1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
22 #include "xfs_health.h"
24 kmem_zone_t
*xfs_log_ticket_zone
;
26 /* Local miscellaneous function prototypes */
30 struct xfs_buftarg
*log_target
,
31 xfs_daddr_t blk_offset
,
41 /* local state machine functions */
42 STATIC
void xlog_state_done_syncing(
43 struct xlog_in_core
*iclog
);
45 xlog_state_get_iclog_space(
48 struct xlog_in_core
**iclog
,
49 struct xlog_ticket
*ticket
,
53 xlog_state_switch_iclogs(
55 struct xlog_in_core
*iclog
,
64 struct xlog_in_core
*iclog
);
71 xlog_verify_grant_tail(
76 struct xlog_in_core
*iclog
,
81 struct xlog_in_core
*iclog
,
84 #define xlog_verify_dest_ptr(a,b)
85 #define xlog_verify_grant_tail(a)
86 #define xlog_verify_iclog(a,b,c)
87 #define xlog_verify_tail_lsn(a,b,c)
100 int64_t head_val
= atomic64_read(head
);
106 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
110 space
+= log
->l_logsize
;
115 new = xlog_assign_grant_head_val(cycle
, space
);
116 head_val
= atomic64_cmpxchg(head
, old
, new);
117 } while (head_val
!= old
);
121 xlog_grant_add_space(
126 int64_t head_val
= atomic64_read(head
);
133 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
135 tmp
= log
->l_logsize
- space
;
144 new = xlog_assign_grant_head_val(cycle
, space
);
145 head_val
= atomic64_cmpxchg(head
, old
, new);
146 } while (head_val
!= old
);
150 xlog_grant_head_init(
151 struct xlog_grant_head
*head
)
153 xlog_assign_grant_head(&head
->grant
, 1, 0);
154 INIT_LIST_HEAD(&head
->waiters
);
155 spin_lock_init(&head
->lock
);
159 xlog_grant_head_wake_all(
160 struct xlog_grant_head
*head
)
162 struct xlog_ticket
*tic
;
164 spin_lock(&head
->lock
);
165 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
166 wake_up_process(tic
->t_task
);
167 spin_unlock(&head
->lock
);
171 xlog_ticket_reservation(
173 struct xlog_grant_head
*head
,
174 struct xlog_ticket
*tic
)
176 if (head
== &log
->l_write_head
) {
177 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
178 return tic
->t_unit_res
;
180 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
181 return tic
->t_unit_res
* tic
->t_cnt
;
183 return tic
->t_unit_res
;
188 xlog_grant_head_wake(
190 struct xlog_grant_head
*head
,
193 struct xlog_ticket
*tic
;
195 bool woken_task
= false;
197 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
200 * There is a chance that the size of the CIL checkpoints in
201 * progress at the last AIL push target calculation resulted in
202 * limiting the target to the log head (l_last_sync_lsn) at the
203 * time. This may not reflect where the log head is now as the
204 * CIL checkpoints may have completed.
206 * Hence when we are woken here, it may be that the head of the
207 * log that has moved rather than the tail. As the tail didn't
208 * move, there still won't be space available for the
209 * reservation we require. However, if the AIL has already
210 * pushed to the target defined by the old log head location, we
211 * will hang here waiting for something else to update the AIL
214 * Therefore, if there isn't space to wake the first waiter on
215 * the grant head, we need to push the AIL again to ensure the
216 * target reflects both the current log tail and log head
217 * position before we wait for the tail to move again.
220 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
221 if (*free_bytes
< need_bytes
) {
223 xlog_grant_push_ail(log
, need_bytes
);
227 *free_bytes
-= need_bytes
;
228 trace_xfs_log_grant_wake_up(log
, tic
);
229 wake_up_process(tic
->t_task
);
237 xlog_grant_head_wait(
239 struct xlog_grant_head
*head
,
240 struct xlog_ticket
*tic
,
241 int need_bytes
) __releases(&head
->lock
)
242 __acquires(&head
->lock
)
244 list_add_tail(&tic
->t_queue
, &head
->waiters
);
247 if (XLOG_FORCED_SHUTDOWN(log
))
249 xlog_grant_push_ail(log
, need_bytes
);
251 __set_current_state(TASK_UNINTERRUPTIBLE
);
252 spin_unlock(&head
->lock
);
254 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
256 trace_xfs_log_grant_sleep(log
, tic
);
258 trace_xfs_log_grant_wake(log
, tic
);
260 spin_lock(&head
->lock
);
261 if (XLOG_FORCED_SHUTDOWN(log
))
263 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
265 list_del_init(&tic
->t_queue
);
268 list_del_init(&tic
->t_queue
);
273 * Atomically get the log space required for a log ticket.
275 * Once a ticket gets put onto head->waiters, it will only return after the
276 * needed reservation is satisfied.
278 * This function is structured so that it has a lock free fast path. This is
279 * necessary because every new transaction reservation will come through this
280 * path. Hence any lock will be globally hot if we take it unconditionally on
283 * As tickets are only ever moved on and off head->waiters under head->lock, we
284 * only need to take that lock if we are going to add the ticket to the queue
285 * and sleep. We can avoid taking the lock if the ticket was never added to
286 * head->waiters because the t_queue list head will be empty and we hold the
287 * only reference to it so it can safely be checked unlocked.
290 xlog_grant_head_check(
292 struct xlog_grant_head
*head
,
293 struct xlog_ticket
*tic
,
299 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
302 * If there are other waiters on the queue then give them a chance at
303 * logspace before us. Wake up the first waiters, if we do not wake
304 * up all the waiters then go to sleep waiting for more free space,
305 * otherwise try to get some space for this transaction.
307 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
308 free_bytes
= xlog_space_left(log
, &head
->grant
);
309 if (!list_empty_careful(&head
->waiters
)) {
310 spin_lock(&head
->lock
);
311 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
312 free_bytes
< *need_bytes
) {
313 error
= xlog_grant_head_wait(log
, head
, tic
,
316 spin_unlock(&head
->lock
);
317 } else if (free_bytes
< *need_bytes
) {
318 spin_lock(&head
->lock
);
319 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
320 spin_unlock(&head
->lock
);
327 xlog_tic_reset_res(xlog_ticket_t
*tic
)
330 tic
->t_res_arr_sum
= 0;
331 tic
->t_res_num_ophdrs
= 0;
335 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
337 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
338 /* add to overflow and start again */
339 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
341 tic
->t_res_arr_sum
= 0;
344 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
345 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
346 tic
->t_res_arr_sum
+= len
;
351 * Replenish the byte reservation required by moving the grant write head.
355 struct xfs_mount
*mp
,
356 struct xlog_ticket
*tic
)
358 struct xlog
*log
= mp
->m_log
;
362 if (XLOG_FORCED_SHUTDOWN(log
))
365 XFS_STATS_INC(mp
, xs_try_logspace
);
368 * This is a new transaction on the ticket, so we need to change the
369 * transaction ID so that the next transaction has a different TID in
370 * the log. Just add one to the existing tid so that we can see chains
371 * of rolling transactions in the log easily.
375 xlog_grant_push_ail(log
, tic
->t_unit_res
);
377 tic
->t_curr_res
= tic
->t_unit_res
;
378 xlog_tic_reset_res(tic
);
383 trace_xfs_log_regrant(log
, tic
);
385 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
390 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
391 trace_xfs_log_regrant_exit(log
, tic
);
392 xlog_verify_grant_tail(log
);
397 * If we are failing, make sure the ticket doesn't have any current
398 * reservations. We don't want to add this back when the ticket/
399 * transaction gets cancelled.
402 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
407 * Reserve log space and return a ticket corresponding to the reservation.
409 * Each reservation is going to reserve extra space for a log record header.
410 * When writes happen to the on-disk log, we don't subtract the length of the
411 * log record header from any reservation. By wasting space in each
412 * reservation, we prevent over allocation problems.
416 struct xfs_mount
*mp
,
419 struct xlog_ticket
**ticp
,
423 struct xlog
*log
= mp
->m_log
;
424 struct xlog_ticket
*tic
;
428 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
430 if (XLOG_FORCED_SHUTDOWN(log
))
433 XFS_STATS_INC(mp
, xs_try_logspace
);
435 ASSERT(*ticp
== NULL
);
436 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
, 0);
439 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
442 trace_xfs_log_reserve(log
, tic
);
444 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
449 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
450 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
451 trace_xfs_log_reserve_exit(log
, tic
);
452 xlog_verify_grant_tail(log
);
457 * If we are failing, make sure the ticket doesn't have any current
458 * reservations. We don't want to add this back when the ticket/
459 * transaction gets cancelled.
462 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
467 __xlog_state_release_iclog(
469 struct xlog_in_core
*iclog
)
471 lockdep_assert_held(&log
->l_icloglock
);
473 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
474 /* update tail before writing to iclog */
475 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
477 iclog
->ic_state
= XLOG_STATE_SYNCING
;
478 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
479 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
480 /* cycle incremented when incrementing curr_block */
484 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
489 * Flush iclog to disk if this is the last reference to the given iclog and the
490 * it is in the WANT_SYNC state.
493 xlog_state_release_iclog(
495 struct xlog_in_core
*iclog
)
497 lockdep_assert_held(&log
->l_icloglock
);
499 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
502 if (atomic_dec_and_test(&iclog
->ic_refcnt
) &&
503 __xlog_state_release_iclog(log
, iclog
)) {
504 spin_unlock(&log
->l_icloglock
);
505 xlog_sync(log
, iclog
);
506 spin_lock(&log
->l_icloglock
);
513 xfs_log_release_iclog(
514 struct xlog_in_core
*iclog
)
516 struct xlog
*log
= iclog
->ic_log
;
519 if (atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
)) {
520 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
)
521 sync
= __xlog_state_release_iclog(log
, iclog
);
522 spin_unlock(&log
->l_icloglock
);
526 xlog_sync(log
, iclog
);
530 * Mount a log filesystem
532 * mp - ubiquitous xfs mount point structure
533 * log_target - buftarg of on-disk log device
534 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
535 * num_bblocks - Number of BBSIZE blocks in on-disk log
537 * Return error or zero.
542 xfs_buftarg_t
*log_target
,
543 xfs_daddr_t blk_offset
,
546 bool fatal
= xfs_sb_version_hascrc(&mp
->m_sb
);
550 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
551 xfs_notice(mp
, "Mounting V%d Filesystem",
552 XFS_SB_VERSION_NUM(&mp
->m_sb
));
555 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
556 XFS_SB_VERSION_NUM(&mp
->m_sb
));
557 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
560 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
561 if (IS_ERR(mp
->m_log
)) {
562 error
= PTR_ERR(mp
->m_log
);
567 * Validate the given log space and drop a critical message via syslog
568 * if the log size is too small that would lead to some unexpected
569 * situations in transaction log space reservation stage.
571 * Note: we can't just reject the mount if the validation fails. This
572 * would mean that people would have to downgrade their kernel just to
573 * remedy the situation as there is no way to grow the log (short of
574 * black magic surgery with xfs_db).
576 * We can, however, reject mounts for CRC format filesystems, as the
577 * mkfs binary being used to make the filesystem should never create a
578 * filesystem with a log that is too small.
580 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
582 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
584 "Log size %d blocks too small, minimum size is %d blocks",
585 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
587 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
589 "Log size %d blocks too large, maximum size is %lld blocks",
590 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
592 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
594 "log size %lld bytes too large, maximum size is %lld bytes",
595 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
598 } else if (mp
->m_sb
.sb_logsunit
> 1 &&
599 mp
->m_sb
.sb_logsunit
% mp
->m_sb
.sb_blocksize
) {
601 "log stripe unit %u bytes must be a multiple of block size",
602 mp
->m_sb
.sb_logsunit
);
608 * Log check errors are always fatal on v5; or whenever bad
609 * metadata leads to a crash.
612 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
616 xfs_crit(mp
, "Log size out of supported range.");
618 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
622 * Initialize the AIL now we have a log.
624 error
= xfs_trans_ail_init(mp
);
626 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
629 mp
->m_log
->l_ailp
= mp
->m_ail
;
632 * skip log recovery on a norecovery mount. pretend it all
635 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
636 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
639 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
641 error
= xlog_recover(mp
->m_log
);
644 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
646 xfs_warn(mp
, "log mount/recovery failed: error %d",
648 xlog_recover_cancel(mp
->m_log
);
649 goto out_destroy_ail
;
653 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
656 goto out_destroy_ail
;
658 /* Normal transactions can now occur */
659 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
662 * Now the log has been fully initialised and we know were our
663 * space grant counters are, we can initialise the permanent ticket
664 * needed for delayed logging to work.
666 xlog_cil_init_post_recovery(mp
->m_log
);
671 xfs_trans_ail_destroy(mp
);
673 xlog_dealloc_log(mp
->m_log
);
679 * Finish the recovery of the file system. This is separate from the
680 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
681 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
684 * If we finish recovery successfully, start the background log work. If we are
685 * not doing recovery, then we have a RO filesystem and we don't need to start
689 xfs_log_mount_finish(
690 struct xfs_mount
*mp
)
693 bool readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
694 bool recovered
= mp
->m_log
->l_flags
& XLOG_RECOVERY_NEEDED
;
696 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
697 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
699 } else if (readonly
) {
700 /* Allow unlinked processing to proceed */
701 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
705 * During the second phase of log recovery, we need iget and
706 * iput to behave like they do for an active filesystem.
707 * xfs_fs_drop_inode needs to be able to prevent the deletion
708 * of inodes before we're done replaying log items on those
709 * inodes. Turn it off immediately after recovery finishes
710 * so that we don't leak the quota inodes if subsequent mount
713 * We let all inodes involved in redo item processing end up on
714 * the LRU instead of being evicted immediately so that if we do
715 * something to an unlinked inode, the irele won't cause
716 * premature truncation and freeing of the inode, which results
717 * in log recovery failure. We have to evict the unreferenced
718 * lru inodes after clearing SB_ACTIVE because we don't
719 * otherwise clean up the lru if there's a subsequent failure in
720 * xfs_mountfs, which leads to us leaking the inodes if nothing
721 * else (e.g. quotacheck) references the inodes before the
722 * mount failure occurs.
724 mp
->m_super
->s_flags
|= SB_ACTIVE
;
725 error
= xlog_recover_finish(mp
->m_log
);
727 xfs_log_work_queue(mp
);
728 mp
->m_super
->s_flags
&= ~SB_ACTIVE
;
729 evict_inodes(mp
->m_super
);
732 * Drain the buffer LRU after log recovery. This is required for v4
733 * filesystems to avoid leaving around buffers with NULL verifier ops,
734 * but we do it unconditionally to make sure we're always in a clean
735 * cache state after mount.
737 * Don't push in the error case because the AIL may have pending intents
738 * that aren't removed until recovery is cancelled.
740 if (!error
&& recovered
) {
741 xfs_log_force(mp
, XFS_LOG_SYNC
);
742 xfs_ail_push_all_sync(mp
->m_ail
);
744 xfs_wait_buftarg(mp
->m_ddev_targp
);
747 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
753 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
757 xfs_log_mount_cancel(
758 struct xfs_mount
*mp
)
760 xlog_recover_cancel(mp
->m_log
);
765 * Wait for the iclog to be written disk, or return an error if the log has been
770 struct xlog_in_core
*iclog
)
771 __releases(iclog
->ic_log
->l_icloglock
)
773 struct xlog
*log
= iclog
->ic_log
;
775 if (!XLOG_FORCED_SHUTDOWN(log
) &&
776 iclog
->ic_state
!= XLOG_STATE_ACTIVE
&&
777 iclog
->ic_state
!= XLOG_STATE_DIRTY
) {
778 XFS_STATS_INC(log
->l_mp
, xs_log_force_sleep
);
779 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
781 spin_unlock(&log
->l_icloglock
);
784 if (XLOG_FORCED_SHUTDOWN(log
))
790 * Write out an unmount record using the ticket provided. We have to account for
791 * the data space used in the unmount ticket as this write is not done from a
792 * transaction context that has already done the accounting for us.
795 xlog_write_unmount_record(
797 struct xlog_ticket
*ticket
,
801 struct xfs_unmount_log_format ulf
= {
802 .magic
= XLOG_UNMOUNT_TYPE
,
804 struct xfs_log_iovec reg
= {
806 .i_len
= sizeof(ulf
),
807 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
809 struct xfs_log_vec vec
= {
814 /* account for space used by record data */
815 ticket
->t_curr_res
-= sizeof(ulf
);
816 return xlog_write(log
, &vec
, ticket
, lsn
, NULL
, flags
, false);
820 * Mark the filesystem clean by writing an unmount record to the head of the
827 struct xfs_mount
*mp
= log
->l_mp
;
828 struct xlog_in_core
*iclog
;
829 struct xlog_ticket
*tic
= NULL
;
831 uint flags
= XLOG_UNMOUNT_TRANS
;
834 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
838 error
= xlog_write_unmount_record(log
, tic
, &lsn
, flags
);
840 * At this point, we're umounting anyway, so there's no point in
841 * transitioning log state to IOERROR. Just continue...
845 xfs_alert(mp
, "%s: unmount record failed", __func__
);
847 spin_lock(&log
->l_icloglock
);
848 iclog
= log
->l_iclog
;
849 atomic_inc(&iclog
->ic_refcnt
);
850 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
851 xlog_state_switch_iclogs(log
, iclog
, 0);
853 ASSERT(iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
854 iclog
->ic_state
== XLOG_STATE_IOERROR
);
855 error
= xlog_state_release_iclog(log
, iclog
);
856 xlog_wait_on_iclog(iclog
);
859 trace_xfs_log_umount_write(log
, tic
);
860 xfs_log_ticket_ungrant(log
, tic
);
865 xfs_log_unmount_verify_iclog(
868 struct xlog_in_core
*iclog
= log
->l_iclog
;
871 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
872 ASSERT(iclog
->ic_offset
== 0);
873 } while ((iclog
= iclog
->ic_next
) != log
->l_iclog
);
877 * Unmount record used to have a string "Unmount filesystem--" in the
878 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
879 * We just write the magic number now since that particular field isn't
880 * currently architecture converted and "Unmount" is a bit foo.
881 * As far as I know, there weren't any dependencies on the old behaviour.
884 xfs_log_unmount_write(
885 struct xfs_mount
*mp
)
887 struct xlog
*log
= mp
->m_log
;
890 * Don't write out unmount record on norecovery mounts or ro devices.
891 * Or, if we are doing a forced umount (typically because of IO errors).
893 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
||
894 xfs_readonly_buftarg(log
->l_targ
)) {
895 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
899 xfs_log_force(mp
, XFS_LOG_SYNC
);
901 if (XLOG_FORCED_SHUTDOWN(log
))
905 * If we think the summary counters are bad, avoid writing the unmount
906 * record to force log recovery at next mount, after which the summary
907 * counters will be recalculated. Refer to xlog_check_unmount_rec for
910 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp
, XFS_SICK_FS_COUNTERS
), mp
,
911 XFS_ERRTAG_FORCE_SUMMARY_RECALC
)) {
912 xfs_alert(mp
, "%s: will fix summary counters at next mount",
917 xfs_log_unmount_verify_iclog(log
);
918 xlog_unmount_write(log
);
922 * Empty the log for unmount/freeze.
924 * To do this, we first need to shut down the background log work so it is not
925 * trying to cover the log as we clean up. We then need to unpin all objects in
926 * the log so we can then flush them out. Once they have completed their IO and
927 * run the callbacks removing themselves from the AIL, we can write the unmount
932 struct xfs_mount
*mp
)
934 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
935 xfs_log_force(mp
, XFS_LOG_SYNC
);
938 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
939 * will push it, xfs_wait_buftarg() will not wait for it. Further,
940 * xfs_buf_iowait() cannot be used because it was pushed with the
941 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
942 * the IO to complete.
944 xfs_ail_push_all_sync(mp
->m_ail
);
945 xfs_wait_buftarg(mp
->m_ddev_targp
);
946 xfs_buf_lock(mp
->m_sb_bp
);
947 xfs_buf_unlock(mp
->m_sb_bp
);
949 xfs_log_unmount_write(mp
);
953 * Shut down and release the AIL and Log.
955 * During unmount, we need to ensure we flush all the dirty metadata objects
956 * from the AIL so that the log is empty before we write the unmount record to
957 * the log. Once this is done, we can tear down the AIL and the log.
961 struct xfs_mount
*mp
)
965 xfs_trans_ail_destroy(mp
);
967 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
969 xlog_dealloc_log(mp
->m_log
);
974 struct xfs_mount
*mp
,
975 struct xfs_log_item
*item
,
977 const struct xfs_item_ops
*ops
)
979 item
->li_mountp
= mp
;
980 item
->li_ailp
= mp
->m_ail
;
981 item
->li_type
= type
;
985 INIT_LIST_HEAD(&item
->li_ail
);
986 INIT_LIST_HEAD(&item
->li_cil
);
987 INIT_LIST_HEAD(&item
->li_bio_list
);
988 INIT_LIST_HEAD(&item
->li_trans
);
992 * Wake up processes waiting for log space after we have moved the log tail.
996 struct xfs_mount
*mp
)
998 struct xlog
*log
= mp
->m_log
;
1001 if (XLOG_FORCED_SHUTDOWN(log
))
1004 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1005 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1007 spin_lock(&log
->l_write_head
.lock
);
1008 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1009 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1010 spin_unlock(&log
->l_write_head
.lock
);
1013 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1014 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1016 spin_lock(&log
->l_reserve_head
.lock
);
1017 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1018 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1019 spin_unlock(&log
->l_reserve_head
.lock
);
1024 * Determine if we have a transaction that has gone to disk that needs to be
1025 * covered. To begin the transition to the idle state firstly the log needs to
1026 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1027 * we start attempting to cover the log.
1029 * Only if we are then in a state where covering is needed, the caller is
1030 * informed that dummy transactions are required to move the log into the idle
1033 * If there are any items in the AIl or CIL, then we do not want to attempt to
1034 * cover the log as we may be in a situation where there isn't log space
1035 * available to run a dummy transaction and this can lead to deadlocks when the
1036 * tail of the log is pinned by an item that is modified in the CIL. Hence
1037 * there's no point in running a dummy transaction at this point because we
1038 * can't start trying to idle the log until both the CIL and AIL are empty.
1041 xfs_log_need_covered(xfs_mount_t
*mp
)
1043 struct xlog
*log
= mp
->m_log
;
1046 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1049 if (!xlog_cil_empty(log
))
1052 spin_lock(&log
->l_icloglock
);
1053 switch (log
->l_covered_state
) {
1054 case XLOG_STATE_COVER_DONE
:
1055 case XLOG_STATE_COVER_DONE2
:
1056 case XLOG_STATE_COVER_IDLE
:
1058 case XLOG_STATE_COVER_NEED
:
1059 case XLOG_STATE_COVER_NEED2
:
1060 if (xfs_ail_min_lsn(log
->l_ailp
))
1062 if (!xlog_iclogs_empty(log
))
1066 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1067 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1069 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1075 spin_unlock(&log
->l_icloglock
);
1080 * We may be holding the log iclog lock upon entering this routine.
1083 xlog_assign_tail_lsn_locked(
1084 struct xfs_mount
*mp
)
1086 struct xlog
*log
= mp
->m_log
;
1087 struct xfs_log_item
*lip
;
1090 assert_spin_locked(&mp
->m_ail
->ail_lock
);
1093 * To make sure we always have a valid LSN for the log tail we keep
1094 * track of the last LSN which was committed in log->l_last_sync_lsn,
1095 * and use that when the AIL was empty.
1097 lip
= xfs_ail_min(mp
->m_ail
);
1099 tail_lsn
= lip
->li_lsn
;
1101 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1102 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1103 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1108 xlog_assign_tail_lsn(
1109 struct xfs_mount
*mp
)
1113 spin_lock(&mp
->m_ail
->ail_lock
);
1114 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1115 spin_unlock(&mp
->m_ail
->ail_lock
);
1121 * Return the space in the log between the tail and the head. The head
1122 * is passed in the cycle/bytes formal parms. In the special case where
1123 * the reserve head has wrapped passed the tail, this calculation is no
1124 * longer valid. In this case, just return 0 which means there is no space
1125 * in the log. This works for all places where this function is called
1126 * with the reserve head. Of course, if the write head were to ever
1127 * wrap the tail, we should blow up. Rather than catch this case here,
1128 * we depend on other ASSERTions in other parts of the code. XXXmiken
1130 * This code also handles the case where the reservation head is behind
1131 * the tail. The details of this case are described below, but the end
1132 * result is that we return the size of the log as the amount of space left.
1145 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1146 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1147 tail_bytes
= BBTOB(tail_bytes
);
1148 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1149 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1150 else if (tail_cycle
+ 1 < head_cycle
)
1152 else if (tail_cycle
< head_cycle
) {
1153 ASSERT(tail_cycle
== (head_cycle
- 1));
1154 free_bytes
= tail_bytes
- head_bytes
;
1157 * The reservation head is behind the tail.
1158 * In this case we just want to return the size of the
1159 * log as the amount of space left.
1161 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1162 xfs_alert(log
->l_mp
,
1163 " tail_cycle = %d, tail_bytes = %d",
1164 tail_cycle
, tail_bytes
);
1165 xfs_alert(log
->l_mp
,
1166 " GH cycle = %d, GH bytes = %d",
1167 head_cycle
, head_bytes
);
1169 free_bytes
= log
->l_logsize
;
1177 struct work_struct
*work
)
1179 struct xlog_in_core
*iclog
=
1180 container_of(work
, struct xlog_in_core
, ic_end_io_work
);
1181 struct xlog
*log
= iclog
->ic_log
;
1184 error
= blk_status_to_errno(iclog
->ic_bio
.bi_status
);
1186 /* treat writes with injected CRC errors as failed */
1187 if (iclog
->ic_fail_crc
)
1192 * Race to shutdown the filesystem if we see an error.
1194 if (XFS_TEST_ERROR(error
, log
->l_mp
, XFS_ERRTAG_IODONE_IOERR
)) {
1195 xfs_alert(log
->l_mp
, "log I/O error %d", error
);
1196 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1199 xlog_state_done_syncing(iclog
);
1200 bio_uninit(&iclog
->ic_bio
);
1203 * Drop the lock to signal that we are done. Nothing references the
1204 * iclog after this, so an unmount waiting on this lock can now tear it
1205 * down safely. As such, it is unsafe to reference the iclog after the
1206 * unlock as we could race with it being freed.
1208 up(&iclog
->ic_sema
);
1212 * Return size of each in-core log record buffer.
1214 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1216 * If the filesystem blocksize is too large, we may need to choose a
1217 * larger size since the directory code currently logs entire blocks.
1220 xlog_get_iclog_buffer_size(
1221 struct xfs_mount
*mp
,
1224 if (mp
->m_logbufs
<= 0)
1225 mp
->m_logbufs
= XLOG_MAX_ICLOGS
;
1226 if (mp
->m_logbsize
<= 0)
1227 mp
->m_logbsize
= XLOG_BIG_RECORD_BSIZE
;
1229 log
->l_iclog_bufs
= mp
->m_logbufs
;
1230 log
->l_iclog_size
= mp
->m_logbsize
;
1233 * # headers = size / 32k - one header holds cycles from 32k of data.
1235 log
->l_iclog_heads
=
1236 DIV_ROUND_UP(mp
->m_logbsize
, XLOG_HEADER_CYCLE_SIZE
);
1237 log
->l_iclog_hsize
= log
->l_iclog_heads
<< BBSHIFT
;
1242 struct xfs_mount
*mp
)
1244 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1245 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1249 * Every sync period we need to unpin all items in the AIL and push them to
1250 * disk. If there is nothing dirty, then we might need to cover the log to
1251 * indicate that the filesystem is idle.
1255 struct work_struct
*work
)
1257 struct xlog
*log
= container_of(to_delayed_work(work
),
1258 struct xlog
, l_work
);
1259 struct xfs_mount
*mp
= log
->l_mp
;
1261 /* dgc: errors ignored - not fatal and nowhere to report them */
1262 if (xfs_log_need_covered(mp
)) {
1264 * Dump a transaction into the log that contains no real change.
1265 * This is needed to stamp the current tail LSN into the log
1266 * during the covering operation.
1268 * We cannot use an inode here for this - that will push dirty
1269 * state back up into the VFS and then periodic inode flushing
1270 * will prevent log covering from making progress. Hence we
1271 * synchronously log the superblock instead to ensure the
1272 * superblock is immediately unpinned and can be written back.
1274 xfs_sync_sb(mp
, true);
1276 xfs_log_force(mp
, 0);
1278 /* start pushing all the metadata that is currently dirty */
1279 xfs_ail_push_all(mp
->m_ail
);
1281 /* queue us up again */
1282 xfs_log_work_queue(mp
);
1286 * This routine initializes some of the log structure for a given mount point.
1287 * Its primary purpose is to fill in enough, so recovery can occur. However,
1288 * some other stuff may be filled in too.
1290 STATIC
struct xlog
*
1292 struct xfs_mount
*mp
,
1293 struct xfs_buftarg
*log_target
,
1294 xfs_daddr_t blk_offset
,
1298 xlog_rec_header_t
*head
;
1299 xlog_in_core_t
**iclogp
;
1300 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1302 int error
= -ENOMEM
;
1305 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1307 xfs_warn(mp
, "Log allocation failed: No memory!");
1312 log
->l_targ
= log_target
;
1313 log
->l_logsize
= BBTOB(num_bblks
);
1314 log
->l_logBBstart
= blk_offset
;
1315 log
->l_logBBsize
= num_bblks
;
1316 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1317 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1318 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1320 log
->l_prev_block
= -1;
1321 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1322 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1323 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1324 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1326 xlog_grant_head_init(&log
->l_reserve_head
);
1327 xlog_grant_head_init(&log
->l_write_head
);
1329 error
= -EFSCORRUPTED
;
1330 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1331 log2_size
= mp
->m_sb
.sb_logsectlog
;
1332 if (log2_size
< BBSHIFT
) {
1333 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1334 log2_size
, BBSHIFT
);
1338 log2_size
-= BBSHIFT
;
1339 if (log2_size
> mp
->m_sectbb_log
) {
1340 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1341 log2_size
, mp
->m_sectbb_log
);
1345 /* for larger sector sizes, must have v2 or external log */
1346 if (log2_size
&& log
->l_logBBstart
> 0 &&
1347 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1349 "log sector size (0x%x) invalid for configuration.",
1354 log
->l_sectBBsize
= 1 << log2_size
;
1356 xlog_get_iclog_buffer_size(mp
, log
);
1358 spin_lock_init(&log
->l_icloglock
);
1359 init_waitqueue_head(&log
->l_flush_wait
);
1361 iclogp
= &log
->l_iclog
;
1363 * The amount of memory to allocate for the iclog structure is
1364 * rather funky due to the way the structure is defined. It is
1365 * done this way so that we can use different sizes for machines
1366 * with different amounts of memory. See the definition of
1367 * xlog_in_core_t in xfs_log_priv.h for details.
1369 ASSERT(log
->l_iclog_size
>= 4096);
1370 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1371 int align_mask
= xfs_buftarg_dma_alignment(mp
->m_logdev_targp
);
1372 size_t bvec_size
= howmany(log
->l_iclog_size
, PAGE_SIZE
) *
1373 sizeof(struct bio_vec
);
1375 iclog
= kmem_zalloc(sizeof(*iclog
) + bvec_size
, KM_MAYFAIL
);
1377 goto out_free_iclog
;
1380 iclog
->ic_prev
= prev_iclog
;
1383 iclog
->ic_data
= kmem_alloc_io(log
->l_iclog_size
, align_mask
,
1384 KM_MAYFAIL
| KM_ZERO
);
1385 if (!iclog
->ic_data
)
1386 goto out_free_iclog
;
1388 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1390 head
= &iclog
->ic_header
;
1391 memset(head
, 0, sizeof(xlog_rec_header_t
));
1392 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1393 head
->h_version
= cpu_to_be32(
1394 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1395 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1397 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1398 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1400 iclog
->ic_size
= log
->l_iclog_size
- log
->l_iclog_hsize
;
1401 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1402 iclog
->ic_log
= log
;
1403 atomic_set(&iclog
->ic_refcnt
, 0);
1404 spin_lock_init(&iclog
->ic_callback_lock
);
1405 INIT_LIST_HEAD(&iclog
->ic_callbacks
);
1406 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1408 init_waitqueue_head(&iclog
->ic_force_wait
);
1409 init_waitqueue_head(&iclog
->ic_write_wait
);
1410 INIT_WORK(&iclog
->ic_end_io_work
, xlog_ioend_work
);
1411 sema_init(&iclog
->ic_sema
, 1);
1413 iclogp
= &iclog
->ic_next
;
1415 *iclogp
= log
->l_iclog
; /* complete ring */
1416 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1418 log
->l_ioend_workqueue
= alloc_workqueue("xfs-log/%s",
1419 WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_HIGHPRI
, 0,
1421 if (!log
->l_ioend_workqueue
)
1422 goto out_free_iclog
;
1424 error
= xlog_cil_init(log
);
1426 goto out_destroy_workqueue
;
1429 out_destroy_workqueue
:
1430 destroy_workqueue(log
->l_ioend_workqueue
);
1432 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1433 prev_iclog
= iclog
->ic_next
;
1434 kmem_free(iclog
->ic_data
);
1436 if (prev_iclog
== log
->l_iclog
)
1442 return ERR_PTR(error
);
1443 } /* xlog_alloc_log */
1446 * Write out the commit record of a transaction associated with the given
1447 * ticket to close off a running log write. Return the lsn of the commit record.
1452 struct xlog_ticket
*ticket
,
1453 struct xlog_in_core
**iclog
,
1456 struct xfs_log_iovec reg
= {
1459 .i_type
= XLOG_REG_TYPE_COMMIT
,
1461 struct xfs_log_vec vec
= {
1467 if (XLOG_FORCED_SHUTDOWN(log
))
1470 error
= xlog_write(log
, &vec
, ticket
, lsn
, iclog
, XLOG_COMMIT_TRANS
,
1473 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1478 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1479 * log space. This code pushes on the lsn which would supposedly free up
1480 * the 25% which we want to leave free. We may need to adopt a policy which
1481 * pushes on an lsn which is further along in the log once we reach the high
1482 * water mark. In this manner, we would be creating a low water mark.
1485 xlog_grant_push_ail(
1489 xfs_lsn_t threshold_lsn
= 0;
1490 xfs_lsn_t last_sync_lsn
;
1493 int threshold_block
;
1494 int threshold_cycle
;
1497 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1499 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1500 free_blocks
= BTOBBT(free_bytes
);
1503 * Set the threshold for the minimum number of free blocks in the
1504 * log to the maximum of what the caller needs, one quarter of the
1505 * log, and 256 blocks.
1507 free_threshold
= BTOBB(need_bytes
);
1508 free_threshold
= max(free_threshold
, (log
->l_logBBsize
>> 2));
1509 free_threshold
= max(free_threshold
, 256);
1510 if (free_blocks
>= free_threshold
)
1513 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1515 threshold_block
+= free_threshold
;
1516 if (threshold_block
>= log
->l_logBBsize
) {
1517 threshold_block
-= log
->l_logBBsize
;
1518 threshold_cycle
+= 1;
1520 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1523 * Don't pass in an lsn greater than the lsn of the last
1524 * log record known to be on disk. Use a snapshot of the last sync lsn
1525 * so that it doesn't change between the compare and the set.
1527 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1528 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1529 threshold_lsn
= last_sync_lsn
;
1532 * Get the transaction layer to kick the dirty buffers out to
1533 * disk asynchronously. No point in trying to do this if
1534 * the filesystem is shutting down.
1536 if (!XLOG_FORCED_SHUTDOWN(log
))
1537 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1541 * Stamp cycle number in every block
1546 struct xlog_in_core
*iclog
,
1550 int size
= iclog
->ic_offset
+ roundoff
;
1554 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1556 dp
= iclog
->ic_datap
;
1557 for (i
= 0; i
< BTOBB(size
); i
++) {
1558 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1560 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1561 *(__be32
*)dp
= cycle_lsn
;
1565 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1566 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1568 for ( ; i
< BTOBB(size
); i
++) {
1569 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1570 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1571 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1572 *(__be32
*)dp
= cycle_lsn
;
1576 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1577 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1582 * Calculate the checksum for a log buffer.
1584 * This is a little more complicated than it should be because the various
1585 * headers and the actual data are non-contiguous.
1590 struct xlog_rec_header
*rhead
,
1596 /* first generate the crc for the record header ... */
1597 crc
= xfs_start_cksum_update((char *)rhead
,
1598 sizeof(struct xlog_rec_header
),
1599 offsetof(struct xlog_rec_header
, h_crc
));
1601 /* ... then for additional cycle data for v2 logs ... */
1602 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1603 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1607 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1608 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1611 for (i
= 1; i
< xheads
; i
++) {
1612 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1613 sizeof(struct xlog_rec_ext_header
));
1617 /* ... and finally for the payload */
1618 crc
= crc32c(crc
, dp
, size
);
1620 return xfs_end_cksum(crc
);
1627 struct xlog_in_core
*iclog
= bio
->bi_private
;
1629 queue_work(iclog
->ic_log
->l_ioend_workqueue
,
1630 &iclog
->ic_end_io_work
);
1634 xlog_map_iclog_data(
1640 struct page
*page
= kmem_to_page(data
);
1641 unsigned int off
= offset_in_page(data
);
1642 size_t len
= min_t(size_t, count
, PAGE_SIZE
- off
);
1644 if (bio_add_page(bio
, page
, len
, off
) != len
)
1657 struct xlog_in_core
*iclog
,
1662 ASSERT(bno
< log
->l_logBBsize
);
1665 * We lock the iclogbufs here so that we can serialise against I/O
1666 * completion during unmount. We might be processing a shutdown
1667 * triggered during unmount, and that can occur asynchronously to the
1668 * unmount thread, and hence we need to ensure that completes before
1669 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1670 * across the log IO to archieve that.
1672 down(&iclog
->ic_sema
);
1673 if (unlikely(iclog
->ic_state
== XLOG_STATE_IOERROR
)) {
1675 * It would seem logical to return EIO here, but we rely on
1676 * the log state machine to propagate I/O errors instead of
1677 * doing it here. We kick of the state machine and unlock
1678 * the buffer manually, the code needs to be kept in sync
1679 * with the I/O completion path.
1681 xlog_state_done_syncing(iclog
);
1682 up(&iclog
->ic_sema
);
1686 bio_init(&iclog
->ic_bio
, iclog
->ic_bvec
, howmany(count
, PAGE_SIZE
));
1687 bio_set_dev(&iclog
->ic_bio
, log
->l_targ
->bt_bdev
);
1688 iclog
->ic_bio
.bi_iter
.bi_sector
= log
->l_logBBstart
+ bno
;
1689 iclog
->ic_bio
.bi_end_io
= xlog_bio_end_io
;
1690 iclog
->ic_bio
.bi_private
= iclog
;
1693 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1694 * IOs coming immediately after this one. This prevents the block layer
1695 * writeback throttle from throttling log writes behind background
1696 * metadata writeback and causing priority inversions.
1698 iclog
->ic_bio
.bi_opf
= REQ_OP_WRITE
| REQ_META
| REQ_SYNC
|
1701 iclog
->ic_bio
.bi_opf
|= REQ_PREFLUSH
;
1703 if (xlog_map_iclog_data(&iclog
->ic_bio
, iclog
->ic_data
, count
)) {
1704 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1707 if (is_vmalloc_addr(iclog
->ic_data
))
1708 flush_kernel_vmap_range(iclog
->ic_data
, count
);
1711 * If this log buffer would straddle the end of the log we will have
1712 * to split it up into two bios, so that we can continue at the start.
1714 if (bno
+ BTOBB(count
) > log
->l_logBBsize
) {
1717 split
= bio_split(&iclog
->ic_bio
, log
->l_logBBsize
- bno
,
1718 GFP_NOIO
, &fs_bio_set
);
1719 bio_chain(split
, &iclog
->ic_bio
);
1722 /* restart at logical offset zero for the remainder */
1723 iclog
->ic_bio
.bi_iter
.bi_sector
= log
->l_logBBstart
;
1726 submit_bio(&iclog
->ic_bio
);
1730 * We need to bump cycle number for the part of the iclog that is
1731 * written to the start of the log. Watch out for the header magic
1732 * number case, though.
1741 unsigned int split_offset
= BBTOB(log
->l_logBBsize
- bno
);
1744 for (i
= split_offset
; i
< count
; i
+= BBSIZE
) {
1745 uint32_t cycle
= get_unaligned_be32(data
+ i
);
1747 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1749 put_unaligned_be32(cycle
, data
+ i
);
1754 xlog_calc_iclog_size(
1756 struct xlog_in_core
*iclog
,
1759 uint32_t count_init
, count
;
1762 use_lsunit
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
1763 log
->l_mp
->m_sb
.sb_logsunit
> 1;
1765 /* Add for LR header */
1766 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1768 /* Round out the log write size */
1770 /* we have a v2 stripe unit to use */
1771 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1773 count
= BBTOB(BTOBB(count_init
));
1776 ASSERT(count
>= count_init
);
1777 *roundoff
= count
- count_init
;
1780 ASSERT(*roundoff
< log
->l_mp
->m_sb
.sb_logsunit
);
1782 ASSERT(*roundoff
< BBTOB(1));
1787 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1788 * fashion. Previously, we should have moved the current iclog
1789 * ptr in the log to point to the next available iclog. This allows further
1790 * write to continue while this code syncs out an iclog ready to go.
1791 * Before an in-core log can be written out, the data section must be scanned
1792 * to save away the 1st word of each BBSIZE block into the header. We replace
1793 * it with the current cycle count. Each BBSIZE block is tagged with the
1794 * cycle count because there in an implicit assumption that drives will
1795 * guarantee that entire 512 byte blocks get written at once. In other words,
1796 * we can't have part of a 512 byte block written and part not written. By
1797 * tagging each block, we will know which blocks are valid when recovering
1798 * after an unclean shutdown.
1800 * This routine is single threaded on the iclog. No other thread can be in
1801 * this routine with the same iclog. Changing contents of iclog can there-
1802 * fore be done without grabbing the state machine lock. Updating the global
1803 * log will require grabbing the lock though.
1805 * The entire log manager uses a logical block numbering scheme. Only
1806 * xlog_write_iclog knows about the fact that the log may not start with
1807 * block zero on a given device.
1812 struct xlog_in_core
*iclog
)
1814 unsigned int count
; /* byte count of bwrite */
1815 unsigned int roundoff
; /* roundoff to BB or stripe */
1818 bool need_flush
= true, split
= false;
1820 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1822 count
= xlog_calc_iclog_size(log
, iclog
, &roundoff
);
1824 /* move grant heads by roundoff in sync */
1825 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1826 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1828 /* put cycle number in every block */
1829 xlog_pack_data(log
, iclog
, roundoff
);
1831 /* real byte length */
1832 size
= iclog
->ic_offset
;
1833 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
))
1835 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1837 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1838 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1840 bno
= BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
));
1842 /* Do we need to split this write into 2 parts? */
1843 if (bno
+ BTOBB(count
) > log
->l_logBBsize
) {
1844 xlog_split_iclog(log
, &iclog
->ic_header
, bno
, count
);
1848 /* calculcate the checksum */
1849 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1850 iclog
->ic_datap
, size
);
1852 * Intentionally corrupt the log record CRC based on the error injection
1853 * frequency, if defined. This facilitates testing log recovery in the
1854 * event of torn writes. Hence, set the IOABORT state to abort the log
1855 * write on I/O completion and shutdown the fs. The subsequent mount
1856 * detects the bad CRC and attempts to recover.
1859 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1860 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1861 iclog
->ic_fail_crc
= true;
1863 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1864 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1869 * Flush the data device before flushing the log to make sure all meta
1870 * data written back from the AIL actually made it to disk before
1871 * stamping the new log tail LSN into the log buffer. For an external
1872 * log we need to issue the flush explicitly, and unfortunately
1873 * synchronously here; for an internal log we can simply use the block
1874 * layer state machine for preflushes.
1876 if (log
->l_targ
!= log
->l_mp
->m_ddev_targp
|| split
) {
1877 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1881 xlog_verify_iclog(log
, iclog
, count
);
1882 xlog_write_iclog(log
, iclog
, bno
, count
, need_flush
);
1886 * Deallocate a log structure
1892 xlog_in_core_t
*iclog
, *next_iclog
;
1895 xlog_cil_destroy(log
);
1898 * Cycle all the iclogbuf locks to make sure all log IO completion
1899 * is done before we tear down these buffers.
1901 iclog
= log
->l_iclog
;
1902 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1903 down(&iclog
->ic_sema
);
1904 up(&iclog
->ic_sema
);
1905 iclog
= iclog
->ic_next
;
1908 iclog
= log
->l_iclog
;
1909 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1910 next_iclog
= iclog
->ic_next
;
1911 kmem_free(iclog
->ic_data
);
1916 log
->l_mp
->m_log
= NULL
;
1917 destroy_workqueue(log
->l_ioend_workqueue
);
1922 * Update counters atomically now that memcpy is done.
1925 xlog_state_finish_copy(
1927 struct xlog_in_core
*iclog
,
1931 lockdep_assert_held(&log
->l_icloglock
);
1933 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1934 iclog
->ic_offset
+= copy_bytes
;
1938 * print out info relating to regions written which consume
1943 struct xfs_mount
*mp
,
1944 struct xlog_ticket
*ticket
)
1947 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1949 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1950 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
1951 static char *res_type_str
[] = {
1952 REG_TYPE_STR(BFORMAT
, "bformat"),
1953 REG_TYPE_STR(BCHUNK
, "bchunk"),
1954 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
1955 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
1956 REG_TYPE_STR(IFORMAT
, "iformat"),
1957 REG_TYPE_STR(ICORE
, "icore"),
1958 REG_TYPE_STR(IEXT
, "iext"),
1959 REG_TYPE_STR(IBROOT
, "ibroot"),
1960 REG_TYPE_STR(ILOCAL
, "ilocal"),
1961 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
1962 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
1963 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
1964 REG_TYPE_STR(QFORMAT
, "qformat"),
1965 REG_TYPE_STR(DQUOT
, "dquot"),
1966 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
1967 REG_TYPE_STR(LRHEADER
, "LR header"),
1968 REG_TYPE_STR(UNMOUNT
, "unmount"),
1969 REG_TYPE_STR(COMMIT
, "commit"),
1970 REG_TYPE_STR(TRANSHDR
, "trans header"),
1971 REG_TYPE_STR(ICREATE
, "inode create"),
1972 REG_TYPE_STR(RUI_FORMAT
, "rui_format"),
1973 REG_TYPE_STR(RUD_FORMAT
, "rud_format"),
1974 REG_TYPE_STR(CUI_FORMAT
, "cui_format"),
1975 REG_TYPE_STR(CUD_FORMAT
, "cud_format"),
1976 REG_TYPE_STR(BUI_FORMAT
, "bui_format"),
1977 REG_TYPE_STR(BUD_FORMAT
, "bud_format"),
1979 BUILD_BUG_ON(ARRAY_SIZE(res_type_str
) != XLOG_REG_TYPE_MAX
+ 1);
1982 xfs_warn(mp
, "ticket reservation summary:");
1983 xfs_warn(mp
, " unit res = %d bytes",
1984 ticket
->t_unit_res
);
1985 xfs_warn(mp
, " current res = %d bytes",
1986 ticket
->t_curr_res
);
1987 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
1988 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
1989 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
1990 ticket
->t_res_num_ophdrs
, ophdr_spc
);
1991 xfs_warn(mp
, " ophdr + reg = %u bytes",
1992 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
1993 xfs_warn(mp
, " num regions = %u",
1996 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
1997 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
1998 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
1999 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2000 "bad-rtype" : res_type_str
[r_type
]),
2001 ticket
->t_res_arr
[i
].r_len
);
2006 * Print a summary of the transaction.
2010 struct xfs_trans
*tp
)
2012 struct xfs_mount
*mp
= tp
->t_mountp
;
2013 struct xfs_log_item
*lip
;
2015 /* dump core transaction and ticket info */
2016 xfs_warn(mp
, "transaction summary:");
2017 xfs_warn(mp
, " log res = %d", tp
->t_log_res
);
2018 xfs_warn(mp
, " log count = %d", tp
->t_log_count
);
2019 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
2021 xlog_print_tic_res(mp
, tp
->t_ticket
);
2023 /* dump each log item */
2024 list_for_each_entry(lip
, &tp
->t_items
, li_trans
) {
2025 struct xfs_log_vec
*lv
= lip
->li_lv
;
2026 struct xfs_log_iovec
*vec
;
2029 xfs_warn(mp
, "log item: ");
2030 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
2031 xfs_warn(mp
, " flags = 0x%lx", lip
->li_flags
);
2034 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
2035 xfs_warn(mp
, " size = %d", lv
->lv_size
);
2036 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
2037 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
2039 /* dump each iovec for the log item */
2040 vec
= lv
->lv_iovecp
;
2041 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2042 int dumplen
= min(vec
->i_len
, 32);
2044 xfs_warn(mp
, " iovec[%d]", i
);
2045 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
2046 xfs_warn(mp
, " len = %d", vec
->i_len
);
2047 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
2048 xfs_hex_dump(vec
->i_addr
, dumplen
);
2056 * Calculate the potential space needed by the log vector. We may need a start
2057 * record, and each region gets its own struct xlog_op_header and may need to be
2058 * double word aligned.
2061 xlog_write_calc_vec_length(
2062 struct xlog_ticket
*ticket
,
2063 struct xfs_log_vec
*log_vector
,
2064 bool need_start_rec
)
2066 struct xfs_log_vec
*lv
;
2067 int headers
= need_start_rec
? 1 : 0;
2071 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2072 /* we don't write ordered log vectors */
2073 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2076 headers
+= lv
->lv_niovecs
;
2078 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2079 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2082 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2086 ticket
->t_res_num_ophdrs
+= headers
;
2087 len
+= headers
* sizeof(struct xlog_op_header
);
2093 xlog_write_start_rec(
2094 struct xlog_op_header
*ophdr
,
2095 struct xlog_ticket
*ticket
)
2097 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2098 ophdr
->oh_clientid
= ticket
->t_clientid
;
2100 ophdr
->oh_flags
= XLOG_START_TRANS
;
2104 static xlog_op_header_t
*
2105 xlog_write_setup_ophdr(
2107 struct xlog_op_header
*ophdr
,
2108 struct xlog_ticket
*ticket
,
2111 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2112 ophdr
->oh_clientid
= ticket
->t_clientid
;
2115 /* are we copying a commit or unmount record? */
2116 ophdr
->oh_flags
= flags
;
2119 * We've seen logs corrupted with bad transaction client ids. This
2120 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2121 * and shut down the filesystem.
2123 switch (ophdr
->oh_clientid
) {
2124 case XFS_TRANSACTION
:
2130 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT
,
2131 ophdr
->oh_clientid
, ticket
);
2139 * Set up the parameters of the region copy into the log. This has
2140 * to handle region write split across multiple log buffers - this
2141 * state is kept external to this function so that this code can
2142 * be written in an obvious, self documenting manner.
2145 xlog_write_setup_copy(
2146 struct xlog_ticket
*ticket
,
2147 struct xlog_op_header
*ophdr
,
2148 int space_available
,
2152 int *last_was_partial_copy
,
2153 int *bytes_consumed
)
2157 still_to_copy
= space_required
- *bytes_consumed
;
2158 *copy_off
= *bytes_consumed
;
2160 if (still_to_copy
<= space_available
) {
2161 /* write of region completes here */
2162 *copy_len
= still_to_copy
;
2163 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2164 if (*last_was_partial_copy
)
2165 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2166 *last_was_partial_copy
= 0;
2167 *bytes_consumed
= 0;
2171 /* partial write of region, needs extra log op header reservation */
2172 *copy_len
= space_available
;
2173 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2174 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2175 if (*last_was_partial_copy
)
2176 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2177 *bytes_consumed
+= *copy_len
;
2178 (*last_was_partial_copy
)++;
2180 /* account for new log op header */
2181 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2182 ticket
->t_res_num_ophdrs
++;
2184 return sizeof(struct xlog_op_header
);
2188 xlog_write_copy_finish(
2190 struct xlog_in_core
*iclog
,
2195 int *partial_copy_len
,
2197 struct xlog_in_core
**commit_iclog
)
2201 if (*partial_copy
) {
2203 * This iclog has already been marked WANT_SYNC by
2204 * xlog_state_get_iclog_space.
2206 spin_lock(&log
->l_icloglock
);
2207 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2214 *partial_copy_len
= 0;
2216 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2217 /* no more space in this iclog - push it. */
2218 spin_lock(&log
->l_icloglock
);
2219 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2223 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2224 xlog_state_switch_iclogs(log
, iclog
, 0);
2226 ASSERT(iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2227 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2230 spin_unlock(&log
->l_icloglock
);
2231 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2232 *commit_iclog
= iclog
;
2238 error
= xlog_state_release_iclog(log
, iclog
);
2239 spin_unlock(&log
->l_icloglock
);
2244 * Write some region out to in-core log
2246 * This will be called when writing externally provided regions or when
2247 * writing out a commit record for a given transaction.
2249 * General algorithm:
2250 * 1. Find total length of this write. This may include adding to the
2251 * lengths passed in.
2252 * 2. Check whether we violate the tickets reservation.
2253 * 3. While writing to this iclog
2254 * A. Reserve as much space in this iclog as can get
2255 * B. If this is first write, save away start lsn
2256 * C. While writing this region:
2257 * 1. If first write of transaction, write start record
2258 * 2. Write log operation header (header per region)
2259 * 3. Find out if we can fit entire region into this iclog
2260 * 4. Potentially, verify destination memcpy ptr
2261 * 5. Memcpy (partial) region
2262 * 6. If partial copy, release iclog; otherwise, continue
2263 * copying more regions into current iclog
2264 * 4. Mark want sync bit (in simulation mode)
2265 * 5. Release iclog for potential flush to on-disk log.
2268 * 1. Panic if reservation is overrun. This should never happen since
2269 * reservation amounts are generated internal to the filesystem.
2271 * 1. Tickets are single threaded data structures.
2272 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2273 * syncing routine. When a single log_write region needs to span
2274 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2275 * on all log operation writes which don't contain the end of the
2276 * region. The XLOG_END_TRANS bit is used for the in-core log
2277 * operation which contains the end of the continued log_write region.
2278 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2279 * we don't really know exactly how much space will be used. As a result,
2280 * we don't update ic_offset until the end when we know exactly how many
2281 * bytes have been written out.
2286 struct xfs_log_vec
*log_vector
,
2287 struct xlog_ticket
*ticket
,
2288 xfs_lsn_t
*start_lsn
,
2289 struct xlog_in_core
**commit_iclog
,
2291 bool need_start_rec
)
2293 struct xlog_in_core
*iclog
= NULL
;
2294 struct xfs_log_vec
*lv
= log_vector
;
2295 struct xfs_log_iovec
*vecp
= lv
->lv_iovecp
;
2298 int partial_copy
= 0;
2299 int partial_copy_len
= 0;
2306 * If this is a commit or unmount transaction, we don't need a start
2307 * record to be written. We do, however, have to account for the
2308 * commit or unmount header that gets written. Hence we always have
2309 * to account for an extra xlog_op_header here.
2311 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2312 if (ticket
->t_curr_res
< 0) {
2313 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2314 "ctx ticket reservation ran out. Need to up reservation");
2315 xlog_print_tic_res(log
->l_mp
, ticket
);
2316 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
2319 len
= xlog_write_calc_vec_length(ticket
, log_vector
, need_start_rec
);
2321 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2325 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2326 &contwr
, &log_offset
);
2330 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2331 ptr
= iclog
->ic_datap
+ log_offset
;
2333 /* start_lsn is the first lsn written to. That's all we need. */
2335 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2338 * This loop writes out as many regions as can fit in the amount
2339 * of space which was allocated by xlog_state_get_iclog_space().
2341 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2342 struct xfs_log_iovec
*reg
;
2343 struct xlog_op_header
*ophdr
;
2346 bool ordered
= false;
2348 /* ordered log vectors have no regions to write */
2349 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2350 ASSERT(lv
->lv_niovecs
== 0);
2356 ASSERT(reg
->i_len
% sizeof(int32_t) == 0);
2357 ASSERT((unsigned long)ptr
% sizeof(int32_t) == 0);
2360 * Before we start formatting log vectors, we need to
2361 * write a start record. Only do this for the first
2362 * iclog we write to.
2364 if (need_start_rec
) {
2365 xlog_write_start_rec(ptr
, ticket
);
2366 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2367 sizeof(struct xlog_op_header
));
2370 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2374 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2375 sizeof(struct xlog_op_header
));
2377 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2378 iclog
->ic_size
-log_offset
,
2380 ©_off
, ©_len
,
2383 xlog_verify_dest_ptr(log
, ptr
);
2388 * Unmount records just log an opheader, so can have
2389 * empty payloads with no data region to copy. Hence we
2390 * only copy the payload if the vector says it has data
2393 ASSERT(copy_len
>= 0);
2395 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2396 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2399 copy_len
+= sizeof(struct xlog_op_header
);
2401 if (need_start_rec
) {
2402 copy_len
+= sizeof(struct xlog_op_header
);
2404 need_start_rec
= false;
2406 data_cnt
+= contwr
? copy_len
: 0;
2408 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2409 &record_cnt
, &data_cnt
,
2418 * if we had a partial copy, we need to get more iclog
2419 * space but we don't want to increment the region
2420 * index because there is still more is this region to
2423 * If we completed writing this region, and we flushed
2424 * the iclog (indicated by resetting of the record
2425 * count), then we also need to get more log space. If
2426 * this was the last record, though, we are done and
2432 if (++index
== lv
->lv_niovecs
) {
2437 vecp
= lv
->lv_iovecp
;
2439 if (record_cnt
== 0 && !ordered
) {
2449 spin_lock(&log
->l_icloglock
);
2450 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2452 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2453 *commit_iclog
= iclog
;
2455 error
= xlog_state_release_iclog(log
, iclog
);
2457 spin_unlock(&log
->l_icloglock
);
2463 xlog_state_activate_iclog(
2464 struct xlog_in_core
*iclog
,
2465 int *iclogs_changed
)
2467 ASSERT(list_empty_careful(&iclog
->ic_callbacks
));
2470 * If the number of ops in this iclog indicate it just contains the
2471 * dummy transaction, we can change state into IDLE (the second time
2472 * around). Otherwise we should change the state into NEED a dummy.
2473 * We don't need to cover the dummy.
2475 if (*iclogs_changed
== 0 &&
2476 iclog
->ic_header
.h_num_logops
== cpu_to_be32(XLOG_COVER_OPS
)) {
2477 *iclogs_changed
= 1;
2480 * We have two dirty iclogs so start over. This could also be
2481 * num of ops indicating this is not the dummy going out.
2483 *iclogs_changed
= 2;
2486 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2487 iclog
->ic_offset
= 0;
2488 iclog
->ic_header
.h_num_logops
= 0;
2489 memset(iclog
->ic_header
.h_cycle_data
, 0,
2490 sizeof(iclog
->ic_header
.h_cycle_data
));
2491 iclog
->ic_header
.h_lsn
= 0;
2495 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2496 * ACTIVE after iclog I/O has completed.
2499 xlog_state_activate_iclogs(
2501 int *iclogs_changed
)
2503 struct xlog_in_core
*iclog
= log
->l_iclog
;
2506 if (iclog
->ic_state
== XLOG_STATE_DIRTY
)
2507 xlog_state_activate_iclog(iclog
, iclogs_changed
);
2509 * The ordering of marking iclogs ACTIVE must be maintained, so
2510 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2512 else if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
)
2514 } while ((iclog
= iclog
->ic_next
) != log
->l_iclog
);
2523 * We usually go to NEED. But we go to NEED2 if the changed indicates we
2524 * are done writing the dummy record. If we are done with the second
2525 * dummy recored (DONE2), then we go to IDLE.
2527 switch (prev_state
) {
2528 case XLOG_STATE_COVER_IDLE
:
2529 case XLOG_STATE_COVER_NEED
:
2530 case XLOG_STATE_COVER_NEED2
:
2532 case XLOG_STATE_COVER_DONE
:
2533 if (iclogs_changed
== 1)
2534 return XLOG_STATE_COVER_NEED2
;
2536 case XLOG_STATE_COVER_DONE2
:
2537 if (iclogs_changed
== 1)
2538 return XLOG_STATE_COVER_IDLE
;
2544 return XLOG_STATE_COVER_NEED
;
2548 xlog_state_clean_iclog(
2550 struct xlog_in_core
*dirty_iclog
)
2552 int iclogs_changed
= 0;
2554 dirty_iclog
->ic_state
= XLOG_STATE_DIRTY
;
2556 xlog_state_activate_iclogs(log
, &iclogs_changed
);
2557 wake_up_all(&dirty_iclog
->ic_force_wait
);
2559 if (iclogs_changed
) {
2560 log
->l_covered_state
= xlog_covered_state(log
->l_covered_state
,
2566 xlog_get_lowest_lsn(
2569 struct xlog_in_core
*iclog
= log
->l_iclog
;
2570 xfs_lsn_t lowest_lsn
= 0, lsn
;
2573 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2574 iclog
->ic_state
== XLOG_STATE_DIRTY
)
2577 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2578 if ((lsn
&& !lowest_lsn
) || XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)
2580 } while ((iclog
= iclog
->ic_next
) != log
->l_iclog
);
2586 * Completion of a iclog IO does not imply that a transaction has completed, as
2587 * transactions can be large enough to span many iclogs. We cannot change the
2588 * tail of the log half way through a transaction as this may be the only
2589 * transaction in the log and moving the tail to point to the middle of it
2590 * will prevent recovery from finding the start of the transaction. Hence we
2591 * should only update the last_sync_lsn if this iclog contains transaction
2592 * completion callbacks on it.
2594 * We have to do this before we drop the icloglock to ensure we are the only one
2595 * that can update it.
2597 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2598 * the reservation grant head pushing. This is due to the fact that the push
2599 * target is bound by the current last_sync_lsn value. Hence if we have a large
2600 * amount of log space bound up in this committing transaction then the
2601 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2602 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2603 * should push the AIL to ensure the push target (and hence the grant head) is
2604 * no longer bound by the old log head location and can move forwards and make
2608 xlog_state_set_callback(
2610 struct xlog_in_core
*iclog
,
2611 xfs_lsn_t header_lsn
)
2613 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2615 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2618 if (list_empty_careful(&iclog
->ic_callbacks
))
2621 atomic64_set(&log
->l_last_sync_lsn
, header_lsn
);
2622 xlog_grant_push_ail(log
, 0);
2626 * Return true if we need to stop processing, false to continue to the next
2627 * iclog. The caller will need to run callbacks if the iclog is returned in the
2628 * XLOG_STATE_CALLBACK state.
2631 xlog_state_iodone_process_iclog(
2633 struct xlog_in_core
*iclog
,
2636 xfs_lsn_t lowest_lsn
;
2637 xfs_lsn_t header_lsn
;
2639 switch (iclog
->ic_state
) {
2640 case XLOG_STATE_ACTIVE
:
2641 case XLOG_STATE_DIRTY
:
2643 * Skip all iclogs in the ACTIVE & DIRTY states:
2646 case XLOG_STATE_IOERROR
:
2648 * Between marking a filesystem SHUTDOWN and stopping the log,
2649 * we do flush all iclogs to disk (if there wasn't a log I/O
2650 * error). So, we do want things to go smoothly in case of just
2651 * a SHUTDOWN w/o a LOG_IO_ERROR.
2655 case XLOG_STATE_DONE_SYNC
:
2657 * Now that we have an iclog that is in the DONE_SYNC state, do
2658 * one more check here to see if we have chased our tail around.
2659 * If this is not the lowest lsn iclog, then we will leave it
2660 * for another completion to process.
2662 header_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2663 lowest_lsn
= xlog_get_lowest_lsn(log
);
2664 if (lowest_lsn
&& XFS_LSN_CMP(lowest_lsn
, header_lsn
) < 0)
2666 xlog_state_set_callback(log
, iclog
, header_lsn
);
2670 * Can only perform callbacks in order. Since this iclog is not
2671 * in the DONE_SYNC state, we skip the rest and just try to
2679 * Keep processing entries in the iclog callback list until we come around and
2680 * it is empty. We need to atomically see that the list is empty and change the
2681 * state to DIRTY so that we don't miss any more callbacks being added.
2683 * This function is called with the icloglock held and returns with it held. We
2684 * drop it while running callbacks, however, as holding it over thousands of
2685 * callbacks is unnecessary and causes excessive contention if we do.
2688 xlog_state_do_iclog_callbacks(
2690 struct xlog_in_core
*iclog
)
2691 __releases(&log
->l_icloglock
)
2692 __acquires(&log
->l_icloglock
)
2694 spin_unlock(&log
->l_icloglock
);
2695 spin_lock(&iclog
->ic_callback_lock
);
2696 while (!list_empty(&iclog
->ic_callbacks
)) {
2699 list_splice_init(&iclog
->ic_callbacks
, &tmp
);
2701 spin_unlock(&iclog
->ic_callback_lock
);
2702 xlog_cil_process_committed(&tmp
);
2703 spin_lock(&iclog
->ic_callback_lock
);
2707 * Pick up the icloglock while still holding the callback lock so we
2708 * serialise against anyone trying to add more callbacks to this iclog
2709 * now we've finished processing.
2711 spin_lock(&log
->l_icloglock
);
2712 spin_unlock(&iclog
->ic_callback_lock
);
2716 xlog_state_do_callback(
2719 struct xlog_in_core
*iclog
;
2720 struct xlog_in_core
*first_iclog
;
2721 bool cycled_icloglock
;
2726 spin_lock(&log
->l_icloglock
);
2729 * Scan all iclogs starting with the one pointed to by the
2730 * log. Reset this starting point each time the log is
2731 * unlocked (during callbacks).
2733 * Keep looping through iclogs until one full pass is made
2734 * without running any callbacks.
2736 first_iclog
= log
->l_iclog
;
2737 iclog
= log
->l_iclog
;
2738 cycled_icloglock
= false;
2743 if (xlog_state_iodone_process_iclog(log
, iclog
,
2747 if (iclog
->ic_state
!= XLOG_STATE_CALLBACK
&&
2748 iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2749 iclog
= iclog
->ic_next
;
2754 * Running callbacks will drop the icloglock which means
2755 * we'll have to run at least one more complete loop.
2757 cycled_icloglock
= true;
2758 xlog_state_do_iclog_callbacks(log
, iclog
);
2759 if (XLOG_FORCED_SHUTDOWN(log
))
2760 wake_up_all(&iclog
->ic_force_wait
);
2762 xlog_state_clean_iclog(log
, iclog
);
2763 iclog
= iclog
->ic_next
;
2764 } while (first_iclog
!= iclog
);
2766 if (repeats
> 5000) {
2767 flushcnt
+= repeats
;
2770 "%s: possible infinite loop (%d iterations)",
2771 __func__
, flushcnt
);
2773 } while (!ioerror
&& cycled_icloglock
);
2775 if (log
->l_iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2776 log
->l_iclog
->ic_state
== XLOG_STATE_IOERROR
)
2777 wake_up_all(&log
->l_flush_wait
);
2779 spin_unlock(&log
->l_icloglock
);
2784 * Finish transitioning this iclog to the dirty state.
2786 * Make sure that we completely execute this routine only when this is
2787 * the last call to the iclog. There is a good chance that iclog flushes,
2788 * when we reach the end of the physical log, get turned into 2 separate
2789 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2790 * routine. By using the reference count bwritecnt, we guarantee that only
2791 * the second completion goes through.
2793 * Callbacks could take time, so they are done outside the scope of the
2794 * global state machine log lock.
2797 xlog_state_done_syncing(
2798 struct xlog_in_core
*iclog
)
2800 struct xlog
*log
= iclog
->ic_log
;
2802 spin_lock(&log
->l_icloglock
);
2803 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2806 * If we got an error, either on the first buffer, or in the case of
2807 * split log writes, on the second, we shut down the file system and
2808 * no iclogs should ever be attempted to be written to disk again.
2810 if (!XLOG_FORCED_SHUTDOWN(log
)) {
2811 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
);
2812 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2816 * Someone could be sleeping prior to writing out the next
2817 * iclog buffer, we wake them all, one will get to do the
2818 * I/O, the others get to wait for the result.
2820 wake_up_all(&iclog
->ic_write_wait
);
2821 spin_unlock(&log
->l_icloglock
);
2822 xlog_state_do_callback(log
);
2826 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2827 * sleep. We wait on the flush queue on the head iclog as that should be
2828 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2829 * we will wait here and all new writes will sleep until a sync completes.
2831 * The in-core logs are used in a circular fashion. They are not used
2832 * out-of-order even when an iclog past the head is free.
2835 * * log_offset where xlog_write() can start writing into the in-core
2837 * * in-core log pointer to which xlog_write() should write.
2838 * * boolean indicating this is a continued write to an in-core log.
2839 * If this is the last write, then the in-core log's offset field
2840 * needs to be incremented, depending on the amount of data which
2844 xlog_state_get_iclog_space(
2847 struct xlog_in_core
**iclogp
,
2848 struct xlog_ticket
*ticket
,
2849 int *continued_write
,
2853 xlog_rec_header_t
*head
;
2854 xlog_in_core_t
*iclog
;
2857 spin_lock(&log
->l_icloglock
);
2858 if (XLOG_FORCED_SHUTDOWN(log
)) {
2859 spin_unlock(&log
->l_icloglock
);
2863 iclog
= log
->l_iclog
;
2864 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2865 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
2867 /* Wait for log writes to have flushed */
2868 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2872 head
= &iclog
->ic_header
;
2874 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2875 log_offset
= iclog
->ic_offset
;
2877 /* On the 1st write to an iclog, figure out lsn. This works
2878 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2879 * committing to. If the offset is set, that's how many blocks
2882 if (log_offset
== 0) {
2883 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2884 xlog_tic_add_region(ticket
,
2886 XLOG_REG_TYPE_LRHEADER
);
2887 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2888 head
->h_lsn
= cpu_to_be64(
2889 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2890 ASSERT(log
->l_curr_block
>= 0);
2893 /* If there is enough room to write everything, then do it. Otherwise,
2894 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2895 * bit is on, so this will get flushed out. Don't update ic_offset
2896 * until you know exactly how many bytes get copied. Therefore, wait
2897 * until later to update ic_offset.
2899 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2900 * can fit into remaining data section.
2902 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2905 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2908 * If we are the only one writing to this iclog, sync it to
2909 * disk. We need to do an atomic compare and decrement here to
2910 * avoid racing with concurrent atomic_dec_and_lock() calls in
2911 * xlog_state_release_iclog() when there is more than one
2912 * reference to the iclog.
2914 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1))
2915 error
= xlog_state_release_iclog(log
, iclog
);
2916 spin_unlock(&log
->l_icloglock
);
2922 /* Do we have enough room to write the full amount in the remainder
2923 * of this iclog? Or must we continue a write on the next iclog and
2924 * mark this iclog as completely taken? In the case where we switch
2925 * iclogs (to mark it taken), this particular iclog will release/sync
2926 * to disk in xlog_write().
2928 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
2929 *continued_write
= 0;
2930 iclog
->ic_offset
+= len
;
2932 *continued_write
= 1;
2933 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2937 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2938 spin_unlock(&log
->l_icloglock
);
2940 *logoffsetp
= log_offset
;
2945 * The first cnt-1 times a ticket goes through here we don't need to move the
2946 * grant write head because the permanent reservation has reserved cnt times the
2947 * unit amount. Release part of current permanent unit reservation and reset
2948 * current reservation to be one units worth. Also move grant reservation head
2952 xfs_log_ticket_regrant(
2954 struct xlog_ticket
*ticket
)
2956 trace_xfs_log_ticket_regrant(log
, ticket
);
2958 if (ticket
->t_cnt
> 0)
2961 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
2962 ticket
->t_curr_res
);
2963 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
2964 ticket
->t_curr_res
);
2965 ticket
->t_curr_res
= ticket
->t_unit_res
;
2966 xlog_tic_reset_res(ticket
);
2968 trace_xfs_log_ticket_regrant_sub(log
, ticket
);
2970 /* just return if we still have some of the pre-reserved space */
2971 if (!ticket
->t_cnt
) {
2972 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
2973 ticket
->t_unit_res
);
2974 trace_xfs_log_ticket_regrant_exit(log
, ticket
);
2976 ticket
->t_curr_res
= ticket
->t_unit_res
;
2977 xlog_tic_reset_res(ticket
);
2980 xfs_log_ticket_put(ticket
);
2984 * Give back the space left from a reservation.
2986 * All the information we need to make a correct determination of space left
2987 * is present. For non-permanent reservations, things are quite easy. The
2988 * count should have been decremented to zero. We only need to deal with the
2989 * space remaining in the current reservation part of the ticket. If the
2990 * ticket contains a permanent reservation, there may be left over space which
2991 * needs to be released. A count of N means that N-1 refills of the current
2992 * reservation can be done before we need to ask for more space. The first
2993 * one goes to fill up the first current reservation. Once we run out of
2994 * space, the count will stay at zero and the only space remaining will be
2995 * in the current reservation field.
2998 xfs_log_ticket_ungrant(
3000 struct xlog_ticket
*ticket
)
3004 trace_xfs_log_ticket_ungrant(log
, ticket
);
3006 if (ticket
->t_cnt
> 0)
3009 trace_xfs_log_ticket_ungrant_sub(log
, ticket
);
3012 * If this is a permanent reservation ticket, we may be able to free
3013 * up more space based on the remaining count.
3015 bytes
= ticket
->t_curr_res
;
3016 if (ticket
->t_cnt
> 0) {
3017 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3018 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3021 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3022 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3024 trace_xfs_log_ticket_ungrant_exit(log
, ticket
);
3026 xfs_log_space_wake(log
->l_mp
);
3027 xfs_log_ticket_put(ticket
);
3031 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3032 * the current iclog pointer to the next iclog in the ring.
3035 xlog_state_switch_iclogs(
3037 struct xlog_in_core
*iclog
,
3040 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3041 assert_spin_locked(&log
->l_icloglock
);
3044 eventual_size
= iclog
->ic_offset
;
3045 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3046 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3047 log
->l_prev_block
= log
->l_curr_block
;
3048 log
->l_prev_cycle
= log
->l_curr_cycle
;
3050 /* roll log?: ic_offset changed later */
3051 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3053 /* Round up to next log-sunit */
3054 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3055 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3056 uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3057 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3060 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3062 * Rewind the current block before the cycle is bumped to make
3063 * sure that the combined LSN never transiently moves forward
3064 * when the log wraps to the next cycle. This is to support the
3065 * unlocked sample of these fields from xlog_valid_lsn(). Most
3066 * other cases should acquire l_icloglock.
3068 log
->l_curr_block
-= log
->l_logBBsize
;
3069 ASSERT(log
->l_curr_block
>= 0);
3071 log
->l_curr_cycle
++;
3072 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3073 log
->l_curr_cycle
++;
3075 ASSERT(iclog
== log
->l_iclog
);
3076 log
->l_iclog
= iclog
->ic_next
;
3080 * Write out all data in the in-core log as of this exact moment in time.
3082 * Data may be written to the in-core log during this call. However,
3083 * we don't guarantee this data will be written out. A change from past
3084 * implementation means this routine will *not* write out zero length LRs.
3086 * Basically, we try and perform an intelligent scan of the in-core logs.
3087 * If we determine there is no flushable data, we just return. There is no
3088 * flushable data if:
3090 * 1. the current iclog is active and has no data; the previous iclog
3091 * is in the active or dirty state.
3092 * 2. the current iclog is drity, and the previous iclog is in the
3093 * active or dirty state.
3097 * 1. the current iclog is not in the active nor dirty state.
3098 * 2. the current iclog dirty, and the previous iclog is not in the
3099 * active nor dirty state.
3100 * 3. the current iclog is active, and there is another thread writing
3101 * to this particular iclog.
3102 * 4. a) the current iclog is active and has no other writers
3103 * b) when we return from flushing out this iclog, it is still
3104 * not in the active nor dirty state.
3108 struct xfs_mount
*mp
,
3111 struct xlog
*log
= mp
->m_log
;
3112 struct xlog_in_core
*iclog
;
3115 XFS_STATS_INC(mp
, xs_log_force
);
3116 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3118 xlog_cil_force(log
);
3120 spin_lock(&log
->l_icloglock
);
3121 iclog
= log
->l_iclog
;
3122 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3125 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3126 (iclog
->ic_state
== XLOG_STATE_ACTIVE
&&
3127 atomic_read(&iclog
->ic_refcnt
) == 0 && iclog
->ic_offset
== 0)) {
3129 * If the head is dirty or (active and empty), then we need to
3130 * look at the previous iclog.
3132 * If the previous iclog is active or dirty we are done. There
3133 * is nothing to sync out. Otherwise, we attach ourselves to the
3134 * previous iclog and go to sleep.
3136 iclog
= iclog
->ic_prev
;
3137 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3138 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3140 * We are the only one with access to this iclog.
3142 * Flush it out now. There should be a roundoff of zero
3143 * to show that someone has already taken care of the
3144 * roundoff from the previous sync.
3146 atomic_inc(&iclog
->ic_refcnt
);
3147 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3148 xlog_state_switch_iclogs(log
, iclog
, 0);
3149 if (xlog_state_release_iclog(log
, iclog
))
3152 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
)
3156 * Someone else is writing to this iclog.
3158 * Use its call to flush out the data. However, the
3159 * other thread may not force out this LR, so we mark
3162 xlog_state_switch_iclogs(log
, iclog
, 0);
3166 * If the head iclog is not active nor dirty, we just attach
3167 * ourselves to the head and go to sleep if necessary.
3172 if (flags
& XFS_LOG_SYNC
)
3173 return xlog_wait_on_iclog(iclog
);
3175 spin_unlock(&log
->l_icloglock
);
3178 spin_unlock(&log
->l_icloglock
);
3183 __xfs_log_force_lsn(
3184 struct xfs_mount
*mp
,
3190 struct xlog
*log
= mp
->m_log
;
3191 struct xlog_in_core
*iclog
;
3193 spin_lock(&log
->l_icloglock
);
3194 iclog
= log
->l_iclog
;
3195 if (iclog
->ic_state
== XLOG_STATE_IOERROR
)
3198 while (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3199 iclog
= iclog
->ic_next
;
3200 if (iclog
== log
->l_iclog
)
3204 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3206 * We sleep here if we haven't already slept (e.g. this is the
3207 * first time we've looked at the correct iclog buf) and the
3208 * buffer before us is going to be sync'ed. The reason for this
3209 * is that if we are doing sync transactions here, by waiting
3210 * for the previous I/O to complete, we can allow a few more
3211 * transactions into this iclog before we close it down.
3213 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3214 * refcnt so we can release the log (which drops the ref count).
3215 * The state switch keeps new transaction commits from using
3216 * this buffer. When the current commits finish writing into
3217 * the buffer, the refcount will drop to zero and the buffer
3220 if (!already_slept
&&
3221 (iclog
->ic_prev
->ic_state
== XLOG_STATE_WANT_SYNC
||
3222 iclog
->ic_prev
->ic_state
== XLOG_STATE_SYNCING
)) {
3223 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3225 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3229 atomic_inc(&iclog
->ic_refcnt
);
3230 xlog_state_switch_iclogs(log
, iclog
, 0);
3231 if (xlog_state_release_iclog(log
, iclog
))
3237 if (flags
& XFS_LOG_SYNC
)
3238 return xlog_wait_on_iclog(iclog
);
3240 spin_unlock(&log
->l_icloglock
);
3243 spin_unlock(&log
->l_icloglock
);
3248 * Force the in-core log to disk for a specific LSN.
3250 * Find in-core log with lsn.
3251 * If it is in the DIRTY state, just return.
3252 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3253 * state and go to sleep or return.
3254 * If it is in any other state, go to sleep or return.
3256 * Synchronous forces are implemented with a wait queue. All callers trying
3257 * to force a given lsn to disk must wait on the queue attached to the
3258 * specific in-core log. When given in-core log finally completes its write
3259 * to disk, that thread will wake up all threads waiting on the queue.
3263 struct xfs_mount
*mp
,
3271 XFS_STATS_INC(mp
, xs_log_force
);
3272 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3274 lsn
= xlog_cil_force_lsn(mp
->m_log
, lsn
);
3275 if (lsn
== NULLCOMMITLSN
)
3278 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, false);
3280 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, true);
3285 * Free a used ticket when its refcount falls to zero.
3289 xlog_ticket_t
*ticket
)
3291 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3292 if (atomic_dec_and_test(&ticket
->t_ref
))
3293 kmem_cache_free(xfs_log_ticket_zone
, ticket
);
3298 xlog_ticket_t
*ticket
)
3300 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3301 atomic_inc(&ticket
->t_ref
);
3306 * Figure out the total log space unit (in bytes) that would be
3307 * required for a log ticket.
3310 xfs_log_calc_unit_res(
3311 struct xfs_mount
*mp
,
3314 struct xlog
*log
= mp
->m_log
;
3319 * Permanent reservations have up to 'cnt'-1 active log operations
3320 * in the log. A unit in this case is the amount of space for one
3321 * of these log operations. Normal reservations have a cnt of 1
3322 * and their unit amount is the total amount of space required.
3324 * The following lines of code account for non-transaction data
3325 * which occupy space in the on-disk log.
3327 * Normal form of a transaction is:
3328 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3329 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3331 * We need to account for all the leadup data and trailer data
3332 * around the transaction data.
3333 * And then we need to account for the worst case in terms of using
3335 * The worst case will happen if:
3336 * - the placement of the transaction happens to be such that the
3337 * roundoff is at its maximum
3338 * - the transaction data is synced before the commit record is synced
3339 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3340 * Therefore the commit record is in its own Log Record.
3341 * This can happen as the commit record is called with its
3342 * own region to xlog_write().
3343 * This then means that in the worst case, roundoff can happen for
3344 * the commit-rec as well.
3345 * The commit-rec is smaller than padding in this scenario and so it is
3346 * not added separately.
3349 /* for trans header */
3350 unit_bytes
+= sizeof(xlog_op_header_t
);
3351 unit_bytes
+= sizeof(xfs_trans_header_t
);
3354 unit_bytes
+= sizeof(xlog_op_header_t
);
3357 * for LR headers - the space for data in an iclog is the size minus
3358 * the space used for the headers. If we use the iclog size, then we
3359 * undercalculate the number of headers required.
3361 * Furthermore - the addition of op headers for split-recs might
3362 * increase the space required enough to require more log and op
3363 * headers, so take that into account too.
3365 * IMPORTANT: This reservation makes the assumption that if this
3366 * transaction is the first in an iclog and hence has the LR headers
3367 * accounted to it, then the remaining space in the iclog is
3368 * exclusively for this transaction. i.e. if the transaction is larger
3369 * than the iclog, it will be the only thing in that iclog.
3370 * Fundamentally, this means we must pass the entire log vector to
3371 * xlog_write to guarantee this.
3373 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3374 num_headers
= howmany(unit_bytes
, iclog_space
);
3376 /* for split-recs - ophdrs added when data split over LRs */
3377 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3379 /* add extra header reservations if we overrun */
3380 while (!num_headers
||
3381 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3382 unit_bytes
+= sizeof(xlog_op_header_t
);
3385 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3387 /* for commit-rec LR header - note: padding will subsume the ophdr */
3388 unit_bytes
+= log
->l_iclog_hsize
;
3390 /* for roundoff padding for transaction data and one for commit record */
3391 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3392 /* log su roundoff */
3393 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3396 unit_bytes
+= 2 * BBSIZE
;
3403 * Allocate and initialise a new log ticket.
3405 struct xlog_ticket
*
3412 xfs_km_flags_t alloc_flags
)
3414 struct xlog_ticket
*tic
;
3417 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3421 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3423 atomic_set(&tic
->t_ref
, 1);
3424 tic
->t_task
= current
;
3425 INIT_LIST_HEAD(&tic
->t_queue
);
3426 tic
->t_unit_res
= unit_res
;
3427 tic
->t_curr_res
= unit_res
;
3430 tic
->t_tid
= prandom_u32();
3431 tic
->t_clientid
= client
;
3433 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3435 xlog_tic_reset_res(tic
);
3442 * Make sure that the destination ptr is within the valid data region of
3443 * one of the iclogs. This uses backup pointers stored in a different
3444 * part of the log in case we trash the log structure.
3447 xlog_verify_dest_ptr(
3454 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3455 if (ptr
>= log
->l_iclog_bak
[i
] &&
3456 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3461 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3465 * Check to make sure the grant write head didn't just over lap the tail. If
3466 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3467 * the cycles differ by exactly one and check the byte count.
3469 * This check is run unlocked, so can give false positives. Rather than assert
3470 * on failures, use a warn-once flag and a panic tag to allow the admin to
3471 * determine if they want to panic the machine when such an error occurs. For
3472 * debug kernels this will have the same effect as using an assert but, unlinke
3473 * an assert, it can be turned off at runtime.
3476 xlog_verify_grant_tail(
3479 int tail_cycle
, tail_blocks
;
3482 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3483 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3484 if (tail_cycle
!= cycle
) {
3485 if (cycle
- 1 != tail_cycle
&&
3486 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3487 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3488 "%s: cycle - 1 != tail_cycle", __func__
);
3489 log
->l_flags
|= XLOG_TAIL_WARN
;
3492 if (space
> BBTOB(tail_blocks
) &&
3493 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3494 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3495 "%s: space > BBTOB(tail_blocks)", __func__
);
3496 log
->l_flags
|= XLOG_TAIL_WARN
;
3501 /* check if it will fit */
3503 xlog_verify_tail_lsn(
3505 struct xlog_in_core
*iclog
,
3510 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3512 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3513 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3514 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3516 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3518 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3519 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3521 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3522 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3523 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3528 * Perform a number of checks on the iclog before writing to disk.
3530 * 1. Make sure the iclogs are still circular
3531 * 2. Make sure we have a good magic number
3532 * 3. Make sure we don't have magic numbers in the data
3533 * 4. Check fields of each log operation header for:
3534 * A. Valid client identifier
3535 * B. tid ptr value falls in valid ptr space (user space code)
3536 * C. Length in log record header is correct according to the
3537 * individual operation headers within record.
3538 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3539 * log, check the preceding blocks of the physical log to make sure all
3540 * the cycle numbers agree with the current cycle number.
3545 struct xlog_in_core
*iclog
,
3548 xlog_op_header_t
*ophead
;
3549 xlog_in_core_t
*icptr
;
3550 xlog_in_core_2_t
*xhdr
;
3551 void *base_ptr
, *ptr
, *p
;
3552 ptrdiff_t field_offset
;
3554 int len
, i
, j
, k
, op_len
;
3557 /* check validity of iclog pointers */
3558 spin_lock(&log
->l_icloglock
);
3559 icptr
= log
->l_iclog
;
3560 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3563 if (icptr
!= log
->l_iclog
)
3564 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3565 spin_unlock(&log
->l_icloglock
);
3567 /* check log magic numbers */
3568 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3569 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3571 base_ptr
= ptr
= &iclog
->ic_header
;
3572 p
= &iclog
->ic_header
;
3573 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3574 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3575 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3580 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3581 base_ptr
= ptr
= iclog
->ic_datap
;
3583 xhdr
= iclog
->ic_data
;
3584 for (i
= 0; i
< len
; i
++) {
3587 /* clientid is only 1 byte */
3588 p
= &ophead
->oh_clientid
;
3589 field_offset
= p
- base_ptr
;
3590 if (field_offset
& 0x1ff) {
3591 clientid
= ophead
->oh_clientid
;
3593 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3594 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3595 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3596 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3597 clientid
= xlog_get_client_id(
3598 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3600 clientid
= xlog_get_client_id(
3601 iclog
->ic_header
.h_cycle_data
[idx
]);
3604 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3606 "%s: invalid clientid %d op "PTR_FMT
" offset 0x%lx",
3607 __func__
, clientid
, ophead
,
3608 (unsigned long)field_offset
);
3611 p
= &ophead
->oh_len
;
3612 field_offset
= p
- base_ptr
;
3613 if (field_offset
& 0x1ff) {
3614 op_len
= be32_to_cpu(ophead
->oh_len
);
3616 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3617 (uintptr_t)iclog
->ic_datap
);
3618 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3619 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3620 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3621 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3623 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3626 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3632 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3638 xlog_in_core_t
*iclog
, *ic
;
3640 iclog
= log
->l_iclog
;
3641 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
3643 * Mark all the incore logs IOERROR.
3644 * From now on, no log flushes will result.
3648 ic
->ic_state
= XLOG_STATE_IOERROR
;
3650 } while (ic
!= iclog
);
3654 * Return non-zero, if state transition has already happened.
3660 * This is called from xfs_force_shutdown, when we're forcibly
3661 * shutting down the filesystem, typically because of an IO error.
3662 * Our main objectives here are to make sure that:
3663 * a. if !logerror, flush the logs to disk. Anything modified
3664 * after this is ignored.
3665 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3666 * parties to find out, 'atomically'.
3667 * c. those who're sleeping on log reservations, pinned objects and
3668 * other resources get woken up, and be told the bad news.
3669 * d. nothing new gets queued up after (b) and (c) are done.
3671 * Note: for the !logerror case we need to flush the regions held in memory out
3672 * to disk first. This needs to be done before the log is marked as shutdown,
3673 * otherwise the iclog writes will fail.
3676 xfs_log_force_umount(
3677 struct xfs_mount
*mp
,
3686 * If this happens during log recovery, don't worry about
3687 * locking; the log isn't open for business yet.
3690 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3691 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3693 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3698 * Somebody could've already done the hard work for us.
3699 * No need to get locks for this.
3701 if (logerror
&& log
->l_iclog
->ic_state
== XLOG_STATE_IOERROR
) {
3702 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3707 * Flush all the completed transactions to disk before marking the log
3708 * being shut down. We need to do it in this order to ensure that
3709 * completed operations are safely on disk before we shut down, and that
3710 * we don't have to issue any buffer IO after the shutdown flags are set
3711 * to guarantee this.
3714 xfs_log_force(mp
, XFS_LOG_SYNC
);
3717 * mark the filesystem and the as in a shutdown state and wake
3718 * everybody up to tell them the bad news.
3720 spin_lock(&log
->l_icloglock
);
3721 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3723 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3726 * Mark the log and the iclogs with IO error flags to prevent any
3727 * further log IO from being issued or completed.
3729 log
->l_flags
|= XLOG_IO_ERROR
;
3730 retval
= xlog_state_ioerror(log
);
3731 spin_unlock(&log
->l_icloglock
);
3734 * We don't want anybody waiting for log reservations after this. That
3735 * means we have to wake up everybody queued up on reserveq as well as
3736 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3737 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3738 * action is protected by the grant locks.
3740 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3741 xlog_grant_head_wake_all(&log
->l_write_head
);
3744 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3745 * as if the log writes were completed. The abort handling in the log
3746 * item committed callback functions will do this again under lock to
3749 spin_lock(&log
->l_cilp
->xc_push_lock
);
3750 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
3751 spin_unlock(&log
->l_cilp
->xc_push_lock
);
3752 xlog_state_do_callback(log
);
3754 /* return non-zero if log IOERROR transition had already happened */
3762 xlog_in_core_t
*iclog
;
3764 iclog
= log
->l_iclog
;
3766 /* endianness does not matter here, zero is zero in
3769 if (iclog
->ic_header
.h_num_logops
)
3771 iclog
= iclog
->ic_next
;
3772 } while (iclog
!= log
->l_iclog
);
3777 * Verify that an LSN stamped into a piece of metadata is valid. This is
3778 * intended for use in read verifiers on v5 superblocks.
3782 struct xfs_mount
*mp
,
3785 struct xlog
*log
= mp
->m_log
;
3789 * norecovery mode skips mount-time log processing and unconditionally
3790 * resets the in-core LSN. We can't validate in this mode, but
3791 * modifications are not allowed anyways so just return true.
3793 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
3797 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3798 * handled by recovery and thus safe to ignore here.
3800 if (lsn
== NULLCOMMITLSN
)
3803 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
3805 /* warn the user about what's gone wrong before verifier failure */
3807 spin_lock(&log
->l_icloglock
);
3809 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3810 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3811 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
3812 log
->l_curr_cycle
, log
->l_curr_block
);
3813 spin_unlock(&log
->l_icloglock
);
3820 xfs_log_in_recovery(
3821 struct xfs_mount
*mp
)
3823 struct xlog
*log
= mp
->m_log
;
3825 return log
->l_flags
& XLOG_ACTIVE_RECOVERY
;