Merge tag 'for-5.8/dm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[linux/fpc-iii.git] / fs / xfs / xfs_refcount_item.c
blobc81639891e2988647b932874759afa453e3b3269
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_refcount_item.h"
18 #include "xfs_log.h"
19 #include "xfs_refcount.h"
20 #include "xfs_error.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
24 kmem_zone_t *xfs_cui_zone;
25 kmem_zone_t *xfs_cud_zone;
27 static const struct xfs_item_ops xfs_cui_item_ops;
29 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
31 return container_of(lip, struct xfs_cui_log_item, cui_item);
34 STATIC void
35 xfs_cui_item_free(
36 struct xfs_cui_log_item *cuip)
38 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
39 kmem_free(cuip);
40 else
41 kmem_cache_free(xfs_cui_zone, cuip);
45 * Freeing the CUI requires that we remove it from the AIL if it has already
46 * been placed there. However, the CUI may not yet have been placed in the AIL
47 * when called by xfs_cui_release() from CUD processing due to the ordering of
48 * committed vs unpin operations in bulk insert operations. Hence the reference
49 * count to ensure only the last caller frees the CUI.
51 STATIC void
52 xfs_cui_release(
53 struct xfs_cui_log_item *cuip)
55 ASSERT(atomic_read(&cuip->cui_refcount) > 0);
56 if (atomic_dec_and_test(&cuip->cui_refcount)) {
57 xfs_trans_ail_delete(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR);
58 xfs_cui_item_free(cuip);
63 STATIC void
64 xfs_cui_item_size(
65 struct xfs_log_item *lip,
66 int *nvecs,
67 int *nbytes)
69 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
71 *nvecs += 1;
72 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
76 * This is called to fill in the vector of log iovecs for the
77 * given cui log item. We use only 1 iovec, and we point that
78 * at the cui_log_format structure embedded in the cui item.
79 * It is at this point that we assert that all of the extent
80 * slots in the cui item have been filled.
82 STATIC void
83 xfs_cui_item_format(
84 struct xfs_log_item *lip,
85 struct xfs_log_vec *lv)
87 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
88 struct xfs_log_iovec *vecp = NULL;
90 ASSERT(atomic_read(&cuip->cui_next_extent) ==
91 cuip->cui_format.cui_nextents);
93 cuip->cui_format.cui_type = XFS_LI_CUI;
94 cuip->cui_format.cui_size = 1;
96 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
97 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
101 * The unpin operation is the last place an CUI is manipulated in the log. It is
102 * either inserted in the AIL or aborted in the event of a log I/O error. In
103 * either case, the CUI transaction has been successfully committed to make it
104 * this far. Therefore, we expect whoever committed the CUI to either construct
105 * and commit the CUD or drop the CUD's reference in the event of error. Simply
106 * drop the log's CUI reference now that the log is done with it.
108 STATIC void
109 xfs_cui_item_unpin(
110 struct xfs_log_item *lip,
111 int remove)
113 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
115 xfs_cui_release(cuip);
119 * The CUI has been either committed or aborted if the transaction has been
120 * cancelled. If the transaction was cancelled, an CUD isn't going to be
121 * constructed and thus we free the CUI here directly.
123 STATIC void
124 xfs_cui_item_release(
125 struct xfs_log_item *lip)
127 xfs_cui_release(CUI_ITEM(lip));
131 * Allocate and initialize an cui item with the given number of extents.
133 STATIC struct xfs_cui_log_item *
134 xfs_cui_init(
135 struct xfs_mount *mp,
136 uint nextents)
139 struct xfs_cui_log_item *cuip;
141 ASSERT(nextents > 0);
142 if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
143 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
145 else
146 cuip = kmem_zone_zalloc(xfs_cui_zone, 0);
148 xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
149 cuip->cui_format.cui_nextents = nextents;
150 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
151 atomic_set(&cuip->cui_next_extent, 0);
152 atomic_set(&cuip->cui_refcount, 2);
154 return cuip;
157 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
159 return container_of(lip, struct xfs_cud_log_item, cud_item);
162 STATIC void
163 xfs_cud_item_size(
164 struct xfs_log_item *lip,
165 int *nvecs,
166 int *nbytes)
168 *nvecs += 1;
169 *nbytes += sizeof(struct xfs_cud_log_format);
173 * This is called to fill in the vector of log iovecs for the
174 * given cud log item. We use only 1 iovec, and we point that
175 * at the cud_log_format structure embedded in the cud item.
176 * It is at this point that we assert that all of the extent
177 * slots in the cud item have been filled.
179 STATIC void
180 xfs_cud_item_format(
181 struct xfs_log_item *lip,
182 struct xfs_log_vec *lv)
184 struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
185 struct xfs_log_iovec *vecp = NULL;
187 cudp->cud_format.cud_type = XFS_LI_CUD;
188 cudp->cud_format.cud_size = 1;
190 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
191 sizeof(struct xfs_cud_log_format));
195 * The CUD is either committed or aborted if the transaction is cancelled. If
196 * the transaction is cancelled, drop our reference to the CUI and free the
197 * CUD.
199 STATIC void
200 xfs_cud_item_release(
201 struct xfs_log_item *lip)
203 struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
205 xfs_cui_release(cudp->cud_cuip);
206 kmem_cache_free(xfs_cud_zone, cudp);
209 static const struct xfs_item_ops xfs_cud_item_ops = {
210 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED,
211 .iop_size = xfs_cud_item_size,
212 .iop_format = xfs_cud_item_format,
213 .iop_release = xfs_cud_item_release,
216 static struct xfs_cud_log_item *
217 xfs_trans_get_cud(
218 struct xfs_trans *tp,
219 struct xfs_cui_log_item *cuip)
221 struct xfs_cud_log_item *cudp;
223 cudp = kmem_zone_zalloc(xfs_cud_zone, 0);
224 xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
225 &xfs_cud_item_ops);
226 cudp->cud_cuip = cuip;
227 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
229 xfs_trans_add_item(tp, &cudp->cud_item);
230 return cudp;
234 * Finish an refcount update and log it to the CUD. Note that the
235 * transaction is marked dirty regardless of whether the refcount
236 * update succeeds or fails to support the CUI/CUD lifecycle rules.
238 static int
239 xfs_trans_log_finish_refcount_update(
240 struct xfs_trans *tp,
241 struct xfs_cud_log_item *cudp,
242 enum xfs_refcount_intent_type type,
243 xfs_fsblock_t startblock,
244 xfs_extlen_t blockcount,
245 xfs_fsblock_t *new_fsb,
246 xfs_extlen_t *new_len,
247 struct xfs_btree_cur **pcur)
249 int error;
251 error = xfs_refcount_finish_one(tp, type, startblock,
252 blockcount, new_fsb, new_len, pcur);
255 * Mark the transaction dirty, even on error. This ensures the
256 * transaction is aborted, which:
258 * 1.) releases the CUI and frees the CUD
259 * 2.) shuts down the filesystem
261 tp->t_flags |= XFS_TRANS_DIRTY;
262 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
264 return error;
267 /* Sort refcount intents by AG. */
268 static int
269 xfs_refcount_update_diff_items(
270 void *priv,
271 struct list_head *a,
272 struct list_head *b)
274 struct xfs_mount *mp = priv;
275 struct xfs_refcount_intent *ra;
276 struct xfs_refcount_intent *rb;
278 ra = container_of(a, struct xfs_refcount_intent, ri_list);
279 rb = container_of(b, struct xfs_refcount_intent, ri_list);
280 return XFS_FSB_TO_AGNO(mp, ra->ri_startblock) -
281 XFS_FSB_TO_AGNO(mp, rb->ri_startblock);
284 /* Set the phys extent flags for this reverse mapping. */
285 static void
286 xfs_trans_set_refcount_flags(
287 struct xfs_phys_extent *refc,
288 enum xfs_refcount_intent_type type)
290 refc->pe_flags = 0;
291 switch (type) {
292 case XFS_REFCOUNT_INCREASE:
293 case XFS_REFCOUNT_DECREASE:
294 case XFS_REFCOUNT_ALLOC_COW:
295 case XFS_REFCOUNT_FREE_COW:
296 refc->pe_flags |= type;
297 break;
298 default:
299 ASSERT(0);
303 /* Log refcount updates in the intent item. */
304 STATIC void
305 xfs_refcount_update_log_item(
306 struct xfs_trans *tp,
307 struct xfs_cui_log_item *cuip,
308 struct xfs_refcount_intent *refc)
310 uint next_extent;
311 struct xfs_phys_extent *ext;
313 tp->t_flags |= XFS_TRANS_DIRTY;
314 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
317 * atomic_inc_return gives us the value after the increment;
318 * we want to use it as an array index so we need to subtract 1 from
319 * it.
321 next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
322 ASSERT(next_extent < cuip->cui_format.cui_nextents);
323 ext = &cuip->cui_format.cui_extents[next_extent];
324 ext->pe_startblock = refc->ri_startblock;
325 ext->pe_len = refc->ri_blockcount;
326 xfs_trans_set_refcount_flags(ext, refc->ri_type);
329 static struct xfs_log_item *
330 xfs_refcount_update_create_intent(
331 struct xfs_trans *tp,
332 struct list_head *items,
333 unsigned int count,
334 bool sort)
336 struct xfs_mount *mp = tp->t_mountp;
337 struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count);
338 struct xfs_refcount_intent *refc;
340 ASSERT(count > 0);
342 xfs_trans_add_item(tp, &cuip->cui_item);
343 if (sort)
344 list_sort(mp, items, xfs_refcount_update_diff_items);
345 list_for_each_entry(refc, items, ri_list)
346 xfs_refcount_update_log_item(tp, cuip, refc);
347 return &cuip->cui_item;
350 /* Get an CUD so we can process all the deferred refcount updates. */
351 static struct xfs_log_item *
352 xfs_refcount_update_create_done(
353 struct xfs_trans *tp,
354 struct xfs_log_item *intent,
355 unsigned int count)
357 return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item;
360 /* Process a deferred refcount update. */
361 STATIC int
362 xfs_refcount_update_finish_item(
363 struct xfs_trans *tp,
364 struct xfs_log_item *done,
365 struct list_head *item,
366 struct xfs_btree_cur **state)
368 struct xfs_refcount_intent *refc;
369 xfs_fsblock_t new_fsb;
370 xfs_extlen_t new_aglen;
371 int error;
373 refc = container_of(item, struct xfs_refcount_intent, ri_list);
374 error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done),
375 refc->ri_type, refc->ri_startblock, refc->ri_blockcount,
376 &new_fsb, &new_aglen, state);
378 /* Did we run out of reservation? Requeue what we didn't finish. */
379 if (!error && new_aglen > 0) {
380 ASSERT(refc->ri_type == XFS_REFCOUNT_INCREASE ||
381 refc->ri_type == XFS_REFCOUNT_DECREASE);
382 refc->ri_startblock = new_fsb;
383 refc->ri_blockcount = new_aglen;
384 return -EAGAIN;
386 kmem_free(refc);
387 return error;
390 /* Abort all pending CUIs. */
391 STATIC void
392 xfs_refcount_update_abort_intent(
393 struct xfs_log_item *intent)
395 xfs_cui_release(CUI_ITEM(intent));
398 /* Cancel a deferred refcount update. */
399 STATIC void
400 xfs_refcount_update_cancel_item(
401 struct list_head *item)
403 struct xfs_refcount_intent *refc;
405 refc = container_of(item, struct xfs_refcount_intent, ri_list);
406 kmem_free(refc);
409 const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
410 .max_items = XFS_CUI_MAX_FAST_EXTENTS,
411 .create_intent = xfs_refcount_update_create_intent,
412 .abort_intent = xfs_refcount_update_abort_intent,
413 .create_done = xfs_refcount_update_create_done,
414 .finish_item = xfs_refcount_update_finish_item,
415 .finish_cleanup = xfs_refcount_finish_one_cleanup,
416 .cancel_item = xfs_refcount_update_cancel_item,
420 * Process a refcount update intent item that was recovered from the log.
421 * We need to update the refcountbt.
423 STATIC int
424 xfs_cui_item_recover(
425 struct xfs_log_item *lip,
426 struct xfs_trans *parent_tp)
428 struct xfs_bmbt_irec irec;
429 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
430 struct xfs_phys_extent *refc;
431 struct xfs_cud_log_item *cudp;
432 struct xfs_trans *tp;
433 struct xfs_btree_cur *rcur = NULL;
434 struct xfs_mount *mp = parent_tp->t_mountp;
435 xfs_fsblock_t startblock_fsb;
436 xfs_fsblock_t new_fsb;
437 xfs_extlen_t new_len;
438 unsigned int refc_type;
439 bool op_ok;
440 bool requeue_only = false;
441 enum xfs_refcount_intent_type type;
442 int i;
443 int error = 0;
446 * First check the validity of the extents described by the
447 * CUI. If any are bad, then assume that all are bad and
448 * just toss the CUI.
450 for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
451 refc = &cuip->cui_format.cui_extents[i];
452 startblock_fsb = XFS_BB_TO_FSB(mp,
453 XFS_FSB_TO_DADDR(mp, refc->pe_startblock));
454 switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
455 case XFS_REFCOUNT_INCREASE:
456 case XFS_REFCOUNT_DECREASE:
457 case XFS_REFCOUNT_ALLOC_COW:
458 case XFS_REFCOUNT_FREE_COW:
459 op_ok = true;
460 break;
461 default:
462 op_ok = false;
463 break;
465 if (!op_ok || startblock_fsb == 0 ||
466 refc->pe_len == 0 ||
467 startblock_fsb >= mp->m_sb.sb_dblocks ||
468 refc->pe_len >= mp->m_sb.sb_agblocks ||
469 (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) {
471 * This will pull the CUI from the AIL and
472 * free the memory associated with it.
474 xfs_cui_release(cuip);
475 return -EFSCORRUPTED;
480 * Under normal operation, refcount updates are deferred, so we
481 * wouldn't be adding them directly to a transaction. All
482 * refcount updates manage reservation usage internally and
483 * dynamically by deferring work that won't fit in the
484 * transaction. Normally, any work that needs to be deferred
485 * gets attached to the same defer_ops that scheduled the
486 * refcount update. However, we're in log recovery here, so we
487 * we use the passed in defer_ops and to finish up any work that
488 * doesn't fit. We need to reserve enough blocks to handle a
489 * full btree split on either end of the refcount range.
491 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
492 mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp);
493 if (error)
494 return error;
496 * Recovery stashes all deferred ops during intent processing and
497 * finishes them on completion. Transfer current dfops state to this
498 * transaction and transfer the result back before we return.
500 xfs_defer_move(tp, parent_tp);
501 cudp = xfs_trans_get_cud(tp, cuip);
503 for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
504 refc = &cuip->cui_format.cui_extents[i];
505 refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
506 switch (refc_type) {
507 case XFS_REFCOUNT_INCREASE:
508 case XFS_REFCOUNT_DECREASE:
509 case XFS_REFCOUNT_ALLOC_COW:
510 case XFS_REFCOUNT_FREE_COW:
511 type = refc_type;
512 break;
513 default:
514 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
515 error = -EFSCORRUPTED;
516 goto abort_error;
518 if (requeue_only) {
519 new_fsb = refc->pe_startblock;
520 new_len = refc->pe_len;
521 } else
522 error = xfs_trans_log_finish_refcount_update(tp, cudp,
523 type, refc->pe_startblock, refc->pe_len,
524 &new_fsb, &new_len, &rcur);
525 if (error)
526 goto abort_error;
528 /* Requeue what we didn't finish. */
529 if (new_len > 0) {
530 irec.br_startblock = new_fsb;
531 irec.br_blockcount = new_len;
532 switch (type) {
533 case XFS_REFCOUNT_INCREASE:
534 xfs_refcount_increase_extent(tp, &irec);
535 break;
536 case XFS_REFCOUNT_DECREASE:
537 xfs_refcount_decrease_extent(tp, &irec);
538 break;
539 case XFS_REFCOUNT_ALLOC_COW:
540 xfs_refcount_alloc_cow_extent(tp,
541 irec.br_startblock,
542 irec.br_blockcount);
543 break;
544 case XFS_REFCOUNT_FREE_COW:
545 xfs_refcount_free_cow_extent(tp,
546 irec.br_startblock,
547 irec.br_blockcount);
548 break;
549 default:
550 ASSERT(0);
552 requeue_only = true;
556 xfs_refcount_finish_one_cleanup(tp, rcur, error);
557 xfs_defer_move(parent_tp, tp);
558 error = xfs_trans_commit(tp);
559 return error;
561 abort_error:
562 xfs_refcount_finish_one_cleanup(tp, rcur, error);
563 xfs_defer_move(parent_tp, tp);
564 xfs_trans_cancel(tp);
565 return error;
568 STATIC bool
569 xfs_cui_item_match(
570 struct xfs_log_item *lip,
571 uint64_t intent_id)
573 return CUI_ITEM(lip)->cui_format.cui_id == intent_id;
576 static const struct xfs_item_ops xfs_cui_item_ops = {
577 .iop_size = xfs_cui_item_size,
578 .iop_format = xfs_cui_item_format,
579 .iop_unpin = xfs_cui_item_unpin,
580 .iop_release = xfs_cui_item_release,
581 .iop_recover = xfs_cui_item_recover,
582 .iop_match = xfs_cui_item_match,
586 * Copy an CUI format buffer from the given buf, and into the destination
587 * CUI format structure. The CUI/CUD items were designed not to need any
588 * special alignment handling.
590 static int
591 xfs_cui_copy_format(
592 struct xfs_log_iovec *buf,
593 struct xfs_cui_log_format *dst_cui_fmt)
595 struct xfs_cui_log_format *src_cui_fmt;
596 uint len;
598 src_cui_fmt = buf->i_addr;
599 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
601 if (buf->i_len == len) {
602 memcpy(dst_cui_fmt, src_cui_fmt, len);
603 return 0;
605 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
606 return -EFSCORRUPTED;
610 * This routine is called to create an in-core extent refcount update
611 * item from the cui format structure which was logged on disk.
612 * It allocates an in-core cui, copies the extents from the format
613 * structure into it, and adds the cui to the AIL with the given
614 * LSN.
616 STATIC int
617 xlog_recover_cui_commit_pass2(
618 struct xlog *log,
619 struct list_head *buffer_list,
620 struct xlog_recover_item *item,
621 xfs_lsn_t lsn)
623 int error;
624 struct xfs_mount *mp = log->l_mp;
625 struct xfs_cui_log_item *cuip;
626 struct xfs_cui_log_format *cui_formatp;
628 cui_formatp = item->ri_buf[0].i_addr;
630 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
631 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
632 if (error) {
633 xfs_cui_item_free(cuip);
634 return error;
636 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
638 * Insert the intent into the AIL directly and drop one reference so
639 * that finishing or canceling the work will drop the other.
641 xfs_trans_ail_insert(log->l_ailp, &cuip->cui_item, lsn);
642 xfs_cui_release(cuip);
643 return 0;
646 const struct xlog_recover_item_ops xlog_cui_item_ops = {
647 .item_type = XFS_LI_CUI,
648 .commit_pass2 = xlog_recover_cui_commit_pass2,
652 * This routine is called when an CUD format structure is found in a committed
653 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
654 * was still in the log. To do this it searches the AIL for the CUI with an id
655 * equal to that in the CUD format structure. If we find it we drop the CUD
656 * reference, which removes the CUI from the AIL and frees it.
658 STATIC int
659 xlog_recover_cud_commit_pass2(
660 struct xlog *log,
661 struct list_head *buffer_list,
662 struct xlog_recover_item *item,
663 xfs_lsn_t lsn)
665 struct xfs_cud_log_format *cud_formatp;
667 cud_formatp = item->ri_buf[0].i_addr;
668 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
669 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
670 return -EFSCORRUPTED;
673 xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id);
674 return 0;
677 const struct xlog_recover_item_ops xlog_cud_item_ops = {
678 .item_type = XFS_LI_CUD,
679 .commit_pass2 = xlog_recover_cud_commit_pass2,