Merge tag 'for-5.8/dm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[linux/fpc-iii.git] / fs / xfs / xfs_log.c
blob00fda2e8e7380b3822eca5fe8eec3e4c7bb3f91a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
24 kmem_zone_t *xfs_log_ticket_zone;
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
33 STATIC int
34 xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
37 STATIC void
38 xlog_dealloc_log(
39 struct xlog *log);
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 struct xlog_in_core *iclog);
44 STATIC int
45 xlog_state_get_iclog_space(
46 struct xlog *log,
47 int len,
48 struct xlog_in_core **iclog,
49 struct xlog_ticket *ticket,
50 int *continued_write,
51 int *logoffsetp);
52 STATIC void
53 xlog_state_switch_iclogs(
54 struct xlog *log,
55 struct xlog_in_core *iclog,
56 int eventual_size);
57 STATIC void
58 xlog_grant_push_ail(
59 struct xlog *log,
60 int need_bytes);
61 STATIC void
62 xlog_sync(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_verify_dest_ptr(
68 struct xlog *log,
69 void *ptr);
70 STATIC void
71 xlog_verify_grant_tail(
72 struct xlog *log);
73 STATIC void
74 xlog_verify_iclog(
75 struct xlog *log,
76 struct xlog_in_core *iclog,
77 int count);
78 STATIC void
79 xlog_verify_tail_lsn(
80 struct xlog *log,
81 struct xlog_in_core *iclog,
82 xfs_lsn_t tail_lsn);
83 #else
84 #define xlog_verify_dest_ptr(a,b)
85 #define xlog_verify_grant_tail(a)
86 #define xlog_verify_iclog(a,b,c)
87 #define xlog_verify_tail_lsn(a,b,c)
88 #endif
90 STATIC int
91 xlog_iclogs_empty(
92 struct xlog *log);
94 static void
95 xlog_grant_sub_space(
96 struct xlog *log,
97 atomic64_t *head,
98 int bytes)
100 int64_t head_val = atomic64_read(head);
101 int64_t new, old;
103 do {
104 int cycle, space;
106 xlog_crack_grant_head_val(head_val, &cycle, &space);
108 space -= bytes;
109 if (space < 0) {
110 space += log->l_logsize;
111 cycle--;
114 old = head_val;
115 new = xlog_assign_grant_head_val(cycle, space);
116 head_val = atomic64_cmpxchg(head, old, new);
117 } while (head_val != old);
120 static void
121 xlog_grant_add_space(
122 struct xlog *log,
123 atomic64_t *head,
124 int bytes)
126 int64_t head_val = atomic64_read(head);
127 int64_t new, old;
129 do {
130 int tmp;
131 int cycle, space;
133 xlog_crack_grant_head_val(head_val, &cycle, &space);
135 tmp = log->l_logsize - space;
136 if (tmp > bytes)
137 space += bytes;
138 else {
139 space = bytes - tmp;
140 cycle++;
143 old = head_val;
144 new = xlog_assign_grant_head_val(cycle, space);
145 head_val = atomic64_cmpxchg(head, old, new);
146 } while (head_val != old);
149 STATIC void
150 xlog_grant_head_init(
151 struct xlog_grant_head *head)
153 xlog_assign_grant_head(&head->grant, 1, 0);
154 INIT_LIST_HEAD(&head->waiters);
155 spin_lock_init(&head->lock);
158 STATIC void
159 xlog_grant_head_wake_all(
160 struct xlog_grant_head *head)
162 struct xlog_ticket *tic;
164 spin_lock(&head->lock);
165 list_for_each_entry(tic, &head->waiters, t_queue)
166 wake_up_process(tic->t_task);
167 spin_unlock(&head->lock);
170 static inline int
171 xlog_ticket_reservation(
172 struct xlog *log,
173 struct xlog_grant_head *head,
174 struct xlog_ticket *tic)
176 if (head == &log->l_write_head) {
177 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
178 return tic->t_unit_res;
179 } else {
180 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
181 return tic->t_unit_res * tic->t_cnt;
182 else
183 return tic->t_unit_res;
187 STATIC bool
188 xlog_grant_head_wake(
189 struct xlog *log,
190 struct xlog_grant_head *head,
191 int *free_bytes)
193 struct xlog_ticket *tic;
194 int need_bytes;
195 bool woken_task = false;
197 list_for_each_entry(tic, &head->waiters, t_queue) {
200 * There is a chance that the size of the CIL checkpoints in
201 * progress at the last AIL push target calculation resulted in
202 * limiting the target to the log head (l_last_sync_lsn) at the
203 * time. This may not reflect where the log head is now as the
204 * CIL checkpoints may have completed.
206 * Hence when we are woken here, it may be that the head of the
207 * log that has moved rather than the tail. As the tail didn't
208 * move, there still won't be space available for the
209 * reservation we require. However, if the AIL has already
210 * pushed to the target defined by the old log head location, we
211 * will hang here waiting for something else to update the AIL
212 * push target.
214 * Therefore, if there isn't space to wake the first waiter on
215 * the grant head, we need to push the AIL again to ensure the
216 * target reflects both the current log tail and log head
217 * position before we wait for the tail to move again.
220 need_bytes = xlog_ticket_reservation(log, head, tic);
221 if (*free_bytes < need_bytes) {
222 if (!woken_task)
223 xlog_grant_push_ail(log, need_bytes);
224 return false;
227 *free_bytes -= need_bytes;
228 trace_xfs_log_grant_wake_up(log, tic);
229 wake_up_process(tic->t_task);
230 woken_task = true;
233 return true;
236 STATIC int
237 xlog_grant_head_wait(
238 struct xlog *log,
239 struct xlog_grant_head *head,
240 struct xlog_ticket *tic,
241 int need_bytes) __releases(&head->lock)
242 __acquires(&head->lock)
244 list_add_tail(&tic->t_queue, &head->waiters);
246 do {
247 if (XLOG_FORCED_SHUTDOWN(log))
248 goto shutdown;
249 xlog_grant_push_ail(log, need_bytes);
251 __set_current_state(TASK_UNINTERRUPTIBLE);
252 spin_unlock(&head->lock);
254 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
256 trace_xfs_log_grant_sleep(log, tic);
257 schedule();
258 trace_xfs_log_grant_wake(log, tic);
260 spin_lock(&head->lock);
261 if (XLOG_FORCED_SHUTDOWN(log))
262 goto shutdown;
263 } while (xlog_space_left(log, &head->grant) < need_bytes);
265 list_del_init(&tic->t_queue);
266 return 0;
267 shutdown:
268 list_del_init(&tic->t_queue);
269 return -EIO;
273 * Atomically get the log space required for a log ticket.
275 * Once a ticket gets put onto head->waiters, it will only return after the
276 * needed reservation is satisfied.
278 * This function is structured so that it has a lock free fast path. This is
279 * necessary because every new transaction reservation will come through this
280 * path. Hence any lock will be globally hot if we take it unconditionally on
281 * every pass.
283 * As tickets are only ever moved on and off head->waiters under head->lock, we
284 * only need to take that lock if we are going to add the ticket to the queue
285 * and sleep. We can avoid taking the lock if the ticket was never added to
286 * head->waiters because the t_queue list head will be empty and we hold the
287 * only reference to it so it can safely be checked unlocked.
289 STATIC int
290 xlog_grant_head_check(
291 struct xlog *log,
292 struct xlog_grant_head *head,
293 struct xlog_ticket *tic,
294 int *need_bytes)
296 int free_bytes;
297 int error = 0;
299 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
302 * If there are other waiters on the queue then give them a chance at
303 * logspace before us. Wake up the first waiters, if we do not wake
304 * up all the waiters then go to sleep waiting for more free space,
305 * otherwise try to get some space for this transaction.
307 *need_bytes = xlog_ticket_reservation(log, head, tic);
308 free_bytes = xlog_space_left(log, &head->grant);
309 if (!list_empty_careful(&head->waiters)) {
310 spin_lock(&head->lock);
311 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
312 free_bytes < *need_bytes) {
313 error = xlog_grant_head_wait(log, head, tic,
314 *need_bytes);
316 spin_unlock(&head->lock);
317 } else if (free_bytes < *need_bytes) {
318 spin_lock(&head->lock);
319 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
320 spin_unlock(&head->lock);
323 return error;
326 static void
327 xlog_tic_reset_res(xlog_ticket_t *tic)
329 tic->t_res_num = 0;
330 tic->t_res_arr_sum = 0;
331 tic->t_res_num_ophdrs = 0;
334 static void
335 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
337 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
338 /* add to overflow and start again */
339 tic->t_res_o_flow += tic->t_res_arr_sum;
340 tic->t_res_num = 0;
341 tic->t_res_arr_sum = 0;
344 tic->t_res_arr[tic->t_res_num].r_len = len;
345 tic->t_res_arr[tic->t_res_num].r_type = type;
346 tic->t_res_arr_sum += len;
347 tic->t_res_num++;
351 * Replenish the byte reservation required by moving the grant write head.
354 xfs_log_regrant(
355 struct xfs_mount *mp,
356 struct xlog_ticket *tic)
358 struct xlog *log = mp->m_log;
359 int need_bytes;
360 int error = 0;
362 if (XLOG_FORCED_SHUTDOWN(log))
363 return -EIO;
365 XFS_STATS_INC(mp, xs_try_logspace);
368 * This is a new transaction on the ticket, so we need to change the
369 * transaction ID so that the next transaction has a different TID in
370 * the log. Just add one to the existing tid so that we can see chains
371 * of rolling transactions in the log easily.
373 tic->t_tid++;
375 xlog_grant_push_ail(log, tic->t_unit_res);
377 tic->t_curr_res = tic->t_unit_res;
378 xlog_tic_reset_res(tic);
380 if (tic->t_cnt > 0)
381 return 0;
383 trace_xfs_log_regrant(log, tic);
385 error = xlog_grant_head_check(log, &log->l_write_head, tic,
386 &need_bytes);
387 if (error)
388 goto out_error;
390 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
391 trace_xfs_log_regrant_exit(log, tic);
392 xlog_verify_grant_tail(log);
393 return 0;
395 out_error:
397 * If we are failing, make sure the ticket doesn't have any current
398 * reservations. We don't want to add this back when the ticket/
399 * transaction gets cancelled.
401 tic->t_curr_res = 0;
402 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
403 return error;
407 * Reserve log space and return a ticket corresponding to the reservation.
409 * Each reservation is going to reserve extra space for a log record header.
410 * When writes happen to the on-disk log, we don't subtract the length of the
411 * log record header from any reservation. By wasting space in each
412 * reservation, we prevent over allocation problems.
415 xfs_log_reserve(
416 struct xfs_mount *mp,
417 int unit_bytes,
418 int cnt,
419 struct xlog_ticket **ticp,
420 uint8_t client,
421 bool permanent)
423 struct xlog *log = mp->m_log;
424 struct xlog_ticket *tic;
425 int need_bytes;
426 int error = 0;
428 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
430 if (XLOG_FORCED_SHUTDOWN(log))
431 return -EIO;
433 XFS_STATS_INC(mp, xs_try_logspace);
435 ASSERT(*ticp == NULL);
436 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
437 *ticp = tic;
439 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
440 : tic->t_unit_res);
442 trace_xfs_log_reserve(log, tic);
444 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
445 &need_bytes);
446 if (error)
447 goto out_error;
449 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
450 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
451 trace_xfs_log_reserve_exit(log, tic);
452 xlog_verify_grant_tail(log);
453 return 0;
455 out_error:
457 * If we are failing, make sure the ticket doesn't have any current
458 * reservations. We don't want to add this back when the ticket/
459 * transaction gets cancelled.
461 tic->t_curr_res = 0;
462 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
463 return error;
466 static bool
467 __xlog_state_release_iclog(
468 struct xlog *log,
469 struct xlog_in_core *iclog)
471 lockdep_assert_held(&log->l_icloglock);
473 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
474 /* update tail before writing to iclog */
475 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
477 iclog->ic_state = XLOG_STATE_SYNCING;
478 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
479 xlog_verify_tail_lsn(log, iclog, tail_lsn);
480 /* cycle incremented when incrementing curr_block */
481 return true;
484 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
485 return false;
489 * Flush iclog to disk if this is the last reference to the given iclog and the
490 * it is in the WANT_SYNC state.
492 static int
493 xlog_state_release_iclog(
494 struct xlog *log,
495 struct xlog_in_core *iclog)
497 lockdep_assert_held(&log->l_icloglock);
499 if (iclog->ic_state == XLOG_STATE_IOERROR)
500 return -EIO;
502 if (atomic_dec_and_test(&iclog->ic_refcnt) &&
503 __xlog_state_release_iclog(log, iclog)) {
504 spin_unlock(&log->l_icloglock);
505 xlog_sync(log, iclog);
506 spin_lock(&log->l_icloglock);
509 return 0;
512 void
513 xfs_log_release_iclog(
514 struct xlog_in_core *iclog)
516 struct xlog *log = iclog->ic_log;
517 bool sync = false;
519 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
520 if (iclog->ic_state != XLOG_STATE_IOERROR)
521 sync = __xlog_state_release_iclog(log, iclog);
522 spin_unlock(&log->l_icloglock);
525 if (sync)
526 xlog_sync(log, iclog);
530 * Mount a log filesystem
532 * mp - ubiquitous xfs mount point structure
533 * log_target - buftarg of on-disk log device
534 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
535 * num_bblocks - Number of BBSIZE blocks in on-disk log
537 * Return error or zero.
540 xfs_log_mount(
541 xfs_mount_t *mp,
542 xfs_buftarg_t *log_target,
543 xfs_daddr_t blk_offset,
544 int num_bblks)
546 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
547 int error = 0;
548 int min_logfsbs;
550 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
551 xfs_notice(mp, "Mounting V%d Filesystem",
552 XFS_SB_VERSION_NUM(&mp->m_sb));
553 } else {
554 xfs_notice(mp,
555 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
556 XFS_SB_VERSION_NUM(&mp->m_sb));
557 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
560 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
561 if (IS_ERR(mp->m_log)) {
562 error = PTR_ERR(mp->m_log);
563 goto out;
567 * Validate the given log space and drop a critical message via syslog
568 * if the log size is too small that would lead to some unexpected
569 * situations in transaction log space reservation stage.
571 * Note: we can't just reject the mount if the validation fails. This
572 * would mean that people would have to downgrade their kernel just to
573 * remedy the situation as there is no way to grow the log (short of
574 * black magic surgery with xfs_db).
576 * We can, however, reject mounts for CRC format filesystems, as the
577 * mkfs binary being used to make the filesystem should never create a
578 * filesystem with a log that is too small.
580 min_logfsbs = xfs_log_calc_minimum_size(mp);
582 if (mp->m_sb.sb_logblocks < min_logfsbs) {
583 xfs_warn(mp,
584 "Log size %d blocks too small, minimum size is %d blocks",
585 mp->m_sb.sb_logblocks, min_logfsbs);
586 error = -EINVAL;
587 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
588 xfs_warn(mp,
589 "Log size %d blocks too large, maximum size is %lld blocks",
590 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
591 error = -EINVAL;
592 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
593 xfs_warn(mp,
594 "log size %lld bytes too large, maximum size is %lld bytes",
595 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
596 XFS_MAX_LOG_BYTES);
597 error = -EINVAL;
598 } else if (mp->m_sb.sb_logsunit > 1 &&
599 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
600 xfs_warn(mp,
601 "log stripe unit %u bytes must be a multiple of block size",
602 mp->m_sb.sb_logsunit);
603 error = -EINVAL;
604 fatal = true;
606 if (error) {
608 * Log check errors are always fatal on v5; or whenever bad
609 * metadata leads to a crash.
611 if (fatal) {
612 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
613 ASSERT(0);
614 goto out_free_log;
616 xfs_crit(mp, "Log size out of supported range.");
617 xfs_crit(mp,
618 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
622 * Initialize the AIL now we have a log.
624 error = xfs_trans_ail_init(mp);
625 if (error) {
626 xfs_warn(mp, "AIL initialisation failed: error %d", error);
627 goto out_free_log;
629 mp->m_log->l_ailp = mp->m_ail;
632 * skip log recovery on a norecovery mount. pretend it all
633 * just worked.
635 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
636 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
638 if (readonly)
639 mp->m_flags &= ~XFS_MOUNT_RDONLY;
641 error = xlog_recover(mp->m_log);
643 if (readonly)
644 mp->m_flags |= XFS_MOUNT_RDONLY;
645 if (error) {
646 xfs_warn(mp, "log mount/recovery failed: error %d",
647 error);
648 xlog_recover_cancel(mp->m_log);
649 goto out_destroy_ail;
653 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
654 "log");
655 if (error)
656 goto out_destroy_ail;
658 /* Normal transactions can now occur */
659 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
662 * Now the log has been fully initialised and we know were our
663 * space grant counters are, we can initialise the permanent ticket
664 * needed for delayed logging to work.
666 xlog_cil_init_post_recovery(mp->m_log);
668 return 0;
670 out_destroy_ail:
671 xfs_trans_ail_destroy(mp);
672 out_free_log:
673 xlog_dealloc_log(mp->m_log);
674 out:
675 return error;
679 * Finish the recovery of the file system. This is separate from the
680 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
681 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
682 * here.
684 * If we finish recovery successfully, start the background log work. If we are
685 * not doing recovery, then we have a RO filesystem and we don't need to start
686 * it.
689 xfs_log_mount_finish(
690 struct xfs_mount *mp)
692 int error = 0;
693 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
694 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
696 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
697 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
698 return 0;
699 } else if (readonly) {
700 /* Allow unlinked processing to proceed */
701 mp->m_flags &= ~XFS_MOUNT_RDONLY;
705 * During the second phase of log recovery, we need iget and
706 * iput to behave like they do for an active filesystem.
707 * xfs_fs_drop_inode needs to be able to prevent the deletion
708 * of inodes before we're done replaying log items on those
709 * inodes. Turn it off immediately after recovery finishes
710 * so that we don't leak the quota inodes if subsequent mount
711 * activities fail.
713 * We let all inodes involved in redo item processing end up on
714 * the LRU instead of being evicted immediately so that if we do
715 * something to an unlinked inode, the irele won't cause
716 * premature truncation and freeing of the inode, which results
717 * in log recovery failure. We have to evict the unreferenced
718 * lru inodes after clearing SB_ACTIVE because we don't
719 * otherwise clean up the lru if there's a subsequent failure in
720 * xfs_mountfs, which leads to us leaking the inodes if nothing
721 * else (e.g. quotacheck) references the inodes before the
722 * mount failure occurs.
724 mp->m_super->s_flags |= SB_ACTIVE;
725 error = xlog_recover_finish(mp->m_log);
726 if (!error)
727 xfs_log_work_queue(mp);
728 mp->m_super->s_flags &= ~SB_ACTIVE;
729 evict_inodes(mp->m_super);
732 * Drain the buffer LRU after log recovery. This is required for v4
733 * filesystems to avoid leaving around buffers with NULL verifier ops,
734 * but we do it unconditionally to make sure we're always in a clean
735 * cache state after mount.
737 * Don't push in the error case because the AIL may have pending intents
738 * that aren't removed until recovery is cancelled.
740 if (!error && recovered) {
741 xfs_log_force(mp, XFS_LOG_SYNC);
742 xfs_ail_push_all_sync(mp->m_ail);
744 xfs_wait_buftarg(mp->m_ddev_targp);
746 if (readonly)
747 mp->m_flags |= XFS_MOUNT_RDONLY;
749 return error;
753 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
754 * the log.
756 void
757 xfs_log_mount_cancel(
758 struct xfs_mount *mp)
760 xlog_recover_cancel(mp->m_log);
761 xfs_log_unmount(mp);
765 * Wait for the iclog to be written disk, or return an error if the log has been
766 * shut down.
768 static int
769 xlog_wait_on_iclog(
770 struct xlog_in_core *iclog)
771 __releases(iclog->ic_log->l_icloglock)
773 struct xlog *log = iclog->ic_log;
775 if (!XLOG_FORCED_SHUTDOWN(log) &&
776 iclog->ic_state != XLOG_STATE_ACTIVE &&
777 iclog->ic_state != XLOG_STATE_DIRTY) {
778 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
779 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
780 } else {
781 spin_unlock(&log->l_icloglock);
784 if (XLOG_FORCED_SHUTDOWN(log))
785 return -EIO;
786 return 0;
790 * Write out an unmount record using the ticket provided. We have to account for
791 * the data space used in the unmount ticket as this write is not done from a
792 * transaction context that has already done the accounting for us.
794 static int
795 xlog_write_unmount_record(
796 struct xlog *log,
797 struct xlog_ticket *ticket,
798 xfs_lsn_t *lsn,
799 uint flags)
801 struct xfs_unmount_log_format ulf = {
802 .magic = XLOG_UNMOUNT_TYPE,
804 struct xfs_log_iovec reg = {
805 .i_addr = &ulf,
806 .i_len = sizeof(ulf),
807 .i_type = XLOG_REG_TYPE_UNMOUNT,
809 struct xfs_log_vec vec = {
810 .lv_niovecs = 1,
811 .lv_iovecp = &reg,
814 /* account for space used by record data */
815 ticket->t_curr_res -= sizeof(ulf);
816 return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
820 * Mark the filesystem clean by writing an unmount record to the head of the
821 * log.
823 static void
824 xlog_unmount_write(
825 struct xlog *log)
827 struct xfs_mount *mp = log->l_mp;
828 struct xlog_in_core *iclog;
829 struct xlog_ticket *tic = NULL;
830 xfs_lsn_t lsn;
831 uint flags = XLOG_UNMOUNT_TRANS;
832 int error;
834 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
835 if (error)
836 goto out_err;
838 error = xlog_write_unmount_record(log, tic, &lsn, flags);
840 * At this point, we're umounting anyway, so there's no point in
841 * transitioning log state to IOERROR. Just continue...
843 out_err:
844 if (error)
845 xfs_alert(mp, "%s: unmount record failed", __func__);
847 spin_lock(&log->l_icloglock);
848 iclog = log->l_iclog;
849 atomic_inc(&iclog->ic_refcnt);
850 if (iclog->ic_state == XLOG_STATE_ACTIVE)
851 xlog_state_switch_iclogs(log, iclog, 0);
852 else
853 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
854 iclog->ic_state == XLOG_STATE_IOERROR);
855 error = xlog_state_release_iclog(log, iclog);
856 xlog_wait_on_iclog(iclog);
858 if (tic) {
859 trace_xfs_log_umount_write(log, tic);
860 xfs_log_ticket_ungrant(log, tic);
864 static void
865 xfs_log_unmount_verify_iclog(
866 struct xlog *log)
868 struct xlog_in_core *iclog = log->l_iclog;
870 do {
871 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
872 ASSERT(iclog->ic_offset == 0);
873 } while ((iclog = iclog->ic_next) != log->l_iclog);
877 * Unmount record used to have a string "Unmount filesystem--" in the
878 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
879 * We just write the magic number now since that particular field isn't
880 * currently architecture converted and "Unmount" is a bit foo.
881 * As far as I know, there weren't any dependencies on the old behaviour.
883 static void
884 xfs_log_unmount_write(
885 struct xfs_mount *mp)
887 struct xlog *log = mp->m_log;
890 * Don't write out unmount record on norecovery mounts or ro devices.
891 * Or, if we are doing a forced umount (typically because of IO errors).
893 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
894 xfs_readonly_buftarg(log->l_targ)) {
895 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
896 return;
899 xfs_log_force(mp, XFS_LOG_SYNC);
901 if (XLOG_FORCED_SHUTDOWN(log))
902 return;
905 * If we think the summary counters are bad, avoid writing the unmount
906 * record to force log recovery at next mount, after which the summary
907 * counters will be recalculated. Refer to xlog_check_unmount_rec for
908 * more details.
910 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
911 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
912 xfs_alert(mp, "%s: will fix summary counters at next mount",
913 __func__);
914 return;
917 xfs_log_unmount_verify_iclog(log);
918 xlog_unmount_write(log);
922 * Empty the log for unmount/freeze.
924 * To do this, we first need to shut down the background log work so it is not
925 * trying to cover the log as we clean up. We then need to unpin all objects in
926 * the log so we can then flush them out. Once they have completed their IO and
927 * run the callbacks removing themselves from the AIL, we can write the unmount
928 * record.
930 void
931 xfs_log_quiesce(
932 struct xfs_mount *mp)
934 cancel_delayed_work_sync(&mp->m_log->l_work);
935 xfs_log_force(mp, XFS_LOG_SYNC);
938 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
939 * will push it, xfs_wait_buftarg() will not wait for it. Further,
940 * xfs_buf_iowait() cannot be used because it was pushed with the
941 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
942 * the IO to complete.
944 xfs_ail_push_all_sync(mp->m_ail);
945 xfs_wait_buftarg(mp->m_ddev_targp);
946 xfs_buf_lock(mp->m_sb_bp);
947 xfs_buf_unlock(mp->m_sb_bp);
949 xfs_log_unmount_write(mp);
953 * Shut down and release the AIL and Log.
955 * During unmount, we need to ensure we flush all the dirty metadata objects
956 * from the AIL so that the log is empty before we write the unmount record to
957 * the log. Once this is done, we can tear down the AIL and the log.
959 void
960 xfs_log_unmount(
961 struct xfs_mount *mp)
963 xfs_log_quiesce(mp);
965 xfs_trans_ail_destroy(mp);
967 xfs_sysfs_del(&mp->m_log->l_kobj);
969 xlog_dealloc_log(mp->m_log);
972 void
973 xfs_log_item_init(
974 struct xfs_mount *mp,
975 struct xfs_log_item *item,
976 int type,
977 const struct xfs_item_ops *ops)
979 item->li_mountp = mp;
980 item->li_ailp = mp->m_ail;
981 item->li_type = type;
982 item->li_ops = ops;
983 item->li_lv = NULL;
985 INIT_LIST_HEAD(&item->li_ail);
986 INIT_LIST_HEAD(&item->li_cil);
987 INIT_LIST_HEAD(&item->li_bio_list);
988 INIT_LIST_HEAD(&item->li_trans);
992 * Wake up processes waiting for log space after we have moved the log tail.
994 void
995 xfs_log_space_wake(
996 struct xfs_mount *mp)
998 struct xlog *log = mp->m_log;
999 int free_bytes;
1001 if (XLOG_FORCED_SHUTDOWN(log))
1002 return;
1004 if (!list_empty_careful(&log->l_write_head.waiters)) {
1005 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1007 spin_lock(&log->l_write_head.lock);
1008 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1009 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1010 spin_unlock(&log->l_write_head.lock);
1013 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1014 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1016 spin_lock(&log->l_reserve_head.lock);
1017 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1018 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1019 spin_unlock(&log->l_reserve_head.lock);
1024 * Determine if we have a transaction that has gone to disk that needs to be
1025 * covered. To begin the transition to the idle state firstly the log needs to
1026 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1027 * we start attempting to cover the log.
1029 * Only if we are then in a state where covering is needed, the caller is
1030 * informed that dummy transactions are required to move the log into the idle
1031 * state.
1033 * If there are any items in the AIl or CIL, then we do not want to attempt to
1034 * cover the log as we may be in a situation where there isn't log space
1035 * available to run a dummy transaction and this can lead to deadlocks when the
1036 * tail of the log is pinned by an item that is modified in the CIL. Hence
1037 * there's no point in running a dummy transaction at this point because we
1038 * can't start trying to idle the log until both the CIL and AIL are empty.
1040 static int
1041 xfs_log_need_covered(xfs_mount_t *mp)
1043 struct xlog *log = mp->m_log;
1044 int needed = 0;
1046 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1047 return 0;
1049 if (!xlog_cil_empty(log))
1050 return 0;
1052 spin_lock(&log->l_icloglock);
1053 switch (log->l_covered_state) {
1054 case XLOG_STATE_COVER_DONE:
1055 case XLOG_STATE_COVER_DONE2:
1056 case XLOG_STATE_COVER_IDLE:
1057 break;
1058 case XLOG_STATE_COVER_NEED:
1059 case XLOG_STATE_COVER_NEED2:
1060 if (xfs_ail_min_lsn(log->l_ailp))
1061 break;
1062 if (!xlog_iclogs_empty(log))
1063 break;
1065 needed = 1;
1066 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1067 log->l_covered_state = XLOG_STATE_COVER_DONE;
1068 else
1069 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1070 break;
1071 default:
1072 needed = 1;
1073 break;
1075 spin_unlock(&log->l_icloglock);
1076 return needed;
1080 * We may be holding the log iclog lock upon entering this routine.
1082 xfs_lsn_t
1083 xlog_assign_tail_lsn_locked(
1084 struct xfs_mount *mp)
1086 struct xlog *log = mp->m_log;
1087 struct xfs_log_item *lip;
1088 xfs_lsn_t tail_lsn;
1090 assert_spin_locked(&mp->m_ail->ail_lock);
1093 * To make sure we always have a valid LSN for the log tail we keep
1094 * track of the last LSN which was committed in log->l_last_sync_lsn,
1095 * and use that when the AIL was empty.
1097 lip = xfs_ail_min(mp->m_ail);
1098 if (lip)
1099 tail_lsn = lip->li_lsn;
1100 else
1101 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1102 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1103 atomic64_set(&log->l_tail_lsn, tail_lsn);
1104 return tail_lsn;
1107 xfs_lsn_t
1108 xlog_assign_tail_lsn(
1109 struct xfs_mount *mp)
1111 xfs_lsn_t tail_lsn;
1113 spin_lock(&mp->m_ail->ail_lock);
1114 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1115 spin_unlock(&mp->m_ail->ail_lock);
1117 return tail_lsn;
1121 * Return the space in the log between the tail and the head. The head
1122 * is passed in the cycle/bytes formal parms. In the special case where
1123 * the reserve head has wrapped passed the tail, this calculation is no
1124 * longer valid. In this case, just return 0 which means there is no space
1125 * in the log. This works for all places where this function is called
1126 * with the reserve head. Of course, if the write head were to ever
1127 * wrap the tail, we should blow up. Rather than catch this case here,
1128 * we depend on other ASSERTions in other parts of the code. XXXmiken
1130 * This code also handles the case where the reservation head is behind
1131 * the tail. The details of this case are described below, but the end
1132 * result is that we return the size of the log as the amount of space left.
1134 STATIC int
1135 xlog_space_left(
1136 struct xlog *log,
1137 atomic64_t *head)
1139 int free_bytes;
1140 int tail_bytes;
1141 int tail_cycle;
1142 int head_cycle;
1143 int head_bytes;
1145 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1146 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1147 tail_bytes = BBTOB(tail_bytes);
1148 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1149 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1150 else if (tail_cycle + 1 < head_cycle)
1151 return 0;
1152 else if (tail_cycle < head_cycle) {
1153 ASSERT(tail_cycle == (head_cycle - 1));
1154 free_bytes = tail_bytes - head_bytes;
1155 } else {
1157 * The reservation head is behind the tail.
1158 * In this case we just want to return the size of the
1159 * log as the amount of space left.
1161 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1162 xfs_alert(log->l_mp,
1163 " tail_cycle = %d, tail_bytes = %d",
1164 tail_cycle, tail_bytes);
1165 xfs_alert(log->l_mp,
1166 " GH cycle = %d, GH bytes = %d",
1167 head_cycle, head_bytes);
1168 ASSERT(0);
1169 free_bytes = log->l_logsize;
1171 return free_bytes;
1175 static void
1176 xlog_ioend_work(
1177 struct work_struct *work)
1179 struct xlog_in_core *iclog =
1180 container_of(work, struct xlog_in_core, ic_end_io_work);
1181 struct xlog *log = iclog->ic_log;
1182 int error;
1184 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1185 #ifdef DEBUG
1186 /* treat writes with injected CRC errors as failed */
1187 if (iclog->ic_fail_crc)
1188 error = -EIO;
1189 #endif
1192 * Race to shutdown the filesystem if we see an error.
1194 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1195 xfs_alert(log->l_mp, "log I/O error %d", error);
1196 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1199 xlog_state_done_syncing(iclog);
1200 bio_uninit(&iclog->ic_bio);
1203 * Drop the lock to signal that we are done. Nothing references the
1204 * iclog after this, so an unmount waiting on this lock can now tear it
1205 * down safely. As such, it is unsafe to reference the iclog after the
1206 * unlock as we could race with it being freed.
1208 up(&iclog->ic_sema);
1212 * Return size of each in-core log record buffer.
1214 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1216 * If the filesystem blocksize is too large, we may need to choose a
1217 * larger size since the directory code currently logs entire blocks.
1219 STATIC void
1220 xlog_get_iclog_buffer_size(
1221 struct xfs_mount *mp,
1222 struct xlog *log)
1224 if (mp->m_logbufs <= 0)
1225 mp->m_logbufs = XLOG_MAX_ICLOGS;
1226 if (mp->m_logbsize <= 0)
1227 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1229 log->l_iclog_bufs = mp->m_logbufs;
1230 log->l_iclog_size = mp->m_logbsize;
1233 * # headers = size / 32k - one header holds cycles from 32k of data.
1235 log->l_iclog_heads =
1236 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1237 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1240 void
1241 xfs_log_work_queue(
1242 struct xfs_mount *mp)
1244 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1245 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1249 * Every sync period we need to unpin all items in the AIL and push them to
1250 * disk. If there is nothing dirty, then we might need to cover the log to
1251 * indicate that the filesystem is idle.
1253 static void
1254 xfs_log_worker(
1255 struct work_struct *work)
1257 struct xlog *log = container_of(to_delayed_work(work),
1258 struct xlog, l_work);
1259 struct xfs_mount *mp = log->l_mp;
1261 /* dgc: errors ignored - not fatal and nowhere to report them */
1262 if (xfs_log_need_covered(mp)) {
1264 * Dump a transaction into the log that contains no real change.
1265 * This is needed to stamp the current tail LSN into the log
1266 * during the covering operation.
1268 * We cannot use an inode here for this - that will push dirty
1269 * state back up into the VFS and then periodic inode flushing
1270 * will prevent log covering from making progress. Hence we
1271 * synchronously log the superblock instead to ensure the
1272 * superblock is immediately unpinned and can be written back.
1274 xfs_sync_sb(mp, true);
1275 } else
1276 xfs_log_force(mp, 0);
1278 /* start pushing all the metadata that is currently dirty */
1279 xfs_ail_push_all(mp->m_ail);
1281 /* queue us up again */
1282 xfs_log_work_queue(mp);
1286 * This routine initializes some of the log structure for a given mount point.
1287 * Its primary purpose is to fill in enough, so recovery can occur. However,
1288 * some other stuff may be filled in too.
1290 STATIC struct xlog *
1291 xlog_alloc_log(
1292 struct xfs_mount *mp,
1293 struct xfs_buftarg *log_target,
1294 xfs_daddr_t blk_offset,
1295 int num_bblks)
1297 struct xlog *log;
1298 xlog_rec_header_t *head;
1299 xlog_in_core_t **iclogp;
1300 xlog_in_core_t *iclog, *prev_iclog=NULL;
1301 int i;
1302 int error = -ENOMEM;
1303 uint log2_size = 0;
1305 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1306 if (!log) {
1307 xfs_warn(mp, "Log allocation failed: No memory!");
1308 goto out;
1311 log->l_mp = mp;
1312 log->l_targ = log_target;
1313 log->l_logsize = BBTOB(num_bblks);
1314 log->l_logBBstart = blk_offset;
1315 log->l_logBBsize = num_bblks;
1316 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1317 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1318 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1320 log->l_prev_block = -1;
1321 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1322 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1323 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1324 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1326 xlog_grant_head_init(&log->l_reserve_head);
1327 xlog_grant_head_init(&log->l_write_head);
1329 error = -EFSCORRUPTED;
1330 if (xfs_sb_version_hassector(&mp->m_sb)) {
1331 log2_size = mp->m_sb.sb_logsectlog;
1332 if (log2_size < BBSHIFT) {
1333 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1334 log2_size, BBSHIFT);
1335 goto out_free_log;
1338 log2_size -= BBSHIFT;
1339 if (log2_size > mp->m_sectbb_log) {
1340 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1341 log2_size, mp->m_sectbb_log);
1342 goto out_free_log;
1345 /* for larger sector sizes, must have v2 or external log */
1346 if (log2_size && log->l_logBBstart > 0 &&
1347 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1348 xfs_warn(mp,
1349 "log sector size (0x%x) invalid for configuration.",
1350 log2_size);
1351 goto out_free_log;
1354 log->l_sectBBsize = 1 << log2_size;
1356 xlog_get_iclog_buffer_size(mp, log);
1358 spin_lock_init(&log->l_icloglock);
1359 init_waitqueue_head(&log->l_flush_wait);
1361 iclogp = &log->l_iclog;
1363 * The amount of memory to allocate for the iclog structure is
1364 * rather funky due to the way the structure is defined. It is
1365 * done this way so that we can use different sizes for machines
1366 * with different amounts of memory. See the definition of
1367 * xlog_in_core_t in xfs_log_priv.h for details.
1369 ASSERT(log->l_iclog_size >= 4096);
1370 for (i = 0; i < log->l_iclog_bufs; i++) {
1371 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1372 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1373 sizeof(struct bio_vec);
1375 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1376 if (!iclog)
1377 goto out_free_iclog;
1379 *iclogp = iclog;
1380 iclog->ic_prev = prev_iclog;
1381 prev_iclog = iclog;
1383 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1384 KM_MAYFAIL | KM_ZERO);
1385 if (!iclog->ic_data)
1386 goto out_free_iclog;
1387 #ifdef DEBUG
1388 log->l_iclog_bak[i] = &iclog->ic_header;
1389 #endif
1390 head = &iclog->ic_header;
1391 memset(head, 0, sizeof(xlog_rec_header_t));
1392 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1393 head->h_version = cpu_to_be32(
1394 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1395 head->h_size = cpu_to_be32(log->l_iclog_size);
1396 /* new fields */
1397 head->h_fmt = cpu_to_be32(XLOG_FMT);
1398 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1400 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1401 iclog->ic_state = XLOG_STATE_ACTIVE;
1402 iclog->ic_log = log;
1403 atomic_set(&iclog->ic_refcnt, 0);
1404 spin_lock_init(&iclog->ic_callback_lock);
1405 INIT_LIST_HEAD(&iclog->ic_callbacks);
1406 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1408 init_waitqueue_head(&iclog->ic_force_wait);
1409 init_waitqueue_head(&iclog->ic_write_wait);
1410 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1411 sema_init(&iclog->ic_sema, 1);
1413 iclogp = &iclog->ic_next;
1415 *iclogp = log->l_iclog; /* complete ring */
1416 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1418 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1419 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1420 mp->m_super->s_id);
1421 if (!log->l_ioend_workqueue)
1422 goto out_free_iclog;
1424 error = xlog_cil_init(log);
1425 if (error)
1426 goto out_destroy_workqueue;
1427 return log;
1429 out_destroy_workqueue:
1430 destroy_workqueue(log->l_ioend_workqueue);
1431 out_free_iclog:
1432 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1433 prev_iclog = iclog->ic_next;
1434 kmem_free(iclog->ic_data);
1435 kmem_free(iclog);
1436 if (prev_iclog == log->l_iclog)
1437 break;
1439 out_free_log:
1440 kmem_free(log);
1441 out:
1442 return ERR_PTR(error);
1443 } /* xlog_alloc_log */
1446 * Write out the commit record of a transaction associated with the given
1447 * ticket to close off a running log write. Return the lsn of the commit record.
1450 xlog_commit_record(
1451 struct xlog *log,
1452 struct xlog_ticket *ticket,
1453 struct xlog_in_core **iclog,
1454 xfs_lsn_t *lsn)
1456 struct xfs_log_iovec reg = {
1457 .i_addr = NULL,
1458 .i_len = 0,
1459 .i_type = XLOG_REG_TYPE_COMMIT,
1461 struct xfs_log_vec vec = {
1462 .lv_niovecs = 1,
1463 .lv_iovecp = &reg,
1465 int error;
1467 if (XLOG_FORCED_SHUTDOWN(log))
1468 return -EIO;
1470 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1471 false);
1472 if (error)
1473 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1474 return error;
1478 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1479 * log space. This code pushes on the lsn which would supposedly free up
1480 * the 25% which we want to leave free. We may need to adopt a policy which
1481 * pushes on an lsn which is further along in the log once we reach the high
1482 * water mark. In this manner, we would be creating a low water mark.
1484 STATIC void
1485 xlog_grant_push_ail(
1486 struct xlog *log,
1487 int need_bytes)
1489 xfs_lsn_t threshold_lsn = 0;
1490 xfs_lsn_t last_sync_lsn;
1491 int free_blocks;
1492 int free_bytes;
1493 int threshold_block;
1494 int threshold_cycle;
1495 int free_threshold;
1497 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1499 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1500 free_blocks = BTOBBT(free_bytes);
1503 * Set the threshold for the minimum number of free blocks in the
1504 * log to the maximum of what the caller needs, one quarter of the
1505 * log, and 256 blocks.
1507 free_threshold = BTOBB(need_bytes);
1508 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1509 free_threshold = max(free_threshold, 256);
1510 if (free_blocks >= free_threshold)
1511 return;
1513 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1514 &threshold_block);
1515 threshold_block += free_threshold;
1516 if (threshold_block >= log->l_logBBsize) {
1517 threshold_block -= log->l_logBBsize;
1518 threshold_cycle += 1;
1520 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1521 threshold_block);
1523 * Don't pass in an lsn greater than the lsn of the last
1524 * log record known to be on disk. Use a snapshot of the last sync lsn
1525 * so that it doesn't change between the compare and the set.
1527 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1528 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1529 threshold_lsn = last_sync_lsn;
1532 * Get the transaction layer to kick the dirty buffers out to
1533 * disk asynchronously. No point in trying to do this if
1534 * the filesystem is shutting down.
1536 if (!XLOG_FORCED_SHUTDOWN(log))
1537 xfs_ail_push(log->l_ailp, threshold_lsn);
1541 * Stamp cycle number in every block
1543 STATIC void
1544 xlog_pack_data(
1545 struct xlog *log,
1546 struct xlog_in_core *iclog,
1547 int roundoff)
1549 int i, j, k;
1550 int size = iclog->ic_offset + roundoff;
1551 __be32 cycle_lsn;
1552 char *dp;
1554 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1556 dp = iclog->ic_datap;
1557 for (i = 0; i < BTOBB(size); i++) {
1558 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1559 break;
1560 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1561 *(__be32 *)dp = cycle_lsn;
1562 dp += BBSIZE;
1565 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1566 xlog_in_core_2_t *xhdr = iclog->ic_data;
1568 for ( ; i < BTOBB(size); i++) {
1569 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1570 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1571 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1572 *(__be32 *)dp = cycle_lsn;
1573 dp += BBSIZE;
1576 for (i = 1; i < log->l_iclog_heads; i++)
1577 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1582 * Calculate the checksum for a log buffer.
1584 * This is a little more complicated than it should be because the various
1585 * headers and the actual data are non-contiguous.
1587 __le32
1588 xlog_cksum(
1589 struct xlog *log,
1590 struct xlog_rec_header *rhead,
1591 char *dp,
1592 int size)
1594 uint32_t crc;
1596 /* first generate the crc for the record header ... */
1597 crc = xfs_start_cksum_update((char *)rhead,
1598 sizeof(struct xlog_rec_header),
1599 offsetof(struct xlog_rec_header, h_crc));
1601 /* ... then for additional cycle data for v2 logs ... */
1602 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1603 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1604 int i;
1605 int xheads;
1607 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1608 if (size % XLOG_HEADER_CYCLE_SIZE)
1609 xheads++;
1611 for (i = 1; i < xheads; i++) {
1612 crc = crc32c(crc, &xhdr[i].hic_xheader,
1613 sizeof(struct xlog_rec_ext_header));
1617 /* ... and finally for the payload */
1618 crc = crc32c(crc, dp, size);
1620 return xfs_end_cksum(crc);
1623 static void
1624 xlog_bio_end_io(
1625 struct bio *bio)
1627 struct xlog_in_core *iclog = bio->bi_private;
1629 queue_work(iclog->ic_log->l_ioend_workqueue,
1630 &iclog->ic_end_io_work);
1633 static int
1634 xlog_map_iclog_data(
1635 struct bio *bio,
1636 void *data,
1637 size_t count)
1639 do {
1640 struct page *page = kmem_to_page(data);
1641 unsigned int off = offset_in_page(data);
1642 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1644 if (bio_add_page(bio, page, len, off) != len)
1645 return -EIO;
1647 data += len;
1648 count -= len;
1649 } while (count);
1651 return 0;
1654 STATIC void
1655 xlog_write_iclog(
1656 struct xlog *log,
1657 struct xlog_in_core *iclog,
1658 uint64_t bno,
1659 unsigned int count,
1660 bool need_flush)
1662 ASSERT(bno < log->l_logBBsize);
1665 * We lock the iclogbufs here so that we can serialise against I/O
1666 * completion during unmount. We might be processing a shutdown
1667 * triggered during unmount, and that can occur asynchronously to the
1668 * unmount thread, and hence we need to ensure that completes before
1669 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1670 * across the log IO to archieve that.
1672 down(&iclog->ic_sema);
1673 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1675 * It would seem logical to return EIO here, but we rely on
1676 * the log state machine to propagate I/O errors instead of
1677 * doing it here. We kick of the state machine and unlock
1678 * the buffer manually, the code needs to be kept in sync
1679 * with the I/O completion path.
1681 xlog_state_done_syncing(iclog);
1682 up(&iclog->ic_sema);
1683 return;
1686 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1687 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1688 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1689 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1690 iclog->ic_bio.bi_private = iclog;
1693 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1694 * IOs coming immediately after this one. This prevents the block layer
1695 * writeback throttle from throttling log writes behind background
1696 * metadata writeback and causing priority inversions.
1698 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1699 REQ_IDLE | REQ_FUA;
1700 if (need_flush)
1701 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1703 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1704 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1705 return;
1707 if (is_vmalloc_addr(iclog->ic_data))
1708 flush_kernel_vmap_range(iclog->ic_data, count);
1711 * If this log buffer would straddle the end of the log we will have
1712 * to split it up into two bios, so that we can continue at the start.
1714 if (bno + BTOBB(count) > log->l_logBBsize) {
1715 struct bio *split;
1717 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1718 GFP_NOIO, &fs_bio_set);
1719 bio_chain(split, &iclog->ic_bio);
1720 submit_bio(split);
1722 /* restart at logical offset zero for the remainder */
1723 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1726 submit_bio(&iclog->ic_bio);
1730 * We need to bump cycle number for the part of the iclog that is
1731 * written to the start of the log. Watch out for the header magic
1732 * number case, though.
1734 static void
1735 xlog_split_iclog(
1736 struct xlog *log,
1737 void *data,
1738 uint64_t bno,
1739 unsigned int count)
1741 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1742 unsigned int i;
1744 for (i = split_offset; i < count; i += BBSIZE) {
1745 uint32_t cycle = get_unaligned_be32(data + i);
1747 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1748 cycle++;
1749 put_unaligned_be32(cycle, data + i);
1753 static int
1754 xlog_calc_iclog_size(
1755 struct xlog *log,
1756 struct xlog_in_core *iclog,
1757 uint32_t *roundoff)
1759 uint32_t count_init, count;
1760 bool use_lsunit;
1762 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1763 log->l_mp->m_sb.sb_logsunit > 1;
1765 /* Add for LR header */
1766 count_init = log->l_iclog_hsize + iclog->ic_offset;
1768 /* Round out the log write size */
1769 if (use_lsunit) {
1770 /* we have a v2 stripe unit to use */
1771 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1772 } else {
1773 count = BBTOB(BTOBB(count_init));
1776 ASSERT(count >= count_init);
1777 *roundoff = count - count_init;
1779 if (use_lsunit)
1780 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1781 else
1782 ASSERT(*roundoff < BBTOB(1));
1783 return count;
1787 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1788 * fashion. Previously, we should have moved the current iclog
1789 * ptr in the log to point to the next available iclog. This allows further
1790 * write to continue while this code syncs out an iclog ready to go.
1791 * Before an in-core log can be written out, the data section must be scanned
1792 * to save away the 1st word of each BBSIZE block into the header. We replace
1793 * it with the current cycle count. Each BBSIZE block is tagged with the
1794 * cycle count because there in an implicit assumption that drives will
1795 * guarantee that entire 512 byte blocks get written at once. In other words,
1796 * we can't have part of a 512 byte block written and part not written. By
1797 * tagging each block, we will know which blocks are valid when recovering
1798 * after an unclean shutdown.
1800 * This routine is single threaded on the iclog. No other thread can be in
1801 * this routine with the same iclog. Changing contents of iclog can there-
1802 * fore be done without grabbing the state machine lock. Updating the global
1803 * log will require grabbing the lock though.
1805 * The entire log manager uses a logical block numbering scheme. Only
1806 * xlog_write_iclog knows about the fact that the log may not start with
1807 * block zero on a given device.
1809 STATIC void
1810 xlog_sync(
1811 struct xlog *log,
1812 struct xlog_in_core *iclog)
1814 unsigned int count; /* byte count of bwrite */
1815 unsigned int roundoff; /* roundoff to BB or stripe */
1816 uint64_t bno;
1817 unsigned int size;
1818 bool need_flush = true, split = false;
1820 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1822 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1824 /* move grant heads by roundoff in sync */
1825 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1826 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1828 /* put cycle number in every block */
1829 xlog_pack_data(log, iclog, roundoff);
1831 /* real byte length */
1832 size = iclog->ic_offset;
1833 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1834 size += roundoff;
1835 iclog->ic_header.h_len = cpu_to_be32(size);
1837 XFS_STATS_INC(log->l_mp, xs_log_writes);
1838 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1840 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1842 /* Do we need to split this write into 2 parts? */
1843 if (bno + BTOBB(count) > log->l_logBBsize) {
1844 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1845 split = true;
1848 /* calculcate the checksum */
1849 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1850 iclog->ic_datap, size);
1852 * Intentionally corrupt the log record CRC based on the error injection
1853 * frequency, if defined. This facilitates testing log recovery in the
1854 * event of torn writes. Hence, set the IOABORT state to abort the log
1855 * write on I/O completion and shutdown the fs. The subsequent mount
1856 * detects the bad CRC and attempts to recover.
1858 #ifdef DEBUG
1859 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1860 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1861 iclog->ic_fail_crc = true;
1862 xfs_warn(log->l_mp,
1863 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1864 be64_to_cpu(iclog->ic_header.h_lsn));
1866 #endif
1869 * Flush the data device before flushing the log to make sure all meta
1870 * data written back from the AIL actually made it to disk before
1871 * stamping the new log tail LSN into the log buffer. For an external
1872 * log we need to issue the flush explicitly, and unfortunately
1873 * synchronously here; for an internal log we can simply use the block
1874 * layer state machine for preflushes.
1876 if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1877 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1878 need_flush = false;
1881 xlog_verify_iclog(log, iclog, count);
1882 xlog_write_iclog(log, iclog, bno, count, need_flush);
1886 * Deallocate a log structure
1888 STATIC void
1889 xlog_dealloc_log(
1890 struct xlog *log)
1892 xlog_in_core_t *iclog, *next_iclog;
1893 int i;
1895 xlog_cil_destroy(log);
1898 * Cycle all the iclogbuf locks to make sure all log IO completion
1899 * is done before we tear down these buffers.
1901 iclog = log->l_iclog;
1902 for (i = 0; i < log->l_iclog_bufs; i++) {
1903 down(&iclog->ic_sema);
1904 up(&iclog->ic_sema);
1905 iclog = iclog->ic_next;
1908 iclog = log->l_iclog;
1909 for (i = 0; i < log->l_iclog_bufs; i++) {
1910 next_iclog = iclog->ic_next;
1911 kmem_free(iclog->ic_data);
1912 kmem_free(iclog);
1913 iclog = next_iclog;
1916 log->l_mp->m_log = NULL;
1917 destroy_workqueue(log->l_ioend_workqueue);
1918 kmem_free(log);
1922 * Update counters atomically now that memcpy is done.
1924 static inline void
1925 xlog_state_finish_copy(
1926 struct xlog *log,
1927 struct xlog_in_core *iclog,
1928 int record_cnt,
1929 int copy_bytes)
1931 lockdep_assert_held(&log->l_icloglock);
1933 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1934 iclog->ic_offset += copy_bytes;
1938 * print out info relating to regions written which consume
1939 * the reservation
1941 void
1942 xlog_print_tic_res(
1943 struct xfs_mount *mp,
1944 struct xlog_ticket *ticket)
1946 uint i;
1947 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1949 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1950 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
1951 static char *res_type_str[] = {
1952 REG_TYPE_STR(BFORMAT, "bformat"),
1953 REG_TYPE_STR(BCHUNK, "bchunk"),
1954 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1955 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1956 REG_TYPE_STR(IFORMAT, "iformat"),
1957 REG_TYPE_STR(ICORE, "icore"),
1958 REG_TYPE_STR(IEXT, "iext"),
1959 REG_TYPE_STR(IBROOT, "ibroot"),
1960 REG_TYPE_STR(ILOCAL, "ilocal"),
1961 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1962 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1963 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1964 REG_TYPE_STR(QFORMAT, "qformat"),
1965 REG_TYPE_STR(DQUOT, "dquot"),
1966 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
1967 REG_TYPE_STR(LRHEADER, "LR header"),
1968 REG_TYPE_STR(UNMOUNT, "unmount"),
1969 REG_TYPE_STR(COMMIT, "commit"),
1970 REG_TYPE_STR(TRANSHDR, "trans header"),
1971 REG_TYPE_STR(ICREATE, "inode create"),
1972 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
1973 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
1974 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
1975 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
1976 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
1977 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
1979 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
1980 #undef REG_TYPE_STR
1982 xfs_warn(mp, "ticket reservation summary:");
1983 xfs_warn(mp, " unit res = %d bytes",
1984 ticket->t_unit_res);
1985 xfs_warn(mp, " current res = %d bytes",
1986 ticket->t_curr_res);
1987 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
1988 ticket->t_res_arr_sum, ticket->t_res_o_flow);
1989 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
1990 ticket->t_res_num_ophdrs, ophdr_spc);
1991 xfs_warn(mp, " ophdr + reg = %u bytes",
1992 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
1993 xfs_warn(mp, " num regions = %u",
1994 ticket->t_res_num);
1996 for (i = 0; i < ticket->t_res_num; i++) {
1997 uint r_type = ticket->t_res_arr[i].r_type;
1998 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
1999 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2000 "bad-rtype" : res_type_str[r_type]),
2001 ticket->t_res_arr[i].r_len);
2006 * Print a summary of the transaction.
2008 void
2009 xlog_print_trans(
2010 struct xfs_trans *tp)
2012 struct xfs_mount *mp = tp->t_mountp;
2013 struct xfs_log_item *lip;
2015 /* dump core transaction and ticket info */
2016 xfs_warn(mp, "transaction summary:");
2017 xfs_warn(mp, " log res = %d", tp->t_log_res);
2018 xfs_warn(mp, " log count = %d", tp->t_log_count);
2019 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2021 xlog_print_tic_res(mp, tp->t_ticket);
2023 /* dump each log item */
2024 list_for_each_entry(lip, &tp->t_items, li_trans) {
2025 struct xfs_log_vec *lv = lip->li_lv;
2026 struct xfs_log_iovec *vec;
2027 int i;
2029 xfs_warn(mp, "log item: ");
2030 xfs_warn(mp, " type = 0x%x", lip->li_type);
2031 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
2032 if (!lv)
2033 continue;
2034 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2035 xfs_warn(mp, " size = %d", lv->lv_size);
2036 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2037 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2039 /* dump each iovec for the log item */
2040 vec = lv->lv_iovecp;
2041 for (i = 0; i < lv->lv_niovecs; i++) {
2042 int dumplen = min(vec->i_len, 32);
2044 xfs_warn(mp, " iovec[%d]", i);
2045 xfs_warn(mp, " type = 0x%x", vec->i_type);
2046 xfs_warn(mp, " len = %d", vec->i_len);
2047 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2048 xfs_hex_dump(vec->i_addr, dumplen);
2050 vec++;
2056 * Calculate the potential space needed by the log vector. We may need a start
2057 * record, and each region gets its own struct xlog_op_header and may need to be
2058 * double word aligned.
2060 static int
2061 xlog_write_calc_vec_length(
2062 struct xlog_ticket *ticket,
2063 struct xfs_log_vec *log_vector,
2064 bool need_start_rec)
2066 struct xfs_log_vec *lv;
2067 int headers = need_start_rec ? 1 : 0;
2068 int len = 0;
2069 int i;
2071 for (lv = log_vector; lv; lv = lv->lv_next) {
2072 /* we don't write ordered log vectors */
2073 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2074 continue;
2076 headers += lv->lv_niovecs;
2078 for (i = 0; i < lv->lv_niovecs; i++) {
2079 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2081 len += vecp->i_len;
2082 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2086 ticket->t_res_num_ophdrs += headers;
2087 len += headers * sizeof(struct xlog_op_header);
2089 return len;
2092 static void
2093 xlog_write_start_rec(
2094 struct xlog_op_header *ophdr,
2095 struct xlog_ticket *ticket)
2097 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2098 ophdr->oh_clientid = ticket->t_clientid;
2099 ophdr->oh_len = 0;
2100 ophdr->oh_flags = XLOG_START_TRANS;
2101 ophdr->oh_res2 = 0;
2104 static xlog_op_header_t *
2105 xlog_write_setup_ophdr(
2106 struct xlog *log,
2107 struct xlog_op_header *ophdr,
2108 struct xlog_ticket *ticket,
2109 uint flags)
2111 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2112 ophdr->oh_clientid = ticket->t_clientid;
2113 ophdr->oh_res2 = 0;
2115 /* are we copying a commit or unmount record? */
2116 ophdr->oh_flags = flags;
2119 * We've seen logs corrupted with bad transaction client ids. This
2120 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2121 * and shut down the filesystem.
2123 switch (ophdr->oh_clientid) {
2124 case XFS_TRANSACTION:
2125 case XFS_VOLUME:
2126 case XFS_LOG:
2127 break;
2128 default:
2129 xfs_warn(log->l_mp,
2130 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2131 ophdr->oh_clientid, ticket);
2132 return NULL;
2135 return ophdr;
2139 * Set up the parameters of the region copy into the log. This has
2140 * to handle region write split across multiple log buffers - this
2141 * state is kept external to this function so that this code can
2142 * be written in an obvious, self documenting manner.
2144 static int
2145 xlog_write_setup_copy(
2146 struct xlog_ticket *ticket,
2147 struct xlog_op_header *ophdr,
2148 int space_available,
2149 int space_required,
2150 int *copy_off,
2151 int *copy_len,
2152 int *last_was_partial_copy,
2153 int *bytes_consumed)
2155 int still_to_copy;
2157 still_to_copy = space_required - *bytes_consumed;
2158 *copy_off = *bytes_consumed;
2160 if (still_to_copy <= space_available) {
2161 /* write of region completes here */
2162 *copy_len = still_to_copy;
2163 ophdr->oh_len = cpu_to_be32(*copy_len);
2164 if (*last_was_partial_copy)
2165 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2166 *last_was_partial_copy = 0;
2167 *bytes_consumed = 0;
2168 return 0;
2171 /* partial write of region, needs extra log op header reservation */
2172 *copy_len = space_available;
2173 ophdr->oh_len = cpu_to_be32(*copy_len);
2174 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2175 if (*last_was_partial_copy)
2176 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2177 *bytes_consumed += *copy_len;
2178 (*last_was_partial_copy)++;
2180 /* account for new log op header */
2181 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2182 ticket->t_res_num_ophdrs++;
2184 return sizeof(struct xlog_op_header);
2187 static int
2188 xlog_write_copy_finish(
2189 struct xlog *log,
2190 struct xlog_in_core *iclog,
2191 uint flags,
2192 int *record_cnt,
2193 int *data_cnt,
2194 int *partial_copy,
2195 int *partial_copy_len,
2196 int log_offset,
2197 struct xlog_in_core **commit_iclog)
2199 int error;
2201 if (*partial_copy) {
2203 * This iclog has already been marked WANT_SYNC by
2204 * xlog_state_get_iclog_space.
2206 spin_lock(&log->l_icloglock);
2207 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2208 *record_cnt = 0;
2209 *data_cnt = 0;
2210 goto release_iclog;
2213 *partial_copy = 0;
2214 *partial_copy_len = 0;
2216 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2217 /* no more space in this iclog - push it. */
2218 spin_lock(&log->l_icloglock);
2219 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2220 *record_cnt = 0;
2221 *data_cnt = 0;
2223 if (iclog->ic_state == XLOG_STATE_ACTIVE)
2224 xlog_state_switch_iclogs(log, iclog, 0);
2225 else
2226 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2227 iclog->ic_state == XLOG_STATE_IOERROR);
2228 if (!commit_iclog)
2229 goto release_iclog;
2230 spin_unlock(&log->l_icloglock);
2231 ASSERT(flags & XLOG_COMMIT_TRANS);
2232 *commit_iclog = iclog;
2235 return 0;
2237 release_iclog:
2238 error = xlog_state_release_iclog(log, iclog);
2239 spin_unlock(&log->l_icloglock);
2240 return error;
2244 * Write some region out to in-core log
2246 * This will be called when writing externally provided regions or when
2247 * writing out a commit record for a given transaction.
2249 * General algorithm:
2250 * 1. Find total length of this write. This may include adding to the
2251 * lengths passed in.
2252 * 2. Check whether we violate the tickets reservation.
2253 * 3. While writing to this iclog
2254 * A. Reserve as much space in this iclog as can get
2255 * B. If this is first write, save away start lsn
2256 * C. While writing this region:
2257 * 1. If first write of transaction, write start record
2258 * 2. Write log operation header (header per region)
2259 * 3. Find out if we can fit entire region into this iclog
2260 * 4. Potentially, verify destination memcpy ptr
2261 * 5. Memcpy (partial) region
2262 * 6. If partial copy, release iclog; otherwise, continue
2263 * copying more regions into current iclog
2264 * 4. Mark want sync bit (in simulation mode)
2265 * 5. Release iclog for potential flush to on-disk log.
2267 * ERRORS:
2268 * 1. Panic if reservation is overrun. This should never happen since
2269 * reservation amounts are generated internal to the filesystem.
2270 * NOTES:
2271 * 1. Tickets are single threaded data structures.
2272 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2273 * syncing routine. When a single log_write region needs to span
2274 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2275 * on all log operation writes which don't contain the end of the
2276 * region. The XLOG_END_TRANS bit is used for the in-core log
2277 * operation which contains the end of the continued log_write region.
2278 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2279 * we don't really know exactly how much space will be used. As a result,
2280 * we don't update ic_offset until the end when we know exactly how many
2281 * bytes have been written out.
2284 xlog_write(
2285 struct xlog *log,
2286 struct xfs_log_vec *log_vector,
2287 struct xlog_ticket *ticket,
2288 xfs_lsn_t *start_lsn,
2289 struct xlog_in_core **commit_iclog,
2290 uint flags,
2291 bool need_start_rec)
2293 struct xlog_in_core *iclog = NULL;
2294 struct xfs_log_vec *lv = log_vector;
2295 struct xfs_log_iovec *vecp = lv->lv_iovecp;
2296 int index = 0;
2297 int len;
2298 int partial_copy = 0;
2299 int partial_copy_len = 0;
2300 int contwr = 0;
2301 int record_cnt = 0;
2302 int data_cnt = 0;
2303 int error = 0;
2306 * If this is a commit or unmount transaction, we don't need a start
2307 * record to be written. We do, however, have to account for the
2308 * commit or unmount header that gets written. Hence we always have
2309 * to account for an extra xlog_op_header here.
2311 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2312 if (ticket->t_curr_res < 0) {
2313 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2314 "ctx ticket reservation ran out. Need to up reservation");
2315 xlog_print_tic_res(log->l_mp, ticket);
2316 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2319 len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
2320 *start_lsn = 0;
2321 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2322 void *ptr;
2323 int log_offset;
2325 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2326 &contwr, &log_offset);
2327 if (error)
2328 return error;
2330 ASSERT(log_offset <= iclog->ic_size - 1);
2331 ptr = iclog->ic_datap + log_offset;
2333 /* start_lsn is the first lsn written to. That's all we need. */
2334 if (!*start_lsn)
2335 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2338 * This loop writes out as many regions as can fit in the amount
2339 * of space which was allocated by xlog_state_get_iclog_space().
2341 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2342 struct xfs_log_iovec *reg;
2343 struct xlog_op_header *ophdr;
2344 int copy_len;
2345 int copy_off;
2346 bool ordered = false;
2348 /* ordered log vectors have no regions to write */
2349 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2350 ASSERT(lv->lv_niovecs == 0);
2351 ordered = true;
2352 goto next_lv;
2355 reg = &vecp[index];
2356 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2357 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2360 * Before we start formatting log vectors, we need to
2361 * write a start record. Only do this for the first
2362 * iclog we write to.
2364 if (need_start_rec) {
2365 xlog_write_start_rec(ptr, ticket);
2366 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2367 sizeof(struct xlog_op_header));
2370 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2371 if (!ophdr)
2372 return -EIO;
2374 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2375 sizeof(struct xlog_op_header));
2377 len += xlog_write_setup_copy(ticket, ophdr,
2378 iclog->ic_size-log_offset,
2379 reg->i_len,
2380 &copy_off, &copy_len,
2381 &partial_copy,
2382 &partial_copy_len);
2383 xlog_verify_dest_ptr(log, ptr);
2386 * Copy region.
2388 * Unmount records just log an opheader, so can have
2389 * empty payloads with no data region to copy. Hence we
2390 * only copy the payload if the vector says it has data
2391 * to copy.
2393 ASSERT(copy_len >= 0);
2394 if (copy_len > 0) {
2395 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2396 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2397 copy_len);
2399 copy_len += sizeof(struct xlog_op_header);
2400 record_cnt++;
2401 if (need_start_rec) {
2402 copy_len += sizeof(struct xlog_op_header);
2403 record_cnt++;
2404 need_start_rec = false;
2406 data_cnt += contwr ? copy_len : 0;
2408 error = xlog_write_copy_finish(log, iclog, flags,
2409 &record_cnt, &data_cnt,
2410 &partial_copy,
2411 &partial_copy_len,
2412 log_offset,
2413 commit_iclog);
2414 if (error)
2415 return error;
2418 * if we had a partial copy, we need to get more iclog
2419 * space but we don't want to increment the region
2420 * index because there is still more is this region to
2421 * write.
2423 * If we completed writing this region, and we flushed
2424 * the iclog (indicated by resetting of the record
2425 * count), then we also need to get more log space. If
2426 * this was the last record, though, we are done and
2427 * can just return.
2429 if (partial_copy)
2430 break;
2432 if (++index == lv->lv_niovecs) {
2433 next_lv:
2434 lv = lv->lv_next;
2435 index = 0;
2436 if (lv)
2437 vecp = lv->lv_iovecp;
2439 if (record_cnt == 0 && !ordered) {
2440 if (!lv)
2441 return 0;
2442 break;
2447 ASSERT(len == 0);
2449 spin_lock(&log->l_icloglock);
2450 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2451 if (commit_iclog) {
2452 ASSERT(flags & XLOG_COMMIT_TRANS);
2453 *commit_iclog = iclog;
2454 } else {
2455 error = xlog_state_release_iclog(log, iclog);
2457 spin_unlock(&log->l_icloglock);
2459 return error;
2462 static void
2463 xlog_state_activate_iclog(
2464 struct xlog_in_core *iclog,
2465 int *iclogs_changed)
2467 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2470 * If the number of ops in this iclog indicate it just contains the
2471 * dummy transaction, we can change state into IDLE (the second time
2472 * around). Otherwise we should change the state into NEED a dummy.
2473 * We don't need to cover the dummy.
2475 if (*iclogs_changed == 0 &&
2476 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2477 *iclogs_changed = 1;
2478 } else {
2480 * We have two dirty iclogs so start over. This could also be
2481 * num of ops indicating this is not the dummy going out.
2483 *iclogs_changed = 2;
2486 iclog->ic_state = XLOG_STATE_ACTIVE;
2487 iclog->ic_offset = 0;
2488 iclog->ic_header.h_num_logops = 0;
2489 memset(iclog->ic_header.h_cycle_data, 0,
2490 sizeof(iclog->ic_header.h_cycle_data));
2491 iclog->ic_header.h_lsn = 0;
2495 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2496 * ACTIVE after iclog I/O has completed.
2498 static void
2499 xlog_state_activate_iclogs(
2500 struct xlog *log,
2501 int *iclogs_changed)
2503 struct xlog_in_core *iclog = log->l_iclog;
2505 do {
2506 if (iclog->ic_state == XLOG_STATE_DIRTY)
2507 xlog_state_activate_iclog(iclog, iclogs_changed);
2509 * The ordering of marking iclogs ACTIVE must be maintained, so
2510 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2512 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2513 break;
2514 } while ((iclog = iclog->ic_next) != log->l_iclog);
2517 static int
2518 xlog_covered_state(
2519 int prev_state,
2520 int iclogs_changed)
2523 * We usually go to NEED. But we go to NEED2 if the changed indicates we
2524 * are done writing the dummy record. If we are done with the second
2525 * dummy recored (DONE2), then we go to IDLE.
2527 switch (prev_state) {
2528 case XLOG_STATE_COVER_IDLE:
2529 case XLOG_STATE_COVER_NEED:
2530 case XLOG_STATE_COVER_NEED2:
2531 break;
2532 case XLOG_STATE_COVER_DONE:
2533 if (iclogs_changed == 1)
2534 return XLOG_STATE_COVER_NEED2;
2535 break;
2536 case XLOG_STATE_COVER_DONE2:
2537 if (iclogs_changed == 1)
2538 return XLOG_STATE_COVER_IDLE;
2539 break;
2540 default:
2541 ASSERT(0);
2544 return XLOG_STATE_COVER_NEED;
2547 STATIC void
2548 xlog_state_clean_iclog(
2549 struct xlog *log,
2550 struct xlog_in_core *dirty_iclog)
2552 int iclogs_changed = 0;
2554 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2556 xlog_state_activate_iclogs(log, &iclogs_changed);
2557 wake_up_all(&dirty_iclog->ic_force_wait);
2559 if (iclogs_changed) {
2560 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2561 iclogs_changed);
2565 STATIC xfs_lsn_t
2566 xlog_get_lowest_lsn(
2567 struct xlog *log)
2569 struct xlog_in_core *iclog = log->l_iclog;
2570 xfs_lsn_t lowest_lsn = 0, lsn;
2572 do {
2573 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2574 iclog->ic_state == XLOG_STATE_DIRTY)
2575 continue;
2577 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2578 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2579 lowest_lsn = lsn;
2580 } while ((iclog = iclog->ic_next) != log->l_iclog);
2582 return lowest_lsn;
2586 * Completion of a iclog IO does not imply that a transaction has completed, as
2587 * transactions can be large enough to span many iclogs. We cannot change the
2588 * tail of the log half way through a transaction as this may be the only
2589 * transaction in the log and moving the tail to point to the middle of it
2590 * will prevent recovery from finding the start of the transaction. Hence we
2591 * should only update the last_sync_lsn if this iclog contains transaction
2592 * completion callbacks on it.
2594 * We have to do this before we drop the icloglock to ensure we are the only one
2595 * that can update it.
2597 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2598 * the reservation grant head pushing. This is due to the fact that the push
2599 * target is bound by the current last_sync_lsn value. Hence if we have a large
2600 * amount of log space bound up in this committing transaction then the
2601 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2602 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2603 * should push the AIL to ensure the push target (and hence the grant head) is
2604 * no longer bound by the old log head location and can move forwards and make
2605 * progress again.
2607 static void
2608 xlog_state_set_callback(
2609 struct xlog *log,
2610 struct xlog_in_core *iclog,
2611 xfs_lsn_t header_lsn)
2613 iclog->ic_state = XLOG_STATE_CALLBACK;
2615 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2616 header_lsn) <= 0);
2618 if (list_empty_careful(&iclog->ic_callbacks))
2619 return;
2621 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2622 xlog_grant_push_ail(log, 0);
2626 * Return true if we need to stop processing, false to continue to the next
2627 * iclog. The caller will need to run callbacks if the iclog is returned in the
2628 * XLOG_STATE_CALLBACK state.
2630 static bool
2631 xlog_state_iodone_process_iclog(
2632 struct xlog *log,
2633 struct xlog_in_core *iclog,
2634 bool *ioerror)
2636 xfs_lsn_t lowest_lsn;
2637 xfs_lsn_t header_lsn;
2639 switch (iclog->ic_state) {
2640 case XLOG_STATE_ACTIVE:
2641 case XLOG_STATE_DIRTY:
2643 * Skip all iclogs in the ACTIVE & DIRTY states:
2645 return false;
2646 case XLOG_STATE_IOERROR:
2648 * Between marking a filesystem SHUTDOWN and stopping the log,
2649 * we do flush all iclogs to disk (if there wasn't a log I/O
2650 * error). So, we do want things to go smoothly in case of just
2651 * a SHUTDOWN w/o a LOG_IO_ERROR.
2653 *ioerror = true;
2654 return false;
2655 case XLOG_STATE_DONE_SYNC:
2657 * Now that we have an iclog that is in the DONE_SYNC state, do
2658 * one more check here to see if we have chased our tail around.
2659 * If this is not the lowest lsn iclog, then we will leave it
2660 * for another completion to process.
2662 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2663 lowest_lsn = xlog_get_lowest_lsn(log);
2664 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2665 return false;
2666 xlog_state_set_callback(log, iclog, header_lsn);
2667 return false;
2668 default:
2670 * Can only perform callbacks in order. Since this iclog is not
2671 * in the DONE_SYNC state, we skip the rest and just try to
2672 * clean up.
2674 return true;
2679 * Keep processing entries in the iclog callback list until we come around and
2680 * it is empty. We need to atomically see that the list is empty and change the
2681 * state to DIRTY so that we don't miss any more callbacks being added.
2683 * This function is called with the icloglock held and returns with it held. We
2684 * drop it while running callbacks, however, as holding it over thousands of
2685 * callbacks is unnecessary and causes excessive contention if we do.
2687 static void
2688 xlog_state_do_iclog_callbacks(
2689 struct xlog *log,
2690 struct xlog_in_core *iclog)
2691 __releases(&log->l_icloglock)
2692 __acquires(&log->l_icloglock)
2694 spin_unlock(&log->l_icloglock);
2695 spin_lock(&iclog->ic_callback_lock);
2696 while (!list_empty(&iclog->ic_callbacks)) {
2697 LIST_HEAD(tmp);
2699 list_splice_init(&iclog->ic_callbacks, &tmp);
2701 spin_unlock(&iclog->ic_callback_lock);
2702 xlog_cil_process_committed(&tmp);
2703 spin_lock(&iclog->ic_callback_lock);
2707 * Pick up the icloglock while still holding the callback lock so we
2708 * serialise against anyone trying to add more callbacks to this iclog
2709 * now we've finished processing.
2711 spin_lock(&log->l_icloglock);
2712 spin_unlock(&iclog->ic_callback_lock);
2715 STATIC void
2716 xlog_state_do_callback(
2717 struct xlog *log)
2719 struct xlog_in_core *iclog;
2720 struct xlog_in_core *first_iclog;
2721 bool cycled_icloglock;
2722 bool ioerror;
2723 int flushcnt = 0;
2724 int repeats = 0;
2726 spin_lock(&log->l_icloglock);
2727 do {
2729 * Scan all iclogs starting with the one pointed to by the
2730 * log. Reset this starting point each time the log is
2731 * unlocked (during callbacks).
2733 * Keep looping through iclogs until one full pass is made
2734 * without running any callbacks.
2736 first_iclog = log->l_iclog;
2737 iclog = log->l_iclog;
2738 cycled_icloglock = false;
2739 ioerror = false;
2740 repeats++;
2742 do {
2743 if (xlog_state_iodone_process_iclog(log, iclog,
2744 &ioerror))
2745 break;
2747 if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2748 iclog->ic_state != XLOG_STATE_IOERROR) {
2749 iclog = iclog->ic_next;
2750 continue;
2754 * Running callbacks will drop the icloglock which means
2755 * we'll have to run at least one more complete loop.
2757 cycled_icloglock = true;
2758 xlog_state_do_iclog_callbacks(log, iclog);
2759 if (XLOG_FORCED_SHUTDOWN(log))
2760 wake_up_all(&iclog->ic_force_wait);
2761 else
2762 xlog_state_clean_iclog(log, iclog);
2763 iclog = iclog->ic_next;
2764 } while (first_iclog != iclog);
2766 if (repeats > 5000) {
2767 flushcnt += repeats;
2768 repeats = 0;
2769 xfs_warn(log->l_mp,
2770 "%s: possible infinite loop (%d iterations)",
2771 __func__, flushcnt);
2773 } while (!ioerror && cycled_icloglock);
2775 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2776 log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2777 wake_up_all(&log->l_flush_wait);
2779 spin_unlock(&log->l_icloglock);
2784 * Finish transitioning this iclog to the dirty state.
2786 * Make sure that we completely execute this routine only when this is
2787 * the last call to the iclog. There is a good chance that iclog flushes,
2788 * when we reach the end of the physical log, get turned into 2 separate
2789 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2790 * routine. By using the reference count bwritecnt, we guarantee that only
2791 * the second completion goes through.
2793 * Callbacks could take time, so they are done outside the scope of the
2794 * global state machine log lock.
2796 STATIC void
2797 xlog_state_done_syncing(
2798 struct xlog_in_core *iclog)
2800 struct xlog *log = iclog->ic_log;
2802 spin_lock(&log->l_icloglock);
2803 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2806 * If we got an error, either on the first buffer, or in the case of
2807 * split log writes, on the second, we shut down the file system and
2808 * no iclogs should ever be attempted to be written to disk again.
2810 if (!XLOG_FORCED_SHUTDOWN(log)) {
2811 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2812 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2816 * Someone could be sleeping prior to writing out the next
2817 * iclog buffer, we wake them all, one will get to do the
2818 * I/O, the others get to wait for the result.
2820 wake_up_all(&iclog->ic_write_wait);
2821 spin_unlock(&log->l_icloglock);
2822 xlog_state_do_callback(log);
2826 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2827 * sleep. We wait on the flush queue on the head iclog as that should be
2828 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2829 * we will wait here and all new writes will sleep until a sync completes.
2831 * The in-core logs are used in a circular fashion. They are not used
2832 * out-of-order even when an iclog past the head is free.
2834 * return:
2835 * * log_offset where xlog_write() can start writing into the in-core
2836 * log's data space.
2837 * * in-core log pointer to which xlog_write() should write.
2838 * * boolean indicating this is a continued write to an in-core log.
2839 * If this is the last write, then the in-core log's offset field
2840 * needs to be incremented, depending on the amount of data which
2841 * is copied.
2843 STATIC int
2844 xlog_state_get_iclog_space(
2845 struct xlog *log,
2846 int len,
2847 struct xlog_in_core **iclogp,
2848 struct xlog_ticket *ticket,
2849 int *continued_write,
2850 int *logoffsetp)
2852 int log_offset;
2853 xlog_rec_header_t *head;
2854 xlog_in_core_t *iclog;
2856 restart:
2857 spin_lock(&log->l_icloglock);
2858 if (XLOG_FORCED_SHUTDOWN(log)) {
2859 spin_unlock(&log->l_icloglock);
2860 return -EIO;
2863 iclog = log->l_iclog;
2864 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2865 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2867 /* Wait for log writes to have flushed */
2868 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2869 goto restart;
2872 head = &iclog->ic_header;
2874 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2875 log_offset = iclog->ic_offset;
2877 /* On the 1st write to an iclog, figure out lsn. This works
2878 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2879 * committing to. If the offset is set, that's how many blocks
2880 * must be written.
2882 if (log_offset == 0) {
2883 ticket->t_curr_res -= log->l_iclog_hsize;
2884 xlog_tic_add_region(ticket,
2885 log->l_iclog_hsize,
2886 XLOG_REG_TYPE_LRHEADER);
2887 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2888 head->h_lsn = cpu_to_be64(
2889 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2890 ASSERT(log->l_curr_block >= 0);
2893 /* If there is enough room to write everything, then do it. Otherwise,
2894 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2895 * bit is on, so this will get flushed out. Don't update ic_offset
2896 * until you know exactly how many bytes get copied. Therefore, wait
2897 * until later to update ic_offset.
2899 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2900 * can fit into remaining data section.
2902 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2903 int error = 0;
2905 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2908 * If we are the only one writing to this iclog, sync it to
2909 * disk. We need to do an atomic compare and decrement here to
2910 * avoid racing with concurrent atomic_dec_and_lock() calls in
2911 * xlog_state_release_iclog() when there is more than one
2912 * reference to the iclog.
2914 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2915 error = xlog_state_release_iclog(log, iclog);
2916 spin_unlock(&log->l_icloglock);
2917 if (error)
2918 return error;
2919 goto restart;
2922 /* Do we have enough room to write the full amount in the remainder
2923 * of this iclog? Or must we continue a write on the next iclog and
2924 * mark this iclog as completely taken? In the case where we switch
2925 * iclogs (to mark it taken), this particular iclog will release/sync
2926 * to disk in xlog_write().
2928 if (len <= iclog->ic_size - iclog->ic_offset) {
2929 *continued_write = 0;
2930 iclog->ic_offset += len;
2931 } else {
2932 *continued_write = 1;
2933 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2935 *iclogp = iclog;
2937 ASSERT(iclog->ic_offset <= iclog->ic_size);
2938 spin_unlock(&log->l_icloglock);
2940 *logoffsetp = log_offset;
2941 return 0;
2945 * The first cnt-1 times a ticket goes through here we don't need to move the
2946 * grant write head because the permanent reservation has reserved cnt times the
2947 * unit amount. Release part of current permanent unit reservation and reset
2948 * current reservation to be one units worth. Also move grant reservation head
2949 * forward.
2951 void
2952 xfs_log_ticket_regrant(
2953 struct xlog *log,
2954 struct xlog_ticket *ticket)
2956 trace_xfs_log_ticket_regrant(log, ticket);
2958 if (ticket->t_cnt > 0)
2959 ticket->t_cnt--;
2961 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2962 ticket->t_curr_res);
2963 xlog_grant_sub_space(log, &log->l_write_head.grant,
2964 ticket->t_curr_res);
2965 ticket->t_curr_res = ticket->t_unit_res;
2966 xlog_tic_reset_res(ticket);
2968 trace_xfs_log_ticket_regrant_sub(log, ticket);
2970 /* just return if we still have some of the pre-reserved space */
2971 if (!ticket->t_cnt) {
2972 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2973 ticket->t_unit_res);
2974 trace_xfs_log_ticket_regrant_exit(log, ticket);
2976 ticket->t_curr_res = ticket->t_unit_res;
2977 xlog_tic_reset_res(ticket);
2980 xfs_log_ticket_put(ticket);
2984 * Give back the space left from a reservation.
2986 * All the information we need to make a correct determination of space left
2987 * is present. For non-permanent reservations, things are quite easy. The
2988 * count should have been decremented to zero. We only need to deal with the
2989 * space remaining in the current reservation part of the ticket. If the
2990 * ticket contains a permanent reservation, there may be left over space which
2991 * needs to be released. A count of N means that N-1 refills of the current
2992 * reservation can be done before we need to ask for more space. The first
2993 * one goes to fill up the first current reservation. Once we run out of
2994 * space, the count will stay at zero and the only space remaining will be
2995 * in the current reservation field.
2997 void
2998 xfs_log_ticket_ungrant(
2999 struct xlog *log,
3000 struct xlog_ticket *ticket)
3002 int bytes;
3004 trace_xfs_log_ticket_ungrant(log, ticket);
3006 if (ticket->t_cnt > 0)
3007 ticket->t_cnt--;
3009 trace_xfs_log_ticket_ungrant_sub(log, ticket);
3012 * If this is a permanent reservation ticket, we may be able to free
3013 * up more space based on the remaining count.
3015 bytes = ticket->t_curr_res;
3016 if (ticket->t_cnt > 0) {
3017 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3018 bytes += ticket->t_unit_res*ticket->t_cnt;
3021 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3022 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3024 trace_xfs_log_ticket_ungrant_exit(log, ticket);
3026 xfs_log_space_wake(log->l_mp);
3027 xfs_log_ticket_put(ticket);
3031 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3032 * the current iclog pointer to the next iclog in the ring.
3034 STATIC void
3035 xlog_state_switch_iclogs(
3036 struct xlog *log,
3037 struct xlog_in_core *iclog,
3038 int eventual_size)
3040 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3041 assert_spin_locked(&log->l_icloglock);
3043 if (!eventual_size)
3044 eventual_size = iclog->ic_offset;
3045 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3046 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3047 log->l_prev_block = log->l_curr_block;
3048 log->l_prev_cycle = log->l_curr_cycle;
3050 /* roll log?: ic_offset changed later */
3051 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3053 /* Round up to next log-sunit */
3054 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3055 log->l_mp->m_sb.sb_logsunit > 1) {
3056 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3057 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3060 if (log->l_curr_block >= log->l_logBBsize) {
3062 * Rewind the current block before the cycle is bumped to make
3063 * sure that the combined LSN never transiently moves forward
3064 * when the log wraps to the next cycle. This is to support the
3065 * unlocked sample of these fields from xlog_valid_lsn(). Most
3066 * other cases should acquire l_icloglock.
3068 log->l_curr_block -= log->l_logBBsize;
3069 ASSERT(log->l_curr_block >= 0);
3070 smp_wmb();
3071 log->l_curr_cycle++;
3072 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3073 log->l_curr_cycle++;
3075 ASSERT(iclog == log->l_iclog);
3076 log->l_iclog = iclog->ic_next;
3080 * Write out all data in the in-core log as of this exact moment in time.
3082 * Data may be written to the in-core log during this call. However,
3083 * we don't guarantee this data will be written out. A change from past
3084 * implementation means this routine will *not* write out zero length LRs.
3086 * Basically, we try and perform an intelligent scan of the in-core logs.
3087 * If we determine there is no flushable data, we just return. There is no
3088 * flushable data if:
3090 * 1. the current iclog is active and has no data; the previous iclog
3091 * is in the active or dirty state.
3092 * 2. the current iclog is drity, and the previous iclog is in the
3093 * active or dirty state.
3095 * We may sleep if:
3097 * 1. the current iclog is not in the active nor dirty state.
3098 * 2. the current iclog dirty, and the previous iclog is not in the
3099 * active nor dirty state.
3100 * 3. the current iclog is active, and there is another thread writing
3101 * to this particular iclog.
3102 * 4. a) the current iclog is active and has no other writers
3103 * b) when we return from flushing out this iclog, it is still
3104 * not in the active nor dirty state.
3107 xfs_log_force(
3108 struct xfs_mount *mp,
3109 uint flags)
3111 struct xlog *log = mp->m_log;
3112 struct xlog_in_core *iclog;
3113 xfs_lsn_t lsn;
3115 XFS_STATS_INC(mp, xs_log_force);
3116 trace_xfs_log_force(mp, 0, _RET_IP_);
3118 xlog_cil_force(log);
3120 spin_lock(&log->l_icloglock);
3121 iclog = log->l_iclog;
3122 if (iclog->ic_state == XLOG_STATE_IOERROR)
3123 goto out_error;
3125 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3126 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3127 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3129 * If the head is dirty or (active and empty), then we need to
3130 * look at the previous iclog.
3132 * If the previous iclog is active or dirty we are done. There
3133 * is nothing to sync out. Otherwise, we attach ourselves to the
3134 * previous iclog and go to sleep.
3136 iclog = iclog->ic_prev;
3137 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3138 if (atomic_read(&iclog->ic_refcnt) == 0) {
3140 * We are the only one with access to this iclog.
3142 * Flush it out now. There should be a roundoff of zero
3143 * to show that someone has already taken care of the
3144 * roundoff from the previous sync.
3146 atomic_inc(&iclog->ic_refcnt);
3147 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3148 xlog_state_switch_iclogs(log, iclog, 0);
3149 if (xlog_state_release_iclog(log, iclog))
3150 goto out_error;
3152 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3153 goto out_unlock;
3154 } else {
3156 * Someone else is writing to this iclog.
3158 * Use its call to flush out the data. However, the
3159 * other thread may not force out this LR, so we mark
3160 * it WANT_SYNC.
3162 xlog_state_switch_iclogs(log, iclog, 0);
3164 } else {
3166 * If the head iclog is not active nor dirty, we just attach
3167 * ourselves to the head and go to sleep if necessary.
3172 if (flags & XFS_LOG_SYNC)
3173 return xlog_wait_on_iclog(iclog);
3174 out_unlock:
3175 spin_unlock(&log->l_icloglock);
3176 return 0;
3177 out_error:
3178 spin_unlock(&log->l_icloglock);
3179 return -EIO;
3182 static int
3183 __xfs_log_force_lsn(
3184 struct xfs_mount *mp,
3185 xfs_lsn_t lsn,
3186 uint flags,
3187 int *log_flushed,
3188 bool already_slept)
3190 struct xlog *log = mp->m_log;
3191 struct xlog_in_core *iclog;
3193 spin_lock(&log->l_icloglock);
3194 iclog = log->l_iclog;
3195 if (iclog->ic_state == XLOG_STATE_IOERROR)
3196 goto out_error;
3198 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3199 iclog = iclog->ic_next;
3200 if (iclog == log->l_iclog)
3201 goto out_unlock;
3204 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3206 * We sleep here if we haven't already slept (e.g. this is the
3207 * first time we've looked at the correct iclog buf) and the
3208 * buffer before us is going to be sync'ed. The reason for this
3209 * is that if we are doing sync transactions here, by waiting
3210 * for the previous I/O to complete, we can allow a few more
3211 * transactions into this iclog before we close it down.
3213 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3214 * refcnt so we can release the log (which drops the ref count).
3215 * The state switch keeps new transaction commits from using
3216 * this buffer. When the current commits finish writing into
3217 * the buffer, the refcount will drop to zero and the buffer
3218 * will go out then.
3220 if (!already_slept &&
3221 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3222 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3223 XFS_STATS_INC(mp, xs_log_force_sleep);
3225 xlog_wait(&iclog->ic_prev->ic_write_wait,
3226 &log->l_icloglock);
3227 return -EAGAIN;
3229 atomic_inc(&iclog->ic_refcnt);
3230 xlog_state_switch_iclogs(log, iclog, 0);
3231 if (xlog_state_release_iclog(log, iclog))
3232 goto out_error;
3233 if (log_flushed)
3234 *log_flushed = 1;
3237 if (flags & XFS_LOG_SYNC)
3238 return xlog_wait_on_iclog(iclog);
3239 out_unlock:
3240 spin_unlock(&log->l_icloglock);
3241 return 0;
3242 out_error:
3243 spin_unlock(&log->l_icloglock);
3244 return -EIO;
3248 * Force the in-core log to disk for a specific LSN.
3250 * Find in-core log with lsn.
3251 * If it is in the DIRTY state, just return.
3252 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3253 * state and go to sleep or return.
3254 * If it is in any other state, go to sleep or return.
3256 * Synchronous forces are implemented with a wait queue. All callers trying
3257 * to force a given lsn to disk must wait on the queue attached to the
3258 * specific in-core log. When given in-core log finally completes its write
3259 * to disk, that thread will wake up all threads waiting on the queue.
3262 xfs_log_force_lsn(
3263 struct xfs_mount *mp,
3264 xfs_lsn_t lsn,
3265 uint flags,
3266 int *log_flushed)
3268 int ret;
3269 ASSERT(lsn != 0);
3271 XFS_STATS_INC(mp, xs_log_force);
3272 trace_xfs_log_force(mp, lsn, _RET_IP_);
3274 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3275 if (lsn == NULLCOMMITLSN)
3276 return 0;
3278 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3279 if (ret == -EAGAIN)
3280 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3281 return ret;
3285 * Free a used ticket when its refcount falls to zero.
3287 void
3288 xfs_log_ticket_put(
3289 xlog_ticket_t *ticket)
3291 ASSERT(atomic_read(&ticket->t_ref) > 0);
3292 if (atomic_dec_and_test(&ticket->t_ref))
3293 kmem_cache_free(xfs_log_ticket_zone, ticket);
3296 xlog_ticket_t *
3297 xfs_log_ticket_get(
3298 xlog_ticket_t *ticket)
3300 ASSERT(atomic_read(&ticket->t_ref) > 0);
3301 atomic_inc(&ticket->t_ref);
3302 return ticket;
3306 * Figure out the total log space unit (in bytes) that would be
3307 * required for a log ticket.
3310 xfs_log_calc_unit_res(
3311 struct xfs_mount *mp,
3312 int unit_bytes)
3314 struct xlog *log = mp->m_log;
3315 int iclog_space;
3316 uint num_headers;
3319 * Permanent reservations have up to 'cnt'-1 active log operations
3320 * in the log. A unit in this case is the amount of space for one
3321 * of these log operations. Normal reservations have a cnt of 1
3322 * and their unit amount is the total amount of space required.
3324 * The following lines of code account for non-transaction data
3325 * which occupy space in the on-disk log.
3327 * Normal form of a transaction is:
3328 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3329 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3331 * We need to account for all the leadup data and trailer data
3332 * around the transaction data.
3333 * And then we need to account for the worst case in terms of using
3334 * more space.
3335 * The worst case will happen if:
3336 * - the placement of the transaction happens to be such that the
3337 * roundoff is at its maximum
3338 * - the transaction data is synced before the commit record is synced
3339 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3340 * Therefore the commit record is in its own Log Record.
3341 * This can happen as the commit record is called with its
3342 * own region to xlog_write().
3343 * This then means that in the worst case, roundoff can happen for
3344 * the commit-rec as well.
3345 * The commit-rec is smaller than padding in this scenario and so it is
3346 * not added separately.
3349 /* for trans header */
3350 unit_bytes += sizeof(xlog_op_header_t);
3351 unit_bytes += sizeof(xfs_trans_header_t);
3353 /* for start-rec */
3354 unit_bytes += sizeof(xlog_op_header_t);
3357 * for LR headers - the space for data in an iclog is the size minus
3358 * the space used for the headers. If we use the iclog size, then we
3359 * undercalculate the number of headers required.
3361 * Furthermore - the addition of op headers for split-recs might
3362 * increase the space required enough to require more log and op
3363 * headers, so take that into account too.
3365 * IMPORTANT: This reservation makes the assumption that if this
3366 * transaction is the first in an iclog and hence has the LR headers
3367 * accounted to it, then the remaining space in the iclog is
3368 * exclusively for this transaction. i.e. if the transaction is larger
3369 * than the iclog, it will be the only thing in that iclog.
3370 * Fundamentally, this means we must pass the entire log vector to
3371 * xlog_write to guarantee this.
3373 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3374 num_headers = howmany(unit_bytes, iclog_space);
3376 /* for split-recs - ophdrs added when data split over LRs */
3377 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3379 /* add extra header reservations if we overrun */
3380 while (!num_headers ||
3381 howmany(unit_bytes, iclog_space) > num_headers) {
3382 unit_bytes += sizeof(xlog_op_header_t);
3383 num_headers++;
3385 unit_bytes += log->l_iclog_hsize * num_headers;
3387 /* for commit-rec LR header - note: padding will subsume the ophdr */
3388 unit_bytes += log->l_iclog_hsize;
3390 /* for roundoff padding for transaction data and one for commit record */
3391 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3392 /* log su roundoff */
3393 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3394 } else {
3395 /* BB roundoff */
3396 unit_bytes += 2 * BBSIZE;
3399 return unit_bytes;
3403 * Allocate and initialise a new log ticket.
3405 struct xlog_ticket *
3406 xlog_ticket_alloc(
3407 struct xlog *log,
3408 int unit_bytes,
3409 int cnt,
3410 char client,
3411 bool permanent,
3412 xfs_km_flags_t alloc_flags)
3414 struct xlog_ticket *tic;
3415 int unit_res;
3417 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3418 if (!tic)
3419 return NULL;
3421 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3423 atomic_set(&tic->t_ref, 1);
3424 tic->t_task = current;
3425 INIT_LIST_HEAD(&tic->t_queue);
3426 tic->t_unit_res = unit_res;
3427 tic->t_curr_res = unit_res;
3428 tic->t_cnt = cnt;
3429 tic->t_ocnt = cnt;
3430 tic->t_tid = prandom_u32();
3431 tic->t_clientid = client;
3432 if (permanent)
3433 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3435 xlog_tic_reset_res(tic);
3437 return tic;
3440 #if defined(DEBUG)
3442 * Make sure that the destination ptr is within the valid data region of
3443 * one of the iclogs. This uses backup pointers stored in a different
3444 * part of the log in case we trash the log structure.
3446 STATIC void
3447 xlog_verify_dest_ptr(
3448 struct xlog *log,
3449 void *ptr)
3451 int i;
3452 int good_ptr = 0;
3454 for (i = 0; i < log->l_iclog_bufs; i++) {
3455 if (ptr >= log->l_iclog_bak[i] &&
3456 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3457 good_ptr++;
3460 if (!good_ptr)
3461 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3465 * Check to make sure the grant write head didn't just over lap the tail. If
3466 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3467 * the cycles differ by exactly one and check the byte count.
3469 * This check is run unlocked, so can give false positives. Rather than assert
3470 * on failures, use a warn-once flag and a panic tag to allow the admin to
3471 * determine if they want to panic the machine when such an error occurs. For
3472 * debug kernels this will have the same effect as using an assert but, unlinke
3473 * an assert, it can be turned off at runtime.
3475 STATIC void
3476 xlog_verify_grant_tail(
3477 struct xlog *log)
3479 int tail_cycle, tail_blocks;
3480 int cycle, space;
3482 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3483 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3484 if (tail_cycle != cycle) {
3485 if (cycle - 1 != tail_cycle &&
3486 !(log->l_flags & XLOG_TAIL_WARN)) {
3487 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3488 "%s: cycle - 1 != tail_cycle", __func__);
3489 log->l_flags |= XLOG_TAIL_WARN;
3492 if (space > BBTOB(tail_blocks) &&
3493 !(log->l_flags & XLOG_TAIL_WARN)) {
3494 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3495 "%s: space > BBTOB(tail_blocks)", __func__);
3496 log->l_flags |= XLOG_TAIL_WARN;
3501 /* check if it will fit */
3502 STATIC void
3503 xlog_verify_tail_lsn(
3504 struct xlog *log,
3505 struct xlog_in_core *iclog,
3506 xfs_lsn_t tail_lsn)
3508 int blocks;
3510 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3511 blocks =
3512 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3513 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3514 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3515 } else {
3516 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3518 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3519 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3521 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3522 if (blocks < BTOBB(iclog->ic_offset) + 1)
3523 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3528 * Perform a number of checks on the iclog before writing to disk.
3530 * 1. Make sure the iclogs are still circular
3531 * 2. Make sure we have a good magic number
3532 * 3. Make sure we don't have magic numbers in the data
3533 * 4. Check fields of each log operation header for:
3534 * A. Valid client identifier
3535 * B. tid ptr value falls in valid ptr space (user space code)
3536 * C. Length in log record header is correct according to the
3537 * individual operation headers within record.
3538 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3539 * log, check the preceding blocks of the physical log to make sure all
3540 * the cycle numbers agree with the current cycle number.
3542 STATIC void
3543 xlog_verify_iclog(
3544 struct xlog *log,
3545 struct xlog_in_core *iclog,
3546 int count)
3548 xlog_op_header_t *ophead;
3549 xlog_in_core_t *icptr;
3550 xlog_in_core_2_t *xhdr;
3551 void *base_ptr, *ptr, *p;
3552 ptrdiff_t field_offset;
3553 uint8_t clientid;
3554 int len, i, j, k, op_len;
3555 int idx;
3557 /* check validity of iclog pointers */
3558 spin_lock(&log->l_icloglock);
3559 icptr = log->l_iclog;
3560 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3561 ASSERT(icptr);
3563 if (icptr != log->l_iclog)
3564 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3565 spin_unlock(&log->l_icloglock);
3567 /* check log magic numbers */
3568 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3569 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3571 base_ptr = ptr = &iclog->ic_header;
3572 p = &iclog->ic_header;
3573 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3574 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3575 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3576 __func__);
3579 /* check fields */
3580 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3581 base_ptr = ptr = iclog->ic_datap;
3582 ophead = ptr;
3583 xhdr = iclog->ic_data;
3584 for (i = 0; i < len; i++) {
3585 ophead = ptr;
3587 /* clientid is only 1 byte */
3588 p = &ophead->oh_clientid;
3589 field_offset = p - base_ptr;
3590 if (field_offset & 0x1ff) {
3591 clientid = ophead->oh_clientid;
3592 } else {
3593 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3594 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3595 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3596 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3597 clientid = xlog_get_client_id(
3598 xhdr[j].hic_xheader.xh_cycle_data[k]);
3599 } else {
3600 clientid = xlog_get_client_id(
3601 iclog->ic_header.h_cycle_data[idx]);
3604 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3605 xfs_warn(log->l_mp,
3606 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3607 __func__, clientid, ophead,
3608 (unsigned long)field_offset);
3610 /* check length */
3611 p = &ophead->oh_len;
3612 field_offset = p - base_ptr;
3613 if (field_offset & 0x1ff) {
3614 op_len = be32_to_cpu(ophead->oh_len);
3615 } else {
3616 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3617 (uintptr_t)iclog->ic_datap);
3618 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3619 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3620 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3621 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3622 } else {
3623 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3626 ptr += sizeof(xlog_op_header_t) + op_len;
3629 #endif
3632 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3634 STATIC int
3635 xlog_state_ioerror(
3636 struct xlog *log)
3638 xlog_in_core_t *iclog, *ic;
3640 iclog = log->l_iclog;
3641 if (iclog->ic_state != XLOG_STATE_IOERROR) {
3643 * Mark all the incore logs IOERROR.
3644 * From now on, no log flushes will result.
3646 ic = iclog;
3647 do {
3648 ic->ic_state = XLOG_STATE_IOERROR;
3649 ic = ic->ic_next;
3650 } while (ic != iclog);
3651 return 0;
3654 * Return non-zero, if state transition has already happened.
3656 return 1;
3660 * This is called from xfs_force_shutdown, when we're forcibly
3661 * shutting down the filesystem, typically because of an IO error.
3662 * Our main objectives here are to make sure that:
3663 * a. if !logerror, flush the logs to disk. Anything modified
3664 * after this is ignored.
3665 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3666 * parties to find out, 'atomically'.
3667 * c. those who're sleeping on log reservations, pinned objects and
3668 * other resources get woken up, and be told the bad news.
3669 * d. nothing new gets queued up after (b) and (c) are done.
3671 * Note: for the !logerror case we need to flush the regions held in memory out
3672 * to disk first. This needs to be done before the log is marked as shutdown,
3673 * otherwise the iclog writes will fail.
3676 xfs_log_force_umount(
3677 struct xfs_mount *mp,
3678 int logerror)
3680 struct xlog *log;
3681 int retval;
3683 log = mp->m_log;
3686 * If this happens during log recovery, don't worry about
3687 * locking; the log isn't open for business yet.
3689 if (!log ||
3690 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3691 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3692 if (mp->m_sb_bp)
3693 mp->m_sb_bp->b_flags |= XBF_DONE;
3694 return 0;
3698 * Somebody could've already done the hard work for us.
3699 * No need to get locks for this.
3701 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3702 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3703 return 1;
3707 * Flush all the completed transactions to disk before marking the log
3708 * being shut down. We need to do it in this order to ensure that
3709 * completed operations are safely on disk before we shut down, and that
3710 * we don't have to issue any buffer IO after the shutdown flags are set
3711 * to guarantee this.
3713 if (!logerror)
3714 xfs_log_force(mp, XFS_LOG_SYNC);
3717 * mark the filesystem and the as in a shutdown state and wake
3718 * everybody up to tell them the bad news.
3720 spin_lock(&log->l_icloglock);
3721 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3722 if (mp->m_sb_bp)
3723 mp->m_sb_bp->b_flags |= XBF_DONE;
3726 * Mark the log and the iclogs with IO error flags to prevent any
3727 * further log IO from being issued or completed.
3729 log->l_flags |= XLOG_IO_ERROR;
3730 retval = xlog_state_ioerror(log);
3731 spin_unlock(&log->l_icloglock);
3734 * We don't want anybody waiting for log reservations after this. That
3735 * means we have to wake up everybody queued up on reserveq as well as
3736 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3737 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3738 * action is protected by the grant locks.
3740 xlog_grant_head_wake_all(&log->l_reserve_head);
3741 xlog_grant_head_wake_all(&log->l_write_head);
3744 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3745 * as if the log writes were completed. The abort handling in the log
3746 * item committed callback functions will do this again under lock to
3747 * avoid races.
3749 spin_lock(&log->l_cilp->xc_push_lock);
3750 wake_up_all(&log->l_cilp->xc_commit_wait);
3751 spin_unlock(&log->l_cilp->xc_push_lock);
3752 xlog_state_do_callback(log);
3754 /* return non-zero if log IOERROR transition had already happened */
3755 return retval;
3758 STATIC int
3759 xlog_iclogs_empty(
3760 struct xlog *log)
3762 xlog_in_core_t *iclog;
3764 iclog = log->l_iclog;
3765 do {
3766 /* endianness does not matter here, zero is zero in
3767 * any language.
3769 if (iclog->ic_header.h_num_logops)
3770 return 0;
3771 iclog = iclog->ic_next;
3772 } while (iclog != log->l_iclog);
3773 return 1;
3777 * Verify that an LSN stamped into a piece of metadata is valid. This is
3778 * intended for use in read verifiers on v5 superblocks.
3780 bool
3781 xfs_log_check_lsn(
3782 struct xfs_mount *mp,
3783 xfs_lsn_t lsn)
3785 struct xlog *log = mp->m_log;
3786 bool valid;
3789 * norecovery mode skips mount-time log processing and unconditionally
3790 * resets the in-core LSN. We can't validate in this mode, but
3791 * modifications are not allowed anyways so just return true.
3793 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3794 return true;
3797 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3798 * handled by recovery and thus safe to ignore here.
3800 if (lsn == NULLCOMMITLSN)
3801 return true;
3803 valid = xlog_valid_lsn(mp->m_log, lsn);
3805 /* warn the user about what's gone wrong before verifier failure */
3806 if (!valid) {
3807 spin_lock(&log->l_icloglock);
3808 xfs_warn(mp,
3809 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3810 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3811 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3812 log->l_curr_cycle, log->l_curr_block);
3813 spin_unlock(&log->l_icloglock);
3816 return valid;
3819 bool
3820 xfs_log_in_recovery(
3821 struct xfs_mount *mp)
3823 struct xlog *log = mp->m_log;
3825 return log->l_flags & XLOG_ACTIVE_RECOVERY;