4784 * are contiguous, AND the extents were freed by the same transaction,
4785 * AND the blocks are associated with the same group.
4787 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4788 struct ext4_free_data *entry,
4789 struct ext4_free_data *new_entry,
4790 struct rb_root *entry_rb_root)
4792 if ((entry->efd_tid != new_entry->efd_tid) ||
4793 (entry->efd_group != new_entry->efd_group))
4794 return;
4795 if (entry->efd_start_cluster + entry->efd_count ==
4796 new_entry->efd_start_cluster) {
4797 new_entry->efd_start_cluster = entry->efd_start_cluster;
4798 new_entry->efd_count += entry->efd_count;
4799 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4800 entry->efd_start_cluster) {
4801 new_entry->efd_count += entry->efd_count;
4802 } else
4803 return;
4804 spin_lock(&sbi->s_md_lock);
4805 list_del(&entry->efd_list);
4806 spin_unlock(&sbi->s_md_lock);
4807 rb_erase(&entry->efd_node, entry_rb_root);
4808 kmem_cache_free(ext4_free_data_cachep, entry);
4811 static noinline_for_stack int
4812 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4813 struct ext4_free_data *new_entry)
4815 ext4_group_t group = e4b->bd_group;
4816 ext4_grpblk_t cluster;
4817 ext4_grpblk_t clusters = new_entry->efd_count;
4818 struct ext4_free_data *entry;
4819 struct ext4_group_info *db = e4b->bd_info;
4820 struct super_block *sb = e4b->bd_sb;
4821 struct ext4_sb_info *sbi = EXT4_SB(sb);
4822 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4823 struct rb_node *parent = NULL, *new_node;
4825 BUG_ON(!ext4_handle_valid(handle));
4826 BUG_ON(e4b->bd_bitmap_page == NULL);
4827 BUG_ON(e4b->bd_buddy_page == NULL);
4829 new_node = &new_entry->efd_node;
4830 cluster = new_entry->efd_start_cluster;
4832 if (!*n) {
4833 /* first free block exent. We need to
4834 protect buddy cache from being freed,
4835 * otherwise we'll refresh it from
4836 * on-disk bitmap and lose not-yet-available
4837 * blocks */
4838 get_page(e4b->bd_buddy_page);
4839 get_page(e4b->bd_bitmap_page);
4841 while (*n) {
4842 parent = *n;
4843 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4844 if (cluster < entry->efd_start_cluster)
4845 n = &(*n)->rb_left;
4846 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4847 n = &(*n)->rb_right;
4848 else {
4849 ext4_grp_locked_error(sb, group, 0,
4850 ext4_group_first_block_no(sb, group) +
4851 EXT4_C2B(sbi, cluster),
4852 "Block already on to-be-freed list");
4853 return 0;
4857 rb_link_node(new_node, parent, n);
4858 rb_insert_color(new_node, &db->bb_free_root);
4860 /* Now try to see the extent can be merged to left and right */
4861 node = rb_prev(new_node);
4862 if (node) {
4863 entry = rb_entry(node, struct ext4_free_data, efd_node);
4864 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4865 &(db->bb_free_root));
4868 node = rb_next(new_node);
4869 if (node) {
4870 entry = rb_entry(node, struct ext4_free_data, efd_node);
4871 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4872 &(db->bb_free_root));
4875 spin_lock(&sbi->s_md_lock);
4876 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4877 sbi->s_mb_free_pending += clusters;
4878 spin_unlock(&sbi->s_md_lock);
4879 return 0;
4883 * ext4_free_blocks() -- Free given blocks and update quota
4884 * @handle: handle for this transaction
4885 * @inode: inode
4886 * @bh: optional buffer of the block to be freed
4887 * @block: starting physical block to be freed
4888 * @count: number of blocks to be freed
4889 * @flags: flags used by ext4_free_blocks
4891 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4892 struct buffer_head *bh, ext4_fsblk_t block,
4893 unsigned long count, int flags)
4895 struct buffer_head *bitmap_bh = NULL;
4896 struct super_block *sb = inode->i_sb;
4897 struct ext4_group_desc *gdp;
4898 unsigned int overflow;
4899 ext4_grpblk_t bit;
4900 struct buffer_head *gd_bh;
4901 ext4_group_t block_group;
4902 struct ext4_sb_info *sbi;
4903 struct ext4_buddy e4b;
4904 unsigned int count_clusters;
4905 int err = 0;
4906 int ret;
4908 might_sleep();
4909 if (bh) {
4910 if (block)
4911 BUG_ON(block != bh->b_blocknr);
4912 else
4913 block = bh->b_blocknr;
4916 sbi = EXT4_SB(sb);
4917 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4918 !ext4_data_block_valid(sbi, block, count)) {
4919 ext4_error(sb, "Freeing blocks not in datazone - "
4920 "block = %llu, count = %lu", block, count);
4921 goto error_return;
4924 ext4_debug("freeing block %llu\n", block);
4925 trace_ext4_free_blocks(inode, block, count, flags);
4927 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4928 BUG_ON(count > 1);
4930 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4931 inode, bh, block);
4935 * If the extent to be freed does not begin on a cluster
4936 * boundary, we need to deal with partial clusters at the
4937 * beginning and end of the extent. Normally we will free
4938 * blocks at the beginning or the end unless we are explicitly
4939 * requested to avoid doing so.
4941 overflow = EXT4_PBLK_COFF(sbi, block);
4942 if (overflow) {
4943 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4944 overflow = sbi->s_cluster_ratio - overflow;
4945 block += overflow;
4946 if (count > overflow)
4947 count -= overflow;
4948 else
4949 return;
4950 } else {
4951 block -= overflow;
4952 count += overflow;
4955 overflow = EXT4_LBLK_COFF(sbi, count);
4956 if (overflow) {
4957 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4958 if (count > overflow)
4959 count -= overflow;
4960 else
4961 return;
4962 } else
4963 count += sbi->s_cluster_ratio - overflow;
4966 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4967 int i;
4968 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4970 for (i = 0; i < count; i++) {
4971 cond_resched();
4972 if (is_metadata)
4973 bh = sb_find_get_block(inode->i_sb, block + i);
4974 ext4_forget(handle, is_metadata, inode, bh, block + i);
4978 do_more:
4979 overflow = 0;
4980 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4982 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4983 ext4_get_group_info(sb, block_group))))
4984 return;
4987 * Check to see if we are freeing blocks across a group
4988 * boundary.
4990 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4991 overflow = EXT4_C2B(sbi, bit) + count -
4992 EXT4_BLOCKS_PER_GROUP(sb);
4993 count -= overflow;
4995 count_clusters = EXT4_NUM_B2C(sbi, count);
4996 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4997 if (IS_ERR(bitmap_bh)) {
4998 err = PTR_ERR(bitmap_bh);
4999 bitmap_bh = NULL;
5000 goto error_return;
5002 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5003 if (!gdp) {
5004 err = -EIO;
5005 goto error_return;
5008 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5009 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5010 in_range(block, ext4_inode_table(sb, gdp),
5011 sbi->s_itb_per_group) ||
5012 in_range(block + count - 1, ext4_inode_table(sb, gdp),
5013 sbi->s_itb_per_group)) {
5015 ext4_error(sb, "Freeing blocks in system zone - "
5016 "Block = %llu, count = %lu", block, count);
5017 /* err = 0. ext4_std_error should be a no op */
5018 goto error_return;
5021 BUFFER_TRACE(bitmap_bh, "getting write access");
5022 err = ext4_journal_get_write_access(handle, bitmap_bh);
5023 if (err)
5024 goto error_return;
5027 * We are about to modify some metadata. Call the journal APIs
5028 * to unshare ->b_data if a currently-committing transaction is
5029 * using it
5031 BUFFER_TRACE(gd_bh, "get_write_access");
5032 err = ext4_journal_get_write_access(handle, gd_bh);
5033 if (err)
5034 goto error_return;
5035 #ifdef AGGRESSIVE_CHECK
5037 int i;
5038 for (i = 0; i < count_clusters; i++)
5039 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5041 #endif
5042 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5044 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5045 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5046 GFP_NOFS|__GFP_NOFAIL);
5047 if (err)
5048 goto error_return;
5051 * We need to make sure we don't reuse the freed block until after the
5052 * transaction is committed. We make an exception if the inode is to be
5053 * written in writeback mode since writeback mode has weak data
5054 * consistency guarantees.
5056 if (ext4_handle_valid(handle) &&
5057 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5058 !ext4_should_writeback_data(inode))) {
5059 struct ext4_free_data *new_entry;
5061 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5062 * to fail.
5064 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5065 GFP_NOFS|__GFP_NOFAIL);
5066 new_entry->efd_start_cluster = bit;
5067 new_entry->efd_group = block_group;
5068 new_entry->efd_count = count_clusters;
5069 new_entry->efd_tid = handle->h_transaction->t_tid;
5071 ext4_lock_group(sb, block_group);
5072 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5073 ext4_mb_free_metadata(handle, &e4b, new_entry);
5074 } else {
5075 /* need to update group_info->bb_free and bitmap
5076 * with group lock held. generate_buddy look at
5077 * them with group lock_held
5079 if (test_opt(sb, DISCARD)) {
5080 err = ext4_issue_discard(sb, block_group, bit, count,
5081 NULL);
5082 if (err && err != -EOPNOTSUPP)
5083 ext4_msg(sb, KERN_WARNING, "discard request in"
5084 " group:%d block:%d count:%lu failed"
5085 " with %d", block_group, bit, count,
5086 err);
5087 } else
5088 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5090 ext4_lock_group(sb, block_group);
5091 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5092 mb_free_blocks(inode, &e4b, bit, count_clusters);
5095 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5096 ext4_free_group_clusters_set(sb, gdp, ret);
5097 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5098 ext4_group_desc_csum_set(sb, block_group, gdp);
5099 ext4_unlock_group(sb, block_group);
5101 if (sbi->s_log_groups_per_flex) {
5102 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5103 atomic64_add(count_clusters,
5104 &sbi_array_rcu_deref(sbi, s_flex_groups,
5105 flex_group)->free_clusters);
5109 * on a bigalloc file system, defer the s_freeclusters_counter
5110 * update to the caller (ext4_remove_space and friends) so they
5111 * can determine if a cluster freed here should be rereserved
5113 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
5114 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
5115 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
5116 percpu_counter_add(&sbi->s_freeclusters_counter,
5117 count_clusters);
5120 ext4_mb_unload_buddy(&e4b);
5122 /* We dirtied the bitmap block */
5123 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5124 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5126 /* And the group descriptor block */
5127 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5128 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5129 if (!err)
5130 err = ret;
5132 if (overflow && !err) {
5133 block += count;
5134 count = overflow;
5135 put_bh(bitmap_bh);
5136 goto do_more;
5138 error_return:
5139 brelse(bitmap_bh);
5140 ext4_std_error(sb, err);
5141 return;
5145 * ext4_group_add_blocks() -- Add given blocks to an existing group
5146 * @handle: handle to this transaction
5147 * @sb: super block
5148 * @block: start physical block to add to the block group
5149 * @count: number of blocks to free
5151 * This marks the blocks as free in the bitmap and buddy.
5153 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5154 ext4_fsblk_t block, unsigned long count)
5156 struct buffer_head *bitmap_bh = NULL;
5157 struct buffer_head *gd_bh;
5158 ext4_group_t block_group;
5159 ext4_grpblk_t bit;
5160 unsigned int i;
5161 struct ext4_group_desc *desc;
5162 struct ext4_sb_info *sbi = EXT4_SB(sb);
5163 struct ext4_buddy e4b;
5164 int err = 0, ret, free_clusters_count;
5165 ext4_grpblk_t clusters_freed;
5166 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5167 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5168 unsigned long cluster_count = last_cluster - first_cluster + 1;
5170 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5172 if (count == 0)
5173 return 0;
5175 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5177 * Check to see if we are freeing blocks across a group
5178 * boundary.
5180 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5181 ext4_warning(sb, "too many blocks added to group %u",
5182 block_group);
5183 err = -EINVAL;
5184 goto error_return;
5187 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5188 if (IS_ERR(bitmap_bh)) {
5189 err = PTR_ERR(bitmap_bh);
5190 bitmap_bh = NULL;
5191 goto error_return;
5194 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5195 if (!desc) {
5196 err = -EIO;
5197 goto error_return;
5200 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5201 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5202 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5203 in_range(block + count - 1, ext4_inode_table(sb, desc),
5204 sbi->s_itb_per_group)) {
5205 ext4_error(sb, "Adding blocks in system zones - "
5206 "Block = %llu, count = %lu",
5207 block, count);
5208 err = -EINVAL;
5209 goto error_return;
5212 BUFFER_TRACE(bitmap_bh, "getting write access");
5213 err = ext4_journal_get_write_access(handle, bitmap_bh);
5214 if (err)
5215 goto error_return;
5218 * We are about to modify some metadata. Call the journal APIs
5219 * to unshare ->b_data if a currently-committing transaction is
5220 * using it
5222 BUFFER_TRACE(gd_bh, "get_write_access");
5223 err = ext4_journal_get_write_access(handle, gd_bh);
5224 if (err)
5225 goto error_return;
5227 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5228 BUFFER_TRACE(bitmap_bh, "clear bit");
5229 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5230 ext4_error(sb, "bit already cleared for block %llu",
5231 (ext4_fsblk_t)(block + i));
5232 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5233 } else {
5234 clusters_freed++;
5238 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5239 if (err)
5240 goto error_return;
5243 * need to update group_info->bb_free and bitmap
5244 * with group lock held. generate_buddy look at
5245 * them with group lock_held
5247 ext4_lock_group(sb, block_group);
5248 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5249 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5250 free_clusters_count = clusters_freed +
5251 ext4_free_group_clusters(sb, desc);
5252 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5253 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5254 ext4_group_desc_csum_set(sb, block_group, desc);
5255 ext4_unlock_group(sb, block_group);
5256 percpu_counter_add(&sbi->s_freeclusters_counter,
5257 clusters_freed);
5259 if (sbi->s_log_groups_per_flex) {
5260 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5261 atomic64_add(clusters_freed,
5262 &sbi_array_rcu_deref(sbi, s_flex_groups,
5263 flex_group)->free_clusters);
5266 ext4_mb_unload_buddy(&e4b);
5268 /* We dirtied the bitmap block */
5269 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5270 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5272 /* And the group descriptor block */
5273 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5274 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5275 if (!err)
5276 err = ret;
5278 error_return:
5279 brelse(bitmap_bh);
5280 ext4_std_error(sb, err);
5281 return err;
5285 * ext4_trim_extent -- function to TRIM one single free extent in the group
5286 * @sb: super block for the file system
5287 * @start: starting block of the free extent in the alloc. group
5288 * @count: number of blocks to TRIM
5289 * @group: alloc. group we are working with
5290 * @e4b: ext4 buddy for the group
5292 * Trim "count" blocks starting at "start" in the "group". To assure that no
5293 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5294 * be called with under the group lock.
5296 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5297 ext4_group_t group, struct ext4_buddy *e4b)
5298 __releases(bitlock)
5299 __acquires(bitlock)
5301 struct ext4_free_extent ex;
5302 int ret = 0;
5304 trace_ext4_trim_extent(sb, group, start, count);
5306 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5308 ex.fe_start = start;
5309 ex.fe_group = group;
5310 ex.fe_len = count;
5313 * Mark blocks used, so no one can reuse them while
5314 * being trimmed.
5316 mb_mark_used(e4b, &ex);
5317 ext4_unlock_group(sb, group);
5318 ret = ext4_issue_discard(sb, group, start, count, NULL);
5319 ext4_lock_group(sb, group);
5320 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5321 return ret;
5325 * ext4_trim_all_free -- function to trim all free space in alloc. group
5326 * @sb: super block for file system
5327 * @group: group to be trimmed
5328 * @start: first group block to examine
5329 * @max: last group block to examine
5330 * @minblocks: minimum extent block count
5332 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5333 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5334 * the extent.
5337 * ext4_trim_all_free walks through group's block bitmap searching for free
5338 * extents. When the free extent is found, mark it as used in group buddy
5339 * bitmap. Then issue a TRIM command on this extent and free the extent in
5340 * the group buddy bitmap. This is done until whole group is scanned.
5342 static ext4_grpblk_t
5343 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5344 ext4_grpblk_t start, ext4_grpblk_t max,
5345 ext4_grpblk_t minblocks)
5347 void *bitmap;
5348 ext4_grpblk_t next, count = 0, free_count = 0;
5349 struct ext4_buddy e4b;
5350 int ret = 0;
5352 trace_ext4_trim_all_free(sb, group, start, max);
5354 ret = ext4_mb_load_buddy(sb, group, &e4b);
5355 if (ret) {
5356 ext4_warning(sb, "Error %d loading buddy information for %u",
5357 ret, group);
5358 return ret;
5360 bitmap = e4b.bd_bitmap;
5362 ext4_lock_group(sb, group);
5363 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5364 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5365 goto out;
5367 start = (e4b.bd_info->bb_first_free > start) ?
5368 e4b.bd_info->bb_first_free : start;
5370 while (start <= max) {
5371 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5372 if (start > max)
5373 break;
5374 next = mb_find_next_bit(bitmap, max + 1, start);
5376 if ((next - start) >= minblocks) {
5377 ret = ext4_trim_extent(sb, start,
5378 next - start, group, &e4b);
5379 if (ret && ret != -EOPNOTSUPP)
5380 break;
5381 ret = 0;
5382 count += next - start;
5384 free_count += next - start;
5385 start = next + 1;
5387 if (fatal_signal_pending(current)) {
5388 count = -ERESTARTSYS;
5389 break;
5392 if (need_resched()) {
5393 ext4_unlock_group(sb, group);
5394 cond_resched();
5395 ext4_lock_group(sb, group);
5398 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5399 break;
5402 if (!ret) {
5403 ret = count;
5404 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5406 out:
5407 ext4_unlock_group(sb, group);
5408 ext4_mb_unload_buddy(&e4b);
5410 ext4_debug("trimmed %d blocks in the group %d\n",
5411 count, group);
5413 return ret;
5417 * ext4_trim_fs() -- trim ioctl handle function
5418 * @sb: superblock for filesystem
5419 * @range: fstrim_range structure
5421 * start: First Byte to trim
5422 * len: number of Bytes to trim from start
5423 * minlen: minimum extent length in Bytes
5424 * ext4_trim_fs goes through all allocation groups containing Bytes from
5425 * start to start+len. For each such a group ext4_trim_all_free function
5426 * is invoked to trim all free space.
5428 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5430 struct ext4_group_info *grp;
5431 ext4_group_t group, first_group, last_group;
5432 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5433 uint64_t start, end, minlen, trimmed = 0;
5434 ext4_fsblk_t first_data_blk =
5435 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5436 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5437 int ret = 0;
5439 start = range->start >> sb->s_blocksize_bits;
5440 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5441 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5442 range->minlen >> sb->s_blocksize_bits);
5444 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5445 start >= max_blks ||
5446 range->len < sb->s_blocksize)
5447 return -EINVAL;
5448 if (end >= max_blks)
5449 end = max_blks - 1;
5450 if (end <= first_data_blk)
5451 goto out;
5452 if (start < first_data_blk)
5453 start = first_data_blk;
5455 /* Determine first and last group to examine based on start and end */
5456 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5457 &first_group, &first_cluster);
5458 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5459 &last_group, &last_cluster);
5461 /* end now represents the last cluster to discard in this group */
5462 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5464 for (group = first_group; group <= last_group; group++) {
5465 grp = ext4_get_group_info(sb, group);
5466 /* We only do this if the grp has never been initialized */
5467 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5468 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5469 if (ret)
5470 break;
5474 * For all the groups except the last one, last cluster will
5475 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5476 * change it for the last group, note that last_cluster is
5477 * already computed earlier by ext4_get_group_no_and_offset()
5479 if (group == last_group)
5480 end = last_cluster;
5482 if (grp->bb_free >= minlen) {
5483 cnt = ext4_trim_all_free(sb, group, first_cluster,
5484 end, minlen);
5485 if (cnt < 0) {
5486 ret = cnt;
5487 break;
5489 trimmed += cnt;
5493 * For every group except the first one, we are sure
5494 * that the first cluster to discard will be cluster #0.
5496 first_cluster = 0;
5499 if (!ret)
5500 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5502 out:
5503 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5504 return ret;
5507 /* Iterate all the free extents in the group. */
5509 ext4_mballoc_query_range(
5510 struct super_block *sb,
5511 ext4_group_t group,
5512 ext4_grpblk_t start,
5513 ext4_grpblk_t end,
5514 ext4_mballoc_query_range_fn formatter,
5515 void *priv)
5517 void *bitmap;
5518 ext4_grpblk_t next;
5519 struct ext4_buddy e4b;
5520 int error;
5522 error = ext4_mb_load_buddy(sb, group, &e4b);
5523 if (error)
5524 return error;
5525 bitmap = e4b.bd_bitmap;
5527 ext4_lock_group(sb, group);
5529 start = (e4b.bd_info->bb_first_free > start) ?
5530 e4b.bd_info->bb_first_free : start;
5531 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5532 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5534 while (start <= end) {
5535 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5536 if (start > end)
5537 break;
5538 next = mb_find_next_bit(bitmap, end + 1, start);
5540 ext4_unlock_group(sb, group);
5541 error = formatter(sb, group, start, next - start, priv);
5542 if (error)
5543 goto out_unload;
5544 ext4_lock_group(sb, group);
5546 start = next + 1;
5549 ext4_unlock_group(sb, group);
5550 out_unload:
5551 ext4_mb_unload_buddy(&e4b);
5553 return error;