1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
25 #include <trace/events/sched.h>
28 * Targeted preemption latency for CPU-bound tasks:
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 unsigned int sysctl_sched_latency
= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
44 * The initial- and re-scaling of tunables is configurable
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG
;
57 * Minimal preemption granularity for CPU-bound tasks:
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61 unsigned int sysctl_sched_min_granularity
= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67 static unsigned int sched_nr_latency
= 8;
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
73 unsigned int sysctl_sched_child_runs_first __read_mostly
;
76 * SCHED_OTHER wake-up granularity.
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
87 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
89 int sched_thermal_decay_shift
;
90 static int __init
setup_sched_thermal_decay_shift(char *str
)
94 if (kstrtoint(str
, 0, &_shift
))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
97 sched_thermal_decay_shift
= clamp(_shift
, 0, 10);
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift
);
104 * For asym packing, by default the lower numbered CPU has higher priority.
106 int __weak
arch_asym_cpu_priority(int cpu
)
112 * The margin used when comparing utilization with CPU capacity.
116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
120 #ifdef CONFIG_CFS_BANDWIDTH
122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123 * each time a cfs_rq requests quota.
125 * Note: in the case that the slice exceeds the runtime remaining (either due
126 * to consumption or the quota being specified to be smaller than the slice)
127 * we will always only issue the remaining available time.
129 * (default: 5 msec, units: microseconds)
131 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
134 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
140 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
146 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
159 * This idea comes from the SD scheduler of Con Kolivas:
161 static unsigned int get_update_sysctl_factor(void)
163 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
166 switch (sysctl_sched_tunable_scaling
) {
167 case SCHED_TUNABLESCALING_NONE
:
170 case SCHED_TUNABLESCALING_LINEAR
:
173 case SCHED_TUNABLESCALING_LOG
:
175 factor
= 1 + ilog2(cpus
);
182 static void update_sysctl(void)
184 unsigned int factor
= get_update_sysctl_factor();
186 #define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity
);
189 SET_SYSCTL(sched_latency
);
190 SET_SYSCTL(sched_wakeup_granularity
);
194 void __init
sched_init_granularity(void)
199 #define WMULT_CONST (~0U)
200 #define WMULT_SHIFT 32
202 static void __update_inv_weight(struct load_weight
*lw
)
206 if (likely(lw
->inv_weight
))
209 w
= scale_load_down(lw
->weight
);
211 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
213 else if (unlikely(!w
))
214 lw
->inv_weight
= WMULT_CONST
;
216 lw
->inv_weight
= WMULT_CONST
/ w
;
220 * delta_exec * weight / lw.weight
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
231 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
233 u64 fact
= scale_load_down(weight
);
234 int shift
= WMULT_SHIFT
;
236 __update_inv_weight(lw
);
238 if (unlikely(fact
>> 32)) {
245 fact
= mul_u32_u32(fact
, lw
->inv_weight
);
252 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
256 const struct sched_class fair_sched_class
;
258 /**************************************************************
259 * CFS operations on generic schedulable entities:
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 static inline struct task_struct
*task_of(struct sched_entity
*se
)
265 SCHED_WARN_ON(!entity_is_task(se
));
266 return container_of(se
, struct task_struct
, se
);
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
273 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
290 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
295 if (cfs_rq
&& task_group_is_autogroup(cfs_rq
->tg
))
296 autogroup_path(cfs_rq
->tg
, path
, len
);
297 else if (cfs_rq
&& cfs_rq
->tg
->css
.cgroup
)
298 cgroup_path(cfs_rq
->tg
->css
.cgroup
, path
, len
);
300 strlcpy(path
, "(null)", len
);
303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
305 struct rq
*rq
= rq_of(cfs_rq
);
306 int cpu
= cpu_of(rq
);
309 return rq
->tmp_alone_branch
== &rq
->leaf_cfs_rq_list
;
314 * Ensure we either appear before our parent (if already
315 * enqueued) or force our parent to appear after us when it is
316 * enqueued. The fact that we always enqueue bottom-up
317 * reduces this to two cases and a special case for the root
318 * cfs_rq. Furthermore, it also means that we will always reset
319 * tmp_alone_branch either when the branch is connected
320 * to a tree or when we reach the top of the tree
322 if (cfs_rq
->tg
->parent
&&
323 cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->on_list
) {
325 * If parent is already on the list, we add the child
326 * just before. Thanks to circular linked property of
327 * the list, this means to put the child at the tail
328 * of the list that starts by parent.
330 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
331 &(cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->leaf_cfs_rq_list
));
333 * The branch is now connected to its tree so we can
334 * reset tmp_alone_branch to the beginning of the
337 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
341 if (!cfs_rq
->tg
->parent
) {
343 * cfs rq without parent should be put
344 * at the tail of the list.
346 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
347 &rq
->leaf_cfs_rq_list
);
349 * We have reach the top of a tree so we can reset
350 * tmp_alone_branch to the beginning of the list.
352 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
357 * The parent has not already been added so we want to
358 * make sure that it will be put after us.
359 * tmp_alone_branch points to the begin of the branch
360 * where we will add parent.
362 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, rq
->tmp_alone_branch
);
364 * update tmp_alone_branch to points to the new begin
367 rq
->tmp_alone_branch
= &cfs_rq
->leaf_cfs_rq_list
;
371 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
373 if (cfs_rq
->on_list
) {
374 struct rq
*rq
= rq_of(cfs_rq
);
377 * With cfs_rq being unthrottled/throttled during an enqueue,
378 * it can happen the tmp_alone_branch points the a leaf that
379 * we finally want to del. In this case, tmp_alone_branch moves
380 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 * at the end of the enqueue.
383 if (rq
->tmp_alone_branch
== &cfs_rq
->leaf_cfs_rq_list
)
384 rq
->tmp_alone_branch
= cfs_rq
->leaf_cfs_rq_list
.prev
;
386 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
391 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
393 SCHED_WARN_ON(rq
->tmp_alone_branch
!= &rq
->leaf_cfs_rq_list
);
396 /* Iterate thr' all leaf cfs_rq's on a runqueue */
397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
401 /* Do the two (enqueued) entities belong to the same group ? */
402 static inline struct cfs_rq
*
403 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
405 if (se
->cfs_rq
== pse
->cfs_rq
)
411 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
417 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
419 int se_depth
, pse_depth
;
422 * preemption test can be made between sibling entities who are in the
423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 * both tasks until we find their ancestors who are siblings of common
428 /* First walk up until both entities are at same depth */
429 se_depth
= (*se
)->depth
;
430 pse_depth
= (*pse
)->depth
;
432 while (se_depth
> pse_depth
) {
434 *se
= parent_entity(*se
);
437 while (pse_depth
> se_depth
) {
439 *pse
= parent_entity(*pse
);
442 while (!is_same_group(*se
, *pse
)) {
443 *se
= parent_entity(*se
);
444 *pse
= parent_entity(*pse
);
448 #else /* !CONFIG_FAIR_GROUP_SCHED */
450 static inline struct task_struct
*task_of(struct sched_entity
*se
)
452 return container_of(se
, struct task_struct
, se
);
455 #define for_each_sched_entity(se) \
456 for (; se; se = NULL)
458 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
460 return &task_rq(p
)->cfs
;
463 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
465 struct task_struct
*p
= task_of(se
);
466 struct rq
*rq
= task_rq(p
);
471 /* runqueue "owned" by this group */
472 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
477 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
480 strlcpy(path
, "(null)", len
);
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
492 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
499 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
505 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
509 #endif /* CONFIG_FAIR_GROUP_SCHED */
511 static __always_inline
512 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
514 /**************************************************************
515 * Scheduling class tree data structure manipulation methods:
518 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
520 s64 delta
= (s64
)(vruntime
- max_vruntime
);
522 max_vruntime
= vruntime
;
527 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
529 s64 delta
= (s64
)(vruntime
- min_vruntime
);
531 min_vruntime
= vruntime
;
536 static inline int entity_before(struct sched_entity
*a
,
537 struct sched_entity
*b
)
539 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
542 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
544 struct sched_entity
*curr
= cfs_rq
->curr
;
545 struct rb_node
*leftmost
= rb_first_cached(&cfs_rq
->tasks_timeline
);
547 u64 vruntime
= cfs_rq
->min_vruntime
;
551 vruntime
= curr
->vruntime
;
556 if (leftmost
) { /* non-empty tree */
557 struct sched_entity
*se
;
558 se
= rb_entry(leftmost
, struct sched_entity
, run_node
);
561 vruntime
= se
->vruntime
;
563 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
566 /* ensure we never gain time by being placed backwards. */
567 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
570 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
575 * Enqueue an entity into the rb-tree:
577 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
579 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_root
.rb_node
;
580 struct rb_node
*parent
= NULL
;
581 struct sched_entity
*entry
;
582 bool leftmost
= true;
585 * Find the right place in the rbtree:
589 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
591 * We dont care about collisions. Nodes with
592 * the same key stay together.
594 if (entity_before(se
, entry
)) {
595 link
= &parent
->rb_left
;
597 link
= &parent
->rb_right
;
602 rb_link_node(&se
->run_node
, parent
, link
);
603 rb_insert_color_cached(&se
->run_node
,
604 &cfs_rq
->tasks_timeline
, leftmost
);
607 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
609 rb_erase_cached(&se
->run_node
, &cfs_rq
->tasks_timeline
);
612 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
614 struct rb_node
*left
= rb_first_cached(&cfs_rq
->tasks_timeline
);
619 return rb_entry(left
, struct sched_entity
, run_node
);
622 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
624 struct rb_node
*next
= rb_next(&se
->run_node
);
629 return rb_entry(next
, struct sched_entity
, run_node
);
632 #ifdef CONFIG_SCHED_DEBUG
633 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
635 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
.rb_root
);
640 return rb_entry(last
, struct sched_entity
, run_node
);
643 /**************************************************************
644 * Scheduling class statistics methods:
647 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
648 void *buffer
, size_t *lenp
, loff_t
*ppos
)
650 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
651 unsigned int factor
= get_update_sysctl_factor();
656 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
657 sysctl_sched_min_granularity
);
659 #define WRT_SYSCTL(name) \
660 (normalized_sysctl_##name = sysctl_##name / (factor))
661 WRT_SYSCTL(sched_min_granularity
);
662 WRT_SYSCTL(sched_latency
);
663 WRT_SYSCTL(sched_wakeup_granularity
);
673 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
675 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
676 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
682 * The idea is to set a period in which each task runs once.
684 * When there are too many tasks (sched_nr_latency) we have to stretch
685 * this period because otherwise the slices get too small.
687 * p = (nr <= nl) ? l : l*nr/nl
689 static u64
__sched_period(unsigned long nr_running
)
691 if (unlikely(nr_running
> sched_nr_latency
))
692 return nr_running
* sysctl_sched_min_granularity
;
694 return sysctl_sched_latency
;
698 * We calculate the wall-time slice from the period by taking a part
699 * proportional to the weight.
703 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
705 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
707 for_each_sched_entity(se
) {
708 struct load_weight
*load
;
709 struct load_weight lw
;
711 cfs_rq
= cfs_rq_of(se
);
712 load
= &cfs_rq
->load
;
714 if (unlikely(!se
->on_rq
)) {
717 update_load_add(&lw
, se
->load
.weight
);
720 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
726 * We calculate the vruntime slice of a to-be-inserted task.
730 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
732 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
738 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
739 static unsigned long task_h_load(struct task_struct
*p
);
740 static unsigned long capacity_of(int cpu
);
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity
*se
)
745 struct sched_avg
*sa
= &se
->avg
;
747 memset(sa
, 0, sizeof(*sa
));
750 * Tasks are initialized with full load to be seen as heavy tasks until
751 * they get a chance to stabilize to their real load level.
752 * Group entities are initialized with zero load to reflect the fact that
753 * nothing has been attached to the task group yet.
755 if (entity_is_task(se
))
756 sa
->load_avg
= scale_load_down(se
->load
.weight
);
758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
761 static void attach_entity_cfs_rq(struct sched_entity
*se
);
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
778 * where n denotes the nth task and cpu_scale the CPU capacity.
780 * For example, for a CPU with 1024 of capacity, a simplest series from
781 * the beginning would be like:
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
789 void post_init_entity_util_avg(struct task_struct
*p
)
791 struct sched_entity
*se
= &p
->se
;
792 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
793 struct sched_avg
*sa
= &se
->avg
;
794 long cpu_scale
= arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq
)));
795 long cap
= (long)(cpu_scale
- cfs_rq
->avg
.util_avg
) / 2;
798 if (cfs_rq
->avg
.util_avg
!= 0) {
799 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
800 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
802 if (sa
->util_avg
> cap
)
809 sa
->runnable_avg
= sa
->util_avg
;
811 if (p
->sched_class
!= &fair_sched_class
) {
813 * For !fair tasks do:
815 update_cfs_rq_load_avg(now, cfs_rq);
816 attach_entity_load_avg(cfs_rq, se);
817 switched_from_fair(rq, p);
819 * such that the next switched_to_fair() has the
822 se
->avg
.last_update_time
= cfs_rq_clock_pelt(cfs_rq
);
826 attach_entity_cfs_rq(se
);
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity
*se
)
833 void post_init_entity_util_avg(struct task_struct
*p
)
836 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
839 #endif /* CONFIG_SMP */
842 * Update the current task's runtime statistics.
844 static void update_curr(struct cfs_rq
*cfs_rq
)
846 struct sched_entity
*curr
= cfs_rq
->curr
;
847 u64 now
= rq_clock_task(rq_of(cfs_rq
));
853 delta_exec
= now
- curr
->exec_start
;
854 if (unlikely((s64
)delta_exec
<= 0))
857 curr
->exec_start
= now
;
859 schedstat_set(curr
->statistics
.exec_max
,
860 max(delta_exec
, curr
->statistics
.exec_max
));
862 curr
->sum_exec_runtime
+= delta_exec
;
863 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
865 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
866 update_min_vruntime(cfs_rq
);
868 if (entity_is_task(curr
)) {
869 struct task_struct
*curtask
= task_of(curr
);
871 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
872 cgroup_account_cputime(curtask
, delta_exec
);
873 account_group_exec_runtime(curtask
, delta_exec
);
876 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
879 static void update_curr_fair(struct rq
*rq
)
881 update_curr(cfs_rq_of(&rq
->curr
->se
));
885 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
887 u64 wait_start
, prev_wait_start
;
889 if (!schedstat_enabled())
892 wait_start
= rq_clock(rq_of(cfs_rq
));
893 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
895 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
896 likely(wait_start
> prev_wait_start
))
897 wait_start
-= prev_wait_start
;
899 __schedstat_set(se
->statistics
.wait_start
, wait_start
);
903 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
905 struct task_struct
*p
;
908 if (!schedstat_enabled())
911 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
913 if (entity_is_task(se
)) {
915 if (task_on_rq_migrating(p
)) {
917 * Preserve migrating task's wait time so wait_start
918 * time stamp can be adjusted to accumulate wait time
919 * prior to migration.
921 __schedstat_set(se
->statistics
.wait_start
, delta
);
924 trace_sched_stat_wait(p
, delta
);
927 __schedstat_set(se
->statistics
.wait_max
,
928 max(schedstat_val(se
->statistics
.wait_max
), delta
));
929 __schedstat_inc(se
->statistics
.wait_count
);
930 __schedstat_add(se
->statistics
.wait_sum
, delta
);
931 __schedstat_set(se
->statistics
.wait_start
, 0);
935 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
937 struct task_struct
*tsk
= NULL
;
938 u64 sleep_start
, block_start
;
940 if (!schedstat_enabled())
943 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
944 block_start
= schedstat_val(se
->statistics
.block_start
);
946 if (entity_is_task(se
))
950 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
955 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
956 __schedstat_set(se
->statistics
.sleep_max
, delta
);
958 __schedstat_set(se
->statistics
.sleep_start
, 0);
959 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
962 account_scheduler_latency(tsk
, delta
>> 10, 1);
963 trace_sched_stat_sleep(tsk
, delta
);
967 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
972 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
973 __schedstat_set(se
->statistics
.block_max
, delta
);
975 __schedstat_set(se
->statistics
.block_start
, 0);
976 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
979 if (tsk
->in_iowait
) {
980 __schedstat_add(se
->statistics
.iowait_sum
, delta
);
981 __schedstat_inc(se
->statistics
.iowait_count
);
982 trace_sched_stat_iowait(tsk
, delta
);
985 trace_sched_stat_blocked(tsk
, delta
);
988 * Blocking time is in units of nanosecs, so shift by
989 * 20 to get a milliseconds-range estimation of the
990 * amount of time that the task spent sleeping:
992 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
993 profile_hits(SLEEP_PROFILING
,
994 (void *)get_wchan(tsk
),
997 account_scheduler_latency(tsk
, delta
>> 10, 0);
1003 * Task is being enqueued - update stats:
1006 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1008 if (!schedstat_enabled())
1012 * Are we enqueueing a waiting task? (for current tasks
1013 * a dequeue/enqueue event is a NOP)
1015 if (se
!= cfs_rq
->curr
)
1016 update_stats_wait_start(cfs_rq
, se
);
1018 if (flags
& ENQUEUE_WAKEUP
)
1019 update_stats_enqueue_sleeper(cfs_rq
, se
);
1023 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1026 if (!schedstat_enabled())
1030 * Mark the end of the wait period if dequeueing a
1033 if (se
!= cfs_rq
->curr
)
1034 update_stats_wait_end(cfs_rq
, se
);
1036 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
1037 struct task_struct
*tsk
= task_of(se
);
1039 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1040 __schedstat_set(se
->statistics
.sleep_start
,
1041 rq_clock(rq_of(cfs_rq
)));
1042 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1043 __schedstat_set(se
->statistics
.block_start
,
1044 rq_clock(rq_of(cfs_rq
)));
1049 * We are picking a new current task - update its stats:
1052 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1055 * We are starting a new run period:
1057 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1060 /**************************************************
1061 * Scheduling class queueing methods:
1064 #ifdef CONFIG_NUMA_BALANCING
1066 * Approximate time to scan a full NUMA task in ms. The task scan period is
1067 * calculated based on the tasks virtual memory size and
1068 * numa_balancing_scan_size.
1070 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1071 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1073 /* Portion of address space to scan in MB */
1074 unsigned int sysctl_numa_balancing_scan_size
= 256;
1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1080 refcount_t refcount
;
1082 spinlock_t lock
; /* nr_tasks, tasks */
1087 struct rcu_head rcu
;
1088 unsigned long total_faults
;
1089 unsigned long max_faults_cpu
;
1091 * Faults_cpu is used to decide whether memory should move
1092 * towards the CPU. As a consequence, these stats are weighted
1093 * more by CPU use than by memory faults.
1095 unsigned long *faults_cpu
;
1096 unsigned long faults
[];
1100 * For functions that can be called in multiple contexts that permit reading
1101 * ->numa_group (see struct task_struct for locking rules).
1103 static struct numa_group
*deref_task_numa_group(struct task_struct
*p
)
1105 return rcu_dereference_check(p
->numa_group
, p
== current
||
1106 (lockdep_is_held(&task_rq(p
)->lock
) && !READ_ONCE(p
->on_cpu
)));
1109 static struct numa_group
*deref_curr_numa_group(struct task_struct
*p
)
1111 return rcu_dereference_protected(p
->numa_group
, p
== current
);
1114 static inline unsigned long group_faults_priv(struct numa_group
*ng
);
1115 static inline unsigned long group_faults_shared(struct numa_group
*ng
);
1117 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1119 unsigned long rss
= 0;
1120 unsigned long nr_scan_pages
;
1123 * Calculations based on RSS as non-present and empty pages are skipped
1124 * by the PTE scanner and NUMA hinting faults should be trapped based
1127 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1128 rss
= get_mm_rss(p
->mm
);
1130 rss
= nr_scan_pages
;
1132 rss
= round_up(rss
, nr_scan_pages
);
1133 return rss
/ nr_scan_pages
;
1136 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1137 #define MAX_SCAN_WINDOW 2560
1139 static unsigned int task_scan_min(struct task_struct
*p
)
1141 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1142 unsigned int scan
, floor
;
1143 unsigned int windows
= 1;
1145 if (scan_size
< MAX_SCAN_WINDOW
)
1146 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1147 floor
= 1000 / windows
;
1149 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1150 return max_t(unsigned int, floor
, scan
);
1153 static unsigned int task_scan_start(struct task_struct
*p
)
1155 unsigned long smin
= task_scan_min(p
);
1156 unsigned long period
= smin
;
1157 struct numa_group
*ng
;
1159 /* Scale the maximum scan period with the amount of shared memory. */
1161 ng
= rcu_dereference(p
->numa_group
);
1163 unsigned long shared
= group_faults_shared(ng
);
1164 unsigned long private = group_faults_priv(ng
);
1166 period
*= refcount_read(&ng
->refcount
);
1167 period
*= shared
+ 1;
1168 period
/= private + shared
+ 1;
1172 return max(smin
, period
);
1175 static unsigned int task_scan_max(struct task_struct
*p
)
1177 unsigned long smin
= task_scan_min(p
);
1179 struct numa_group
*ng
;
1181 /* Watch for min being lower than max due to floor calculations */
1182 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1184 /* Scale the maximum scan period with the amount of shared memory. */
1185 ng
= deref_curr_numa_group(p
);
1187 unsigned long shared
= group_faults_shared(ng
);
1188 unsigned long private = group_faults_priv(ng
);
1189 unsigned long period
= smax
;
1191 period
*= refcount_read(&ng
->refcount
);
1192 period
*= shared
+ 1;
1193 period
/= private + shared
+ 1;
1195 smax
= max(smax
, period
);
1198 return max(smin
, smax
);
1201 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1203 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1204 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1207 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1209 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1210 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1213 /* Shared or private faults. */
1214 #define NR_NUMA_HINT_FAULT_TYPES 2
1216 /* Memory and CPU locality */
1217 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1219 /* Averaged statistics, and temporary buffers. */
1220 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1222 pid_t
task_numa_group_id(struct task_struct
*p
)
1224 struct numa_group
*ng
;
1228 ng
= rcu_dereference(p
->numa_group
);
1237 * The averaged statistics, shared & private, memory & CPU,
1238 * occupy the first half of the array. The second half of the
1239 * array is for current counters, which are averaged into the
1240 * first set by task_numa_placement.
1242 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1244 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1247 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1249 if (!p
->numa_faults
)
1252 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1253 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1256 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1258 struct numa_group
*ng
= deref_task_numa_group(p
);
1263 return ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1264 ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1267 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1269 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1270 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1273 static inline unsigned long group_faults_priv(struct numa_group
*ng
)
1275 unsigned long faults
= 0;
1278 for_each_online_node(node
) {
1279 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
1285 static inline unsigned long group_faults_shared(struct numa_group
*ng
)
1287 unsigned long faults
= 0;
1290 for_each_online_node(node
) {
1291 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
1298 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1299 * considered part of a numa group's pseudo-interleaving set. Migrations
1300 * between these nodes are slowed down, to allow things to settle down.
1302 #define ACTIVE_NODE_FRACTION 3
1304 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1306 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1309 /* Handle placement on systems where not all nodes are directly connected. */
1310 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1311 int maxdist
, bool task
)
1313 unsigned long score
= 0;
1317 * All nodes are directly connected, and the same distance
1318 * from each other. No need for fancy placement algorithms.
1320 if (sched_numa_topology_type
== NUMA_DIRECT
)
1324 * This code is called for each node, introducing N^2 complexity,
1325 * which should be ok given the number of nodes rarely exceeds 8.
1327 for_each_online_node(node
) {
1328 unsigned long faults
;
1329 int dist
= node_distance(nid
, node
);
1332 * The furthest away nodes in the system are not interesting
1333 * for placement; nid was already counted.
1335 if (dist
== sched_max_numa_distance
|| node
== nid
)
1339 * On systems with a backplane NUMA topology, compare groups
1340 * of nodes, and move tasks towards the group with the most
1341 * memory accesses. When comparing two nodes at distance
1342 * "hoplimit", only nodes closer by than "hoplimit" are part
1343 * of each group. Skip other nodes.
1345 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1349 /* Add up the faults from nearby nodes. */
1351 faults
= task_faults(p
, node
);
1353 faults
= group_faults(p
, node
);
1356 * On systems with a glueless mesh NUMA topology, there are
1357 * no fixed "groups of nodes". Instead, nodes that are not
1358 * directly connected bounce traffic through intermediate
1359 * nodes; a numa_group can occupy any set of nodes.
1360 * The further away a node is, the less the faults count.
1361 * This seems to result in good task placement.
1363 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1364 faults
*= (sched_max_numa_distance
- dist
);
1365 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1375 * These return the fraction of accesses done by a particular task, or
1376 * task group, on a particular numa node. The group weight is given a
1377 * larger multiplier, in order to group tasks together that are almost
1378 * evenly spread out between numa nodes.
1380 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1383 unsigned long faults
, total_faults
;
1385 if (!p
->numa_faults
)
1388 total_faults
= p
->total_numa_faults
;
1393 faults
= task_faults(p
, nid
);
1394 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1396 return 1000 * faults
/ total_faults
;
1399 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1402 struct numa_group
*ng
= deref_task_numa_group(p
);
1403 unsigned long faults
, total_faults
;
1408 total_faults
= ng
->total_faults
;
1413 faults
= group_faults(p
, nid
);
1414 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1416 return 1000 * faults
/ total_faults
;
1419 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1420 int src_nid
, int dst_cpu
)
1422 struct numa_group
*ng
= deref_curr_numa_group(p
);
1423 int dst_nid
= cpu_to_node(dst_cpu
);
1424 int last_cpupid
, this_cpupid
;
1426 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1427 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1430 * Allow first faults or private faults to migrate immediately early in
1431 * the lifetime of a task. The magic number 4 is based on waiting for
1432 * two full passes of the "multi-stage node selection" test that is
1435 if ((p
->numa_preferred_nid
== NUMA_NO_NODE
|| p
->numa_scan_seq
<= 4) &&
1436 (cpupid_pid_unset(last_cpupid
) || cpupid_match_pid(p
, last_cpupid
)))
1440 * Multi-stage node selection is used in conjunction with a periodic
1441 * migration fault to build a temporal task<->page relation. By using
1442 * a two-stage filter we remove short/unlikely relations.
1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1445 * a task's usage of a particular page (n_p) per total usage of this
1446 * page (n_t) (in a given time-span) to a probability.
1448 * Our periodic faults will sample this probability and getting the
1449 * same result twice in a row, given these samples are fully
1450 * independent, is then given by P(n)^2, provided our sample period
1451 * is sufficiently short compared to the usage pattern.
1453 * This quadric squishes small probabilities, making it less likely we
1454 * act on an unlikely task<->page relation.
1456 if (!cpupid_pid_unset(last_cpupid
) &&
1457 cpupid_to_nid(last_cpupid
) != dst_nid
)
1460 /* Always allow migrate on private faults */
1461 if (cpupid_match_pid(p
, last_cpupid
))
1464 /* A shared fault, but p->numa_group has not been set up yet. */
1469 * Destination node is much more heavily used than the source
1470 * node? Allow migration.
1472 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1473 ACTIVE_NODE_FRACTION
)
1477 * Distribute memory according to CPU & memory use on each node,
1478 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1480 * faults_cpu(dst) 3 faults_cpu(src)
1481 * --------------- * - > ---------------
1482 * faults_mem(dst) 4 faults_mem(src)
1484 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1485 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1489 * 'numa_type' describes the node at the moment of load balancing.
1492 /* The node has spare capacity that can be used to run more tasks. */
1495 * The node is fully used and the tasks don't compete for more CPU
1496 * cycles. Nevertheless, some tasks might wait before running.
1500 * The node is overloaded and can't provide expected CPU cycles to all
1506 /* Cached statistics for all CPUs within a node */
1510 /* Total compute capacity of CPUs on a node */
1511 unsigned long compute_capacity
;
1512 unsigned int nr_running
;
1513 unsigned int weight
;
1514 enum numa_type node_type
;
1518 static inline bool is_core_idle(int cpu
)
1520 #ifdef CONFIG_SCHED_SMT
1523 for_each_cpu(sibling
, cpu_smt_mask(cpu
)) {
1535 struct task_numa_env
{
1536 struct task_struct
*p
;
1538 int src_cpu
, src_nid
;
1539 int dst_cpu
, dst_nid
;
1541 struct numa_stats src_stats
, dst_stats
;
1546 struct task_struct
*best_task
;
1551 static unsigned long cpu_load(struct rq
*rq
);
1552 static unsigned long cpu_util(int cpu
);
1553 static inline long adjust_numa_imbalance(int imbalance
, int src_nr_running
);
1556 numa_type
numa_classify(unsigned int imbalance_pct
,
1557 struct numa_stats
*ns
)
1559 if ((ns
->nr_running
> ns
->weight
) &&
1560 ((ns
->compute_capacity
* 100) < (ns
->util
* imbalance_pct
)))
1561 return node_overloaded
;
1563 if ((ns
->nr_running
< ns
->weight
) ||
1564 ((ns
->compute_capacity
* 100) > (ns
->util
* imbalance_pct
)))
1565 return node_has_spare
;
1567 return node_fully_busy
;
1570 #ifdef CONFIG_SCHED_SMT
1571 /* Forward declarations of select_idle_sibling helpers */
1572 static inline bool test_idle_cores(int cpu
, bool def
);
1573 static inline int numa_idle_core(int idle_core
, int cpu
)
1575 if (!static_branch_likely(&sched_smt_present
) ||
1576 idle_core
>= 0 || !test_idle_cores(cpu
, false))
1580 * Prefer cores instead of packing HT siblings
1581 * and triggering future load balancing.
1583 if (is_core_idle(cpu
))
1589 static inline int numa_idle_core(int idle_core
, int cpu
)
1596 * Gather all necessary information to make NUMA balancing placement
1597 * decisions that are compatible with standard load balancer. This
1598 * borrows code and logic from update_sg_lb_stats but sharing a
1599 * common implementation is impractical.
1601 static void update_numa_stats(struct task_numa_env
*env
,
1602 struct numa_stats
*ns
, int nid
,
1605 int cpu
, idle_core
= -1;
1607 memset(ns
, 0, sizeof(*ns
));
1611 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1612 struct rq
*rq
= cpu_rq(cpu
);
1614 ns
->load
+= cpu_load(rq
);
1615 ns
->util
+= cpu_util(cpu
);
1616 ns
->nr_running
+= rq
->cfs
.h_nr_running
;
1617 ns
->compute_capacity
+= capacity_of(cpu
);
1619 if (find_idle
&& !rq
->nr_running
&& idle_cpu(cpu
)) {
1620 if (READ_ONCE(rq
->numa_migrate_on
) ||
1621 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
1624 if (ns
->idle_cpu
== -1)
1627 idle_core
= numa_idle_core(idle_core
, cpu
);
1632 ns
->weight
= cpumask_weight(cpumask_of_node(nid
));
1634 ns
->node_type
= numa_classify(env
->imbalance_pct
, ns
);
1637 ns
->idle_cpu
= idle_core
;
1640 static void task_numa_assign(struct task_numa_env
*env
,
1641 struct task_struct
*p
, long imp
)
1643 struct rq
*rq
= cpu_rq(env
->dst_cpu
);
1645 /* Check if run-queue part of active NUMA balance. */
1646 if (env
->best_cpu
!= env
->dst_cpu
&& xchg(&rq
->numa_migrate_on
, 1)) {
1648 int start
= env
->dst_cpu
;
1650 /* Find alternative idle CPU. */
1651 for_each_cpu_wrap(cpu
, cpumask_of_node(env
->dst_nid
), start
) {
1652 if (cpu
== env
->best_cpu
|| !idle_cpu(cpu
) ||
1653 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
)) {
1658 rq
= cpu_rq(env
->dst_cpu
);
1659 if (!xchg(&rq
->numa_migrate_on
, 1))
1663 /* Failed to find an alternative idle CPU */
1669 * Clear previous best_cpu/rq numa-migrate flag, since task now
1670 * found a better CPU to move/swap.
1672 if (env
->best_cpu
!= -1 && env
->best_cpu
!= env
->dst_cpu
) {
1673 rq
= cpu_rq(env
->best_cpu
);
1674 WRITE_ONCE(rq
->numa_migrate_on
, 0);
1678 put_task_struct(env
->best_task
);
1683 env
->best_imp
= imp
;
1684 env
->best_cpu
= env
->dst_cpu
;
1687 static bool load_too_imbalanced(long src_load
, long dst_load
,
1688 struct task_numa_env
*env
)
1691 long orig_src_load
, orig_dst_load
;
1692 long src_capacity
, dst_capacity
;
1695 * The load is corrected for the CPU capacity available on each node.
1698 * ------------ vs ---------
1699 * src_capacity dst_capacity
1701 src_capacity
= env
->src_stats
.compute_capacity
;
1702 dst_capacity
= env
->dst_stats
.compute_capacity
;
1704 imb
= abs(dst_load
* src_capacity
- src_load
* dst_capacity
);
1706 orig_src_load
= env
->src_stats
.load
;
1707 orig_dst_load
= env
->dst_stats
.load
;
1709 old_imb
= abs(orig_dst_load
* src_capacity
- orig_src_load
* dst_capacity
);
1711 /* Would this change make things worse? */
1712 return (imb
> old_imb
);
1716 * Maximum NUMA importance can be 1998 (2*999);
1717 * SMALLIMP @ 30 would be close to 1998/64.
1718 * Used to deter task migration.
1723 * This checks if the overall compute and NUMA accesses of the system would
1724 * be improved if the source tasks was migrated to the target dst_cpu taking
1725 * into account that it might be best if task running on the dst_cpu should
1726 * be exchanged with the source task
1728 static bool task_numa_compare(struct task_numa_env
*env
,
1729 long taskimp
, long groupimp
, bool maymove
)
1731 struct numa_group
*cur_ng
, *p_ng
= deref_curr_numa_group(env
->p
);
1732 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1733 long imp
= p_ng
? groupimp
: taskimp
;
1734 struct task_struct
*cur
;
1735 long src_load
, dst_load
;
1736 int dist
= env
->dist
;
1739 bool stopsearch
= false;
1741 if (READ_ONCE(dst_rq
->numa_migrate_on
))
1745 cur
= rcu_dereference(dst_rq
->curr
);
1746 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1750 * Because we have preemption enabled we can get migrated around and
1751 * end try selecting ourselves (current == env->p) as a swap candidate.
1753 if (cur
== env
->p
) {
1759 if (maymove
&& moveimp
>= env
->best_imp
)
1765 /* Skip this swap candidate if cannot move to the source cpu. */
1766 if (!cpumask_test_cpu(env
->src_cpu
, cur
->cpus_ptr
))
1770 * Skip this swap candidate if it is not moving to its preferred
1771 * node and the best task is.
1773 if (env
->best_task
&&
1774 env
->best_task
->numa_preferred_nid
== env
->src_nid
&&
1775 cur
->numa_preferred_nid
!= env
->src_nid
) {
1780 * "imp" is the fault differential for the source task between the
1781 * source and destination node. Calculate the total differential for
1782 * the source task and potential destination task. The more negative
1783 * the value is, the more remote accesses that would be expected to
1784 * be incurred if the tasks were swapped.
1786 * If dst and source tasks are in the same NUMA group, or not
1787 * in any group then look only at task weights.
1789 cur_ng
= rcu_dereference(cur
->numa_group
);
1790 if (cur_ng
== p_ng
) {
1791 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1792 task_weight(cur
, env
->dst_nid
, dist
);
1794 * Add some hysteresis to prevent swapping the
1795 * tasks within a group over tiny differences.
1801 * Compare the group weights. If a task is all by itself
1802 * (not part of a group), use the task weight instead.
1805 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1806 group_weight(cur
, env
->dst_nid
, dist
);
1808 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1809 task_weight(cur
, env
->dst_nid
, dist
);
1812 /* Discourage picking a task already on its preferred node */
1813 if (cur
->numa_preferred_nid
== env
->dst_nid
)
1817 * Encourage picking a task that moves to its preferred node.
1818 * This potentially makes imp larger than it's maximum of
1819 * 1998 (see SMALLIMP and task_weight for why) but in this
1820 * case, it does not matter.
1822 if (cur
->numa_preferred_nid
== env
->src_nid
)
1825 if (maymove
&& moveimp
> imp
&& moveimp
> env
->best_imp
) {
1832 * Prefer swapping with a task moving to its preferred node over a
1835 if (env
->best_task
&& cur
->numa_preferred_nid
== env
->src_nid
&&
1836 env
->best_task
->numa_preferred_nid
!= env
->src_nid
) {
1841 * If the NUMA importance is less than SMALLIMP,
1842 * task migration might only result in ping pong
1843 * of tasks and also hurt performance due to cache
1846 if (imp
< SMALLIMP
|| imp
<= env
->best_imp
+ SMALLIMP
/ 2)
1850 * In the overloaded case, try and keep the load balanced.
1852 load
= task_h_load(env
->p
) - task_h_load(cur
);
1856 dst_load
= env
->dst_stats
.load
+ load
;
1857 src_load
= env
->src_stats
.load
- load
;
1859 if (load_too_imbalanced(src_load
, dst_load
, env
))
1863 /* Evaluate an idle CPU for a task numa move. */
1865 int cpu
= env
->dst_stats
.idle_cpu
;
1867 /* Nothing cached so current CPU went idle since the search. */
1872 * If the CPU is no longer truly idle and the previous best CPU
1873 * is, keep using it.
1875 if (!idle_cpu(cpu
) && env
->best_cpu
>= 0 &&
1876 idle_cpu(env
->best_cpu
)) {
1877 cpu
= env
->best_cpu
;
1883 task_numa_assign(env
, cur
, imp
);
1886 * If a move to idle is allowed because there is capacity or load
1887 * balance improves then stop the search. While a better swap
1888 * candidate may exist, a search is not free.
1890 if (maymove
&& !cur
&& env
->best_cpu
>= 0 && idle_cpu(env
->best_cpu
))
1894 * If a swap candidate must be identified and the current best task
1895 * moves its preferred node then stop the search.
1897 if (!maymove
&& env
->best_task
&&
1898 env
->best_task
->numa_preferred_nid
== env
->src_nid
) {
1907 static void task_numa_find_cpu(struct task_numa_env
*env
,
1908 long taskimp
, long groupimp
)
1910 bool maymove
= false;
1914 * If dst node has spare capacity, then check if there is an
1915 * imbalance that would be overruled by the load balancer.
1917 if (env
->dst_stats
.node_type
== node_has_spare
) {
1918 unsigned int imbalance
;
1919 int src_running
, dst_running
;
1922 * Would movement cause an imbalance? Note that if src has
1923 * more running tasks that the imbalance is ignored as the
1924 * move improves the imbalance from the perspective of the
1925 * CPU load balancer.
1927 src_running
= env
->src_stats
.nr_running
- 1;
1928 dst_running
= env
->dst_stats
.nr_running
+ 1;
1929 imbalance
= max(0, dst_running
- src_running
);
1930 imbalance
= adjust_numa_imbalance(imbalance
, src_running
);
1932 /* Use idle CPU if there is no imbalance */
1935 if (env
->dst_stats
.idle_cpu
>= 0) {
1936 env
->dst_cpu
= env
->dst_stats
.idle_cpu
;
1937 task_numa_assign(env
, NULL
, 0);
1942 long src_load
, dst_load
, load
;
1944 * If the improvement from just moving env->p direction is better
1945 * than swapping tasks around, check if a move is possible.
1947 load
= task_h_load(env
->p
);
1948 dst_load
= env
->dst_stats
.load
+ load
;
1949 src_load
= env
->src_stats
.load
- load
;
1950 maymove
= !load_too_imbalanced(src_load
, dst_load
, env
);
1953 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1954 /* Skip this CPU if the source task cannot migrate */
1955 if (!cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
1959 if (task_numa_compare(env
, taskimp
, groupimp
, maymove
))
1964 static int task_numa_migrate(struct task_struct
*p
)
1966 struct task_numa_env env
= {
1969 .src_cpu
= task_cpu(p
),
1970 .src_nid
= task_node(p
),
1972 .imbalance_pct
= 112,
1978 unsigned long taskweight
, groupweight
;
1979 struct sched_domain
*sd
;
1980 long taskimp
, groupimp
;
1981 struct numa_group
*ng
;
1986 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 * imbalance and would be the first to start moving tasks about.
1989 * And we want to avoid any moving of tasks about, as that would create
1990 * random movement of tasks -- counter the numa conditions we're trying
1994 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1996 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
2000 * Cpusets can break the scheduler domain tree into smaller
2001 * balance domains, some of which do not cross NUMA boundaries.
2002 * Tasks that are "trapped" in such domains cannot be migrated
2003 * elsewhere, so there is no point in (re)trying.
2005 if (unlikely(!sd
)) {
2006 sched_setnuma(p
, task_node(p
));
2010 env
.dst_nid
= p
->numa_preferred_nid
;
2011 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2012 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2013 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2014 update_numa_stats(&env
, &env
.src_stats
, env
.src_nid
, false);
2015 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
2016 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
2017 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2019 /* Try to find a spot on the preferred nid. */
2020 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2023 * Look at other nodes in these cases:
2024 * - there is no space available on the preferred_nid
2025 * - the task is part of a numa_group that is interleaved across
2026 * multiple NUMA nodes; in order to better consolidate the group,
2027 * we need to check other locations.
2029 ng
= deref_curr_numa_group(p
);
2030 if (env
.best_cpu
== -1 || (ng
&& ng
->active_nodes
> 1)) {
2031 for_each_online_node(nid
) {
2032 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
2035 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2036 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
2038 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2039 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2042 /* Only consider nodes where both task and groups benefit */
2043 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
2044 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
2045 if (taskimp
< 0 && groupimp
< 0)
2050 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2051 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2056 * If the task is part of a workload that spans multiple NUMA nodes,
2057 * and is migrating into one of the workload's active nodes, remember
2058 * this node as the task's preferred numa node, so the workload can
2060 * A task that migrated to a second choice node will be better off
2061 * trying for a better one later. Do not set the preferred node here.
2064 if (env
.best_cpu
== -1)
2067 nid
= cpu_to_node(env
.best_cpu
);
2069 if (nid
!= p
->numa_preferred_nid
)
2070 sched_setnuma(p
, nid
);
2073 /* No better CPU than the current one was found. */
2074 if (env
.best_cpu
== -1) {
2075 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, -1);
2079 best_rq
= cpu_rq(env
.best_cpu
);
2080 if (env
.best_task
== NULL
) {
2081 ret
= migrate_task_to(p
, env
.best_cpu
);
2082 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2084 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, env
.best_cpu
);
2088 ret
= migrate_swap(p
, env
.best_task
, env
.best_cpu
, env
.src_cpu
);
2089 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2092 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_task
, env
.best_cpu
);
2093 put_task_struct(env
.best_task
);
2097 /* Attempt to migrate a task to a CPU on the preferred node. */
2098 static void numa_migrate_preferred(struct task_struct
*p
)
2100 unsigned long interval
= HZ
;
2102 /* This task has no NUMA fault statistics yet */
2103 if (unlikely(p
->numa_preferred_nid
== NUMA_NO_NODE
|| !p
->numa_faults
))
2106 /* Periodically retry migrating the task to the preferred node */
2107 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
2108 p
->numa_migrate_retry
= jiffies
+ interval
;
2110 /* Success if task is already running on preferred CPU */
2111 if (task_node(p
) == p
->numa_preferred_nid
)
2114 /* Otherwise, try migrate to a CPU on the preferred node */
2115 task_numa_migrate(p
);
2119 * Find out how many nodes on the workload is actively running on. Do this by
2120 * tracking the nodes from which NUMA hinting faults are triggered. This can
2121 * be different from the set of nodes where the workload's memory is currently
2124 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
2126 unsigned long faults
, max_faults
= 0;
2127 int nid
, active_nodes
= 0;
2129 for_each_online_node(nid
) {
2130 faults
= group_faults_cpu(numa_group
, nid
);
2131 if (faults
> max_faults
)
2132 max_faults
= faults
;
2135 for_each_online_node(nid
) {
2136 faults
= group_faults_cpu(numa_group
, nid
);
2137 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
2141 numa_group
->max_faults_cpu
= max_faults
;
2142 numa_group
->active_nodes
= active_nodes
;
2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147 * increments. The more local the fault statistics are, the higher the scan
2148 * period will be for the next scan window. If local/(local+remote) ratio is
2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150 * the scan period will decrease. Aim for 70% local accesses.
2152 #define NUMA_PERIOD_SLOTS 10
2153 #define NUMA_PERIOD_THRESHOLD 7
2156 * Increase the scan period (slow down scanning) if the majority of
2157 * our memory is already on our local node, or if the majority of
2158 * the page accesses are shared with other processes.
2159 * Otherwise, decrease the scan period.
2161 static void update_task_scan_period(struct task_struct
*p
,
2162 unsigned long shared
, unsigned long private)
2164 unsigned int period_slot
;
2165 int lr_ratio
, ps_ratio
;
2168 unsigned long remote
= p
->numa_faults_locality
[0];
2169 unsigned long local
= p
->numa_faults_locality
[1];
2172 * If there were no record hinting faults then either the task is
2173 * completely idle or all activity is areas that are not of interest
2174 * to automatic numa balancing. Related to that, if there were failed
2175 * migration then it implies we are migrating too quickly or the local
2176 * node is overloaded. In either case, scan slower
2178 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
2179 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
2180 p
->numa_scan_period
<< 1);
2182 p
->mm
->numa_next_scan
= jiffies
+
2183 msecs_to_jiffies(p
->numa_scan_period
);
2189 * Prepare to scale scan period relative to the current period.
2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2194 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
2195 lr_ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
2196 ps_ratio
= (private * NUMA_PERIOD_SLOTS
) / (private + shared
);
2198 if (ps_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2200 * Most memory accesses are local. There is no need to
2201 * do fast NUMA scanning, since memory is already local.
2203 int slot
= ps_ratio
- NUMA_PERIOD_THRESHOLD
;
2206 diff
= slot
* period_slot
;
2207 } else if (lr_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2209 * Most memory accesses are shared with other tasks.
2210 * There is no point in continuing fast NUMA scanning,
2211 * since other tasks may just move the memory elsewhere.
2213 int slot
= lr_ratio
- NUMA_PERIOD_THRESHOLD
;
2216 diff
= slot
* period_slot
;
2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 * yet they are not on the local NUMA node. Speed up
2221 * NUMA scanning to get the memory moved over.
2223 int ratio
= max(lr_ratio
, ps_ratio
);
2224 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
2227 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
2228 task_scan_min(p
), task_scan_max(p
));
2229 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2233 * Get the fraction of time the task has been running since the last
2234 * NUMA placement cycle. The scheduler keeps similar statistics, but
2235 * decays those on a 32ms period, which is orders of magnitude off
2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237 * stats only if the task is so new there are no NUMA statistics yet.
2239 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
2241 u64 runtime
, delta
, now
;
2242 /* Use the start of this time slice to avoid calculations. */
2243 now
= p
->se
.exec_start
;
2244 runtime
= p
->se
.sum_exec_runtime
;
2246 if (p
->last_task_numa_placement
) {
2247 delta
= runtime
- p
->last_sum_exec_runtime
;
2248 *period
= now
- p
->last_task_numa_placement
;
2250 /* Avoid time going backwards, prevent potential divide error: */
2251 if (unlikely((s64
)*period
< 0))
2254 delta
= p
->se
.avg
.load_sum
;
2255 *period
= LOAD_AVG_MAX
;
2258 p
->last_sum_exec_runtime
= runtime
;
2259 p
->last_task_numa_placement
= now
;
2265 * Determine the preferred nid for a task in a numa_group. This needs to
2266 * be done in a way that produces consistent results with group_weight,
2267 * otherwise workloads might not converge.
2269 static int preferred_group_nid(struct task_struct
*p
, int nid
)
2274 /* Direct connections between all NUMA nodes. */
2275 if (sched_numa_topology_type
== NUMA_DIRECT
)
2279 * On a system with glueless mesh NUMA topology, group_weight
2280 * scores nodes according to the number of NUMA hinting faults on
2281 * both the node itself, and on nearby nodes.
2283 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
2284 unsigned long score
, max_score
= 0;
2285 int node
, max_node
= nid
;
2287 dist
= sched_max_numa_distance
;
2289 for_each_online_node(node
) {
2290 score
= group_weight(p
, node
, dist
);
2291 if (score
> max_score
) {
2300 * Finding the preferred nid in a system with NUMA backplane
2301 * interconnect topology is more involved. The goal is to locate
2302 * tasks from numa_groups near each other in the system, and
2303 * untangle workloads from different sides of the system. This requires
2304 * searching down the hierarchy of node groups, recursively searching
2305 * inside the highest scoring group of nodes. The nodemask tricks
2306 * keep the complexity of the search down.
2308 nodes
= node_online_map
;
2309 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
2310 unsigned long max_faults
= 0;
2311 nodemask_t max_group
= NODE_MASK_NONE
;
2314 /* Are there nodes at this distance from each other? */
2315 if (!find_numa_distance(dist
))
2318 for_each_node_mask(a
, nodes
) {
2319 unsigned long faults
= 0;
2320 nodemask_t this_group
;
2321 nodes_clear(this_group
);
2323 /* Sum group's NUMA faults; includes a==b case. */
2324 for_each_node_mask(b
, nodes
) {
2325 if (node_distance(a
, b
) < dist
) {
2326 faults
+= group_faults(p
, b
);
2327 node_set(b
, this_group
);
2328 node_clear(b
, nodes
);
2332 /* Remember the top group. */
2333 if (faults
> max_faults
) {
2334 max_faults
= faults
;
2335 max_group
= this_group
;
2337 * subtle: at the smallest distance there is
2338 * just one node left in each "group", the
2339 * winner is the preferred nid.
2344 /* Next round, evaluate the nodes within max_group. */
2352 static void task_numa_placement(struct task_struct
*p
)
2354 int seq
, nid
, max_nid
= NUMA_NO_NODE
;
2355 unsigned long max_faults
= 0;
2356 unsigned long fault_types
[2] = { 0, 0 };
2357 unsigned long total_faults
;
2358 u64 runtime
, period
;
2359 spinlock_t
*group_lock
= NULL
;
2360 struct numa_group
*ng
;
2363 * The p->mm->numa_scan_seq field gets updated without
2364 * exclusive access. Use READ_ONCE() here to ensure
2365 * that the field is read in a single access:
2367 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2368 if (p
->numa_scan_seq
== seq
)
2370 p
->numa_scan_seq
= seq
;
2371 p
->numa_scan_period_max
= task_scan_max(p
);
2373 total_faults
= p
->numa_faults_locality
[0] +
2374 p
->numa_faults_locality
[1];
2375 runtime
= numa_get_avg_runtime(p
, &period
);
2377 /* If the task is part of a group prevent parallel updates to group stats */
2378 ng
= deref_curr_numa_group(p
);
2380 group_lock
= &ng
->lock
;
2381 spin_lock_irq(group_lock
);
2384 /* Find the node with the highest number of faults */
2385 for_each_online_node(nid
) {
2386 /* Keep track of the offsets in numa_faults array */
2387 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2388 unsigned long faults
= 0, group_faults
= 0;
2391 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2392 long diff
, f_diff
, f_weight
;
2394 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2395 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2396 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2397 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2399 /* Decay existing window, copy faults since last scan */
2400 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2401 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2402 p
->numa_faults
[membuf_idx
] = 0;
2405 * Normalize the faults_from, so all tasks in a group
2406 * count according to CPU use, instead of by the raw
2407 * number of faults. Tasks with little runtime have
2408 * little over-all impact on throughput, and thus their
2409 * faults are less important.
2411 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2412 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2414 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2415 p
->numa_faults
[cpubuf_idx
] = 0;
2417 p
->numa_faults
[mem_idx
] += diff
;
2418 p
->numa_faults
[cpu_idx
] += f_diff
;
2419 faults
+= p
->numa_faults
[mem_idx
];
2420 p
->total_numa_faults
+= diff
;
2423 * safe because we can only change our own group
2425 * mem_idx represents the offset for a given
2426 * nid and priv in a specific region because it
2427 * is at the beginning of the numa_faults array.
2429 ng
->faults
[mem_idx
] += diff
;
2430 ng
->faults_cpu
[mem_idx
] += f_diff
;
2431 ng
->total_faults
+= diff
;
2432 group_faults
+= ng
->faults
[mem_idx
];
2437 if (faults
> max_faults
) {
2438 max_faults
= faults
;
2441 } else if (group_faults
> max_faults
) {
2442 max_faults
= group_faults
;
2448 numa_group_count_active_nodes(ng
);
2449 spin_unlock_irq(group_lock
);
2450 max_nid
= preferred_group_nid(p
, max_nid
);
2454 /* Set the new preferred node */
2455 if (max_nid
!= p
->numa_preferred_nid
)
2456 sched_setnuma(p
, max_nid
);
2459 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2462 static inline int get_numa_group(struct numa_group
*grp
)
2464 return refcount_inc_not_zero(&grp
->refcount
);
2467 static inline void put_numa_group(struct numa_group
*grp
)
2469 if (refcount_dec_and_test(&grp
->refcount
))
2470 kfree_rcu(grp
, rcu
);
2473 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2476 struct numa_group
*grp
, *my_grp
;
2477 struct task_struct
*tsk
;
2479 int cpu
= cpupid_to_cpu(cpupid
);
2482 if (unlikely(!deref_curr_numa_group(p
))) {
2483 unsigned int size
= sizeof(struct numa_group
) +
2484 4*nr_node_ids
*sizeof(unsigned long);
2486 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2490 refcount_set(&grp
->refcount
, 1);
2491 grp
->active_nodes
= 1;
2492 grp
->max_faults_cpu
= 0;
2493 spin_lock_init(&grp
->lock
);
2495 /* Second half of the array tracks nids where faults happen */
2496 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2499 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2500 grp
->faults
[i
] = p
->numa_faults
[i
];
2502 grp
->total_faults
= p
->total_numa_faults
;
2505 rcu_assign_pointer(p
->numa_group
, grp
);
2509 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2511 if (!cpupid_match_pid(tsk
, cpupid
))
2514 grp
= rcu_dereference(tsk
->numa_group
);
2518 my_grp
= deref_curr_numa_group(p
);
2523 * Only join the other group if its bigger; if we're the bigger group,
2524 * the other task will join us.
2526 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2530 * Tie-break on the grp address.
2532 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2535 /* Always join threads in the same process. */
2536 if (tsk
->mm
== current
->mm
)
2539 /* Simple filter to avoid false positives due to PID collisions */
2540 if (flags
& TNF_SHARED
)
2543 /* Update priv based on whether false sharing was detected */
2546 if (join
&& !get_numa_group(grp
))
2554 BUG_ON(irqs_disabled());
2555 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2557 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2558 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2559 grp
->faults
[i
] += p
->numa_faults
[i
];
2561 my_grp
->total_faults
-= p
->total_numa_faults
;
2562 grp
->total_faults
+= p
->total_numa_faults
;
2567 spin_unlock(&my_grp
->lock
);
2568 spin_unlock_irq(&grp
->lock
);
2570 rcu_assign_pointer(p
->numa_group
, grp
);
2572 put_numa_group(my_grp
);
2581 * Get rid of NUMA staticstics associated with a task (either current or dead).
2582 * If @final is set, the task is dead and has reached refcount zero, so we can
2583 * safely free all relevant data structures. Otherwise, there might be
2584 * concurrent reads from places like load balancing and procfs, and we should
2585 * reset the data back to default state without freeing ->numa_faults.
2587 void task_numa_free(struct task_struct
*p
, bool final
)
2589 /* safe: p either is current or is being freed by current */
2590 struct numa_group
*grp
= rcu_dereference_raw(p
->numa_group
);
2591 unsigned long *numa_faults
= p
->numa_faults
;
2592 unsigned long flags
;
2599 spin_lock_irqsave(&grp
->lock
, flags
);
2600 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2601 grp
->faults
[i
] -= p
->numa_faults
[i
];
2602 grp
->total_faults
-= p
->total_numa_faults
;
2605 spin_unlock_irqrestore(&grp
->lock
, flags
);
2606 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2607 put_numa_group(grp
);
2611 p
->numa_faults
= NULL
;
2614 p
->total_numa_faults
= 0;
2615 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2621 * Got a PROT_NONE fault for a page on @node.
2623 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2625 struct task_struct
*p
= current
;
2626 bool migrated
= flags
& TNF_MIGRATED
;
2627 int cpu_node
= task_node(current
);
2628 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2629 struct numa_group
*ng
;
2632 if (!static_branch_likely(&sched_numa_balancing
))
2635 /* for example, ksmd faulting in a user's mm */
2639 /* Allocate buffer to track faults on a per-node basis */
2640 if (unlikely(!p
->numa_faults
)) {
2641 int size
= sizeof(*p
->numa_faults
) *
2642 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2644 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2645 if (!p
->numa_faults
)
2648 p
->total_numa_faults
= 0;
2649 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2653 * First accesses are treated as private, otherwise consider accesses
2654 * to be private if the accessing pid has not changed
2656 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2659 priv
= cpupid_match_pid(p
, last_cpupid
);
2660 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2661 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2665 * If a workload spans multiple NUMA nodes, a shared fault that
2666 * occurs wholly within the set of nodes that the workload is
2667 * actively using should be counted as local. This allows the
2668 * scan rate to slow down when a workload has settled down.
2670 ng
= deref_curr_numa_group(p
);
2671 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2672 numa_is_active_node(cpu_node
, ng
) &&
2673 numa_is_active_node(mem_node
, ng
))
2677 * Retry to migrate task to preferred node periodically, in case it
2678 * previously failed, or the scheduler moved us.
2680 if (time_after(jiffies
, p
->numa_migrate_retry
)) {
2681 task_numa_placement(p
);
2682 numa_migrate_preferred(p
);
2686 p
->numa_pages_migrated
+= pages
;
2687 if (flags
& TNF_MIGRATE_FAIL
)
2688 p
->numa_faults_locality
[2] += pages
;
2690 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2691 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2692 p
->numa_faults_locality
[local
] += pages
;
2695 static void reset_ptenuma_scan(struct task_struct
*p
)
2698 * We only did a read acquisition of the mmap sem, so
2699 * p->mm->numa_scan_seq is written to without exclusive access
2700 * and the update is not guaranteed to be atomic. That's not
2701 * much of an issue though, since this is just used for
2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 * expensive, to avoid any form of compiler optimizations:
2705 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2706 p
->mm
->numa_scan_offset
= 0;
2710 * The expensive part of numa migration is done from task_work context.
2711 * Triggered from task_tick_numa().
2713 static void task_numa_work(struct callback_head
*work
)
2715 unsigned long migrate
, next_scan
, now
= jiffies
;
2716 struct task_struct
*p
= current
;
2717 struct mm_struct
*mm
= p
->mm
;
2718 u64 runtime
= p
->se
.sum_exec_runtime
;
2719 struct vm_area_struct
*vma
;
2720 unsigned long start
, end
;
2721 unsigned long nr_pte_updates
= 0;
2722 long pages
, virtpages
;
2724 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2728 * Who cares about NUMA placement when they're dying.
2730 * NOTE: make sure not to dereference p->mm before this check,
2731 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 * without p->mm even though we still had it when we enqueued this
2735 if (p
->flags
& PF_EXITING
)
2738 if (!mm
->numa_next_scan
) {
2739 mm
->numa_next_scan
= now
+
2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2744 * Enforce maximal scan/migration frequency..
2746 migrate
= mm
->numa_next_scan
;
2747 if (time_before(now
, migrate
))
2750 if (p
->numa_scan_period
== 0) {
2751 p
->numa_scan_period_max
= task_scan_max(p
);
2752 p
->numa_scan_period
= task_scan_start(p
);
2755 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2756 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2760 * Delay this task enough that another task of this mm will likely win
2761 * the next time around.
2763 p
->node_stamp
+= 2 * TICK_NSEC
;
2765 start
= mm
->numa_scan_offset
;
2766 pages
= sysctl_numa_balancing_scan_size
;
2767 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2768 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2773 if (!mmap_read_trylock(mm
))
2775 vma
= find_vma(mm
, start
);
2777 reset_ptenuma_scan(p
);
2781 for (; vma
; vma
= vma
->vm_next
) {
2782 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2783 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2788 * Shared library pages mapped by multiple processes are not
2789 * migrated as it is expected they are cache replicated. Avoid
2790 * hinting faults in read-only file-backed mappings or the vdso
2791 * as migrating the pages will be of marginal benefit.
2794 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2798 * Skip inaccessible VMAs to avoid any confusion between
2799 * PROT_NONE and NUMA hinting ptes
2801 if (!vma_is_accessible(vma
))
2805 start
= max(start
, vma
->vm_start
);
2806 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2807 end
= min(end
, vma
->vm_end
);
2808 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2811 * Try to scan sysctl_numa_balancing_size worth of
2812 * hpages that have at least one present PTE that
2813 * is not already pte-numa. If the VMA contains
2814 * areas that are unused or already full of prot_numa
2815 * PTEs, scan up to virtpages, to skip through those
2819 pages
-= (end
- start
) >> PAGE_SHIFT
;
2820 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2823 if (pages
<= 0 || virtpages
<= 0)
2827 } while (end
!= vma
->vm_end
);
2832 * It is possible to reach the end of the VMA list but the last few
2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 * would find the !migratable VMA on the next scan but not reset the
2835 * scanner to the start so check it now.
2838 mm
->numa_scan_offset
= start
;
2840 reset_ptenuma_scan(p
);
2841 mmap_read_unlock(mm
);
2844 * Make sure tasks use at least 32x as much time to run other code
2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 * Usually update_task_scan_period slows down scanning enough; on an
2847 * overloaded system we need to limit overhead on a per task basis.
2849 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2850 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2851 p
->node_stamp
+= 32 * diff
;
2855 void init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
)
2858 struct mm_struct
*mm
= p
->mm
;
2861 mm_users
= atomic_read(&mm
->mm_users
);
2862 if (mm_users
== 1) {
2863 mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2864 mm
->numa_scan_seq
= 0;
2868 p
->numa_scan_seq
= mm
? mm
->numa_scan_seq
: 0;
2869 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2870 /* Protect against double add, see task_tick_numa and task_numa_work */
2871 p
->numa_work
.next
= &p
->numa_work
;
2872 p
->numa_faults
= NULL
;
2873 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2874 p
->last_task_numa_placement
= 0;
2875 p
->last_sum_exec_runtime
= 0;
2877 init_task_work(&p
->numa_work
, task_numa_work
);
2879 /* New address space, reset the preferred nid */
2880 if (!(clone_flags
& CLONE_VM
)) {
2881 p
->numa_preferred_nid
= NUMA_NO_NODE
;
2886 * New thread, keep existing numa_preferred_nid which should be copied
2887 * already by arch_dup_task_struct but stagger when scans start.
2892 delay
= min_t(unsigned int, task_scan_max(current
),
2893 current
->numa_scan_period
* mm_users
* NSEC_PER_MSEC
);
2894 delay
+= 2 * TICK_NSEC
;
2895 p
->node_stamp
= delay
;
2900 * Drive the periodic memory faults..
2902 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2904 struct callback_head
*work
= &curr
->numa_work
;
2908 * We don't care about NUMA placement if we don't have memory.
2910 if ((curr
->flags
& (PF_EXITING
| PF_KTHREAD
)) || work
->next
!= work
)
2914 * Using runtime rather than walltime has the dual advantage that
2915 * we (mostly) drive the selection from busy threads and that the
2916 * task needs to have done some actual work before we bother with
2919 now
= curr
->se
.sum_exec_runtime
;
2920 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2922 if (now
> curr
->node_stamp
+ period
) {
2923 if (!curr
->node_stamp
)
2924 curr
->numa_scan_period
= task_scan_start(curr
);
2925 curr
->node_stamp
+= period
;
2927 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
))
2928 task_work_add(curr
, work
, true);
2932 static void update_scan_period(struct task_struct
*p
, int new_cpu
)
2934 int src_nid
= cpu_to_node(task_cpu(p
));
2935 int dst_nid
= cpu_to_node(new_cpu
);
2937 if (!static_branch_likely(&sched_numa_balancing
))
2940 if (!p
->mm
|| !p
->numa_faults
|| (p
->flags
& PF_EXITING
))
2943 if (src_nid
== dst_nid
)
2947 * Allow resets if faults have been trapped before one scan
2948 * has completed. This is most likely due to a new task that
2949 * is pulled cross-node due to wakeups or load balancing.
2951 if (p
->numa_scan_seq
) {
2953 * Avoid scan adjustments if moving to the preferred
2954 * node or if the task was not previously running on
2955 * the preferred node.
2957 if (dst_nid
== p
->numa_preferred_nid
||
2958 (p
->numa_preferred_nid
!= NUMA_NO_NODE
&&
2959 src_nid
!= p
->numa_preferred_nid
))
2963 p
->numa_scan_period
= task_scan_start(p
);
2967 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2971 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2975 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2979 static inline void update_scan_period(struct task_struct
*p
, int new_cpu
)
2983 #endif /* CONFIG_NUMA_BALANCING */
2986 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2988 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2990 if (entity_is_task(se
)) {
2991 struct rq
*rq
= rq_of(cfs_rq
);
2993 account_numa_enqueue(rq
, task_of(se
));
2994 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2997 cfs_rq
->nr_running
++;
3001 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3003 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
3005 if (entity_is_task(se
)) {
3006 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
3007 list_del_init(&se
->group_node
);
3010 cfs_rq
->nr_running
--;
3014 * Signed add and clamp on underflow.
3016 * Explicitly do a load-store to ensure the intermediate value never hits
3017 * memory. This allows lockless observations without ever seeing the negative
3020 #define add_positive(_ptr, _val) do { \
3021 typeof(_ptr) ptr = (_ptr); \
3022 typeof(_val) val = (_val); \
3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3027 if (val < 0 && res > var) \
3030 WRITE_ONCE(*ptr, res); \
3034 * Unsigned subtract and clamp on underflow.
3036 * Explicitly do a load-store to ensure the intermediate value never hits
3037 * memory. This allows lockless observations without ever seeing the negative
3040 #define sub_positive(_ptr, _val) do { \
3041 typeof(_ptr) ptr = (_ptr); \
3042 typeof(*ptr) val = (_val); \
3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3047 WRITE_ONCE(*ptr, res); \
3051 * Remove and clamp on negative, from a local variable.
3053 * A variant of sub_positive(), which does not use explicit load-store
3054 * and is thus optimized for local variable updates.
3056 #define lsub_positive(_ptr, _val) do { \
3057 typeof(_ptr) ptr = (_ptr); \
3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3063 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3065 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
3066 cfs_rq
->avg
.load_sum
+= se_weight(se
) * se
->avg
.load_sum
;
3070 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3072 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
3073 sub_positive(&cfs_rq
->avg
.load_sum
, se_weight(se
) * se
->avg
.load_sum
);
3077 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3079 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3082 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
3083 unsigned long weight
)
3086 /* commit outstanding execution time */
3087 if (cfs_rq
->curr
== se
)
3088 update_curr(cfs_rq
);
3089 account_entity_dequeue(cfs_rq
, se
);
3091 dequeue_load_avg(cfs_rq
, se
);
3093 update_load_set(&se
->load
, weight
);
3097 u32 divider
= LOAD_AVG_MAX
- 1024 + se
->avg
.period_contrib
;
3099 se
->avg
.load_avg
= div_u64(se_weight(se
) * se
->avg
.load_sum
, divider
);
3103 enqueue_load_avg(cfs_rq
, se
);
3105 account_entity_enqueue(cfs_rq
, se
);
3109 void reweight_task(struct task_struct
*p
, int prio
)
3111 struct sched_entity
*se
= &p
->se
;
3112 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3113 struct load_weight
*load
= &se
->load
;
3114 unsigned long weight
= scale_load(sched_prio_to_weight
[prio
]);
3116 reweight_entity(cfs_rq
, se
, weight
);
3117 load
->inv_weight
= sched_prio_to_wmult
[prio
];
3120 #ifdef CONFIG_FAIR_GROUP_SCHED
3123 * All this does is approximate the hierarchical proportion which includes that
3124 * global sum we all love to hate.
3126 * That is, the weight of a group entity, is the proportional share of the
3127 * group weight based on the group runqueue weights. That is:
3129 * tg->weight * grq->load.weight
3130 * ge->load.weight = ----------------------------- (1)
3131 * \Sum grq->load.weight
3133 * Now, because computing that sum is prohibitively expensive to compute (been
3134 * there, done that) we approximate it with this average stuff. The average
3135 * moves slower and therefore the approximation is cheaper and more stable.
3137 * So instead of the above, we substitute:
3139 * grq->load.weight -> grq->avg.load_avg (2)
3141 * which yields the following:
3143 * tg->weight * grq->avg.load_avg
3144 * ge->load.weight = ------------------------------ (3)
3147 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3149 * That is shares_avg, and it is right (given the approximation (2)).
3151 * The problem with it is that because the average is slow -- it was designed
3152 * to be exactly that of course -- this leads to transients in boundary
3153 * conditions. In specific, the case where the group was idle and we start the
3154 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3155 * yielding bad latency etc..
3157 * Now, in that special case (1) reduces to:
3159 * tg->weight * grq->load.weight
3160 * ge->load.weight = ----------------------------- = tg->weight (4)
3163 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3165 * So what we do is modify our approximation (3) to approach (4) in the (near)
3170 * tg->weight * grq->load.weight
3171 * --------------------------------------------------- (5)
3172 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3174 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3175 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3178 * tg->weight * grq->load.weight
3179 * ge->load.weight = ----------------------------- (6)
3184 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3185 * max(grq->load.weight, grq->avg.load_avg)
3187 * And that is shares_weight and is icky. In the (near) UP case it approaches
3188 * (4) while in the normal case it approaches (3). It consistently
3189 * overestimates the ge->load.weight and therefore:
3191 * \Sum ge->load.weight >= tg->weight
3195 static long calc_group_shares(struct cfs_rq
*cfs_rq
)
3197 long tg_weight
, tg_shares
, load
, shares
;
3198 struct task_group
*tg
= cfs_rq
->tg
;
3200 tg_shares
= READ_ONCE(tg
->shares
);
3202 load
= max(scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->avg
.load_avg
);
3204 tg_weight
= atomic_long_read(&tg
->load_avg
);
3206 /* Ensure tg_weight >= load */
3207 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
3210 shares
= (tg_shares
* load
);
3212 shares
/= tg_weight
;
3215 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3216 * of a group with small tg->shares value. It is a floor value which is
3217 * assigned as a minimum load.weight to the sched_entity representing
3218 * the group on a CPU.
3220 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3221 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3222 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3223 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3226 return clamp_t(long, shares
, MIN_SHARES
, tg_shares
);
3228 #endif /* CONFIG_SMP */
3230 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
3233 * Recomputes the group entity based on the current state of its group
3236 static void update_cfs_group(struct sched_entity
*se
)
3238 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3244 if (throttled_hierarchy(gcfs_rq
))
3248 shares
= READ_ONCE(gcfs_rq
->tg
->shares
);
3250 if (likely(se
->load
.weight
== shares
))
3253 shares
= calc_group_shares(gcfs_rq
);
3256 reweight_entity(cfs_rq_of(se
), se
, shares
);
3259 #else /* CONFIG_FAIR_GROUP_SCHED */
3260 static inline void update_cfs_group(struct sched_entity
*se
)
3263 #endif /* CONFIG_FAIR_GROUP_SCHED */
3265 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
, int flags
)
3267 struct rq
*rq
= rq_of(cfs_rq
);
3269 if (&rq
->cfs
== cfs_rq
) {
3271 * There are a few boundary cases this might miss but it should
3272 * get called often enough that that should (hopefully) not be
3275 * It will not get called when we go idle, because the idle
3276 * thread is a different class (!fair), nor will the utilization
3277 * number include things like RT tasks.
3279 * As is, the util number is not freq-invariant (we'd have to
3280 * implement arch_scale_freq_capacity() for that).
3284 cpufreq_update_util(rq
, flags
);
3289 #ifdef CONFIG_FAIR_GROUP_SCHED
3291 * update_tg_load_avg - update the tg's load avg
3292 * @cfs_rq: the cfs_rq whose avg changed
3293 * @force: update regardless of how small the difference
3295 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3296 * However, because tg->load_avg is a global value there are performance
3299 * In order to avoid having to look at the other cfs_rq's, we use a
3300 * differential update where we store the last value we propagated. This in
3301 * turn allows skipping updates if the differential is 'small'.
3303 * Updating tg's load_avg is necessary before update_cfs_share().
3305 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
3307 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
3310 * No need to update load_avg for root_task_group as it is not used.
3312 if (cfs_rq
->tg
== &root_task_group
)
3315 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
3316 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
3317 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
3322 * Called within set_task_rq() right before setting a task's CPU. The
3323 * caller only guarantees p->pi_lock is held; no other assumptions,
3324 * including the state of rq->lock, should be made.
3326 void set_task_rq_fair(struct sched_entity
*se
,
3327 struct cfs_rq
*prev
, struct cfs_rq
*next
)
3329 u64 p_last_update_time
;
3330 u64 n_last_update_time
;
3332 if (!sched_feat(ATTACH_AGE_LOAD
))
3336 * We are supposed to update the task to "current" time, then its up to
3337 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3338 * getting what current time is, so simply throw away the out-of-date
3339 * time. This will result in the wakee task is less decayed, but giving
3340 * the wakee more load sounds not bad.
3342 if (!(se
->avg
.last_update_time
&& prev
))
3345 #ifndef CONFIG_64BIT
3347 u64 p_last_update_time_copy
;
3348 u64 n_last_update_time_copy
;
3351 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
3352 n_last_update_time_copy
= next
->load_last_update_time_copy
;
3356 p_last_update_time
= prev
->avg
.last_update_time
;
3357 n_last_update_time
= next
->avg
.last_update_time
;
3359 } while (p_last_update_time
!= p_last_update_time_copy
||
3360 n_last_update_time
!= n_last_update_time_copy
);
3363 p_last_update_time
= prev
->avg
.last_update_time
;
3364 n_last_update_time
= next
->avg
.last_update_time
;
3366 __update_load_avg_blocked_se(p_last_update_time
, se
);
3367 se
->avg
.last_update_time
= n_last_update_time
;
3372 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3373 * propagate its contribution. The key to this propagation is the invariant
3374 * that for each group:
3376 * ge->avg == grq->avg (1)
3378 * _IFF_ we look at the pure running and runnable sums. Because they
3379 * represent the very same entity, just at different points in the hierarchy.
3381 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3382 * and simply copies the running/runnable sum over (but still wrong, because
3383 * the group entity and group rq do not have their PELT windows aligned).
3385 * However, update_tg_cfs_load() is more complex. So we have:
3387 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3389 * And since, like util, the runnable part should be directly transferable,
3390 * the following would _appear_ to be the straight forward approach:
3392 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3394 * And per (1) we have:
3396 * ge->avg.runnable_avg == grq->avg.runnable_avg
3400 * ge->load.weight * grq->avg.load_avg
3401 * ge->avg.load_avg = ----------------------------------- (4)
3404 * Except that is wrong!
3406 * Because while for entities historical weight is not important and we
3407 * really only care about our future and therefore can consider a pure
3408 * runnable sum, runqueues can NOT do this.
3410 * We specifically want runqueues to have a load_avg that includes
3411 * historical weights. Those represent the blocked load, the load we expect
3412 * to (shortly) return to us. This only works by keeping the weights as
3413 * integral part of the sum. We therefore cannot decompose as per (3).
3415 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3416 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3417 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3418 * runnable section of these tasks overlap (or not). If they were to perfectly
3419 * align the rq as a whole would be runnable 2/3 of the time. If however we
3420 * always have at least 1 runnable task, the rq as a whole is always runnable.
3422 * So we'll have to approximate.. :/
3424 * Given the constraint:
3426 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3428 * We can construct a rule that adds runnable to a rq by assuming minimal
3431 * On removal, we'll assume each task is equally runnable; which yields:
3433 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3435 * XXX: only do this for the part of runnable > running ?
3440 update_tg_cfs_util(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3442 long delta
= gcfs_rq
->avg
.util_avg
- se
->avg
.util_avg
;
3444 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3445 * See ___update_load_avg() for details.
3447 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3449 /* Nothing to update */
3453 /* Set new sched_entity's utilization */
3454 se
->avg
.util_avg
= gcfs_rq
->avg
.util_avg
;
3455 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3457 /* Update parent cfs_rq utilization */
3458 add_positive(&cfs_rq
->avg
.util_avg
, delta
);
3459 cfs_rq
->avg
.util_sum
= cfs_rq
->avg
.util_avg
* divider
;
3463 update_tg_cfs_runnable(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3465 long delta
= gcfs_rq
->avg
.runnable_avg
- se
->avg
.runnable_avg
;
3467 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3468 * See ___update_load_avg() for details.
3470 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3472 /* Nothing to update */
3476 /* Set new sched_entity's runnable */
3477 se
->avg
.runnable_avg
= gcfs_rq
->avg
.runnable_avg
;
3478 se
->avg
.runnable_sum
= se
->avg
.runnable_avg
* divider
;
3480 /* Update parent cfs_rq runnable */
3481 add_positive(&cfs_rq
->avg
.runnable_avg
, delta
);
3482 cfs_rq
->avg
.runnable_sum
= cfs_rq
->avg
.runnable_avg
* divider
;
3486 update_tg_cfs_load(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3488 long delta_avg
, running_sum
, runnable_sum
= gcfs_rq
->prop_runnable_sum
;
3489 unsigned long load_avg
;
3497 gcfs_rq
->prop_runnable_sum
= 0;
3500 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3501 * See ___update_load_avg() for details.
3503 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3505 if (runnable_sum
>= 0) {
3507 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3508 * the CPU is saturated running == runnable.
3510 runnable_sum
+= se
->avg
.load_sum
;
3511 runnable_sum
= min_t(long, runnable_sum
, divider
);
3514 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3515 * assuming all tasks are equally runnable.
3517 if (scale_load_down(gcfs_rq
->load
.weight
)) {
3518 load_sum
= div_s64(gcfs_rq
->avg
.load_sum
,
3519 scale_load_down(gcfs_rq
->load
.weight
));
3522 /* But make sure to not inflate se's runnable */
3523 runnable_sum
= min(se
->avg
.load_sum
, load_sum
);
3527 * runnable_sum can't be lower than running_sum
3528 * Rescale running sum to be in the same range as runnable sum
3529 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3530 * runnable_sum is in [0 : LOAD_AVG_MAX]
3532 running_sum
= se
->avg
.util_sum
>> SCHED_CAPACITY_SHIFT
;
3533 runnable_sum
= max(runnable_sum
, running_sum
);
3535 load_sum
= (s64
)se_weight(se
) * runnable_sum
;
3536 load_avg
= div_s64(load_sum
, divider
);
3538 delta_sum
= load_sum
- (s64
)se_weight(se
) * se
->avg
.load_sum
;
3539 delta_avg
= load_avg
- se
->avg
.load_avg
;
3541 se
->avg
.load_sum
= runnable_sum
;
3542 se
->avg
.load_avg
= load_avg
;
3543 add_positive(&cfs_rq
->avg
.load_avg
, delta_avg
);
3544 add_positive(&cfs_rq
->avg
.load_sum
, delta_sum
);
3547 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
)
3549 cfs_rq
->propagate
= 1;
3550 cfs_rq
->prop_runnable_sum
+= runnable_sum
;
3553 /* Update task and its cfs_rq load average */
3554 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3556 struct cfs_rq
*cfs_rq
, *gcfs_rq
;
3558 if (entity_is_task(se
))
3561 gcfs_rq
= group_cfs_rq(se
);
3562 if (!gcfs_rq
->propagate
)
3565 gcfs_rq
->propagate
= 0;
3567 cfs_rq
= cfs_rq_of(se
);
3569 add_tg_cfs_propagate(cfs_rq
, gcfs_rq
->prop_runnable_sum
);
3571 update_tg_cfs_util(cfs_rq
, se
, gcfs_rq
);
3572 update_tg_cfs_runnable(cfs_rq
, se
, gcfs_rq
);
3573 update_tg_cfs_load(cfs_rq
, se
, gcfs_rq
);
3575 trace_pelt_cfs_tp(cfs_rq
);
3576 trace_pelt_se_tp(se
);
3582 * Check if we need to update the load and the utilization of a blocked
3585 static inline bool skip_blocked_update(struct sched_entity
*se
)
3587 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3590 * If sched_entity still have not zero load or utilization, we have to
3593 if (se
->avg
.load_avg
|| se
->avg
.util_avg
)
3597 * If there is a pending propagation, we have to update the load and
3598 * the utilization of the sched_entity:
3600 if (gcfs_rq
->propagate
)
3604 * Otherwise, the load and the utilization of the sched_entity is
3605 * already zero and there is no pending propagation, so it will be a
3606 * waste of time to try to decay it:
3611 #else /* CONFIG_FAIR_GROUP_SCHED */
3613 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
3615 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3620 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
) {}
3622 #endif /* CONFIG_FAIR_GROUP_SCHED */
3625 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3626 * @now: current time, as per cfs_rq_clock_pelt()
3627 * @cfs_rq: cfs_rq to update
3629 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3630 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3631 * post_init_entity_util_avg().
3633 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3635 * Returns true if the load decayed or we removed load.
3637 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3638 * call update_tg_load_avg() when this function returns true.
3641 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
3643 unsigned long removed_load
= 0, removed_util
= 0, removed_runnable
= 0;
3644 struct sched_avg
*sa
= &cfs_rq
->avg
;
3647 if (cfs_rq
->removed
.nr
) {
3649 u32 divider
= LOAD_AVG_MAX
- 1024 + sa
->period_contrib
;
3651 raw_spin_lock(&cfs_rq
->removed
.lock
);
3652 swap(cfs_rq
->removed
.util_avg
, removed_util
);
3653 swap(cfs_rq
->removed
.load_avg
, removed_load
);
3654 swap(cfs_rq
->removed
.runnable_avg
, removed_runnable
);
3655 cfs_rq
->removed
.nr
= 0;
3656 raw_spin_unlock(&cfs_rq
->removed
.lock
);
3659 sub_positive(&sa
->load_avg
, r
);
3660 sub_positive(&sa
->load_sum
, r
* divider
);
3663 sub_positive(&sa
->util_avg
, r
);
3664 sub_positive(&sa
->util_sum
, r
* divider
);
3666 r
= removed_runnable
;
3667 sub_positive(&sa
->runnable_avg
, r
);
3668 sub_positive(&sa
->runnable_sum
, r
* divider
);
3671 * removed_runnable is the unweighted version of removed_load so we
3672 * can use it to estimate removed_load_sum.
3674 add_tg_cfs_propagate(cfs_rq
,
3675 -(long)(removed_runnable
* divider
) >> SCHED_CAPACITY_SHIFT
);
3680 decayed
|= __update_load_avg_cfs_rq(now
, cfs_rq
);
3682 #ifndef CONFIG_64BIT
3684 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3691 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3692 * @cfs_rq: cfs_rq to attach to
3693 * @se: sched_entity to attach
3695 * Must call update_cfs_rq_load_avg() before this, since we rely on
3696 * cfs_rq->avg.last_update_time being current.
3698 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3701 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3702 * See ___update_load_avg() for details.
3704 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3707 * When we attach the @se to the @cfs_rq, we must align the decay
3708 * window because without that, really weird and wonderful things can
3713 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3714 se
->avg
.period_contrib
= cfs_rq
->avg
.period_contrib
;
3717 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3718 * period_contrib. This isn't strictly correct, but since we're
3719 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3722 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3724 se
->avg
.runnable_sum
= se
->avg
.runnable_avg
* divider
;
3726 se
->avg
.load_sum
= divider
;
3727 if (se_weight(se
)) {
3729 div_u64(se
->avg
.load_avg
* se
->avg
.load_sum
, se_weight(se
));
3732 enqueue_load_avg(cfs_rq
, se
);
3733 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3734 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3735 cfs_rq
->avg
.runnable_avg
+= se
->avg
.runnable_avg
;
3736 cfs_rq
->avg
.runnable_sum
+= se
->avg
.runnable_sum
;
3738 add_tg_cfs_propagate(cfs_rq
, se
->avg
.load_sum
);
3740 cfs_rq_util_change(cfs_rq
, 0);
3742 trace_pelt_cfs_tp(cfs_rq
);
3746 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3747 * @cfs_rq: cfs_rq to detach from
3748 * @se: sched_entity to detach
3750 * Must call update_cfs_rq_load_avg() before this, since we rely on
3751 * cfs_rq->avg.last_update_time being current.
3753 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3755 dequeue_load_avg(cfs_rq
, se
);
3756 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3757 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3758 sub_positive(&cfs_rq
->avg
.runnable_avg
, se
->avg
.runnable_avg
);
3759 sub_positive(&cfs_rq
->avg
.runnable_sum
, se
->avg
.runnable_sum
);
3761 add_tg_cfs_propagate(cfs_rq
, -se
->avg
.load_sum
);
3763 cfs_rq_util_change(cfs_rq
, 0);
3765 trace_pelt_cfs_tp(cfs_rq
);
3769 * Optional action to be done while updating the load average
3771 #define UPDATE_TG 0x1
3772 #define SKIP_AGE_LOAD 0x2
3773 #define DO_ATTACH 0x4
3775 /* Update task and its cfs_rq load average */
3776 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3778 u64 now
= cfs_rq_clock_pelt(cfs_rq
);
3782 * Track task load average for carrying it to new CPU after migrated, and
3783 * track group sched_entity load average for task_h_load calc in migration
3785 if (se
->avg
.last_update_time
&& !(flags
& SKIP_AGE_LOAD
))
3786 __update_load_avg_se(now
, cfs_rq
, se
);
3788 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
);
3789 decayed
|= propagate_entity_load_avg(se
);
3791 if (!se
->avg
.last_update_time
&& (flags
& DO_ATTACH
)) {
3794 * DO_ATTACH means we're here from enqueue_entity().
3795 * !last_update_time means we've passed through
3796 * migrate_task_rq_fair() indicating we migrated.
3798 * IOW we're enqueueing a task on a new CPU.
3800 attach_entity_load_avg(cfs_rq
, se
);
3801 update_tg_load_avg(cfs_rq
, 0);
3803 } else if (decayed
) {
3804 cfs_rq_util_change(cfs_rq
, 0);
3806 if (flags
& UPDATE_TG
)
3807 update_tg_load_avg(cfs_rq
, 0);
3811 #ifndef CONFIG_64BIT
3812 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3814 u64 last_update_time_copy
;
3815 u64 last_update_time
;
3818 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3820 last_update_time
= cfs_rq
->avg
.last_update_time
;
3821 } while (last_update_time
!= last_update_time_copy
);
3823 return last_update_time
;
3826 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3828 return cfs_rq
->avg
.last_update_time
;
3833 * Synchronize entity load avg of dequeued entity without locking
3836 static void sync_entity_load_avg(struct sched_entity
*se
)
3838 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3839 u64 last_update_time
;
3841 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3842 __update_load_avg_blocked_se(last_update_time
, se
);
3846 * Task first catches up with cfs_rq, and then subtract
3847 * itself from the cfs_rq (task must be off the queue now).
3849 static void remove_entity_load_avg(struct sched_entity
*se
)
3851 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3852 unsigned long flags
;
3855 * tasks cannot exit without having gone through wake_up_new_task() ->
3856 * post_init_entity_util_avg() which will have added things to the
3857 * cfs_rq, so we can remove unconditionally.
3860 sync_entity_load_avg(se
);
3862 raw_spin_lock_irqsave(&cfs_rq
->removed
.lock
, flags
);
3863 ++cfs_rq
->removed
.nr
;
3864 cfs_rq
->removed
.util_avg
+= se
->avg
.util_avg
;
3865 cfs_rq
->removed
.load_avg
+= se
->avg
.load_avg
;
3866 cfs_rq
->removed
.runnable_avg
+= se
->avg
.runnable_avg
;
3867 raw_spin_unlock_irqrestore(&cfs_rq
->removed
.lock
, flags
);
3870 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq
*cfs_rq
)
3872 return cfs_rq
->avg
.runnable_avg
;
3875 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3877 return cfs_rq
->avg
.load_avg
;
3880 static int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
);
3882 static inline unsigned long task_util(struct task_struct
*p
)
3884 return READ_ONCE(p
->se
.avg
.util_avg
);
3887 static inline unsigned long _task_util_est(struct task_struct
*p
)
3889 struct util_est ue
= READ_ONCE(p
->se
.avg
.util_est
);
3891 return (max(ue
.ewma
, ue
.enqueued
) | UTIL_AVG_UNCHANGED
);
3894 static inline unsigned long task_util_est(struct task_struct
*p
)
3896 return max(task_util(p
), _task_util_est(p
));
3899 #ifdef CONFIG_UCLAMP_TASK
3900 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3902 return clamp(task_util_est(p
),
3903 uclamp_eff_value(p
, UCLAMP_MIN
),
3904 uclamp_eff_value(p
, UCLAMP_MAX
));
3907 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3909 return task_util_est(p
);
3913 static inline void util_est_enqueue(struct cfs_rq
*cfs_rq
,
3914 struct task_struct
*p
)
3916 unsigned int enqueued
;
3918 if (!sched_feat(UTIL_EST
))
3921 /* Update root cfs_rq's estimated utilization */
3922 enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3923 enqueued
+= _task_util_est(p
);
3924 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, enqueued
);
3928 * Check if a (signed) value is within a specified (unsigned) margin,
3929 * based on the observation that:
3931 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3933 * NOTE: this only works when value + maring < INT_MAX.
3935 static inline bool within_margin(int value
, int margin
)
3937 return ((unsigned int)(value
+ margin
- 1) < (2 * margin
- 1));
3941 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
, bool task_sleep
)
3943 long last_ewma_diff
;
3947 if (!sched_feat(UTIL_EST
))
3950 /* Update root cfs_rq's estimated utilization */
3951 ue
.enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3952 ue
.enqueued
-= min_t(unsigned int, ue
.enqueued
, _task_util_est(p
));
3953 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, ue
.enqueued
);
3956 * Skip update of task's estimated utilization when the task has not
3957 * yet completed an activation, e.g. being migrated.
3963 * If the PELT values haven't changed since enqueue time,
3964 * skip the util_est update.
3966 ue
= p
->se
.avg
.util_est
;
3967 if (ue
.enqueued
& UTIL_AVG_UNCHANGED
)
3971 * Reset EWMA on utilization increases, the moving average is used only
3972 * to smooth utilization decreases.
3974 ue
.enqueued
= (task_util(p
) | UTIL_AVG_UNCHANGED
);
3975 if (sched_feat(UTIL_EST_FASTUP
)) {
3976 if (ue
.ewma
< ue
.enqueued
) {
3977 ue
.ewma
= ue
.enqueued
;
3983 * Skip update of task's estimated utilization when its EWMA is
3984 * already ~1% close to its last activation value.
3986 last_ewma_diff
= ue
.enqueued
- ue
.ewma
;
3987 if (within_margin(last_ewma_diff
, (SCHED_CAPACITY_SCALE
/ 100)))
3991 * To avoid overestimation of actual task utilization, skip updates if
3992 * we cannot grant there is idle time in this CPU.
3994 cpu
= cpu_of(rq_of(cfs_rq
));
3995 if (task_util(p
) > capacity_orig_of(cpu
))
3999 * Update Task's estimated utilization
4001 * When *p completes an activation we can consolidate another sample
4002 * of the task size. This is done by storing the current PELT value
4003 * as ue.enqueued and by using this value to update the Exponential
4004 * Weighted Moving Average (EWMA):
4006 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4007 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4008 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4009 * = w * ( last_ewma_diff ) + ewma(t-1)
4010 * = w * (last_ewma_diff + ewma(t-1) / w)
4012 * Where 'w' is the weight of new samples, which is configured to be
4013 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4015 ue
.ewma
<<= UTIL_EST_WEIGHT_SHIFT
;
4016 ue
.ewma
+= last_ewma_diff
;
4017 ue
.ewma
>>= UTIL_EST_WEIGHT_SHIFT
;
4019 WRITE_ONCE(p
->se
.avg
.util_est
, ue
);
4022 static inline int task_fits_capacity(struct task_struct
*p
, long capacity
)
4024 return fits_capacity(uclamp_task_util(p
), capacity
);
4027 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
)
4029 if (!static_branch_unlikely(&sched_asym_cpucapacity
))
4033 rq
->misfit_task_load
= 0;
4037 if (task_fits_capacity(p
, capacity_of(cpu_of(rq
)))) {
4038 rq
->misfit_task_load
= 0;
4043 * Make sure that misfit_task_load will not be null even if
4044 * task_h_load() returns 0.
4046 rq
->misfit_task_load
= max_t(unsigned long, task_h_load(p
), 1);
4049 #else /* CONFIG_SMP */
4051 #define UPDATE_TG 0x0
4052 #define SKIP_AGE_LOAD 0x0
4053 #define DO_ATTACH 0x0
4055 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int not_used1
)
4057 cfs_rq_util_change(cfs_rq
, 0);
4060 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
4063 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
4065 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
4067 static inline int newidle_balance(struct rq
*rq
, struct rq_flags
*rf
)
4073 util_est_enqueue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
) {}
4076 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
,
4078 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
) {}
4080 #endif /* CONFIG_SMP */
4082 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4084 #ifdef CONFIG_SCHED_DEBUG
4085 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
4090 if (d
> 3*sysctl_sched_latency
)
4091 schedstat_inc(cfs_rq
->nr_spread_over
);
4096 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
4098 u64 vruntime
= cfs_rq
->min_vruntime
;
4101 * The 'current' period is already promised to the current tasks,
4102 * however the extra weight of the new task will slow them down a
4103 * little, place the new task so that it fits in the slot that
4104 * stays open at the end.
4106 if (initial
&& sched_feat(START_DEBIT
))
4107 vruntime
+= sched_vslice(cfs_rq
, se
);
4109 /* sleeps up to a single latency don't count. */
4111 unsigned long thresh
= sysctl_sched_latency
;
4114 * Halve their sleep time's effect, to allow
4115 * for a gentler effect of sleepers:
4117 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
4123 /* ensure we never gain time by being placed backwards. */
4124 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
4127 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
4129 static inline void check_schedstat_required(void)
4131 #ifdef CONFIG_SCHEDSTATS
4132 if (schedstat_enabled())
4135 /* Force schedstat enabled if a dependent tracepoint is active */
4136 if (trace_sched_stat_wait_enabled() ||
4137 trace_sched_stat_sleep_enabled() ||
4138 trace_sched_stat_iowait_enabled() ||
4139 trace_sched_stat_blocked_enabled() ||
4140 trace_sched_stat_runtime_enabled()) {
4141 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4142 "stat_blocked and stat_runtime require the "
4143 "kernel parameter schedstats=enable or "
4144 "kernel.sched_schedstats=1\n");
4149 static inline bool cfs_bandwidth_used(void);
4156 * update_min_vruntime()
4157 * vruntime -= min_vruntime
4161 * update_min_vruntime()
4162 * vruntime += min_vruntime
4164 * this way the vruntime transition between RQs is done when both
4165 * min_vruntime are up-to-date.
4169 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4170 * vruntime -= min_vruntime
4174 * update_min_vruntime()
4175 * vruntime += min_vruntime
4177 * this way we don't have the most up-to-date min_vruntime on the originating
4178 * CPU and an up-to-date min_vruntime on the destination CPU.
4182 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4184 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
4185 bool curr
= cfs_rq
->curr
== se
;
4188 * If we're the current task, we must renormalise before calling
4192 se
->vruntime
+= cfs_rq
->min_vruntime
;
4194 update_curr(cfs_rq
);
4197 * Otherwise, renormalise after, such that we're placed at the current
4198 * moment in time, instead of some random moment in the past. Being
4199 * placed in the past could significantly boost this task to the
4200 * fairness detriment of existing tasks.
4202 if (renorm
&& !curr
)
4203 se
->vruntime
+= cfs_rq
->min_vruntime
;
4206 * When enqueuing a sched_entity, we must:
4207 * - Update loads to have both entity and cfs_rq synced with now.
4208 * - Add its load to cfs_rq->runnable_avg
4209 * - For group_entity, update its weight to reflect the new share of
4211 * - Add its new weight to cfs_rq->load.weight
4213 update_load_avg(cfs_rq
, se
, UPDATE_TG
| DO_ATTACH
);
4214 se_update_runnable(se
);
4215 update_cfs_group(se
);
4216 account_entity_enqueue(cfs_rq
, se
);
4218 if (flags
& ENQUEUE_WAKEUP
)
4219 place_entity(cfs_rq
, se
, 0);
4221 check_schedstat_required();
4222 update_stats_enqueue(cfs_rq
, se
, flags
);
4223 check_spread(cfs_rq
, se
);
4225 __enqueue_entity(cfs_rq
, se
);
4229 * When bandwidth control is enabled, cfs might have been removed
4230 * because of a parent been throttled but cfs->nr_running > 1. Try to
4231 * add it unconditionnally.
4233 if (cfs_rq
->nr_running
== 1 || cfs_bandwidth_used())
4234 list_add_leaf_cfs_rq(cfs_rq
);
4236 if (cfs_rq
->nr_running
== 1)
4237 check_enqueue_throttle(cfs_rq
);
4240 static void __clear_buddies_last(struct sched_entity
*se
)
4242 for_each_sched_entity(se
) {
4243 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4244 if (cfs_rq
->last
!= se
)
4247 cfs_rq
->last
= NULL
;
4251 static void __clear_buddies_next(struct sched_entity
*se
)
4253 for_each_sched_entity(se
) {
4254 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4255 if (cfs_rq
->next
!= se
)
4258 cfs_rq
->next
= NULL
;
4262 static void __clear_buddies_skip(struct sched_entity
*se
)
4264 for_each_sched_entity(se
) {
4265 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4266 if (cfs_rq
->skip
!= se
)
4269 cfs_rq
->skip
= NULL
;
4273 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4275 if (cfs_rq
->last
== se
)
4276 __clear_buddies_last(se
);
4278 if (cfs_rq
->next
== se
)
4279 __clear_buddies_next(se
);
4281 if (cfs_rq
->skip
== se
)
4282 __clear_buddies_skip(se
);
4285 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4288 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4291 * Update run-time statistics of the 'current'.
4293 update_curr(cfs_rq
);
4296 * When dequeuing a sched_entity, we must:
4297 * - Update loads to have both entity and cfs_rq synced with now.
4298 * - Subtract its load from the cfs_rq->runnable_avg.
4299 * - Subtract its previous weight from cfs_rq->load.weight.
4300 * - For group entity, update its weight to reflect the new share
4301 * of its group cfs_rq.
4303 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4304 se_update_runnable(se
);
4306 update_stats_dequeue(cfs_rq
, se
, flags
);
4308 clear_buddies(cfs_rq
, se
);
4310 if (se
!= cfs_rq
->curr
)
4311 __dequeue_entity(cfs_rq
, se
);
4313 account_entity_dequeue(cfs_rq
, se
);
4316 * Normalize after update_curr(); which will also have moved
4317 * min_vruntime if @se is the one holding it back. But before doing
4318 * update_min_vruntime() again, which will discount @se's position and
4319 * can move min_vruntime forward still more.
4321 if (!(flags
& DEQUEUE_SLEEP
))
4322 se
->vruntime
-= cfs_rq
->min_vruntime
;
4324 /* return excess runtime on last dequeue */
4325 return_cfs_rq_runtime(cfs_rq
);
4327 update_cfs_group(se
);
4330 * Now advance min_vruntime if @se was the entity holding it back,
4331 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4332 * put back on, and if we advance min_vruntime, we'll be placed back
4333 * further than we started -- ie. we'll be penalized.
4335 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) != DEQUEUE_SAVE
)
4336 update_min_vruntime(cfs_rq
);
4340 * Preempt the current task with a newly woken task if needed:
4343 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4345 unsigned long ideal_runtime
, delta_exec
;
4346 struct sched_entity
*se
;
4349 ideal_runtime
= sched_slice(cfs_rq
, curr
);
4350 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
4351 if (delta_exec
> ideal_runtime
) {
4352 resched_curr(rq_of(cfs_rq
));
4354 * The current task ran long enough, ensure it doesn't get
4355 * re-elected due to buddy favours.
4357 clear_buddies(cfs_rq
, curr
);
4362 * Ensure that a task that missed wakeup preemption by a
4363 * narrow margin doesn't have to wait for a full slice.
4364 * This also mitigates buddy induced latencies under load.
4366 if (delta_exec
< sysctl_sched_min_granularity
)
4369 se
= __pick_first_entity(cfs_rq
);
4370 delta
= curr
->vruntime
- se
->vruntime
;
4375 if (delta
> ideal_runtime
)
4376 resched_curr(rq_of(cfs_rq
));
4380 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4382 /* 'current' is not kept within the tree. */
4385 * Any task has to be enqueued before it get to execute on
4386 * a CPU. So account for the time it spent waiting on the
4389 update_stats_wait_end(cfs_rq
, se
);
4390 __dequeue_entity(cfs_rq
, se
);
4391 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4394 update_stats_curr_start(cfs_rq
, se
);
4398 * Track our maximum slice length, if the CPU's load is at
4399 * least twice that of our own weight (i.e. dont track it
4400 * when there are only lesser-weight tasks around):
4402 if (schedstat_enabled() &&
4403 rq_of(cfs_rq
)->cfs
.load
.weight
>= 2*se
->load
.weight
) {
4404 schedstat_set(se
->statistics
.slice_max
,
4405 max((u64
)schedstat_val(se
->statistics
.slice_max
),
4406 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
4409 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
4413 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
4416 * Pick the next process, keeping these things in mind, in this order:
4417 * 1) keep things fair between processes/task groups
4418 * 2) pick the "next" process, since someone really wants that to run
4419 * 3) pick the "last" process, for cache locality
4420 * 4) do not run the "skip" process, if something else is available
4422 static struct sched_entity
*
4423 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4425 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
4426 struct sched_entity
*se
;
4429 * If curr is set we have to see if its left of the leftmost entity
4430 * still in the tree, provided there was anything in the tree at all.
4432 if (!left
|| (curr
&& entity_before(curr
, left
)))
4435 se
= left
; /* ideally we run the leftmost entity */
4438 * Avoid running the skip buddy, if running something else can
4439 * be done without getting too unfair.
4441 if (cfs_rq
->skip
== se
) {
4442 struct sched_entity
*second
;
4445 second
= __pick_first_entity(cfs_rq
);
4447 second
= __pick_next_entity(se
);
4448 if (!second
|| (curr
&& entity_before(curr
, second
)))
4452 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
4457 * Prefer last buddy, try to return the CPU to a preempted task.
4459 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
4463 * Someone really wants this to run. If it's not unfair, run it.
4465 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
4468 clear_buddies(cfs_rq
, se
);
4473 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4475 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
4478 * If still on the runqueue then deactivate_task()
4479 * was not called and update_curr() has to be done:
4482 update_curr(cfs_rq
);
4484 /* throttle cfs_rqs exceeding runtime */
4485 check_cfs_rq_runtime(cfs_rq
);
4487 check_spread(cfs_rq
, prev
);
4490 update_stats_wait_start(cfs_rq
, prev
);
4491 /* Put 'current' back into the tree. */
4492 __enqueue_entity(cfs_rq
, prev
);
4493 /* in !on_rq case, update occurred at dequeue */
4494 update_load_avg(cfs_rq
, prev
, 0);
4496 cfs_rq
->curr
= NULL
;
4500 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
4503 * Update run-time statistics of the 'current'.
4505 update_curr(cfs_rq
);
4508 * Ensure that runnable average is periodically updated.
4510 update_load_avg(cfs_rq
, curr
, UPDATE_TG
);
4511 update_cfs_group(curr
);
4513 #ifdef CONFIG_SCHED_HRTICK
4515 * queued ticks are scheduled to match the slice, so don't bother
4516 * validating it and just reschedule.
4519 resched_curr(rq_of(cfs_rq
));
4523 * don't let the period tick interfere with the hrtick preemption
4525 if (!sched_feat(DOUBLE_TICK
) &&
4526 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
4530 if (cfs_rq
->nr_running
> 1)
4531 check_preempt_tick(cfs_rq
, curr
);
4535 /**************************************************
4536 * CFS bandwidth control machinery
4539 #ifdef CONFIG_CFS_BANDWIDTH
4541 #ifdef CONFIG_JUMP_LABEL
4542 static struct static_key __cfs_bandwidth_used
;
4544 static inline bool cfs_bandwidth_used(void)
4546 return static_key_false(&__cfs_bandwidth_used
);
4549 void cfs_bandwidth_usage_inc(void)
4551 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used
);
4554 void cfs_bandwidth_usage_dec(void)
4556 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used
);
4558 #else /* CONFIG_JUMP_LABEL */
4559 static bool cfs_bandwidth_used(void)
4564 void cfs_bandwidth_usage_inc(void) {}
4565 void cfs_bandwidth_usage_dec(void) {}
4566 #endif /* CONFIG_JUMP_LABEL */
4569 * default period for cfs group bandwidth.
4570 * default: 0.1s, units: nanoseconds
4572 static inline u64
default_cfs_period(void)
4574 return 100000000ULL;
4577 static inline u64
sched_cfs_bandwidth_slice(void)
4579 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
4583 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4584 * directly instead of rq->clock to avoid adding additional synchronization
4587 * requires cfs_b->lock
4589 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
4591 if (cfs_b
->quota
!= RUNTIME_INF
)
4592 cfs_b
->runtime
= cfs_b
->quota
;
4595 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4597 return &tg
->cfs_bandwidth
;
4600 /* returns 0 on failure to allocate runtime */
4601 static int __assign_cfs_rq_runtime(struct cfs_bandwidth
*cfs_b
,
4602 struct cfs_rq
*cfs_rq
, u64 target_runtime
)
4604 u64 min_amount
, amount
= 0;
4606 lockdep_assert_held(&cfs_b
->lock
);
4608 /* note: this is a positive sum as runtime_remaining <= 0 */
4609 min_amount
= target_runtime
- cfs_rq
->runtime_remaining
;
4611 if (cfs_b
->quota
== RUNTIME_INF
)
4612 amount
= min_amount
;
4614 start_cfs_bandwidth(cfs_b
);
4616 if (cfs_b
->runtime
> 0) {
4617 amount
= min(cfs_b
->runtime
, min_amount
);
4618 cfs_b
->runtime
-= amount
;
4623 cfs_rq
->runtime_remaining
+= amount
;
4625 return cfs_rq
->runtime_remaining
> 0;
4628 /* returns 0 on failure to allocate runtime */
4629 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4631 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4634 raw_spin_lock(&cfs_b
->lock
);
4635 ret
= __assign_cfs_rq_runtime(cfs_b
, cfs_rq
, sched_cfs_bandwidth_slice());
4636 raw_spin_unlock(&cfs_b
->lock
);
4641 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4643 /* dock delta_exec before expiring quota (as it could span periods) */
4644 cfs_rq
->runtime_remaining
-= delta_exec
;
4646 if (likely(cfs_rq
->runtime_remaining
> 0))
4649 if (cfs_rq
->throttled
)
4652 * if we're unable to extend our runtime we resched so that the active
4653 * hierarchy can be throttled
4655 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
4656 resched_curr(rq_of(cfs_rq
));
4659 static __always_inline
4660 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4662 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
4665 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
4668 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4670 return cfs_bandwidth_used() && cfs_rq
->throttled
;
4673 /* check whether cfs_rq, or any parent, is throttled */
4674 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4676 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
4680 * Ensure that neither of the group entities corresponding to src_cpu or
4681 * dest_cpu are members of a throttled hierarchy when performing group
4682 * load-balance operations.
4684 static inline int throttled_lb_pair(struct task_group
*tg
,
4685 int src_cpu
, int dest_cpu
)
4687 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
4689 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
4690 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
4692 return throttled_hierarchy(src_cfs_rq
) ||
4693 throttled_hierarchy(dest_cfs_rq
);
4696 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
4698 struct rq
*rq
= data
;
4699 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4701 cfs_rq
->throttle_count
--;
4702 if (!cfs_rq
->throttle_count
) {
4703 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
4704 cfs_rq
->throttled_clock_task
;
4706 /* Add cfs_rq with already running entity in the list */
4707 if (cfs_rq
->nr_running
>= 1)
4708 list_add_leaf_cfs_rq(cfs_rq
);
4714 static int tg_throttle_down(struct task_group
*tg
, void *data
)
4716 struct rq
*rq
= data
;
4717 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4719 /* group is entering throttled state, stop time */
4720 if (!cfs_rq
->throttle_count
) {
4721 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
4722 list_del_leaf_cfs_rq(cfs_rq
);
4724 cfs_rq
->throttle_count
++;
4729 static bool throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
4731 struct rq
*rq
= rq_of(cfs_rq
);
4732 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4733 struct sched_entity
*se
;
4734 long task_delta
, idle_task_delta
, dequeue
= 1;
4736 raw_spin_lock(&cfs_b
->lock
);
4737 /* This will start the period timer if necessary */
4738 if (__assign_cfs_rq_runtime(cfs_b
, cfs_rq
, 1)) {
4740 * We have raced with bandwidth becoming available, and if we
4741 * actually throttled the timer might not unthrottle us for an
4742 * entire period. We additionally needed to make sure that any
4743 * subsequent check_cfs_rq_runtime calls agree not to throttle
4744 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4745 * for 1ns of runtime rather than just check cfs_b.
4749 list_add_tail_rcu(&cfs_rq
->throttled_list
,
4750 &cfs_b
->throttled_cfs_rq
);
4752 raw_spin_unlock(&cfs_b
->lock
);
4755 return false; /* Throttle no longer required. */
4757 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
4759 /* freeze hierarchy runnable averages while throttled */
4761 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
4764 task_delta
= cfs_rq
->h_nr_running
;
4765 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4766 for_each_sched_entity(se
) {
4767 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
4768 /* throttled entity or throttle-on-deactivate */
4773 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
4775 update_load_avg(qcfs_rq
, se
, 0);
4776 se_update_runnable(se
);
4779 qcfs_rq
->h_nr_running
-= task_delta
;
4780 qcfs_rq
->idle_h_nr_running
-= idle_task_delta
;
4782 if (qcfs_rq
->load
.weight
)
4787 sub_nr_running(rq
, task_delta
);
4790 * Note: distribution will already see us throttled via the
4791 * throttled-list. rq->lock protects completion.
4793 cfs_rq
->throttled
= 1;
4794 cfs_rq
->throttled_clock
= rq_clock(rq
);
4798 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
4800 struct rq
*rq
= rq_of(cfs_rq
);
4801 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4802 struct sched_entity
*se
;
4803 long task_delta
, idle_task_delta
;
4805 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4807 cfs_rq
->throttled
= 0;
4809 update_rq_clock(rq
);
4811 raw_spin_lock(&cfs_b
->lock
);
4812 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4813 list_del_rcu(&cfs_rq
->throttled_list
);
4814 raw_spin_unlock(&cfs_b
->lock
);
4816 /* update hierarchical throttle state */
4817 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4819 if (!cfs_rq
->load
.weight
)
4822 task_delta
= cfs_rq
->h_nr_running
;
4823 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4824 for_each_sched_entity(se
) {
4827 cfs_rq
= cfs_rq_of(se
);
4828 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4830 cfs_rq
->h_nr_running
+= task_delta
;
4831 cfs_rq
->idle_h_nr_running
+= idle_task_delta
;
4833 /* end evaluation on encountering a throttled cfs_rq */
4834 if (cfs_rq_throttled(cfs_rq
))
4835 goto unthrottle_throttle
;
4838 for_each_sched_entity(se
) {
4839 cfs_rq
= cfs_rq_of(se
);
4841 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4842 se_update_runnable(se
);
4844 cfs_rq
->h_nr_running
+= task_delta
;
4845 cfs_rq
->idle_h_nr_running
+= idle_task_delta
;
4848 /* end evaluation on encountering a throttled cfs_rq */
4849 if (cfs_rq_throttled(cfs_rq
))
4850 goto unthrottle_throttle
;
4853 * One parent has been throttled and cfs_rq removed from the
4854 * list. Add it back to not break the leaf list.
4856 if (throttled_hierarchy(cfs_rq
))
4857 list_add_leaf_cfs_rq(cfs_rq
);
4860 /* At this point se is NULL and we are at root level*/
4861 add_nr_running(rq
, task_delta
);
4863 unthrottle_throttle
:
4865 * The cfs_rq_throttled() breaks in the above iteration can result in
4866 * incomplete leaf list maintenance, resulting in triggering the
4869 for_each_sched_entity(se
) {
4870 cfs_rq
= cfs_rq_of(se
);
4872 if (list_add_leaf_cfs_rq(cfs_rq
))
4876 assert_list_leaf_cfs_rq(rq
);
4878 /* Determine whether we need to wake up potentially idle CPU: */
4879 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4883 static void distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
)
4885 struct cfs_rq
*cfs_rq
;
4886 u64 runtime
, remaining
= 1;
4889 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4891 struct rq
*rq
= rq_of(cfs_rq
);
4894 rq_lock_irqsave(rq
, &rf
);
4895 if (!cfs_rq_throttled(cfs_rq
))
4898 /* By the above check, this should never be true */
4899 SCHED_WARN_ON(cfs_rq
->runtime_remaining
> 0);
4901 raw_spin_lock(&cfs_b
->lock
);
4902 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4903 if (runtime
> cfs_b
->runtime
)
4904 runtime
= cfs_b
->runtime
;
4905 cfs_b
->runtime
-= runtime
;
4906 remaining
= cfs_b
->runtime
;
4907 raw_spin_unlock(&cfs_b
->lock
);
4909 cfs_rq
->runtime_remaining
+= runtime
;
4911 /* we check whether we're throttled above */
4912 if (cfs_rq
->runtime_remaining
> 0)
4913 unthrottle_cfs_rq(cfs_rq
);
4916 rq_unlock_irqrestore(rq
, &rf
);
4925 * Responsible for refilling a task_group's bandwidth and unthrottling its
4926 * cfs_rqs as appropriate. If there has been no activity within the last
4927 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4928 * used to track this state.
4930 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
, unsigned long flags
)
4934 /* no need to continue the timer with no bandwidth constraint */
4935 if (cfs_b
->quota
== RUNTIME_INF
)
4936 goto out_deactivate
;
4938 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4939 cfs_b
->nr_periods
+= overrun
;
4942 * idle depends on !throttled (for the case of a large deficit), and if
4943 * we're going inactive then everything else can be deferred
4945 if (cfs_b
->idle
&& !throttled
)
4946 goto out_deactivate
;
4948 __refill_cfs_bandwidth_runtime(cfs_b
);
4951 /* mark as potentially idle for the upcoming period */
4956 /* account preceding periods in which throttling occurred */
4957 cfs_b
->nr_throttled
+= overrun
;
4960 * This check is repeated as we release cfs_b->lock while we unthrottle.
4962 while (throttled
&& cfs_b
->runtime
> 0) {
4963 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4964 /* we can't nest cfs_b->lock while distributing bandwidth */
4965 distribute_cfs_runtime(cfs_b
);
4966 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
4968 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4972 * While we are ensured activity in the period following an
4973 * unthrottle, this also covers the case in which the new bandwidth is
4974 * insufficient to cover the existing bandwidth deficit. (Forcing the
4975 * timer to remain active while there are any throttled entities.)
4985 /* a cfs_rq won't donate quota below this amount */
4986 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
4987 /* minimum remaining period time to redistribute slack quota */
4988 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
4989 /* how long we wait to gather additional slack before distributing */
4990 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
4993 * Are we near the end of the current quota period?
4995 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4996 * hrtimer base being cleared by hrtimer_start. In the case of
4997 * migrate_hrtimers, base is never cleared, so we are fine.
4999 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
5001 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
5004 /* if the call-back is running a quota refresh is already occurring */
5005 if (hrtimer_callback_running(refresh_timer
))
5008 /* is a quota refresh about to occur? */
5009 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
5010 if (remaining
< min_expire
)
5016 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
5018 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
5020 /* if there's a quota refresh soon don't bother with slack */
5021 if (runtime_refresh_within(cfs_b
, min_left
))
5024 /* don't push forwards an existing deferred unthrottle */
5025 if (cfs_b
->slack_started
)
5027 cfs_b
->slack_started
= true;
5029 hrtimer_start(&cfs_b
->slack_timer
,
5030 ns_to_ktime(cfs_bandwidth_slack_period
),
5034 /* we know any runtime found here is valid as update_curr() precedes return */
5035 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5037 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
5038 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
5040 if (slack_runtime
<= 0)
5043 raw_spin_lock(&cfs_b
->lock
);
5044 if (cfs_b
->quota
!= RUNTIME_INF
) {
5045 cfs_b
->runtime
+= slack_runtime
;
5047 /* we are under rq->lock, defer unthrottling using a timer */
5048 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
5049 !list_empty(&cfs_b
->throttled_cfs_rq
))
5050 start_cfs_slack_bandwidth(cfs_b
);
5052 raw_spin_unlock(&cfs_b
->lock
);
5054 /* even if it's not valid for return we don't want to try again */
5055 cfs_rq
->runtime_remaining
-= slack_runtime
;
5058 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5060 if (!cfs_bandwidth_used())
5063 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
5066 __return_cfs_rq_runtime(cfs_rq
);
5070 * This is done with a timer (instead of inline with bandwidth return) since
5071 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5073 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
5075 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
5076 unsigned long flags
;
5078 /* confirm we're still not at a refresh boundary */
5079 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5080 cfs_b
->slack_started
= false;
5082 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
5083 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5087 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
5088 runtime
= cfs_b
->runtime
;
5090 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5095 distribute_cfs_runtime(cfs_b
);
5097 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5098 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5102 * When a group wakes up we want to make sure that its quota is not already
5103 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5104 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5106 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
5108 if (!cfs_bandwidth_used())
5111 /* an active group must be handled by the update_curr()->put() path */
5112 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
5115 /* ensure the group is not already throttled */
5116 if (cfs_rq_throttled(cfs_rq
))
5119 /* update runtime allocation */
5120 account_cfs_rq_runtime(cfs_rq
, 0);
5121 if (cfs_rq
->runtime_remaining
<= 0)
5122 throttle_cfs_rq(cfs_rq
);
5125 static void sync_throttle(struct task_group
*tg
, int cpu
)
5127 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
5129 if (!cfs_bandwidth_used())
5135 cfs_rq
= tg
->cfs_rq
[cpu
];
5136 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
5138 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
5139 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
5142 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5143 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5145 if (!cfs_bandwidth_used())
5148 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
5152 * it's possible for a throttled entity to be forced into a running
5153 * state (e.g. set_curr_task), in this case we're finished.
5155 if (cfs_rq_throttled(cfs_rq
))
5158 return throttle_cfs_rq(cfs_rq
);
5161 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
5163 struct cfs_bandwidth
*cfs_b
=
5164 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
5166 do_sched_cfs_slack_timer(cfs_b
);
5168 return HRTIMER_NORESTART
;
5171 extern const u64 max_cfs_quota_period
;
5173 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
5175 struct cfs_bandwidth
*cfs_b
=
5176 container_of(timer
, struct cfs_bandwidth
, period_timer
);
5177 unsigned long flags
;
5182 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5184 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
5188 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
, flags
);
5191 u64
new, old
= ktime_to_ns(cfs_b
->period
);
5194 * Grow period by a factor of 2 to avoid losing precision.
5195 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5199 if (new < max_cfs_quota_period
) {
5200 cfs_b
->period
= ns_to_ktime(new);
5203 pr_warn_ratelimited(
5204 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5206 div_u64(new, NSEC_PER_USEC
),
5207 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
5209 pr_warn_ratelimited(
5210 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5212 div_u64(old
, NSEC_PER_USEC
),
5213 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
5216 /* reset count so we don't come right back in here */
5221 cfs_b
->period_active
= 0;
5222 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5224 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
5227 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5229 raw_spin_lock_init(&cfs_b
->lock
);
5231 cfs_b
->quota
= RUNTIME_INF
;
5232 cfs_b
->period
= ns_to_ktime(default_cfs_period());
5234 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
5235 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
5236 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
5237 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5238 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
5239 cfs_b
->slack_started
= false;
5242 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5244 cfs_rq
->runtime_enabled
= 0;
5245 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
5248 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5250 lockdep_assert_held(&cfs_b
->lock
);
5252 if (cfs_b
->period_active
)
5255 cfs_b
->period_active
= 1;
5256 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
5257 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
5260 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5262 /* init_cfs_bandwidth() was not called */
5263 if (!cfs_b
->throttled_cfs_rq
.next
)
5266 hrtimer_cancel(&cfs_b
->period_timer
);
5267 hrtimer_cancel(&cfs_b
->slack_timer
);
5271 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5273 * The race is harmless, since modifying bandwidth settings of unhooked group
5274 * bits doesn't do much.
5277 /* cpu online calback */
5278 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
5280 struct task_group
*tg
;
5282 lockdep_assert_held(&rq
->lock
);
5285 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5286 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
5287 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5289 raw_spin_lock(&cfs_b
->lock
);
5290 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
5291 raw_spin_unlock(&cfs_b
->lock
);
5296 /* cpu offline callback */
5297 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
5299 struct task_group
*tg
;
5301 lockdep_assert_held(&rq
->lock
);
5304 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5305 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5307 if (!cfs_rq
->runtime_enabled
)
5311 * clock_task is not advancing so we just need to make sure
5312 * there's some valid quota amount
5314 cfs_rq
->runtime_remaining
= 1;
5316 * Offline rq is schedulable till CPU is completely disabled
5317 * in take_cpu_down(), so we prevent new cfs throttling here.
5319 cfs_rq
->runtime_enabled
= 0;
5321 if (cfs_rq_throttled(cfs_rq
))
5322 unthrottle_cfs_rq(cfs_rq
);
5327 #else /* CONFIG_CFS_BANDWIDTH */
5329 static inline bool cfs_bandwidth_used(void)
5334 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
5335 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
5336 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
5337 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
5338 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5340 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
5345 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
5350 static inline int throttled_lb_pair(struct task_group
*tg
,
5351 int src_cpu
, int dest_cpu
)
5356 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5358 #ifdef CONFIG_FAIR_GROUP_SCHED
5359 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5362 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
5366 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5367 static inline void update_runtime_enabled(struct rq
*rq
) {}
5368 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
5370 #endif /* CONFIG_CFS_BANDWIDTH */
5372 /**************************************************
5373 * CFS operations on tasks:
5376 #ifdef CONFIG_SCHED_HRTICK
5377 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5379 struct sched_entity
*se
= &p
->se
;
5380 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5382 SCHED_WARN_ON(task_rq(p
) != rq
);
5384 if (rq
->cfs
.h_nr_running
> 1) {
5385 u64 slice
= sched_slice(cfs_rq
, se
);
5386 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
5387 s64 delta
= slice
- ran
;
5394 hrtick_start(rq
, delta
);
5399 * called from enqueue/dequeue and updates the hrtick when the
5400 * current task is from our class and nr_running is low enough
5403 static void hrtick_update(struct rq
*rq
)
5405 struct task_struct
*curr
= rq
->curr
;
5407 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
5410 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
5411 hrtick_start_fair(rq
, curr
);
5413 #else /* !CONFIG_SCHED_HRTICK */
5415 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5419 static inline void hrtick_update(struct rq
*rq
)
5425 static inline unsigned long cpu_util(int cpu
);
5427 static inline bool cpu_overutilized(int cpu
)
5429 return !fits_capacity(cpu_util(cpu
), capacity_of(cpu
));
5432 static inline void update_overutilized_status(struct rq
*rq
)
5434 if (!READ_ONCE(rq
->rd
->overutilized
) && cpu_overutilized(rq
->cpu
)) {
5435 WRITE_ONCE(rq
->rd
->overutilized
, SG_OVERUTILIZED
);
5436 trace_sched_overutilized_tp(rq
->rd
, SG_OVERUTILIZED
);
5440 static inline void update_overutilized_status(struct rq
*rq
) { }
5443 /* Runqueue only has SCHED_IDLE tasks enqueued */
5444 static int sched_idle_rq(struct rq
*rq
)
5446 return unlikely(rq
->nr_running
== rq
->cfs
.idle_h_nr_running
&&
5451 static int sched_idle_cpu(int cpu
)
5453 return sched_idle_rq(cpu_rq(cpu
));
5458 * The enqueue_task method is called before nr_running is
5459 * increased. Here we update the fair scheduling stats and
5460 * then put the task into the rbtree:
5463 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5465 struct cfs_rq
*cfs_rq
;
5466 struct sched_entity
*se
= &p
->se
;
5467 int idle_h_nr_running
= task_has_idle_policy(p
);
5470 * The code below (indirectly) updates schedutil which looks at
5471 * the cfs_rq utilization to select a frequency.
5472 * Let's add the task's estimated utilization to the cfs_rq's
5473 * estimated utilization, before we update schedutil.
5475 util_est_enqueue(&rq
->cfs
, p
);
5478 * If in_iowait is set, the code below may not trigger any cpufreq
5479 * utilization updates, so do it here explicitly with the IOWAIT flag
5483 cpufreq_update_util(rq
, SCHED_CPUFREQ_IOWAIT
);
5485 for_each_sched_entity(se
) {
5488 cfs_rq
= cfs_rq_of(se
);
5489 enqueue_entity(cfs_rq
, se
, flags
);
5491 cfs_rq
->h_nr_running
++;
5492 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5494 /* end evaluation on encountering a throttled cfs_rq */
5495 if (cfs_rq_throttled(cfs_rq
))
5496 goto enqueue_throttle
;
5498 flags
= ENQUEUE_WAKEUP
;
5501 for_each_sched_entity(se
) {
5502 cfs_rq
= cfs_rq_of(se
);
5504 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5505 se_update_runnable(se
);
5506 update_cfs_group(se
);
5508 cfs_rq
->h_nr_running
++;
5509 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5511 /* end evaluation on encountering a throttled cfs_rq */
5512 if (cfs_rq_throttled(cfs_rq
))
5513 goto enqueue_throttle
;
5516 * One parent has been throttled and cfs_rq removed from the
5517 * list. Add it back to not break the leaf list.
5519 if (throttled_hierarchy(cfs_rq
))
5520 list_add_leaf_cfs_rq(cfs_rq
);
5523 /* At this point se is NULL and we are at root level*/
5524 add_nr_running(rq
, 1);
5527 * Since new tasks are assigned an initial util_avg equal to
5528 * half of the spare capacity of their CPU, tiny tasks have the
5529 * ability to cross the overutilized threshold, which will
5530 * result in the load balancer ruining all the task placement
5531 * done by EAS. As a way to mitigate that effect, do not account
5532 * for the first enqueue operation of new tasks during the
5533 * overutilized flag detection.
5535 * A better way of solving this problem would be to wait for
5536 * the PELT signals of tasks to converge before taking them
5537 * into account, but that is not straightforward to implement,
5538 * and the following generally works well enough in practice.
5540 if (flags
& ENQUEUE_WAKEUP
)
5541 update_overutilized_status(rq
);
5544 if (cfs_bandwidth_used()) {
5546 * When bandwidth control is enabled; the cfs_rq_throttled()
5547 * breaks in the above iteration can result in incomplete
5548 * leaf list maintenance, resulting in triggering the assertion
5551 for_each_sched_entity(se
) {
5552 cfs_rq
= cfs_rq_of(se
);
5554 if (list_add_leaf_cfs_rq(cfs_rq
))
5559 assert_list_leaf_cfs_rq(rq
);
5564 static void set_next_buddy(struct sched_entity
*se
);
5567 * The dequeue_task method is called before nr_running is
5568 * decreased. We remove the task from the rbtree and
5569 * update the fair scheduling stats:
5571 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5573 struct cfs_rq
*cfs_rq
;
5574 struct sched_entity
*se
= &p
->se
;
5575 int task_sleep
= flags
& DEQUEUE_SLEEP
;
5576 int idle_h_nr_running
= task_has_idle_policy(p
);
5577 bool was_sched_idle
= sched_idle_rq(rq
);
5579 for_each_sched_entity(se
) {
5580 cfs_rq
= cfs_rq_of(se
);
5581 dequeue_entity(cfs_rq
, se
, flags
);
5583 cfs_rq
->h_nr_running
--;
5584 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5586 /* end evaluation on encountering a throttled cfs_rq */
5587 if (cfs_rq_throttled(cfs_rq
))
5588 goto dequeue_throttle
;
5590 /* Don't dequeue parent if it has other entities besides us */
5591 if (cfs_rq
->load
.weight
) {
5592 /* Avoid re-evaluating load for this entity: */
5593 se
= parent_entity(se
);
5595 * Bias pick_next to pick a task from this cfs_rq, as
5596 * p is sleeping when it is within its sched_slice.
5598 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
5602 flags
|= DEQUEUE_SLEEP
;
5605 for_each_sched_entity(se
) {
5606 cfs_rq
= cfs_rq_of(se
);
5608 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5609 se_update_runnable(se
);
5610 update_cfs_group(se
);
5612 cfs_rq
->h_nr_running
--;
5613 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5615 /* end evaluation on encountering a throttled cfs_rq */
5616 if (cfs_rq_throttled(cfs_rq
))
5617 goto dequeue_throttle
;
5623 sub_nr_running(rq
, 1);
5625 /* balance early to pull high priority tasks */
5626 if (unlikely(!was_sched_idle
&& sched_idle_rq(rq
)))
5627 rq
->next_balance
= jiffies
;
5629 util_est_dequeue(&rq
->cfs
, p
, task_sleep
);
5635 /* Working cpumask for: load_balance, load_balance_newidle. */
5636 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5637 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5639 #ifdef CONFIG_NO_HZ_COMMON
5642 cpumask_var_t idle_cpus_mask
;
5644 int has_blocked
; /* Idle CPUS has blocked load */
5645 unsigned long next_balance
; /* in jiffy units */
5646 unsigned long next_blocked
; /* Next update of blocked load in jiffies */
5647 } nohz ____cacheline_aligned
;
5649 #endif /* CONFIG_NO_HZ_COMMON */
5651 static unsigned long cpu_load(struct rq
*rq
)
5653 return cfs_rq_load_avg(&rq
->cfs
);
5657 * cpu_load_without - compute CPU load without any contributions from *p
5658 * @cpu: the CPU which load is requested
5659 * @p: the task which load should be discounted
5661 * The load of a CPU is defined by the load of tasks currently enqueued on that
5662 * CPU as well as tasks which are currently sleeping after an execution on that
5665 * This method returns the load of the specified CPU by discounting the load of
5666 * the specified task, whenever the task is currently contributing to the CPU
5669 static unsigned long cpu_load_without(struct rq
*rq
, struct task_struct
*p
)
5671 struct cfs_rq
*cfs_rq
;
5674 /* Task has no contribution or is new */
5675 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
5676 return cpu_load(rq
);
5679 load
= READ_ONCE(cfs_rq
->avg
.load_avg
);
5681 /* Discount task's util from CPU's util */
5682 lsub_positive(&load
, task_h_load(p
));
5687 static unsigned long cpu_runnable(struct rq
*rq
)
5689 return cfs_rq_runnable_avg(&rq
->cfs
);
5692 static unsigned long cpu_runnable_without(struct rq
*rq
, struct task_struct
*p
)
5694 struct cfs_rq
*cfs_rq
;
5695 unsigned int runnable
;
5697 /* Task has no contribution or is new */
5698 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
5699 return cpu_runnable(rq
);
5702 runnable
= READ_ONCE(cfs_rq
->avg
.runnable_avg
);
5704 /* Discount task's runnable from CPU's runnable */
5705 lsub_positive(&runnable
, p
->se
.avg
.runnable_avg
);
5710 static unsigned long capacity_of(int cpu
)
5712 return cpu_rq(cpu
)->cpu_capacity
;
5715 static void record_wakee(struct task_struct
*p
)
5718 * Only decay a single time; tasks that have less then 1 wakeup per
5719 * jiffy will not have built up many flips.
5721 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5722 current
->wakee_flips
>>= 1;
5723 current
->wakee_flip_decay_ts
= jiffies
;
5726 if (current
->last_wakee
!= p
) {
5727 current
->last_wakee
= p
;
5728 current
->wakee_flips
++;
5733 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5735 * A waker of many should wake a different task than the one last awakened
5736 * at a frequency roughly N times higher than one of its wakees.
5738 * In order to determine whether we should let the load spread vs consolidating
5739 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5740 * partner, and a factor of lls_size higher frequency in the other.
5742 * With both conditions met, we can be relatively sure that the relationship is
5743 * non-monogamous, with partner count exceeding socket size.
5745 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5746 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5749 static int wake_wide(struct task_struct
*p
)
5751 unsigned int master
= current
->wakee_flips
;
5752 unsigned int slave
= p
->wakee_flips
;
5753 int factor
= __this_cpu_read(sd_llc_size
);
5756 swap(master
, slave
);
5757 if (slave
< factor
|| master
< slave
* factor
)
5763 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5764 * soonest. For the purpose of speed we only consider the waking and previous
5767 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5768 * cache-affine and is (or will be) idle.
5770 * wake_affine_weight() - considers the weight to reflect the average
5771 * scheduling latency of the CPUs. This seems to work
5772 * for the overloaded case.
5775 wake_affine_idle(int this_cpu
, int prev_cpu
, int sync
)
5778 * If this_cpu is idle, it implies the wakeup is from interrupt
5779 * context. Only allow the move if cache is shared. Otherwise an
5780 * interrupt intensive workload could force all tasks onto one
5781 * node depending on the IO topology or IRQ affinity settings.
5783 * If the prev_cpu is idle and cache affine then avoid a migration.
5784 * There is no guarantee that the cache hot data from an interrupt
5785 * is more important than cache hot data on the prev_cpu and from
5786 * a cpufreq perspective, it's better to have higher utilisation
5789 if (available_idle_cpu(this_cpu
) && cpus_share_cache(this_cpu
, prev_cpu
))
5790 return available_idle_cpu(prev_cpu
) ? prev_cpu
: this_cpu
;
5792 if (sync
&& cpu_rq(this_cpu
)->nr_running
== 1)
5795 return nr_cpumask_bits
;
5799 wake_affine_weight(struct sched_domain
*sd
, struct task_struct
*p
,
5800 int this_cpu
, int prev_cpu
, int sync
)
5802 s64 this_eff_load
, prev_eff_load
;
5803 unsigned long task_load
;
5805 this_eff_load
= cpu_load(cpu_rq(this_cpu
));
5808 unsigned long current_load
= task_h_load(current
);
5810 if (current_load
> this_eff_load
)
5813 this_eff_load
-= current_load
;
5816 task_load
= task_h_load(p
);
5818 this_eff_load
+= task_load
;
5819 if (sched_feat(WA_BIAS
))
5820 this_eff_load
*= 100;
5821 this_eff_load
*= capacity_of(prev_cpu
);
5823 prev_eff_load
= cpu_load(cpu_rq(prev_cpu
));
5824 prev_eff_load
-= task_load
;
5825 if (sched_feat(WA_BIAS
))
5826 prev_eff_load
*= 100 + (sd
->imbalance_pct
- 100) / 2;
5827 prev_eff_load
*= capacity_of(this_cpu
);
5830 * If sync, adjust the weight of prev_eff_load such that if
5831 * prev_eff == this_eff that select_idle_sibling() will consider
5832 * stacking the wakee on top of the waker if no other CPU is
5838 return this_eff_load
< prev_eff_load
? this_cpu
: nr_cpumask_bits
;
5841 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5842 int this_cpu
, int prev_cpu
, int sync
)
5844 int target
= nr_cpumask_bits
;
5846 if (sched_feat(WA_IDLE
))
5847 target
= wake_affine_idle(this_cpu
, prev_cpu
, sync
);
5849 if (sched_feat(WA_WEIGHT
) && target
== nr_cpumask_bits
)
5850 target
= wake_affine_weight(sd
, p
, this_cpu
, prev_cpu
, sync
);
5852 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5853 if (target
== nr_cpumask_bits
)
5856 schedstat_inc(sd
->ttwu_move_affine
);
5857 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5861 static struct sched_group
*
5862 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
);
5865 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5868 find_idlest_group_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5870 unsigned long load
, min_load
= ULONG_MAX
;
5871 unsigned int min_exit_latency
= UINT_MAX
;
5872 u64 latest_idle_timestamp
= 0;
5873 int least_loaded_cpu
= this_cpu
;
5874 int shallowest_idle_cpu
= -1;
5877 /* Check if we have any choice: */
5878 if (group
->group_weight
== 1)
5879 return cpumask_first(sched_group_span(group
));
5881 /* Traverse only the allowed CPUs */
5882 for_each_cpu_and(i
, sched_group_span(group
), p
->cpus_ptr
) {
5883 if (sched_idle_cpu(i
))
5886 if (available_idle_cpu(i
)) {
5887 struct rq
*rq
= cpu_rq(i
);
5888 struct cpuidle_state
*idle
= idle_get_state(rq
);
5889 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5891 * We give priority to a CPU whose idle state
5892 * has the smallest exit latency irrespective
5893 * of any idle timestamp.
5895 min_exit_latency
= idle
->exit_latency
;
5896 latest_idle_timestamp
= rq
->idle_stamp
;
5897 shallowest_idle_cpu
= i
;
5898 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5899 rq
->idle_stamp
> latest_idle_timestamp
) {
5901 * If equal or no active idle state, then
5902 * the most recently idled CPU might have
5905 latest_idle_timestamp
= rq
->idle_stamp
;
5906 shallowest_idle_cpu
= i
;
5908 } else if (shallowest_idle_cpu
== -1) {
5909 load
= cpu_load(cpu_rq(i
));
5910 if (load
< min_load
) {
5912 least_loaded_cpu
= i
;
5917 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5920 static inline int find_idlest_cpu(struct sched_domain
*sd
, struct task_struct
*p
,
5921 int cpu
, int prev_cpu
, int sd_flag
)
5925 if (!cpumask_intersects(sched_domain_span(sd
), p
->cpus_ptr
))
5929 * We need task's util for cpu_util_without, sync it up to
5930 * prev_cpu's last_update_time.
5932 if (!(sd_flag
& SD_BALANCE_FORK
))
5933 sync_entity_load_avg(&p
->se
);
5936 struct sched_group
*group
;
5937 struct sched_domain
*tmp
;
5940 if (!(sd
->flags
& sd_flag
)) {
5945 group
= find_idlest_group(sd
, p
, cpu
);
5951 new_cpu
= find_idlest_group_cpu(group
, p
, cpu
);
5952 if (new_cpu
== cpu
) {
5953 /* Now try balancing at a lower domain level of 'cpu': */
5958 /* Now try balancing at a lower domain level of 'new_cpu': */
5960 weight
= sd
->span_weight
;
5962 for_each_domain(cpu
, tmp
) {
5963 if (weight
<= tmp
->span_weight
)
5965 if (tmp
->flags
& sd_flag
)
5973 #ifdef CONFIG_SCHED_SMT
5974 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
5975 EXPORT_SYMBOL_GPL(sched_smt_present
);
5977 static inline void set_idle_cores(int cpu
, int val
)
5979 struct sched_domain_shared
*sds
;
5981 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5983 WRITE_ONCE(sds
->has_idle_cores
, val
);
5986 static inline bool test_idle_cores(int cpu
, bool def
)
5988 struct sched_domain_shared
*sds
;
5990 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5992 return READ_ONCE(sds
->has_idle_cores
);
5998 * Scans the local SMT mask to see if the entire core is idle, and records this
5999 * information in sd_llc_shared->has_idle_cores.
6001 * Since SMT siblings share all cache levels, inspecting this limited remote
6002 * state should be fairly cheap.
6004 void __update_idle_core(struct rq
*rq
)
6006 int core
= cpu_of(rq
);
6010 if (test_idle_cores(core
, true))
6013 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6017 if (!available_idle_cpu(cpu
))
6021 set_idle_cores(core
, 1);
6027 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6028 * there are no idle cores left in the system; tracked through
6029 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6031 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6033 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6036 if (!static_branch_likely(&sched_smt_present
))
6039 if (!test_idle_cores(target
, false))
6042 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6044 for_each_cpu_wrap(core
, cpus
, target
) {
6047 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6048 if (!available_idle_cpu(cpu
)) {
6053 cpumask_andnot(cpus
, cpus
, cpu_smt_mask(core
));
6060 * Failed to find an idle core; stop looking for one.
6062 set_idle_cores(target
, 0);
6068 * Scan the local SMT mask for idle CPUs.
6070 static int select_idle_smt(struct task_struct
*p
, int target
)
6074 if (!static_branch_likely(&sched_smt_present
))
6077 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
6078 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
6080 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
6087 #else /* CONFIG_SCHED_SMT */
6089 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6094 static inline int select_idle_smt(struct task_struct
*p
, int target
)
6099 #endif /* CONFIG_SCHED_SMT */
6102 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6103 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6104 * average idle time for this rq (as found in rq->avg_idle).
6106 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6108 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6109 struct sched_domain
*this_sd
;
6110 u64 avg_cost
, avg_idle
;
6112 int this = smp_processor_id();
6113 int cpu
, nr
= INT_MAX
;
6115 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
6120 * Due to large variance we need a large fuzz factor; hackbench in
6121 * particularly is sensitive here.
6123 avg_idle
= this_rq()->avg_idle
/ 512;
6124 avg_cost
= this_sd
->avg_scan_cost
+ 1;
6126 if (sched_feat(SIS_AVG_CPU
) && avg_idle
< avg_cost
)
6129 if (sched_feat(SIS_PROP
)) {
6130 u64 span_avg
= sd
->span_weight
* avg_idle
;
6131 if (span_avg
> 4*avg_cost
)
6132 nr
= div_u64(span_avg
, avg_cost
);
6137 time
= cpu_clock(this);
6139 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6141 for_each_cpu_wrap(cpu
, cpus
, target
) {
6144 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
6148 time
= cpu_clock(this) - time
;
6149 update_avg(&this_sd
->avg_scan_cost
, time
);
6155 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6156 * the task fits. If no CPU is big enough, but there are idle ones, try to
6157 * maximize capacity.
6160 select_idle_capacity(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6162 unsigned long best_cap
= 0;
6163 int cpu
, best_cpu
= -1;
6164 struct cpumask
*cpus
;
6166 sync_entity_load_avg(&p
->se
);
6168 cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6169 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6171 for_each_cpu_wrap(cpu
, cpus
, target
) {
6172 unsigned long cpu_cap
= capacity_of(cpu
);
6174 if (!available_idle_cpu(cpu
) && !sched_idle_cpu(cpu
))
6176 if (task_fits_capacity(p
, cpu_cap
))
6179 if (cpu_cap
> best_cap
) {
6189 * Try and locate an idle core/thread in the LLC cache domain.
6191 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
6193 struct sched_domain
*sd
;
6194 int i
, recent_used_cpu
;
6197 * For asymmetric CPU capacity systems, our domain of interest is
6198 * sd_asym_cpucapacity rather than sd_llc.
6200 if (static_branch_unlikely(&sched_asym_cpucapacity
)) {
6201 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, target
));
6203 * On an asymmetric CPU capacity system where an exclusive
6204 * cpuset defines a symmetric island (i.e. one unique
6205 * capacity_orig value through the cpuset), the key will be set
6206 * but the CPUs within that cpuset will not have a domain with
6207 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6213 i
= select_idle_capacity(p
, sd
, target
);
6214 return ((unsigned)i
< nr_cpumask_bits
) ? i
: target
;
6218 if (available_idle_cpu(target
) || sched_idle_cpu(target
))
6222 * If the previous CPU is cache affine and idle, don't be stupid:
6224 if (prev
!= target
&& cpus_share_cache(prev
, target
) &&
6225 (available_idle_cpu(prev
) || sched_idle_cpu(prev
)))
6229 * Allow a per-cpu kthread to stack with the wakee if the
6230 * kworker thread and the tasks previous CPUs are the same.
6231 * The assumption is that the wakee queued work for the
6232 * per-cpu kthread that is now complete and the wakeup is
6233 * essentially a sync wakeup. An obvious example of this
6234 * pattern is IO completions.
6236 if (is_per_cpu_kthread(current
) &&
6237 prev
== smp_processor_id() &&
6238 this_rq()->nr_running
<= 1) {
6242 /* Check a recently used CPU as a potential idle candidate: */
6243 recent_used_cpu
= p
->recent_used_cpu
;
6244 if (recent_used_cpu
!= prev
&&
6245 recent_used_cpu
!= target
&&
6246 cpus_share_cache(recent_used_cpu
, target
) &&
6247 (available_idle_cpu(recent_used_cpu
) || sched_idle_cpu(recent_used_cpu
)) &&
6248 cpumask_test_cpu(p
->recent_used_cpu
, p
->cpus_ptr
)) {
6250 * Replace recent_used_cpu with prev as it is a potential
6251 * candidate for the next wake:
6253 p
->recent_used_cpu
= prev
;
6254 return recent_used_cpu
;
6257 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
6261 i
= select_idle_core(p
, sd
, target
);
6262 if ((unsigned)i
< nr_cpumask_bits
)
6265 i
= select_idle_cpu(p
, sd
, target
);
6266 if ((unsigned)i
< nr_cpumask_bits
)
6269 i
= select_idle_smt(p
, target
);
6270 if ((unsigned)i
< nr_cpumask_bits
)
6277 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6278 * @cpu: the CPU to get the utilization of
6280 * The unit of the return value must be the one of capacity so we can compare
6281 * the utilization with the capacity of the CPU that is available for CFS task
6282 * (ie cpu_capacity).
6284 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6285 * recent utilization of currently non-runnable tasks on a CPU. It represents
6286 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6287 * capacity_orig is the cpu_capacity available at the highest frequency
6288 * (arch_scale_freq_capacity()).
6289 * The utilization of a CPU converges towards a sum equal to or less than the
6290 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6291 * the running time on this CPU scaled by capacity_curr.
6293 * The estimated utilization of a CPU is defined to be the maximum between its
6294 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6295 * currently RUNNABLE on that CPU.
6296 * This allows to properly represent the expected utilization of a CPU which
6297 * has just got a big task running since a long sleep period. At the same time
6298 * however it preserves the benefits of the "blocked utilization" in
6299 * describing the potential for other tasks waking up on the same CPU.
6301 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6302 * higher than capacity_orig because of unfortunate rounding in
6303 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6304 * the average stabilizes with the new running time. We need to check that the
6305 * utilization stays within the range of [0..capacity_orig] and cap it if
6306 * necessary. Without utilization capping, a group could be seen as overloaded
6307 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6308 * available capacity. We allow utilization to overshoot capacity_curr (but not
6309 * capacity_orig) as it useful for predicting the capacity required after task
6310 * migrations (scheduler-driven DVFS).
6312 * Return: the (estimated) utilization for the specified CPU
6314 static inline unsigned long cpu_util(int cpu
)
6316 struct cfs_rq
*cfs_rq
;
6319 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6320 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6322 if (sched_feat(UTIL_EST
))
6323 util
= max(util
, READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
));
6325 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6329 * cpu_util_without: compute cpu utilization without any contributions from *p
6330 * @cpu: the CPU which utilization is requested
6331 * @p: the task which utilization should be discounted
6333 * The utilization of a CPU is defined by the utilization of tasks currently
6334 * enqueued on that CPU as well as tasks which are currently sleeping after an
6335 * execution on that CPU.
6337 * This method returns the utilization of the specified CPU by discounting the
6338 * utilization of the specified task, whenever the task is currently
6339 * contributing to the CPU utilization.
6341 static unsigned long cpu_util_without(int cpu
, struct task_struct
*p
)
6343 struct cfs_rq
*cfs_rq
;
6346 /* Task has no contribution or is new */
6347 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
6348 return cpu_util(cpu
);
6350 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6351 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6353 /* Discount task's util from CPU's util */
6354 lsub_positive(&util
, task_util(p
));
6359 * a) if *p is the only task sleeping on this CPU, then:
6360 * cpu_util (== task_util) > util_est (== 0)
6361 * and thus we return:
6362 * cpu_util_without = (cpu_util - task_util) = 0
6364 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6366 * cpu_util >= task_util
6367 * cpu_util > util_est (== 0)
6368 * and thus we discount *p's blocked utilization to return:
6369 * cpu_util_without = (cpu_util - task_util) >= 0
6371 * c) if other tasks are RUNNABLE on that CPU and
6372 * util_est > cpu_util
6373 * then we use util_est since it returns a more restrictive
6374 * estimation of the spare capacity on that CPU, by just
6375 * considering the expected utilization of tasks already
6376 * runnable on that CPU.
6378 * Cases a) and b) are covered by the above code, while case c) is
6379 * covered by the following code when estimated utilization is
6382 if (sched_feat(UTIL_EST
)) {
6383 unsigned int estimated
=
6384 READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6387 * Despite the following checks we still have a small window
6388 * for a possible race, when an execl's select_task_rq_fair()
6389 * races with LB's detach_task():
6392 * p->on_rq = TASK_ON_RQ_MIGRATING;
6393 * ---------------------------------- A
6394 * deactivate_task() \
6395 * dequeue_task() + RaceTime
6396 * util_est_dequeue() /
6397 * ---------------------------------- B
6399 * The additional check on "current == p" it's required to
6400 * properly fix the execl regression and it helps in further
6401 * reducing the chances for the above race.
6403 if (unlikely(task_on_rq_queued(p
) || current
== p
))
6404 lsub_positive(&estimated
, _task_util_est(p
));
6406 util
= max(util
, estimated
);
6410 * Utilization (estimated) can exceed the CPU capacity, thus let's
6411 * clamp to the maximum CPU capacity to ensure consistency with
6412 * the cpu_util call.
6414 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6418 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6421 static unsigned long cpu_util_next(int cpu
, struct task_struct
*p
, int dst_cpu
)
6423 struct cfs_rq
*cfs_rq
= &cpu_rq(cpu
)->cfs
;
6424 unsigned long util_est
, util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6427 * If @p migrates from @cpu to another, remove its contribution. Or,
6428 * if @p migrates from another CPU to @cpu, add its contribution. In
6429 * the other cases, @cpu is not impacted by the migration, so the
6430 * util_avg should already be correct.
6432 if (task_cpu(p
) == cpu
&& dst_cpu
!= cpu
)
6433 sub_positive(&util
, task_util(p
));
6434 else if (task_cpu(p
) != cpu
&& dst_cpu
== cpu
)
6435 util
+= task_util(p
);
6437 if (sched_feat(UTIL_EST
)) {
6438 util_est
= READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6441 * During wake-up, the task isn't enqueued yet and doesn't
6442 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6443 * so just add it (if needed) to "simulate" what will be
6444 * cpu_util() after the task has been enqueued.
6447 util_est
+= _task_util_est(p
);
6449 util
= max(util
, util_est
);
6452 return min(util
, capacity_orig_of(cpu
));
6456 * compute_energy(): Estimates the energy that @pd would consume if @p was
6457 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6458 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6459 * to compute what would be the energy if we decided to actually migrate that
6463 compute_energy(struct task_struct
*p
, int dst_cpu
, struct perf_domain
*pd
)
6465 struct cpumask
*pd_mask
= perf_domain_span(pd
);
6466 unsigned long cpu_cap
= arch_scale_cpu_capacity(cpumask_first(pd_mask
));
6467 unsigned long max_util
= 0, sum_util
= 0;
6471 * The capacity state of CPUs of the current rd can be driven by CPUs
6472 * of another rd if they belong to the same pd. So, account for the
6473 * utilization of these CPUs too by masking pd with cpu_online_mask
6474 * instead of the rd span.
6476 * If an entire pd is outside of the current rd, it will not appear in
6477 * its pd list and will not be accounted by compute_energy().
6479 for_each_cpu_and(cpu
, pd_mask
, cpu_online_mask
) {
6480 unsigned long cpu_util
, util_cfs
= cpu_util_next(cpu
, p
, dst_cpu
);
6481 struct task_struct
*tsk
= cpu
== dst_cpu
? p
: NULL
;
6484 * Busy time computation: utilization clamping is not
6485 * required since the ratio (sum_util / cpu_capacity)
6486 * is already enough to scale the EM reported power
6487 * consumption at the (eventually clamped) cpu_capacity.
6489 sum_util
+= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6493 * Performance domain frequency: utilization clamping
6494 * must be considered since it affects the selection
6495 * of the performance domain frequency.
6496 * NOTE: in case RT tasks are running, by default the
6497 * FREQUENCY_UTIL's utilization can be max OPP.
6499 cpu_util
= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6500 FREQUENCY_UTIL
, tsk
);
6501 max_util
= max(max_util
, cpu_util
);
6504 return em_pd_energy(pd
->em_pd
, max_util
, sum_util
);
6508 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6509 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6510 * spare capacity in each performance domain and uses it as a potential
6511 * candidate to execute the task. Then, it uses the Energy Model to figure
6512 * out which of the CPU candidates is the most energy-efficient.
6514 * The rationale for this heuristic is as follows. In a performance domain,
6515 * all the most energy efficient CPU candidates (according to the Energy
6516 * Model) are those for which we'll request a low frequency. When there are
6517 * several CPUs for which the frequency request will be the same, we don't
6518 * have enough data to break the tie between them, because the Energy Model
6519 * only includes active power costs. With this model, if we assume that
6520 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6521 * the maximum spare capacity in a performance domain is guaranteed to be among
6522 * the best candidates of the performance domain.
6524 * In practice, it could be preferable from an energy standpoint to pack
6525 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6526 * but that could also hurt our chances to go cluster idle, and we have no
6527 * ways to tell with the current Energy Model if this is actually a good
6528 * idea or not. So, find_energy_efficient_cpu() basically favors
6529 * cluster-packing, and spreading inside a cluster. That should at least be
6530 * a good thing for latency, and this is consistent with the idea that most
6531 * of the energy savings of EAS come from the asymmetry of the system, and
6532 * not so much from breaking the tie between identical CPUs. That's also the
6533 * reason why EAS is enabled in the topology code only for systems where
6534 * SD_ASYM_CPUCAPACITY is set.
6536 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6537 * they don't have any useful utilization data yet and it's not possible to
6538 * forecast their impact on energy consumption. Consequently, they will be
6539 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6540 * to be energy-inefficient in some use-cases. The alternative would be to
6541 * bias new tasks towards specific types of CPUs first, or to try to infer
6542 * their util_avg from the parent task, but those heuristics could hurt
6543 * other use-cases too. So, until someone finds a better way to solve this,
6544 * let's keep things simple by re-using the existing slow path.
6546 static int find_energy_efficient_cpu(struct task_struct
*p
, int prev_cpu
)
6548 unsigned long prev_delta
= ULONG_MAX
, best_delta
= ULONG_MAX
;
6549 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
6550 unsigned long cpu_cap
, util
, base_energy
= 0;
6551 int cpu
, best_energy_cpu
= prev_cpu
;
6552 struct sched_domain
*sd
;
6553 struct perf_domain
*pd
;
6556 pd
= rcu_dereference(rd
->pd
);
6557 if (!pd
|| READ_ONCE(rd
->overutilized
))
6561 * Energy-aware wake-up happens on the lowest sched_domain starting
6562 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6564 sd
= rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity
));
6565 while (sd
&& !cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
6570 sync_entity_load_avg(&p
->se
);
6571 if (!task_util_est(p
))
6574 for (; pd
; pd
= pd
->next
) {
6575 unsigned long cur_delta
, spare_cap
, max_spare_cap
= 0;
6576 unsigned long base_energy_pd
;
6577 int max_spare_cap_cpu
= -1;
6579 /* Compute the 'base' energy of the pd, without @p */
6580 base_energy_pd
= compute_energy(p
, -1, pd
);
6581 base_energy
+= base_energy_pd
;
6583 for_each_cpu_and(cpu
, perf_domain_span(pd
), sched_domain_span(sd
)) {
6584 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
6587 util
= cpu_util_next(cpu
, p
, cpu
);
6588 cpu_cap
= capacity_of(cpu
);
6589 spare_cap
= cpu_cap
- util
;
6592 * Skip CPUs that cannot satisfy the capacity request.
6593 * IOW, placing the task there would make the CPU
6594 * overutilized. Take uclamp into account to see how
6595 * much capacity we can get out of the CPU; this is
6596 * aligned with schedutil_cpu_util().
6598 util
= uclamp_rq_util_with(cpu_rq(cpu
), util
, p
);
6599 if (!fits_capacity(util
, cpu_cap
))
6602 /* Always use prev_cpu as a candidate. */
6603 if (cpu
== prev_cpu
) {
6604 prev_delta
= compute_energy(p
, prev_cpu
, pd
);
6605 prev_delta
-= base_energy_pd
;
6606 best_delta
= min(best_delta
, prev_delta
);
6610 * Find the CPU with the maximum spare capacity in
6611 * the performance domain
6613 if (spare_cap
> max_spare_cap
) {
6614 max_spare_cap
= spare_cap
;
6615 max_spare_cap_cpu
= cpu
;
6619 /* Evaluate the energy impact of using this CPU. */
6620 if (max_spare_cap_cpu
>= 0 && max_spare_cap_cpu
!= prev_cpu
) {
6621 cur_delta
= compute_energy(p
, max_spare_cap_cpu
, pd
);
6622 cur_delta
-= base_energy_pd
;
6623 if (cur_delta
< best_delta
) {
6624 best_delta
= cur_delta
;
6625 best_energy_cpu
= max_spare_cap_cpu
;
6633 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6634 * least 6% of the energy used by prev_cpu.
6636 if (prev_delta
== ULONG_MAX
)
6637 return best_energy_cpu
;
6639 if ((prev_delta
- best_delta
) > ((prev_delta
+ base_energy
) >> 4))
6640 return best_energy_cpu
;
6651 * select_task_rq_fair: Select target runqueue for the waking task in domains
6652 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6653 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6655 * Balances load by selecting the idlest CPU in the idlest group, or under
6656 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6658 * Returns the target CPU number.
6660 * preempt must be disabled.
6663 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
6665 struct sched_domain
*tmp
, *sd
= NULL
;
6666 int cpu
= smp_processor_id();
6667 int new_cpu
= prev_cpu
;
6668 int want_affine
= 0;
6669 int sync
= (wake_flags
& WF_SYNC
) && !(current
->flags
& PF_EXITING
);
6671 if (sd_flag
& SD_BALANCE_WAKE
) {
6674 if (sched_energy_enabled()) {
6675 new_cpu
= find_energy_efficient_cpu(p
, prev_cpu
);
6681 want_affine
= !wake_wide(p
) && cpumask_test_cpu(cpu
, p
->cpus_ptr
);
6685 for_each_domain(cpu
, tmp
) {
6687 * If both 'cpu' and 'prev_cpu' are part of this domain,
6688 * cpu is a valid SD_WAKE_AFFINE target.
6690 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
6691 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
6692 if (cpu
!= prev_cpu
)
6693 new_cpu
= wake_affine(tmp
, p
, cpu
, prev_cpu
, sync
);
6695 sd
= NULL
; /* Prefer wake_affine over balance flags */
6699 if (tmp
->flags
& sd_flag
)
6701 else if (!want_affine
)
6707 new_cpu
= find_idlest_cpu(sd
, p
, cpu
, prev_cpu
, sd_flag
);
6708 } else if (sd_flag
& SD_BALANCE_WAKE
) { /* XXX always ? */
6711 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
6714 current
->recent_used_cpu
= cpu
;
6721 static void detach_entity_cfs_rq(struct sched_entity
*se
);
6724 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6725 * cfs_rq_of(p) references at time of call are still valid and identify the
6726 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6728 static void migrate_task_rq_fair(struct task_struct
*p
, int new_cpu
)
6731 * As blocked tasks retain absolute vruntime the migration needs to
6732 * deal with this by subtracting the old and adding the new
6733 * min_vruntime -- the latter is done by enqueue_entity() when placing
6734 * the task on the new runqueue.
6736 if (p
->state
== TASK_WAKING
) {
6737 struct sched_entity
*se
= &p
->se
;
6738 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6741 #ifndef CONFIG_64BIT
6742 u64 min_vruntime_copy
;
6745 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
6747 min_vruntime
= cfs_rq
->min_vruntime
;
6748 } while (min_vruntime
!= min_vruntime_copy
);
6750 min_vruntime
= cfs_rq
->min_vruntime
;
6753 se
->vruntime
-= min_vruntime
;
6756 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
) {
6758 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6759 * rq->lock and can modify state directly.
6761 lockdep_assert_held(&task_rq(p
)->lock
);
6762 detach_entity_cfs_rq(&p
->se
);
6766 * We are supposed to update the task to "current" time, then
6767 * its up to date and ready to go to new CPU/cfs_rq. But we
6768 * have difficulty in getting what current time is, so simply
6769 * throw away the out-of-date time. This will result in the
6770 * wakee task is less decayed, but giving the wakee more load
6773 remove_entity_load_avg(&p
->se
);
6776 /* Tell new CPU we are migrated */
6777 p
->se
.avg
.last_update_time
= 0;
6779 /* We have migrated, no longer consider this task hot */
6780 p
->se
.exec_start
= 0;
6782 update_scan_period(p
, new_cpu
);
6785 static void task_dead_fair(struct task_struct
*p
)
6787 remove_entity_load_avg(&p
->se
);
6791 balance_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6796 return newidle_balance(rq
, rf
) != 0;
6798 #endif /* CONFIG_SMP */
6800 static unsigned long wakeup_gran(struct sched_entity
*se
)
6802 unsigned long gran
= sysctl_sched_wakeup_granularity
;
6805 * Since its curr running now, convert the gran from real-time
6806 * to virtual-time in his units.
6808 * By using 'se' instead of 'curr' we penalize light tasks, so
6809 * they get preempted easier. That is, if 'se' < 'curr' then
6810 * the resulting gran will be larger, therefore penalizing the
6811 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6812 * be smaller, again penalizing the lighter task.
6814 * This is especially important for buddies when the leftmost
6815 * task is higher priority than the buddy.
6817 return calc_delta_fair(gran
, se
);
6821 * Should 'se' preempt 'curr'.
6835 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
6837 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
6842 gran
= wakeup_gran(se
);
6849 static void set_last_buddy(struct sched_entity
*se
)
6851 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6854 for_each_sched_entity(se
) {
6855 if (SCHED_WARN_ON(!se
->on_rq
))
6857 cfs_rq_of(se
)->last
= se
;
6861 static void set_next_buddy(struct sched_entity
*se
)
6863 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6866 for_each_sched_entity(se
) {
6867 if (SCHED_WARN_ON(!se
->on_rq
))
6869 cfs_rq_of(se
)->next
= se
;
6873 static void set_skip_buddy(struct sched_entity
*se
)
6875 for_each_sched_entity(se
)
6876 cfs_rq_of(se
)->skip
= se
;
6880 * Preempt the current task with a newly woken task if needed:
6882 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
6884 struct task_struct
*curr
= rq
->curr
;
6885 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
6886 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6887 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
6888 int next_buddy_marked
= 0;
6890 if (unlikely(se
== pse
))
6894 * This is possible from callers such as attach_tasks(), in which we
6895 * unconditionally check_prempt_curr() after an enqueue (which may have
6896 * lead to a throttle). This both saves work and prevents false
6897 * next-buddy nomination below.
6899 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
6902 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
6903 set_next_buddy(pse
);
6904 next_buddy_marked
= 1;
6908 * We can come here with TIF_NEED_RESCHED already set from new task
6911 * Note: this also catches the edge-case of curr being in a throttled
6912 * group (e.g. via set_curr_task), since update_curr() (in the
6913 * enqueue of curr) will have resulted in resched being set. This
6914 * prevents us from potentially nominating it as a false LAST_BUDDY
6917 if (test_tsk_need_resched(curr
))
6920 /* Idle tasks are by definition preempted by non-idle tasks. */
6921 if (unlikely(task_has_idle_policy(curr
)) &&
6922 likely(!task_has_idle_policy(p
)))
6926 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6927 * is driven by the tick):
6929 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
6932 find_matching_se(&se
, &pse
);
6933 update_curr(cfs_rq_of(se
));
6935 if (wakeup_preempt_entity(se
, pse
) == 1) {
6937 * Bias pick_next to pick the sched entity that is
6938 * triggering this preemption.
6940 if (!next_buddy_marked
)
6941 set_next_buddy(pse
);
6950 * Only set the backward buddy when the current task is still
6951 * on the rq. This can happen when a wakeup gets interleaved
6952 * with schedule on the ->pre_schedule() or idle_balance()
6953 * point, either of which can * drop the rq lock.
6955 * Also, during early boot the idle thread is in the fair class,
6956 * for obvious reasons its a bad idea to schedule back to it.
6958 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
6961 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
6965 struct task_struct
*
6966 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6968 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6969 struct sched_entity
*se
;
6970 struct task_struct
*p
;
6974 if (!sched_fair_runnable(rq
))
6977 #ifdef CONFIG_FAIR_GROUP_SCHED
6978 if (!prev
|| prev
->sched_class
!= &fair_sched_class
)
6982 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6983 * likely that a next task is from the same cgroup as the current.
6985 * Therefore attempt to avoid putting and setting the entire cgroup
6986 * hierarchy, only change the part that actually changes.
6990 struct sched_entity
*curr
= cfs_rq
->curr
;
6993 * Since we got here without doing put_prev_entity() we also
6994 * have to consider cfs_rq->curr. If it is still a runnable
6995 * entity, update_curr() will update its vruntime, otherwise
6996 * forget we've ever seen it.
7000 update_curr(cfs_rq
);
7005 * This call to check_cfs_rq_runtime() will do the
7006 * throttle and dequeue its entity in the parent(s).
7007 * Therefore the nr_running test will indeed
7010 if (unlikely(check_cfs_rq_runtime(cfs_rq
))) {
7013 if (!cfs_rq
->nr_running
)
7020 se
= pick_next_entity(cfs_rq
, curr
);
7021 cfs_rq
= group_cfs_rq(se
);
7027 * Since we haven't yet done put_prev_entity and if the selected task
7028 * is a different task than we started out with, try and touch the
7029 * least amount of cfs_rqs.
7032 struct sched_entity
*pse
= &prev
->se
;
7034 while (!(cfs_rq
= is_same_group(se
, pse
))) {
7035 int se_depth
= se
->depth
;
7036 int pse_depth
= pse
->depth
;
7038 if (se_depth
<= pse_depth
) {
7039 put_prev_entity(cfs_rq_of(pse
), pse
);
7040 pse
= parent_entity(pse
);
7042 if (se_depth
>= pse_depth
) {
7043 set_next_entity(cfs_rq_of(se
), se
);
7044 se
= parent_entity(se
);
7048 put_prev_entity(cfs_rq
, pse
);
7049 set_next_entity(cfs_rq
, se
);
7056 put_prev_task(rq
, prev
);
7059 se
= pick_next_entity(cfs_rq
, NULL
);
7060 set_next_entity(cfs_rq
, se
);
7061 cfs_rq
= group_cfs_rq(se
);
7066 done
: __maybe_unused
;
7069 * Move the next running task to the front of
7070 * the list, so our cfs_tasks list becomes MRU
7073 list_move(&p
->se
.group_node
, &rq
->cfs_tasks
);
7076 if (hrtick_enabled(rq
))
7077 hrtick_start_fair(rq
, p
);
7079 update_misfit_status(p
, rq
);
7087 new_tasks
= newidle_balance(rq
, rf
);
7090 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7091 * possible for any higher priority task to appear. In that case we
7092 * must re-start the pick_next_entity() loop.
7101 * rq is about to be idle, check if we need to update the
7102 * lost_idle_time of clock_pelt
7104 update_idle_rq_clock_pelt(rq
);
7109 static struct task_struct
*__pick_next_task_fair(struct rq
*rq
)
7111 return pick_next_task_fair(rq
, NULL
, NULL
);
7115 * Account for a descheduled task:
7117 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
7119 struct sched_entity
*se
= &prev
->se
;
7120 struct cfs_rq
*cfs_rq
;
7122 for_each_sched_entity(se
) {
7123 cfs_rq
= cfs_rq_of(se
);
7124 put_prev_entity(cfs_rq
, se
);
7129 * sched_yield() is very simple
7131 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7133 static void yield_task_fair(struct rq
*rq
)
7135 struct task_struct
*curr
= rq
->curr
;
7136 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
7137 struct sched_entity
*se
= &curr
->se
;
7140 * Are we the only task in the tree?
7142 if (unlikely(rq
->nr_running
== 1))
7145 clear_buddies(cfs_rq
, se
);
7147 if (curr
->policy
!= SCHED_BATCH
) {
7148 update_rq_clock(rq
);
7150 * Update run-time statistics of the 'current'.
7152 update_curr(cfs_rq
);
7154 * Tell update_rq_clock() that we've just updated,
7155 * so we don't do microscopic update in schedule()
7156 * and double the fastpath cost.
7158 rq_clock_skip_update(rq
);
7164 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
7166 struct sched_entity
*se
= &p
->se
;
7168 /* throttled hierarchies are not runnable */
7169 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
7172 /* Tell the scheduler that we'd really like pse to run next. */
7175 yield_task_fair(rq
);
7181 /**************************************************
7182 * Fair scheduling class load-balancing methods.
7186 * The purpose of load-balancing is to achieve the same basic fairness the
7187 * per-CPU scheduler provides, namely provide a proportional amount of compute
7188 * time to each task. This is expressed in the following equation:
7190 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7192 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7193 * W_i,0 is defined as:
7195 * W_i,0 = \Sum_j w_i,j (2)
7197 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7198 * is derived from the nice value as per sched_prio_to_weight[].
7200 * The weight average is an exponential decay average of the instantaneous
7203 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7205 * C_i is the compute capacity of CPU i, typically it is the
7206 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7207 * can also include other factors [XXX].
7209 * To achieve this balance we define a measure of imbalance which follows
7210 * directly from (1):
7212 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7214 * We them move tasks around to minimize the imbalance. In the continuous
7215 * function space it is obvious this converges, in the discrete case we get
7216 * a few fun cases generally called infeasible weight scenarios.
7219 * - infeasible weights;
7220 * - local vs global optima in the discrete case. ]
7225 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7226 * for all i,j solution, we create a tree of CPUs that follows the hardware
7227 * topology where each level pairs two lower groups (or better). This results
7228 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7229 * tree to only the first of the previous level and we decrease the frequency
7230 * of load-balance at each level inv. proportional to the number of CPUs in
7236 * \Sum { --- * --- * 2^i } = O(n) (5)
7238 * `- size of each group
7239 * | | `- number of CPUs doing load-balance
7241 * `- sum over all levels
7243 * Coupled with a limit on how many tasks we can migrate every balance pass,
7244 * this makes (5) the runtime complexity of the balancer.
7246 * An important property here is that each CPU is still (indirectly) connected
7247 * to every other CPU in at most O(log n) steps:
7249 * The adjacency matrix of the resulting graph is given by:
7252 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7255 * And you'll find that:
7257 * A^(log_2 n)_i,j != 0 for all i,j (7)
7259 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7260 * The task movement gives a factor of O(m), giving a convergence complexity
7263 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7268 * In order to avoid CPUs going idle while there's still work to do, new idle
7269 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7270 * tree itself instead of relying on other CPUs to bring it work.
7272 * This adds some complexity to both (5) and (8) but it reduces the total idle
7280 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7283 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7288 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7290 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7292 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7295 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7296 * rewrite all of this once again.]
7299 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
7301 enum fbq_type
{ regular
, remote
, all
};
7304 * 'group_type' describes the group of CPUs at the moment of load balancing.
7306 * The enum is ordered by pulling priority, with the group with lowest priority
7307 * first so the group_type can simply be compared when selecting the busiest
7308 * group. See update_sd_pick_busiest().
7311 /* The group has spare capacity that can be used to run more tasks. */
7312 group_has_spare
= 0,
7314 * The group is fully used and the tasks don't compete for more CPU
7315 * cycles. Nevertheless, some tasks might wait before running.
7319 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7320 * and must be migrated to a more powerful CPU.
7324 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7325 * and the task should be migrated to it instead of running on the
7330 * The tasks' affinity constraints previously prevented the scheduler
7331 * from balancing the load across the system.
7335 * The CPU is overloaded and can't provide expected CPU cycles to all
7341 enum migration_type
{
7348 #define LBF_ALL_PINNED 0x01
7349 #define LBF_NEED_BREAK 0x02
7350 #define LBF_DST_PINNED 0x04
7351 #define LBF_SOME_PINNED 0x08
7352 #define LBF_NOHZ_STATS 0x10
7353 #define LBF_NOHZ_AGAIN 0x20
7356 struct sched_domain
*sd
;
7364 struct cpumask
*dst_grpmask
;
7366 enum cpu_idle_type idle
;
7368 /* The set of CPUs under consideration for load-balancing */
7369 struct cpumask
*cpus
;
7374 unsigned int loop_break
;
7375 unsigned int loop_max
;
7377 enum fbq_type fbq_type
;
7378 enum migration_type migration_type
;
7379 struct list_head tasks
;
7383 * Is this task likely cache-hot:
7385 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
7389 lockdep_assert_held(&env
->src_rq
->lock
);
7391 if (p
->sched_class
!= &fair_sched_class
)
7394 if (unlikely(task_has_idle_policy(p
)))
7398 * Buddy candidates are cache hot:
7400 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
7401 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
7402 &p
->se
== cfs_rq_of(&p
->se
)->last
))
7405 if (sysctl_sched_migration_cost
== -1)
7407 if (sysctl_sched_migration_cost
== 0)
7410 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
7412 return delta
< (s64
)sysctl_sched_migration_cost
;
7415 #ifdef CONFIG_NUMA_BALANCING
7417 * Returns 1, if task migration degrades locality
7418 * Returns 0, if task migration improves locality i.e migration preferred.
7419 * Returns -1, if task migration is not affected by locality.
7421 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
7423 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
7424 unsigned long src_weight
, dst_weight
;
7425 int src_nid
, dst_nid
, dist
;
7427 if (!static_branch_likely(&sched_numa_balancing
))
7430 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
7433 src_nid
= cpu_to_node(env
->src_cpu
);
7434 dst_nid
= cpu_to_node(env
->dst_cpu
);
7436 if (src_nid
== dst_nid
)
7439 /* Migrating away from the preferred node is always bad. */
7440 if (src_nid
== p
->numa_preferred_nid
) {
7441 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
7447 /* Encourage migration to the preferred node. */
7448 if (dst_nid
== p
->numa_preferred_nid
)
7451 /* Leaving a core idle is often worse than degrading locality. */
7452 if (env
->idle
== CPU_IDLE
)
7455 dist
= node_distance(src_nid
, dst_nid
);
7457 src_weight
= group_weight(p
, src_nid
, dist
);
7458 dst_weight
= group_weight(p
, dst_nid
, dist
);
7460 src_weight
= task_weight(p
, src_nid
, dist
);
7461 dst_weight
= task_weight(p
, dst_nid
, dist
);
7464 return dst_weight
< src_weight
;
7468 static inline int migrate_degrades_locality(struct task_struct
*p
,
7476 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7479 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
7483 lockdep_assert_held(&env
->src_rq
->lock
);
7486 * We do not migrate tasks that are:
7487 * 1) throttled_lb_pair, or
7488 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7489 * 3) running (obviously), or
7490 * 4) are cache-hot on their current CPU.
7492 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
7495 if (!cpumask_test_cpu(env
->dst_cpu
, p
->cpus_ptr
)) {
7498 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
7500 env
->flags
|= LBF_SOME_PINNED
;
7503 * Remember if this task can be migrated to any other CPU in
7504 * our sched_group. We may want to revisit it if we couldn't
7505 * meet load balance goals by pulling other tasks on src_cpu.
7507 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7508 * already computed one in current iteration.
7510 if (env
->idle
== CPU_NEWLY_IDLE
|| (env
->flags
& LBF_DST_PINNED
))
7513 /* Prevent to re-select dst_cpu via env's CPUs: */
7514 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
7515 if (cpumask_test_cpu(cpu
, p
->cpus_ptr
)) {
7516 env
->flags
|= LBF_DST_PINNED
;
7517 env
->new_dst_cpu
= cpu
;
7525 /* Record that we found atleast one task that could run on dst_cpu */
7526 env
->flags
&= ~LBF_ALL_PINNED
;
7528 if (task_running(env
->src_rq
, p
)) {
7529 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
7534 * Aggressive migration if:
7535 * 1) destination numa is preferred
7536 * 2) task is cache cold, or
7537 * 3) too many balance attempts have failed.
7539 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
7540 if (tsk_cache_hot
== -1)
7541 tsk_cache_hot
= task_hot(p
, env
);
7543 if (tsk_cache_hot
<= 0 ||
7544 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
7545 if (tsk_cache_hot
== 1) {
7546 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
7547 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
7552 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
7557 * detach_task() -- detach the task for the migration specified in env
7559 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
7561 lockdep_assert_held(&env
->src_rq
->lock
);
7563 deactivate_task(env
->src_rq
, p
, DEQUEUE_NOCLOCK
);
7564 set_task_cpu(p
, env
->dst_cpu
);
7568 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7569 * part of active balancing operations within "domain".
7571 * Returns a task if successful and NULL otherwise.
7573 static struct task_struct
*detach_one_task(struct lb_env
*env
)
7575 struct task_struct
*p
;
7577 lockdep_assert_held(&env
->src_rq
->lock
);
7579 list_for_each_entry_reverse(p
,
7580 &env
->src_rq
->cfs_tasks
, se
.group_node
) {
7581 if (!can_migrate_task(p
, env
))
7584 detach_task(p
, env
);
7587 * Right now, this is only the second place where
7588 * lb_gained[env->idle] is updated (other is detach_tasks)
7589 * so we can safely collect stats here rather than
7590 * inside detach_tasks().
7592 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
7598 static const unsigned int sched_nr_migrate_break
= 32;
7601 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7602 * busiest_rq, as part of a balancing operation within domain "sd".
7604 * Returns number of detached tasks if successful and 0 otherwise.
7606 static int detach_tasks(struct lb_env
*env
)
7608 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
7609 unsigned long util
, load
;
7610 struct task_struct
*p
;
7613 lockdep_assert_held(&env
->src_rq
->lock
);
7615 if (env
->imbalance
<= 0)
7618 while (!list_empty(tasks
)) {
7620 * We don't want to steal all, otherwise we may be treated likewise,
7621 * which could at worst lead to a livelock crash.
7623 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
7626 p
= list_last_entry(tasks
, struct task_struct
, se
.group_node
);
7629 /* We've more or less seen every task there is, call it quits */
7630 if (env
->loop
> env
->loop_max
)
7633 /* take a breather every nr_migrate tasks */
7634 if (env
->loop
> env
->loop_break
) {
7635 env
->loop_break
+= sched_nr_migrate_break
;
7636 env
->flags
|= LBF_NEED_BREAK
;
7640 if (!can_migrate_task(p
, env
))
7643 switch (env
->migration_type
) {
7646 * Depending of the number of CPUs and tasks and the
7647 * cgroup hierarchy, task_h_load() can return a null
7648 * value. Make sure that env->imbalance decreases
7649 * otherwise detach_tasks() will stop only after
7650 * detaching up to loop_max tasks.
7652 load
= max_t(unsigned long, task_h_load(p
), 1);
7654 if (sched_feat(LB_MIN
) &&
7655 load
< 16 && !env
->sd
->nr_balance_failed
)
7659 * Make sure that we don't migrate too much load.
7660 * Nevertheless, let relax the constraint if
7661 * scheduler fails to find a good waiting task to
7664 if (load
/2 > env
->imbalance
&&
7665 env
->sd
->nr_balance_failed
<= env
->sd
->cache_nice_tries
)
7668 env
->imbalance
-= load
;
7672 util
= task_util_est(p
);
7674 if (util
> env
->imbalance
)
7677 env
->imbalance
-= util
;
7684 case migrate_misfit
:
7685 /* This is not a misfit task */
7686 if (task_fits_capacity(p
, capacity_of(env
->src_cpu
)))
7693 detach_task(p
, env
);
7694 list_add(&p
->se
.group_node
, &env
->tasks
);
7698 #ifdef CONFIG_PREEMPTION
7700 * NEWIDLE balancing is a source of latency, so preemptible
7701 * kernels will stop after the first task is detached to minimize
7702 * the critical section.
7704 if (env
->idle
== CPU_NEWLY_IDLE
)
7709 * We only want to steal up to the prescribed amount of
7712 if (env
->imbalance
<= 0)
7717 list_move(&p
->se
.group_node
, tasks
);
7721 * Right now, this is one of only two places we collect this stat
7722 * so we can safely collect detach_one_task() stats here rather
7723 * than inside detach_one_task().
7725 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
7731 * attach_task() -- attach the task detached by detach_task() to its new rq.
7733 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
7735 lockdep_assert_held(&rq
->lock
);
7737 BUG_ON(task_rq(p
) != rq
);
7738 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
7739 check_preempt_curr(rq
, p
, 0);
7743 * attach_one_task() -- attaches the task returned from detach_one_task() to
7746 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
7751 update_rq_clock(rq
);
7757 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7760 static void attach_tasks(struct lb_env
*env
)
7762 struct list_head
*tasks
= &env
->tasks
;
7763 struct task_struct
*p
;
7766 rq_lock(env
->dst_rq
, &rf
);
7767 update_rq_clock(env
->dst_rq
);
7769 while (!list_empty(tasks
)) {
7770 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
7771 list_del_init(&p
->se
.group_node
);
7773 attach_task(env
->dst_rq
, p
);
7776 rq_unlock(env
->dst_rq
, &rf
);
7779 #ifdef CONFIG_NO_HZ_COMMON
7780 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
)
7782 if (cfs_rq
->avg
.load_avg
)
7785 if (cfs_rq
->avg
.util_avg
)
7791 static inline bool others_have_blocked(struct rq
*rq
)
7793 if (READ_ONCE(rq
->avg_rt
.util_avg
))
7796 if (READ_ONCE(rq
->avg_dl
.util_avg
))
7799 if (thermal_load_avg(rq
))
7802 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7803 if (READ_ONCE(rq
->avg_irq
.util_avg
))
7810 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
)
7812 rq
->last_blocked_load_update_tick
= jiffies
;
7815 rq
->has_blocked_load
= 0;
7818 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
) { return false; }
7819 static inline bool others_have_blocked(struct rq
*rq
) { return false; }
7820 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
) {}
7823 static bool __update_blocked_others(struct rq
*rq
, bool *done
)
7825 const struct sched_class
*curr_class
;
7826 u64 now
= rq_clock_pelt(rq
);
7827 unsigned long thermal_pressure
;
7831 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7832 * DL and IRQ signals have been updated before updating CFS.
7834 curr_class
= rq
->curr
->sched_class
;
7836 thermal_pressure
= arch_scale_thermal_pressure(cpu_of(rq
));
7838 decayed
= update_rt_rq_load_avg(now
, rq
, curr_class
== &rt_sched_class
) |
7839 update_dl_rq_load_avg(now
, rq
, curr_class
== &dl_sched_class
) |
7840 update_thermal_load_avg(rq_clock_thermal(rq
), rq
, thermal_pressure
) |
7841 update_irq_load_avg(rq
, 0);
7843 if (others_have_blocked(rq
))
7849 #ifdef CONFIG_FAIR_GROUP_SCHED
7851 static inline bool cfs_rq_is_decayed(struct cfs_rq
*cfs_rq
)
7853 if (cfs_rq
->load
.weight
)
7856 if (cfs_rq
->avg
.load_sum
)
7859 if (cfs_rq
->avg
.util_sum
)
7862 if (cfs_rq
->avg
.runnable_sum
)
7868 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
7870 struct cfs_rq
*cfs_rq
, *pos
;
7871 bool decayed
= false;
7872 int cpu
= cpu_of(rq
);
7875 * Iterates the task_group tree in a bottom up fashion, see
7876 * list_add_leaf_cfs_rq() for details.
7878 for_each_leaf_cfs_rq_safe(rq
, cfs_rq
, pos
) {
7879 struct sched_entity
*se
;
7881 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
)) {
7882 update_tg_load_avg(cfs_rq
, 0);
7884 if (cfs_rq
== &rq
->cfs
)
7888 /* Propagate pending load changes to the parent, if any: */
7889 se
= cfs_rq
->tg
->se
[cpu
];
7890 if (se
&& !skip_blocked_update(se
))
7891 update_load_avg(cfs_rq_of(se
), se
, 0);
7894 * There can be a lot of idle CPU cgroups. Don't let fully
7895 * decayed cfs_rqs linger on the list.
7897 if (cfs_rq_is_decayed(cfs_rq
))
7898 list_del_leaf_cfs_rq(cfs_rq
);
7900 /* Don't need periodic decay once load/util_avg are null */
7901 if (cfs_rq_has_blocked(cfs_rq
))
7909 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7910 * This needs to be done in a top-down fashion because the load of a child
7911 * group is a fraction of its parents load.
7913 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
7915 struct rq
*rq
= rq_of(cfs_rq
);
7916 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
7917 unsigned long now
= jiffies
;
7920 if (cfs_rq
->last_h_load_update
== now
)
7923 WRITE_ONCE(cfs_rq
->h_load_next
, NULL
);
7924 for_each_sched_entity(se
) {
7925 cfs_rq
= cfs_rq_of(se
);
7926 WRITE_ONCE(cfs_rq
->h_load_next
, se
);
7927 if (cfs_rq
->last_h_load_update
== now
)
7932 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
7933 cfs_rq
->last_h_load_update
= now
;
7936 while ((se
= READ_ONCE(cfs_rq
->h_load_next
)) != NULL
) {
7937 load
= cfs_rq
->h_load
;
7938 load
= div64_ul(load
* se
->avg
.load_avg
,
7939 cfs_rq_load_avg(cfs_rq
) + 1);
7940 cfs_rq
= group_cfs_rq(se
);
7941 cfs_rq
->h_load
= load
;
7942 cfs_rq
->last_h_load_update
= now
;
7946 static unsigned long task_h_load(struct task_struct
*p
)
7948 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
7950 update_cfs_rq_h_load(cfs_rq
);
7951 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
7952 cfs_rq_load_avg(cfs_rq
) + 1);
7955 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
7957 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
7960 decayed
= update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
);
7961 if (cfs_rq_has_blocked(cfs_rq
))
7967 static unsigned long task_h_load(struct task_struct
*p
)
7969 return p
->se
.avg
.load_avg
;
7973 static void update_blocked_averages(int cpu
)
7975 bool decayed
= false, done
= true;
7976 struct rq
*rq
= cpu_rq(cpu
);
7979 rq_lock_irqsave(rq
, &rf
);
7980 update_rq_clock(rq
);
7982 decayed
|= __update_blocked_others(rq
, &done
);
7983 decayed
|= __update_blocked_fair(rq
, &done
);
7985 update_blocked_load_status(rq
, !done
);
7987 cpufreq_update_util(rq
, 0);
7988 rq_unlock_irqrestore(rq
, &rf
);
7991 /********** Helpers for find_busiest_group ************************/
7994 * sg_lb_stats - stats of a sched_group required for load_balancing
7996 struct sg_lb_stats
{
7997 unsigned long avg_load
; /*Avg load across the CPUs of the group */
7998 unsigned long group_load
; /* Total load over the CPUs of the group */
7999 unsigned long group_capacity
;
8000 unsigned long group_util
; /* Total utilization over the CPUs of the group */
8001 unsigned long group_runnable
; /* Total runnable time over the CPUs of the group */
8002 unsigned int sum_nr_running
; /* Nr of tasks running in the group */
8003 unsigned int sum_h_nr_running
; /* Nr of CFS tasks running in the group */
8004 unsigned int idle_cpus
;
8005 unsigned int group_weight
;
8006 enum group_type group_type
;
8007 unsigned int group_asym_packing
; /* Tasks should be moved to preferred CPU */
8008 unsigned long group_misfit_task_load
; /* A CPU has a task too big for its capacity */
8009 #ifdef CONFIG_NUMA_BALANCING
8010 unsigned int nr_numa_running
;
8011 unsigned int nr_preferred_running
;
8016 * sd_lb_stats - Structure to store the statistics of a sched_domain
8017 * during load balancing.
8019 struct sd_lb_stats
{
8020 struct sched_group
*busiest
; /* Busiest group in this sd */
8021 struct sched_group
*local
; /* Local group in this sd */
8022 unsigned long total_load
; /* Total load of all groups in sd */
8023 unsigned long total_capacity
; /* Total capacity of all groups in sd */
8024 unsigned long avg_load
; /* Average load across all groups in sd */
8025 unsigned int prefer_sibling
; /* tasks should go to sibling first */
8027 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
8028 struct sg_lb_stats local_stat
; /* Statistics of the local group */
8031 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
8034 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8035 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8036 * We must however set busiest_stat::group_type and
8037 * busiest_stat::idle_cpus to the worst busiest group because
8038 * update_sd_pick_busiest() reads these before assignment.
8040 *sds
= (struct sd_lb_stats
){
8044 .total_capacity
= 0UL,
8046 .idle_cpus
= UINT_MAX
,
8047 .group_type
= group_has_spare
,
8052 static unsigned long scale_rt_capacity(struct sched_domain
*sd
, int cpu
)
8054 struct rq
*rq
= cpu_rq(cpu
);
8055 unsigned long max
= arch_scale_cpu_capacity(cpu
);
8056 unsigned long used
, free
;
8059 irq
= cpu_util_irq(rq
);
8061 if (unlikely(irq
>= max
))
8065 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8066 * (running and not running) with weights 0 and 1024 respectively.
8067 * avg_thermal.load_avg tracks thermal pressure and the weighted
8068 * average uses the actual delta max capacity(load).
8070 used
= READ_ONCE(rq
->avg_rt
.util_avg
);
8071 used
+= READ_ONCE(rq
->avg_dl
.util_avg
);
8072 used
+= thermal_load_avg(rq
);
8074 if (unlikely(used
>= max
))
8079 return scale_irq_capacity(free
, irq
, max
);
8082 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
8084 unsigned long capacity
= scale_rt_capacity(sd
, cpu
);
8085 struct sched_group
*sdg
= sd
->groups
;
8087 cpu_rq(cpu
)->cpu_capacity_orig
= arch_scale_cpu_capacity(cpu
);
8092 cpu_rq(cpu
)->cpu_capacity
= capacity
;
8093 sdg
->sgc
->capacity
= capacity
;
8094 sdg
->sgc
->min_capacity
= capacity
;
8095 sdg
->sgc
->max_capacity
= capacity
;
8098 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
8100 struct sched_domain
*child
= sd
->child
;
8101 struct sched_group
*group
, *sdg
= sd
->groups
;
8102 unsigned long capacity
, min_capacity
, max_capacity
;
8103 unsigned long interval
;
8105 interval
= msecs_to_jiffies(sd
->balance_interval
);
8106 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
8107 sdg
->sgc
->next_update
= jiffies
+ interval
;
8110 update_cpu_capacity(sd
, cpu
);
8115 min_capacity
= ULONG_MAX
;
8118 if (child
->flags
& SD_OVERLAP
) {
8120 * SD_OVERLAP domains cannot assume that child groups
8121 * span the current group.
8124 for_each_cpu(cpu
, sched_group_span(sdg
)) {
8125 unsigned long cpu_cap
= capacity_of(cpu
);
8127 capacity
+= cpu_cap
;
8128 min_capacity
= min(cpu_cap
, min_capacity
);
8129 max_capacity
= max(cpu_cap
, max_capacity
);
8133 * !SD_OVERLAP domains can assume that child groups
8134 * span the current group.
8137 group
= child
->groups
;
8139 struct sched_group_capacity
*sgc
= group
->sgc
;
8141 capacity
+= sgc
->capacity
;
8142 min_capacity
= min(sgc
->min_capacity
, min_capacity
);
8143 max_capacity
= max(sgc
->max_capacity
, max_capacity
);
8144 group
= group
->next
;
8145 } while (group
!= child
->groups
);
8148 sdg
->sgc
->capacity
= capacity
;
8149 sdg
->sgc
->min_capacity
= min_capacity
;
8150 sdg
->sgc
->max_capacity
= max_capacity
;
8154 * Check whether the capacity of the rq has been noticeably reduced by side
8155 * activity. The imbalance_pct is used for the threshold.
8156 * Return true is the capacity is reduced
8159 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
8161 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
8162 (rq
->cpu_capacity_orig
* 100));
8166 * Check whether a rq has a misfit task and if it looks like we can actually
8167 * help that task: we can migrate the task to a CPU of higher capacity, or
8168 * the task's current CPU is heavily pressured.
8170 static inline int check_misfit_status(struct rq
*rq
, struct sched_domain
*sd
)
8172 return rq
->misfit_task_load
&&
8173 (rq
->cpu_capacity_orig
< rq
->rd
->max_cpu_capacity
||
8174 check_cpu_capacity(rq
, sd
));
8178 * Group imbalance indicates (and tries to solve) the problem where balancing
8179 * groups is inadequate due to ->cpus_ptr constraints.
8181 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8182 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8185 * { 0 1 2 3 } { 4 5 6 7 }
8188 * If we were to balance group-wise we'd place two tasks in the first group and
8189 * two tasks in the second group. Clearly this is undesired as it will overload
8190 * cpu 3 and leave one of the CPUs in the second group unused.
8192 * The current solution to this issue is detecting the skew in the first group
8193 * by noticing the lower domain failed to reach balance and had difficulty
8194 * moving tasks due to affinity constraints.
8196 * When this is so detected; this group becomes a candidate for busiest; see
8197 * update_sd_pick_busiest(). And calculate_imbalance() and
8198 * find_busiest_group() avoid some of the usual balance conditions to allow it
8199 * to create an effective group imbalance.
8201 * This is a somewhat tricky proposition since the next run might not find the
8202 * group imbalance and decide the groups need to be balanced again. A most
8203 * subtle and fragile situation.
8206 static inline int sg_imbalanced(struct sched_group
*group
)
8208 return group
->sgc
->imbalance
;
8212 * group_has_capacity returns true if the group has spare capacity that could
8213 * be used by some tasks.
8214 * We consider that a group has spare capacity if the * number of task is
8215 * smaller than the number of CPUs or if the utilization is lower than the
8216 * available capacity for CFS tasks.
8217 * For the latter, we use a threshold to stabilize the state, to take into
8218 * account the variance of the tasks' load and to return true if the available
8219 * capacity in meaningful for the load balancer.
8220 * As an example, an available capacity of 1% can appear but it doesn't make
8221 * any benefit for the load balance.
8224 group_has_capacity(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
8226 if (sgs
->sum_nr_running
< sgs
->group_weight
)
8229 if ((sgs
->group_capacity
* imbalance_pct
) <
8230 (sgs
->group_runnable
* 100))
8233 if ((sgs
->group_capacity
* 100) >
8234 (sgs
->group_util
* imbalance_pct
))
8241 * group_is_overloaded returns true if the group has more tasks than it can
8243 * group_is_overloaded is not equals to !group_has_capacity because a group
8244 * with the exact right number of tasks, has no more spare capacity but is not
8245 * overloaded so both group_has_capacity and group_is_overloaded return
8249 group_is_overloaded(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
8251 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
8254 if ((sgs
->group_capacity
* 100) <
8255 (sgs
->group_util
* imbalance_pct
))
8258 if ((sgs
->group_capacity
* imbalance_pct
) <
8259 (sgs
->group_runnable
* 100))
8266 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8267 * per-CPU capacity than sched_group ref.
8270 group_smaller_min_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
8272 return fits_capacity(sg
->sgc
->min_capacity
, ref
->sgc
->min_capacity
);
8276 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8277 * per-CPU capacity_orig than sched_group ref.
8280 group_smaller_max_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
8282 return fits_capacity(sg
->sgc
->max_capacity
, ref
->sgc
->max_capacity
);
8286 group_type
group_classify(unsigned int imbalance_pct
,
8287 struct sched_group
*group
,
8288 struct sg_lb_stats
*sgs
)
8290 if (group_is_overloaded(imbalance_pct
, sgs
))
8291 return group_overloaded
;
8293 if (sg_imbalanced(group
))
8294 return group_imbalanced
;
8296 if (sgs
->group_asym_packing
)
8297 return group_asym_packing
;
8299 if (sgs
->group_misfit_task_load
)
8300 return group_misfit_task
;
8302 if (!group_has_capacity(imbalance_pct
, sgs
))
8303 return group_fully_busy
;
8305 return group_has_spare
;
8308 static bool update_nohz_stats(struct rq
*rq
, bool force
)
8310 #ifdef CONFIG_NO_HZ_COMMON
8311 unsigned int cpu
= rq
->cpu
;
8313 if (!rq
->has_blocked_load
)
8316 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
8319 if (!force
&& !time_after(jiffies
, rq
->last_blocked_load_update_tick
))
8322 update_blocked_averages(cpu
);
8324 return rq
->has_blocked_load
;
8331 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8332 * @env: The load balancing environment.
8333 * @group: sched_group whose statistics are to be updated.
8334 * @sgs: variable to hold the statistics for this group.
8335 * @sg_status: Holds flag indicating the status of the sched_group
8337 static inline void update_sg_lb_stats(struct lb_env
*env
,
8338 struct sched_group
*group
,
8339 struct sg_lb_stats
*sgs
,
8342 int i
, nr_running
, local_group
;
8344 memset(sgs
, 0, sizeof(*sgs
));
8346 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(group
));
8348 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
8349 struct rq
*rq
= cpu_rq(i
);
8351 if ((env
->flags
& LBF_NOHZ_STATS
) && update_nohz_stats(rq
, false))
8352 env
->flags
|= LBF_NOHZ_AGAIN
;
8354 sgs
->group_load
+= cpu_load(rq
);
8355 sgs
->group_util
+= cpu_util(i
);
8356 sgs
->group_runnable
+= cpu_runnable(rq
);
8357 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
;
8359 nr_running
= rq
->nr_running
;
8360 sgs
->sum_nr_running
+= nr_running
;
8363 *sg_status
|= SG_OVERLOAD
;
8365 if (cpu_overutilized(i
))
8366 *sg_status
|= SG_OVERUTILIZED
;
8368 #ifdef CONFIG_NUMA_BALANCING
8369 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
8370 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
8373 * No need to call idle_cpu() if nr_running is not 0
8375 if (!nr_running
&& idle_cpu(i
)) {
8377 /* Idle cpu can't have misfit task */
8384 /* Check for a misfit task on the cpu */
8385 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8386 sgs
->group_misfit_task_load
< rq
->misfit_task_load
) {
8387 sgs
->group_misfit_task_load
= rq
->misfit_task_load
;
8388 *sg_status
|= SG_OVERLOAD
;
8392 /* Check if dst CPU is idle and preferred to this group */
8393 if (env
->sd
->flags
& SD_ASYM_PACKING
&&
8394 env
->idle
!= CPU_NOT_IDLE
&&
8395 sgs
->sum_h_nr_running
&&
8396 sched_asym_prefer(env
->dst_cpu
, group
->asym_prefer_cpu
)) {
8397 sgs
->group_asym_packing
= 1;
8400 sgs
->group_capacity
= group
->sgc
->capacity
;
8402 sgs
->group_weight
= group
->group_weight
;
8404 sgs
->group_type
= group_classify(env
->sd
->imbalance_pct
, group
, sgs
);
8406 /* Computing avg_load makes sense only when group is overloaded */
8407 if (sgs
->group_type
== group_overloaded
)
8408 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8409 sgs
->group_capacity
;
8413 * update_sd_pick_busiest - return 1 on busiest group
8414 * @env: The load balancing environment.
8415 * @sds: sched_domain statistics
8416 * @sg: sched_group candidate to be checked for being the busiest
8417 * @sgs: sched_group statistics
8419 * Determine if @sg is a busier group than the previously selected
8422 * Return: %true if @sg is a busier group than the previously selected
8423 * busiest group. %false otherwise.
8425 static bool update_sd_pick_busiest(struct lb_env
*env
,
8426 struct sd_lb_stats
*sds
,
8427 struct sched_group
*sg
,
8428 struct sg_lb_stats
*sgs
)
8430 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
8432 /* Make sure that there is at least one task to pull */
8433 if (!sgs
->sum_h_nr_running
)
8437 * Don't try to pull misfit tasks we can't help.
8438 * We can use max_capacity here as reduction in capacity on some
8439 * CPUs in the group should either be possible to resolve
8440 * internally or be covered by avg_load imbalance (eventually).
8442 if (sgs
->group_type
== group_misfit_task
&&
8443 (!group_smaller_max_cpu_capacity(sg
, sds
->local
) ||
8444 sds
->local_stat
.group_type
!= group_has_spare
))
8447 if (sgs
->group_type
> busiest
->group_type
)
8450 if (sgs
->group_type
< busiest
->group_type
)
8454 * The candidate and the current busiest group are the same type of
8455 * group. Let check which one is the busiest according to the type.
8458 switch (sgs
->group_type
) {
8459 case group_overloaded
:
8460 /* Select the overloaded group with highest avg_load. */
8461 if (sgs
->avg_load
<= busiest
->avg_load
)
8465 case group_imbalanced
:
8467 * Select the 1st imbalanced group as we don't have any way to
8468 * choose one more than another.
8472 case group_asym_packing
:
8473 /* Prefer to move from lowest priority CPU's work */
8474 if (sched_asym_prefer(sg
->asym_prefer_cpu
, sds
->busiest
->asym_prefer_cpu
))
8478 case group_misfit_task
:
8480 * If we have more than one misfit sg go with the biggest
8483 if (sgs
->group_misfit_task_load
< busiest
->group_misfit_task_load
)
8487 case group_fully_busy
:
8489 * Select the fully busy group with highest avg_load. In
8490 * theory, there is no need to pull task from such kind of
8491 * group because tasks have all compute capacity that they need
8492 * but we can still improve the overall throughput by reducing
8493 * contention when accessing shared HW resources.
8495 * XXX for now avg_load is not computed and always 0 so we
8496 * select the 1st one.
8498 if (sgs
->avg_load
<= busiest
->avg_load
)
8502 case group_has_spare
:
8504 * Select not overloaded group with lowest number of idle cpus
8505 * and highest number of running tasks. We could also compare
8506 * the spare capacity which is more stable but it can end up
8507 * that the group has less spare capacity but finally more idle
8508 * CPUs which means less opportunity to pull tasks.
8510 if (sgs
->idle_cpus
> busiest
->idle_cpus
)
8512 else if ((sgs
->idle_cpus
== busiest
->idle_cpus
) &&
8513 (sgs
->sum_nr_running
<= busiest
->sum_nr_running
))
8520 * Candidate sg has no more than one task per CPU and has higher
8521 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8522 * throughput. Maximize throughput, power/energy consequences are not
8525 if ((env
->sd
->flags
& SD_ASYM_CPUCAPACITY
) &&
8526 (sgs
->group_type
<= group_fully_busy
) &&
8527 (group_smaller_min_cpu_capacity(sds
->local
, sg
)))
8533 #ifdef CONFIG_NUMA_BALANCING
8534 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8536 if (sgs
->sum_h_nr_running
> sgs
->nr_numa_running
)
8538 if (sgs
->sum_h_nr_running
> sgs
->nr_preferred_running
)
8543 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8545 if (rq
->nr_running
> rq
->nr_numa_running
)
8547 if (rq
->nr_running
> rq
->nr_preferred_running
)
8552 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8557 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8561 #endif /* CONFIG_NUMA_BALANCING */
8567 * task_running_on_cpu - return 1 if @p is running on @cpu.
8570 static unsigned int task_running_on_cpu(int cpu
, struct task_struct
*p
)
8572 /* Task has no contribution or is new */
8573 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
8576 if (task_on_rq_queued(p
))
8583 * idle_cpu_without - would a given CPU be idle without p ?
8584 * @cpu: the processor on which idleness is tested.
8585 * @p: task which should be ignored.
8587 * Return: 1 if the CPU would be idle. 0 otherwise.
8589 static int idle_cpu_without(int cpu
, struct task_struct
*p
)
8591 struct rq
*rq
= cpu_rq(cpu
);
8593 if (rq
->curr
!= rq
->idle
&& rq
->curr
!= p
)
8597 * rq->nr_running can't be used but an updated version without the
8598 * impact of p on cpu must be used instead. The updated nr_running
8599 * be computed and tested before calling idle_cpu_without().
8603 if (rq
->ttwu_pending
)
8611 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8612 * @sd: The sched_domain level to look for idlest group.
8613 * @group: sched_group whose statistics are to be updated.
8614 * @sgs: variable to hold the statistics for this group.
8615 * @p: The task for which we look for the idlest group/CPU.
8617 static inline void update_sg_wakeup_stats(struct sched_domain
*sd
,
8618 struct sched_group
*group
,
8619 struct sg_lb_stats
*sgs
,
8620 struct task_struct
*p
)
8624 memset(sgs
, 0, sizeof(*sgs
));
8626 for_each_cpu(i
, sched_group_span(group
)) {
8627 struct rq
*rq
= cpu_rq(i
);
8630 sgs
->group_load
+= cpu_load_without(rq
, p
);
8631 sgs
->group_util
+= cpu_util_without(i
, p
);
8632 sgs
->group_runnable
+= cpu_runnable_without(rq
, p
);
8633 local
= task_running_on_cpu(i
, p
);
8634 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
- local
;
8636 nr_running
= rq
->nr_running
- local
;
8637 sgs
->sum_nr_running
+= nr_running
;
8640 * No need to call idle_cpu_without() if nr_running is not 0
8642 if (!nr_running
&& idle_cpu_without(i
, p
))
8647 /* Check if task fits in the group */
8648 if (sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8649 !task_fits_capacity(p
, group
->sgc
->max_capacity
)) {
8650 sgs
->group_misfit_task_load
= 1;
8653 sgs
->group_capacity
= group
->sgc
->capacity
;
8655 sgs
->group_weight
= group
->group_weight
;
8657 sgs
->group_type
= group_classify(sd
->imbalance_pct
, group
, sgs
);
8660 * Computing avg_load makes sense only when group is fully busy or
8663 if (sgs
->group_type
== group_fully_busy
||
8664 sgs
->group_type
== group_overloaded
)
8665 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8666 sgs
->group_capacity
;
8669 static bool update_pick_idlest(struct sched_group
*idlest
,
8670 struct sg_lb_stats
*idlest_sgs
,
8671 struct sched_group
*group
,
8672 struct sg_lb_stats
*sgs
)
8674 if (sgs
->group_type
< idlest_sgs
->group_type
)
8677 if (sgs
->group_type
> idlest_sgs
->group_type
)
8681 * The candidate and the current idlest group are the same type of
8682 * group. Let check which one is the idlest according to the type.
8685 switch (sgs
->group_type
) {
8686 case group_overloaded
:
8687 case group_fully_busy
:
8688 /* Select the group with lowest avg_load. */
8689 if (idlest_sgs
->avg_load
<= sgs
->avg_load
)
8693 case group_imbalanced
:
8694 case group_asym_packing
:
8695 /* Those types are not used in the slow wakeup path */
8698 case group_misfit_task
:
8699 /* Select group with the highest max capacity */
8700 if (idlest
->sgc
->max_capacity
>= group
->sgc
->max_capacity
)
8704 case group_has_spare
:
8705 /* Select group with most idle CPUs */
8706 if (idlest_sgs
->idle_cpus
>= sgs
->idle_cpus
)
8715 * find_idlest_group() finds and returns the least busy CPU group within the
8718 * Assumes p is allowed on at least one CPU in sd.
8720 static struct sched_group
*
8721 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
8723 struct sched_group
*idlest
= NULL
, *local
= NULL
, *group
= sd
->groups
;
8724 struct sg_lb_stats local_sgs
, tmp_sgs
;
8725 struct sg_lb_stats
*sgs
;
8726 unsigned long imbalance
;
8727 struct sg_lb_stats idlest_sgs
= {
8728 .avg_load
= UINT_MAX
,
8729 .group_type
= group_overloaded
,
8732 imbalance
= scale_load_down(NICE_0_LOAD
) *
8733 (sd
->imbalance_pct
-100) / 100;
8738 /* Skip over this group if it has no CPUs allowed */
8739 if (!cpumask_intersects(sched_group_span(group
),
8743 local_group
= cpumask_test_cpu(this_cpu
,
8744 sched_group_span(group
));
8753 update_sg_wakeup_stats(sd
, group
, sgs
, p
);
8755 if (!local_group
&& update_pick_idlest(idlest
, &idlest_sgs
, group
, sgs
)) {
8760 } while (group
= group
->next
, group
!= sd
->groups
);
8763 /* There is no idlest group to push tasks to */
8767 /* The local group has been skipped because of CPU affinity */
8772 * If the local group is idler than the selected idlest group
8773 * don't try and push the task.
8775 if (local_sgs
.group_type
< idlest_sgs
.group_type
)
8779 * If the local group is busier than the selected idlest group
8780 * try and push the task.
8782 if (local_sgs
.group_type
> idlest_sgs
.group_type
)
8785 switch (local_sgs
.group_type
) {
8786 case group_overloaded
:
8787 case group_fully_busy
:
8789 * When comparing groups across NUMA domains, it's possible for
8790 * the local domain to be very lightly loaded relative to the
8791 * remote domains but "imbalance" skews the comparison making
8792 * remote CPUs look much more favourable. When considering
8793 * cross-domain, add imbalance to the load on the remote node
8794 * and consider staying local.
8797 if ((sd
->flags
& SD_NUMA
) &&
8798 ((idlest_sgs
.avg_load
+ imbalance
) >= local_sgs
.avg_load
))
8802 * If the local group is less loaded than the selected
8803 * idlest group don't try and push any tasks.
8805 if (idlest_sgs
.avg_load
>= (local_sgs
.avg_load
+ imbalance
))
8808 if (100 * local_sgs
.avg_load
<= sd
->imbalance_pct
* idlest_sgs
.avg_load
)
8812 case group_imbalanced
:
8813 case group_asym_packing
:
8814 /* Those type are not used in the slow wakeup path */
8817 case group_misfit_task
:
8818 /* Select group with the highest max capacity */
8819 if (local
->sgc
->max_capacity
>= idlest
->sgc
->max_capacity
)
8823 case group_has_spare
:
8824 if (sd
->flags
& SD_NUMA
) {
8825 #ifdef CONFIG_NUMA_BALANCING
8828 * If there is spare capacity at NUMA, try to select
8829 * the preferred node
8831 if (cpu_to_node(this_cpu
) == p
->numa_preferred_nid
)
8834 idlest_cpu
= cpumask_first(sched_group_span(idlest
));
8835 if (cpu_to_node(idlest_cpu
) == p
->numa_preferred_nid
)
8839 * Otherwise, keep the task on this node to stay close
8840 * its wakeup source and improve locality. If there is
8841 * a real need of migration, periodic load balance will
8844 if (local_sgs
.idle_cpus
)
8849 * Select group with highest number of idle CPUs. We could also
8850 * compare the utilization which is more stable but it can end
8851 * up that the group has less spare capacity but finally more
8852 * idle CPUs which means more opportunity to run task.
8854 if (local_sgs
.idle_cpus
>= idlest_sgs
.idle_cpus
)
8863 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8864 * @env: The load balancing environment.
8865 * @sds: variable to hold the statistics for this sched_domain.
8868 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8870 struct sched_domain
*child
= env
->sd
->child
;
8871 struct sched_group
*sg
= env
->sd
->groups
;
8872 struct sg_lb_stats
*local
= &sds
->local_stat
;
8873 struct sg_lb_stats tmp_sgs
;
8876 #ifdef CONFIG_NO_HZ_COMMON
8877 if (env
->idle
== CPU_NEWLY_IDLE
&& READ_ONCE(nohz
.has_blocked
))
8878 env
->flags
|= LBF_NOHZ_STATS
;
8882 struct sg_lb_stats
*sgs
= &tmp_sgs
;
8885 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(sg
));
8890 if (env
->idle
!= CPU_NEWLY_IDLE
||
8891 time_after_eq(jiffies
, sg
->sgc
->next_update
))
8892 update_group_capacity(env
->sd
, env
->dst_cpu
);
8895 update_sg_lb_stats(env
, sg
, sgs
, &sg_status
);
8901 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
8903 sds
->busiest_stat
= *sgs
;
8907 /* Now, start updating sd_lb_stats */
8908 sds
->total_load
+= sgs
->group_load
;
8909 sds
->total_capacity
+= sgs
->group_capacity
;
8912 } while (sg
!= env
->sd
->groups
);
8914 /* Tag domain that child domain prefers tasks go to siblings first */
8915 sds
->prefer_sibling
= child
&& child
->flags
& SD_PREFER_SIBLING
;
8917 #ifdef CONFIG_NO_HZ_COMMON
8918 if ((env
->flags
& LBF_NOHZ_AGAIN
) &&
8919 cpumask_subset(nohz
.idle_cpus_mask
, sched_domain_span(env
->sd
))) {
8921 WRITE_ONCE(nohz
.next_blocked
,
8922 jiffies
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
8926 if (env
->sd
->flags
& SD_NUMA
)
8927 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
8929 if (!env
->sd
->parent
) {
8930 struct root_domain
*rd
= env
->dst_rq
->rd
;
8932 /* update overload indicator if we are at root domain */
8933 WRITE_ONCE(rd
->overload
, sg_status
& SG_OVERLOAD
);
8935 /* Update over-utilization (tipping point, U >= 0) indicator */
8936 WRITE_ONCE(rd
->overutilized
, sg_status
& SG_OVERUTILIZED
);
8937 trace_sched_overutilized_tp(rd
, sg_status
& SG_OVERUTILIZED
);
8938 } else if (sg_status
& SG_OVERUTILIZED
) {
8939 struct root_domain
*rd
= env
->dst_rq
->rd
;
8941 WRITE_ONCE(rd
->overutilized
, SG_OVERUTILIZED
);
8942 trace_sched_overutilized_tp(rd
, SG_OVERUTILIZED
);
8946 static inline long adjust_numa_imbalance(int imbalance
, int src_nr_running
)
8948 unsigned int imbalance_min
;
8951 * Allow a small imbalance based on a simple pair of communicating
8952 * tasks that remain local when the source domain is almost idle.
8955 if (src_nr_running
<= imbalance_min
)
8962 * calculate_imbalance - Calculate the amount of imbalance present within the
8963 * groups of a given sched_domain during load balance.
8964 * @env: load balance environment
8965 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8967 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8969 struct sg_lb_stats
*local
, *busiest
;
8971 local
= &sds
->local_stat
;
8972 busiest
= &sds
->busiest_stat
;
8974 if (busiest
->group_type
== group_misfit_task
) {
8975 /* Set imbalance to allow misfit tasks to be balanced. */
8976 env
->migration_type
= migrate_misfit
;
8981 if (busiest
->group_type
== group_asym_packing
) {
8983 * In case of asym capacity, we will try to migrate all load to
8984 * the preferred CPU.
8986 env
->migration_type
= migrate_task
;
8987 env
->imbalance
= busiest
->sum_h_nr_running
;
8991 if (busiest
->group_type
== group_imbalanced
) {
8993 * In the group_imb case we cannot rely on group-wide averages
8994 * to ensure CPU-load equilibrium, try to move any task to fix
8995 * the imbalance. The next load balance will take care of
8996 * balancing back the system.
8998 env
->migration_type
= migrate_task
;
9004 * Try to use spare capacity of local group without overloading it or
9007 if (local
->group_type
== group_has_spare
) {
9008 if (busiest
->group_type
> group_fully_busy
) {
9010 * If busiest is overloaded, try to fill spare
9011 * capacity. This might end up creating spare capacity
9012 * in busiest or busiest still being overloaded but
9013 * there is no simple way to directly compute the
9014 * amount of load to migrate in order to balance the
9017 env
->migration_type
= migrate_util
;
9018 env
->imbalance
= max(local
->group_capacity
, local
->group_util
) -
9022 * In some cases, the group's utilization is max or even
9023 * higher than capacity because of migrations but the
9024 * local CPU is (newly) idle. There is at least one
9025 * waiting task in this overloaded busiest group. Let's
9028 if (env
->idle
!= CPU_NOT_IDLE
&& env
->imbalance
== 0) {
9029 env
->migration_type
= migrate_task
;
9036 if (busiest
->group_weight
== 1 || sds
->prefer_sibling
) {
9037 unsigned int nr_diff
= busiest
->sum_nr_running
;
9039 * When prefer sibling, evenly spread running tasks on
9042 env
->migration_type
= migrate_task
;
9043 lsub_positive(&nr_diff
, local
->sum_nr_running
);
9044 env
->imbalance
= nr_diff
>> 1;
9048 * If there is no overload, we just want to even the number of
9051 env
->migration_type
= migrate_task
;
9052 env
->imbalance
= max_t(long, 0, (local
->idle_cpus
-
9053 busiest
->idle_cpus
) >> 1);
9056 /* Consider allowing a small imbalance between NUMA groups */
9057 if (env
->sd
->flags
& SD_NUMA
)
9058 env
->imbalance
= adjust_numa_imbalance(env
->imbalance
,
9059 busiest
->sum_nr_running
);
9065 * Local is fully busy but has to take more load to relieve the
9068 if (local
->group_type
< group_overloaded
) {
9070 * Local will become overloaded so the avg_load metrics are
9074 local
->avg_load
= (local
->group_load
* SCHED_CAPACITY_SCALE
) /
9075 local
->group_capacity
;
9077 sds
->avg_load
= (sds
->total_load
* SCHED_CAPACITY_SCALE
) /
9078 sds
->total_capacity
;
9080 * If the local group is more loaded than the selected
9081 * busiest group don't try to pull any tasks.
9083 if (local
->avg_load
>= busiest
->avg_load
) {
9090 * Both group are or will become overloaded and we're trying to get all
9091 * the CPUs to the average_load, so we don't want to push ourselves
9092 * above the average load, nor do we wish to reduce the max loaded CPU
9093 * below the average load. At the same time, we also don't want to
9094 * reduce the group load below the group capacity. Thus we look for
9095 * the minimum possible imbalance.
9097 env
->migration_type
= migrate_load
;
9098 env
->imbalance
= min(
9099 (busiest
->avg_load
- sds
->avg_load
) * busiest
->group_capacity
,
9100 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
9101 ) / SCHED_CAPACITY_SCALE
;
9104 /******* find_busiest_group() helpers end here *********************/
9107 * Decision matrix according to the local and busiest group type:
9109 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9110 * has_spare nr_idle balanced N/A N/A balanced balanced
9111 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9112 * misfit_task force N/A N/A N/A force force
9113 * asym_packing force force N/A N/A force force
9114 * imbalanced force force N/A N/A force force
9115 * overloaded force force N/A N/A force avg_load
9117 * N/A : Not Applicable because already filtered while updating
9119 * balanced : The system is balanced for these 2 groups.
9120 * force : Calculate the imbalance as load migration is probably needed.
9121 * avg_load : Only if imbalance is significant enough.
9122 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9123 * different in groups.
9127 * find_busiest_group - Returns the busiest group within the sched_domain
9128 * if there is an imbalance.
9130 * Also calculates the amount of runnable load which should be moved
9131 * to restore balance.
9133 * @env: The load balancing environment.
9135 * Return: - The busiest group if imbalance exists.
9137 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
9139 struct sg_lb_stats
*local
, *busiest
;
9140 struct sd_lb_stats sds
;
9142 init_sd_lb_stats(&sds
);
9145 * Compute the various statistics relevant for load balancing at
9148 update_sd_lb_stats(env
, &sds
);
9150 if (sched_energy_enabled()) {
9151 struct root_domain
*rd
= env
->dst_rq
->rd
;
9153 if (rcu_dereference(rd
->pd
) && !READ_ONCE(rd
->overutilized
))
9157 local
= &sds
.local_stat
;
9158 busiest
= &sds
.busiest_stat
;
9160 /* There is no busy sibling group to pull tasks from */
9164 /* Misfit tasks should be dealt with regardless of the avg load */
9165 if (busiest
->group_type
== group_misfit_task
)
9168 /* ASYM feature bypasses nice load balance check */
9169 if (busiest
->group_type
== group_asym_packing
)
9173 * If the busiest group is imbalanced the below checks don't
9174 * work because they assume all things are equal, which typically
9175 * isn't true due to cpus_ptr constraints and the like.
9177 if (busiest
->group_type
== group_imbalanced
)
9181 * If the local group is busier than the selected busiest group
9182 * don't try and pull any tasks.
9184 if (local
->group_type
> busiest
->group_type
)
9188 * When groups are overloaded, use the avg_load to ensure fairness
9191 if (local
->group_type
== group_overloaded
) {
9193 * If the local group is more loaded than the selected
9194 * busiest group don't try to pull any tasks.
9196 if (local
->avg_load
>= busiest
->avg_load
)
9199 /* XXX broken for overlapping NUMA groups */
9200 sds
.avg_load
= (sds
.total_load
* SCHED_CAPACITY_SCALE
) /
9204 * Don't pull any tasks if this group is already above the
9205 * domain average load.
9207 if (local
->avg_load
>= sds
.avg_load
)
9211 * If the busiest group is more loaded, use imbalance_pct to be
9214 if (100 * busiest
->avg_load
<=
9215 env
->sd
->imbalance_pct
* local
->avg_load
)
9219 /* Try to move all excess tasks to child's sibling domain */
9220 if (sds
.prefer_sibling
&& local
->group_type
== group_has_spare
&&
9221 busiest
->sum_nr_running
> local
->sum_nr_running
+ 1)
9224 if (busiest
->group_type
!= group_overloaded
) {
9225 if (env
->idle
== CPU_NOT_IDLE
)
9227 * If the busiest group is not overloaded (and as a
9228 * result the local one too) but this CPU is already
9229 * busy, let another idle CPU try to pull task.
9233 if (busiest
->group_weight
> 1 &&
9234 local
->idle_cpus
<= (busiest
->idle_cpus
+ 1))
9236 * If the busiest group is not overloaded
9237 * and there is no imbalance between this and busiest
9238 * group wrt idle CPUs, it is balanced. The imbalance
9239 * becomes significant if the diff is greater than 1
9240 * otherwise we might end up to just move the imbalance
9241 * on another group. Of course this applies only if
9242 * there is more than 1 CPU per group.
9246 if (busiest
->sum_h_nr_running
== 1)
9248 * busiest doesn't have any tasks waiting to run
9254 /* Looks like there is an imbalance. Compute it */
9255 calculate_imbalance(env
, &sds
);
9256 return env
->imbalance
? sds
.busiest
: NULL
;
9264 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9266 static struct rq
*find_busiest_queue(struct lb_env
*env
,
9267 struct sched_group
*group
)
9269 struct rq
*busiest
= NULL
, *rq
;
9270 unsigned long busiest_util
= 0, busiest_load
= 0, busiest_capacity
= 1;
9271 unsigned int busiest_nr
= 0;
9274 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
9275 unsigned long capacity
, load
, util
;
9276 unsigned int nr_running
;
9280 rt
= fbq_classify_rq(rq
);
9283 * We classify groups/runqueues into three groups:
9284 * - regular: there are !numa tasks
9285 * - remote: there are numa tasks that run on the 'wrong' node
9286 * - all: there is no distinction
9288 * In order to avoid migrating ideally placed numa tasks,
9289 * ignore those when there's better options.
9291 * If we ignore the actual busiest queue to migrate another
9292 * task, the next balance pass can still reduce the busiest
9293 * queue by moving tasks around inside the node.
9295 * If we cannot move enough load due to this classification
9296 * the next pass will adjust the group classification and
9297 * allow migration of more tasks.
9299 * Both cases only affect the total convergence complexity.
9301 if (rt
> env
->fbq_type
)
9304 capacity
= capacity_of(i
);
9305 nr_running
= rq
->cfs
.h_nr_running
;
9308 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9309 * eventually lead to active_balancing high->low capacity.
9310 * Higher per-CPU capacity is considered better than balancing
9313 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
9314 capacity_of(env
->dst_cpu
) < capacity
&&
9318 switch (env
->migration_type
) {
9321 * When comparing with load imbalance, use cpu_load()
9322 * which is not scaled with the CPU capacity.
9324 load
= cpu_load(rq
);
9326 if (nr_running
== 1 && load
> env
->imbalance
&&
9327 !check_cpu_capacity(rq
, env
->sd
))
9331 * For the load comparisons with the other CPUs,
9332 * consider the cpu_load() scaled with the CPU
9333 * capacity, so that the load can be moved away
9334 * from the CPU that is potentially running at a
9337 * Thus we're looking for max(load_i / capacity_i),
9338 * crosswise multiplication to rid ourselves of the
9339 * division works out to:
9340 * load_i * capacity_j > load_j * capacity_i;
9341 * where j is our previous maximum.
9343 if (load
* busiest_capacity
> busiest_load
* capacity
) {
9344 busiest_load
= load
;
9345 busiest_capacity
= capacity
;
9351 util
= cpu_util(cpu_of(rq
));
9354 * Don't try to pull utilization from a CPU with one
9355 * running task. Whatever its utilization, we will fail
9358 if (nr_running
<= 1)
9361 if (busiest_util
< util
) {
9362 busiest_util
= util
;
9368 if (busiest_nr
< nr_running
) {
9369 busiest_nr
= nr_running
;
9374 case migrate_misfit
:
9376 * For ASYM_CPUCAPACITY domains with misfit tasks we
9377 * simply seek the "biggest" misfit task.
9379 if (rq
->misfit_task_load
> busiest_load
) {
9380 busiest_load
= rq
->misfit_task_load
;
9393 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9394 * so long as it is large enough.
9396 #define MAX_PINNED_INTERVAL 512
9399 asym_active_balance(struct lb_env
*env
)
9402 * ASYM_PACKING needs to force migrate tasks from busy but
9403 * lower priority CPUs in order to pack all tasks in the
9404 * highest priority CPUs.
9406 return env
->idle
!= CPU_NOT_IDLE
&& (env
->sd
->flags
& SD_ASYM_PACKING
) &&
9407 sched_asym_prefer(env
->dst_cpu
, env
->src_cpu
);
9411 voluntary_active_balance(struct lb_env
*env
)
9413 struct sched_domain
*sd
= env
->sd
;
9415 if (asym_active_balance(env
))
9419 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9420 * It's worth migrating the task if the src_cpu's capacity is reduced
9421 * because of other sched_class or IRQs if more capacity stays
9422 * available on dst_cpu.
9424 if ((env
->idle
!= CPU_NOT_IDLE
) &&
9425 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
9426 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
9427 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
9431 if (env
->migration_type
== migrate_misfit
)
9437 static int need_active_balance(struct lb_env
*env
)
9439 struct sched_domain
*sd
= env
->sd
;
9441 if (voluntary_active_balance(env
))
9444 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
9447 static int active_load_balance_cpu_stop(void *data
);
9449 static int should_we_balance(struct lb_env
*env
)
9451 struct sched_group
*sg
= env
->sd
->groups
;
9455 * Ensure the balancing environment is consistent; can happen
9456 * when the softirq triggers 'during' hotplug.
9458 if (!cpumask_test_cpu(env
->dst_cpu
, env
->cpus
))
9462 * In the newly idle case, we will allow all the CPUs
9463 * to do the newly idle load balance.
9465 if (env
->idle
== CPU_NEWLY_IDLE
)
9468 /* Try to find first idle CPU */
9469 for_each_cpu_and(cpu
, group_balance_mask(sg
), env
->cpus
) {
9473 /* Are we the first idle CPU? */
9474 return cpu
== env
->dst_cpu
;
9477 /* Are we the first CPU of this group ? */
9478 return group_balance_cpu(sg
) == env
->dst_cpu
;
9482 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9483 * tasks if there is an imbalance.
9485 static int load_balance(int this_cpu
, struct rq
*this_rq
,
9486 struct sched_domain
*sd
, enum cpu_idle_type idle
,
9487 int *continue_balancing
)
9489 int ld_moved
, cur_ld_moved
, active_balance
= 0;
9490 struct sched_domain
*sd_parent
= sd
->parent
;
9491 struct sched_group
*group
;
9494 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
9496 struct lb_env env
= {
9498 .dst_cpu
= this_cpu
,
9500 .dst_grpmask
= sched_group_span(sd
->groups
),
9502 .loop_break
= sched_nr_migrate_break
,
9505 .tasks
= LIST_HEAD_INIT(env
.tasks
),
9508 cpumask_and(cpus
, sched_domain_span(sd
), cpu_active_mask
);
9510 schedstat_inc(sd
->lb_count
[idle
]);
9513 if (!should_we_balance(&env
)) {
9514 *continue_balancing
= 0;
9518 group
= find_busiest_group(&env
);
9520 schedstat_inc(sd
->lb_nobusyg
[idle
]);
9524 busiest
= find_busiest_queue(&env
, group
);
9526 schedstat_inc(sd
->lb_nobusyq
[idle
]);
9530 BUG_ON(busiest
== env
.dst_rq
);
9532 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
9534 env
.src_cpu
= busiest
->cpu
;
9535 env
.src_rq
= busiest
;
9538 if (busiest
->nr_running
> 1) {
9540 * Attempt to move tasks. If find_busiest_group has found
9541 * an imbalance but busiest->nr_running <= 1, the group is
9542 * still unbalanced. ld_moved simply stays zero, so it is
9543 * correctly treated as an imbalance.
9545 env
.flags
|= LBF_ALL_PINNED
;
9546 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
9549 rq_lock_irqsave(busiest
, &rf
);
9550 update_rq_clock(busiest
);
9553 * cur_ld_moved - load moved in current iteration
9554 * ld_moved - cumulative load moved across iterations
9556 cur_ld_moved
= detach_tasks(&env
);
9559 * We've detached some tasks from busiest_rq. Every
9560 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9561 * unlock busiest->lock, and we are able to be sure
9562 * that nobody can manipulate the tasks in parallel.
9563 * See task_rq_lock() family for the details.
9566 rq_unlock(busiest
, &rf
);
9570 ld_moved
+= cur_ld_moved
;
9573 local_irq_restore(rf
.flags
);
9575 if (env
.flags
& LBF_NEED_BREAK
) {
9576 env
.flags
&= ~LBF_NEED_BREAK
;
9581 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9582 * us and move them to an alternate dst_cpu in our sched_group
9583 * where they can run. The upper limit on how many times we
9584 * iterate on same src_cpu is dependent on number of CPUs in our
9587 * This changes load balance semantics a bit on who can move
9588 * load to a given_cpu. In addition to the given_cpu itself
9589 * (or a ilb_cpu acting on its behalf where given_cpu is
9590 * nohz-idle), we now have balance_cpu in a position to move
9591 * load to given_cpu. In rare situations, this may cause
9592 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9593 * _independently_ and at _same_ time to move some load to
9594 * given_cpu) causing exceess load to be moved to given_cpu.
9595 * This however should not happen so much in practice and
9596 * moreover subsequent load balance cycles should correct the
9597 * excess load moved.
9599 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
9601 /* Prevent to re-select dst_cpu via env's CPUs */
9602 __cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
9604 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
9605 env
.dst_cpu
= env
.new_dst_cpu
;
9606 env
.flags
&= ~LBF_DST_PINNED
;
9608 env
.loop_break
= sched_nr_migrate_break
;
9611 * Go back to "more_balance" rather than "redo" since we
9612 * need to continue with same src_cpu.
9618 * We failed to reach balance because of affinity.
9621 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9623 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
9624 *group_imbalance
= 1;
9627 /* All tasks on this runqueue were pinned by CPU affinity */
9628 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
9629 __cpumask_clear_cpu(cpu_of(busiest
), cpus
);
9631 * Attempting to continue load balancing at the current
9632 * sched_domain level only makes sense if there are
9633 * active CPUs remaining as possible busiest CPUs to
9634 * pull load from which are not contained within the
9635 * destination group that is receiving any migrated
9638 if (!cpumask_subset(cpus
, env
.dst_grpmask
)) {
9640 env
.loop_break
= sched_nr_migrate_break
;
9643 goto out_all_pinned
;
9648 schedstat_inc(sd
->lb_failed
[idle
]);
9650 * Increment the failure counter only on periodic balance.
9651 * We do not want newidle balance, which can be very
9652 * frequent, pollute the failure counter causing
9653 * excessive cache_hot migrations and active balances.
9655 if (idle
!= CPU_NEWLY_IDLE
)
9656 sd
->nr_balance_failed
++;
9658 if (need_active_balance(&env
)) {
9659 unsigned long flags
;
9661 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
9664 * Don't kick the active_load_balance_cpu_stop,
9665 * if the curr task on busiest CPU can't be
9666 * moved to this_cpu:
9668 if (!cpumask_test_cpu(this_cpu
, busiest
->curr
->cpus_ptr
)) {
9669 raw_spin_unlock_irqrestore(&busiest
->lock
,
9671 env
.flags
|= LBF_ALL_PINNED
;
9672 goto out_one_pinned
;
9676 * ->active_balance synchronizes accesses to
9677 * ->active_balance_work. Once set, it's cleared
9678 * only after active load balance is finished.
9680 if (!busiest
->active_balance
) {
9681 busiest
->active_balance
= 1;
9682 busiest
->push_cpu
= this_cpu
;
9685 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
9687 if (active_balance
) {
9688 stop_one_cpu_nowait(cpu_of(busiest
),
9689 active_load_balance_cpu_stop
, busiest
,
9690 &busiest
->active_balance_work
);
9693 /* We've kicked active balancing, force task migration. */
9694 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
9697 sd
->nr_balance_failed
= 0;
9699 if (likely(!active_balance
) || voluntary_active_balance(&env
)) {
9700 /* We were unbalanced, so reset the balancing interval */
9701 sd
->balance_interval
= sd
->min_interval
;
9704 * If we've begun active balancing, start to back off. This
9705 * case may not be covered by the all_pinned logic if there
9706 * is only 1 task on the busy runqueue (because we don't call
9709 if (sd
->balance_interval
< sd
->max_interval
)
9710 sd
->balance_interval
*= 2;
9717 * We reach balance although we may have faced some affinity
9718 * constraints. Clear the imbalance flag only if other tasks got
9719 * a chance to move and fix the imbalance.
9721 if (sd_parent
&& !(env
.flags
& LBF_ALL_PINNED
)) {
9722 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9724 if (*group_imbalance
)
9725 *group_imbalance
= 0;
9730 * We reach balance because all tasks are pinned at this level so
9731 * we can't migrate them. Let the imbalance flag set so parent level
9732 * can try to migrate them.
9734 schedstat_inc(sd
->lb_balanced
[idle
]);
9736 sd
->nr_balance_failed
= 0;
9742 * newidle_balance() disregards balance intervals, so we could
9743 * repeatedly reach this code, which would lead to balance_interval
9744 * skyrocketting in a short amount of time. Skip the balance_interval
9745 * increase logic to avoid that.
9747 if (env
.idle
== CPU_NEWLY_IDLE
)
9750 /* tune up the balancing interval */
9751 if ((env
.flags
& LBF_ALL_PINNED
&&
9752 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
9753 sd
->balance_interval
< sd
->max_interval
)
9754 sd
->balance_interval
*= 2;
9759 static inline unsigned long
9760 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
9762 unsigned long interval
= sd
->balance_interval
;
9765 interval
*= sd
->busy_factor
;
9767 /* scale ms to jiffies */
9768 interval
= msecs_to_jiffies(interval
);
9769 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
9775 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
9777 unsigned long interval
, next
;
9779 /* used by idle balance, so cpu_busy = 0 */
9780 interval
= get_sd_balance_interval(sd
, 0);
9781 next
= sd
->last_balance
+ interval
;
9783 if (time_after(*next_balance
, next
))
9784 *next_balance
= next
;
9788 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9789 * running tasks off the busiest CPU onto idle CPUs. It requires at
9790 * least 1 task to be running on each physical CPU where possible, and
9791 * avoids physical / logical imbalances.
9793 static int active_load_balance_cpu_stop(void *data
)
9795 struct rq
*busiest_rq
= data
;
9796 int busiest_cpu
= cpu_of(busiest_rq
);
9797 int target_cpu
= busiest_rq
->push_cpu
;
9798 struct rq
*target_rq
= cpu_rq(target_cpu
);
9799 struct sched_domain
*sd
;
9800 struct task_struct
*p
= NULL
;
9803 rq_lock_irq(busiest_rq
, &rf
);
9805 * Between queueing the stop-work and running it is a hole in which
9806 * CPUs can become inactive. We should not move tasks from or to
9809 if (!cpu_active(busiest_cpu
) || !cpu_active(target_cpu
))
9812 /* Make sure the requested CPU hasn't gone down in the meantime: */
9813 if (unlikely(busiest_cpu
!= smp_processor_id() ||
9814 !busiest_rq
->active_balance
))
9817 /* Is there any task to move? */
9818 if (busiest_rq
->nr_running
<= 1)
9822 * This condition is "impossible", if it occurs
9823 * we need to fix it. Originally reported by
9824 * Bjorn Helgaas on a 128-CPU setup.
9826 BUG_ON(busiest_rq
== target_rq
);
9828 /* Search for an sd spanning us and the target CPU. */
9830 for_each_domain(target_cpu
, sd
) {
9831 if (cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
9836 struct lb_env env
= {
9838 .dst_cpu
= target_cpu
,
9839 .dst_rq
= target_rq
,
9840 .src_cpu
= busiest_rq
->cpu
,
9841 .src_rq
= busiest_rq
,
9844 * can_migrate_task() doesn't need to compute new_dst_cpu
9845 * for active balancing. Since we have CPU_IDLE, but no
9846 * @dst_grpmask we need to make that test go away with lying
9849 .flags
= LBF_DST_PINNED
,
9852 schedstat_inc(sd
->alb_count
);
9853 update_rq_clock(busiest_rq
);
9855 p
= detach_one_task(&env
);
9857 schedstat_inc(sd
->alb_pushed
);
9858 /* Active balancing done, reset the failure counter. */
9859 sd
->nr_balance_failed
= 0;
9861 schedstat_inc(sd
->alb_failed
);
9866 busiest_rq
->active_balance
= 0;
9867 rq_unlock(busiest_rq
, &rf
);
9870 attach_one_task(target_rq
, p
);
9877 static DEFINE_SPINLOCK(balancing
);
9880 * Scale the max load_balance interval with the number of CPUs in the system.
9881 * This trades load-balance latency on larger machines for less cross talk.
9883 void update_max_interval(void)
9885 max_load_balance_interval
= HZ
*num_online_cpus()/10;
9889 * It checks each scheduling domain to see if it is due to be balanced,
9890 * and initiates a balancing operation if so.
9892 * Balancing parameters are set up in init_sched_domains.
9894 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
9896 int continue_balancing
= 1;
9898 int busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
9899 unsigned long interval
;
9900 struct sched_domain
*sd
;
9901 /* Earliest time when we have to do rebalance again */
9902 unsigned long next_balance
= jiffies
+ 60*HZ
;
9903 int update_next_balance
= 0;
9904 int need_serialize
, need_decay
= 0;
9908 for_each_domain(cpu
, sd
) {
9910 * Decay the newidle max times here because this is a regular
9911 * visit to all the domains. Decay ~1% per second.
9913 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
9914 sd
->max_newidle_lb_cost
=
9915 (sd
->max_newidle_lb_cost
* 253) / 256;
9916 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
9919 max_cost
+= sd
->max_newidle_lb_cost
;
9922 * Stop the load balance at this level. There is another
9923 * CPU in our sched group which is doing load balancing more
9926 if (!continue_balancing
) {
9932 interval
= get_sd_balance_interval(sd
, busy
);
9934 need_serialize
= sd
->flags
& SD_SERIALIZE
;
9935 if (need_serialize
) {
9936 if (!spin_trylock(&balancing
))
9940 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
9941 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
9943 * The LBF_DST_PINNED logic could have changed
9944 * env->dst_cpu, so we can't know our idle
9945 * state even if we migrated tasks. Update it.
9947 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
9948 busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
9950 sd
->last_balance
= jiffies
;
9951 interval
= get_sd_balance_interval(sd
, busy
);
9954 spin_unlock(&balancing
);
9956 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
9957 next_balance
= sd
->last_balance
+ interval
;
9958 update_next_balance
= 1;
9963 * Ensure the rq-wide value also decays but keep it at a
9964 * reasonable floor to avoid funnies with rq->avg_idle.
9966 rq
->max_idle_balance_cost
=
9967 max((u64
)sysctl_sched_migration_cost
, max_cost
);
9972 * next_balance will be updated only when there is a need.
9973 * When the cpu is attached to null domain for ex, it will not be
9976 if (likely(update_next_balance
)) {
9977 rq
->next_balance
= next_balance
;
9979 #ifdef CONFIG_NO_HZ_COMMON
9981 * If this CPU has been elected to perform the nohz idle
9982 * balance. Other idle CPUs have already rebalanced with
9983 * nohz_idle_balance() and nohz.next_balance has been
9984 * updated accordingly. This CPU is now running the idle load
9985 * balance for itself and we need to update the
9986 * nohz.next_balance accordingly.
9988 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
9989 nohz
.next_balance
= rq
->next_balance
;
9994 static inline int on_null_domain(struct rq
*rq
)
9996 return unlikely(!rcu_dereference_sched(rq
->sd
));
9999 #ifdef CONFIG_NO_HZ_COMMON
10001 * idle load balancing details
10002 * - When one of the busy CPUs notice that there may be an idle rebalancing
10003 * needed, they will kick the idle load balancer, which then does idle
10004 * load balancing for all the idle CPUs.
10005 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10009 static inline int find_new_ilb(void)
10013 for_each_cpu_and(ilb
, nohz
.idle_cpus_mask
,
10014 housekeeping_cpumask(HK_FLAG_MISC
)) {
10023 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10024 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10026 static void kick_ilb(unsigned int flags
)
10030 nohz
.next_balance
++;
10032 ilb_cpu
= find_new_ilb();
10034 if (ilb_cpu
>= nr_cpu_ids
)
10038 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10039 * the first flag owns it; cleared by nohz_csd_func().
10041 flags
= atomic_fetch_or(flags
, nohz_flags(ilb_cpu
));
10042 if (flags
& NOHZ_KICK_MASK
)
10046 * This way we generate an IPI on the target CPU which
10047 * is idle. And the softirq performing nohz idle load balance
10048 * will be run before returning from the IPI.
10050 smp_call_function_single_async(ilb_cpu
, &cpu_rq(ilb_cpu
)->nohz_csd
);
10054 * Current decision point for kicking the idle load balancer in the presence
10055 * of idle CPUs in the system.
10057 static void nohz_balancer_kick(struct rq
*rq
)
10059 unsigned long now
= jiffies
;
10060 struct sched_domain_shared
*sds
;
10061 struct sched_domain
*sd
;
10062 int nr_busy
, i
, cpu
= rq
->cpu
;
10063 unsigned int flags
= 0;
10065 if (unlikely(rq
->idle_balance
))
10069 * We may be recently in ticked or tickless idle mode. At the first
10070 * busy tick after returning from idle, we will update the busy stats.
10072 nohz_balance_exit_idle(rq
);
10075 * None are in tickless mode and hence no need for NOHZ idle load
10078 if (likely(!atomic_read(&nohz
.nr_cpus
)))
10081 if (READ_ONCE(nohz
.has_blocked
) &&
10082 time_after(now
, READ_ONCE(nohz
.next_blocked
)))
10083 flags
= NOHZ_STATS_KICK
;
10085 if (time_before(now
, nohz
.next_balance
))
10088 if (rq
->nr_running
>= 2) {
10089 flags
= NOHZ_KICK_MASK
;
10095 sd
= rcu_dereference(rq
->sd
);
10098 * If there's a CFS task and the current CPU has reduced
10099 * capacity; kick the ILB to see if there's a better CPU to run
10102 if (rq
->cfs
.h_nr_running
>= 1 && check_cpu_capacity(rq
, sd
)) {
10103 flags
= NOHZ_KICK_MASK
;
10108 sd
= rcu_dereference(per_cpu(sd_asym_packing
, cpu
));
10111 * When ASYM_PACKING; see if there's a more preferred CPU
10112 * currently idle; in which case, kick the ILB to move tasks
10115 for_each_cpu_and(i
, sched_domain_span(sd
), nohz
.idle_cpus_mask
) {
10116 if (sched_asym_prefer(i
, cpu
)) {
10117 flags
= NOHZ_KICK_MASK
;
10123 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, cpu
));
10126 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10127 * to run the misfit task on.
10129 if (check_misfit_status(rq
, sd
)) {
10130 flags
= NOHZ_KICK_MASK
;
10135 * For asymmetric systems, we do not want to nicely balance
10136 * cache use, instead we want to embrace asymmetry and only
10137 * ensure tasks have enough CPU capacity.
10139 * Skip the LLC logic because it's not relevant in that case.
10144 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
10147 * If there is an imbalance between LLC domains (IOW we could
10148 * increase the overall cache use), we need some less-loaded LLC
10149 * domain to pull some load. Likewise, we may need to spread
10150 * load within the current LLC domain (e.g. packed SMT cores but
10151 * other CPUs are idle). We can't really know from here how busy
10152 * the others are - so just get a nohz balance going if it looks
10153 * like this LLC domain has tasks we could move.
10155 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
10157 flags
= NOHZ_KICK_MASK
;
10168 static void set_cpu_sd_state_busy(int cpu
)
10170 struct sched_domain
*sd
;
10173 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
10175 if (!sd
|| !sd
->nohz_idle
)
10179 atomic_inc(&sd
->shared
->nr_busy_cpus
);
10184 void nohz_balance_exit_idle(struct rq
*rq
)
10186 SCHED_WARN_ON(rq
!= this_rq());
10188 if (likely(!rq
->nohz_tick_stopped
))
10191 rq
->nohz_tick_stopped
= 0;
10192 cpumask_clear_cpu(rq
->cpu
, nohz
.idle_cpus_mask
);
10193 atomic_dec(&nohz
.nr_cpus
);
10195 set_cpu_sd_state_busy(rq
->cpu
);
10198 static void set_cpu_sd_state_idle(int cpu
)
10200 struct sched_domain
*sd
;
10203 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
10205 if (!sd
|| sd
->nohz_idle
)
10209 atomic_dec(&sd
->shared
->nr_busy_cpus
);
10215 * This routine will record that the CPU is going idle with tick stopped.
10216 * This info will be used in performing idle load balancing in the future.
10218 void nohz_balance_enter_idle(int cpu
)
10220 struct rq
*rq
= cpu_rq(cpu
);
10222 SCHED_WARN_ON(cpu
!= smp_processor_id());
10224 /* If this CPU is going down, then nothing needs to be done: */
10225 if (!cpu_active(cpu
))
10228 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10229 if (!housekeeping_cpu(cpu
, HK_FLAG_SCHED
))
10233 * Can be set safely without rq->lock held
10234 * If a clear happens, it will have evaluated last additions because
10235 * rq->lock is held during the check and the clear
10237 rq
->has_blocked_load
= 1;
10240 * The tick is still stopped but load could have been added in the
10241 * meantime. We set the nohz.has_blocked flag to trig a check of the
10242 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10243 * of nohz.has_blocked can only happen after checking the new load
10245 if (rq
->nohz_tick_stopped
)
10248 /* If we're a completely isolated CPU, we don't play: */
10249 if (on_null_domain(rq
))
10252 rq
->nohz_tick_stopped
= 1;
10254 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
10255 atomic_inc(&nohz
.nr_cpus
);
10258 * Ensures that if nohz_idle_balance() fails to observe our
10259 * @idle_cpus_mask store, it must observe the @has_blocked
10262 smp_mb__after_atomic();
10264 set_cpu_sd_state_idle(cpu
);
10268 * Each time a cpu enter idle, we assume that it has blocked load and
10269 * enable the periodic update of the load of idle cpus
10271 WRITE_ONCE(nohz
.has_blocked
, 1);
10275 * Internal function that runs load balance for all idle cpus. The load balance
10276 * can be a simple update of blocked load or a complete load balance with
10277 * tasks movement depending of flags.
10278 * The function returns false if the loop has stopped before running
10279 * through all idle CPUs.
10281 static bool _nohz_idle_balance(struct rq
*this_rq
, unsigned int flags
,
10282 enum cpu_idle_type idle
)
10284 /* Earliest time when we have to do rebalance again */
10285 unsigned long now
= jiffies
;
10286 unsigned long next_balance
= now
+ 60*HZ
;
10287 bool has_blocked_load
= false;
10288 int update_next_balance
= 0;
10289 int this_cpu
= this_rq
->cpu
;
10294 SCHED_WARN_ON((flags
& NOHZ_KICK_MASK
) == NOHZ_BALANCE_KICK
);
10297 * We assume there will be no idle load after this update and clear
10298 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10299 * set the has_blocked flag and trig another update of idle load.
10300 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10301 * setting the flag, we are sure to not clear the state and not
10302 * check the load of an idle cpu.
10304 WRITE_ONCE(nohz
.has_blocked
, 0);
10307 * Ensures that if we miss the CPU, we must see the has_blocked
10308 * store from nohz_balance_enter_idle().
10312 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
10313 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
10317 * If this CPU gets work to do, stop the load balancing
10318 * work being done for other CPUs. Next load
10319 * balancing owner will pick it up.
10321 if (need_resched()) {
10322 has_blocked_load
= true;
10326 rq
= cpu_rq(balance_cpu
);
10328 has_blocked_load
|= update_nohz_stats(rq
, true);
10331 * If time for next balance is due,
10334 if (time_after_eq(jiffies
, rq
->next_balance
)) {
10335 struct rq_flags rf
;
10337 rq_lock_irqsave(rq
, &rf
);
10338 update_rq_clock(rq
);
10339 rq_unlock_irqrestore(rq
, &rf
);
10341 if (flags
& NOHZ_BALANCE_KICK
)
10342 rebalance_domains(rq
, CPU_IDLE
);
10345 if (time_after(next_balance
, rq
->next_balance
)) {
10346 next_balance
= rq
->next_balance
;
10347 update_next_balance
= 1;
10351 /* Newly idle CPU doesn't need an update */
10352 if (idle
!= CPU_NEWLY_IDLE
) {
10353 update_blocked_averages(this_cpu
);
10354 has_blocked_load
|= this_rq
->has_blocked_load
;
10357 if (flags
& NOHZ_BALANCE_KICK
)
10358 rebalance_domains(this_rq
, CPU_IDLE
);
10360 WRITE_ONCE(nohz
.next_blocked
,
10361 now
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
10363 /* The full idle balance loop has been done */
10367 /* There is still blocked load, enable periodic update */
10368 if (has_blocked_load
)
10369 WRITE_ONCE(nohz
.has_blocked
, 1);
10372 * next_balance will be updated only when there is a need.
10373 * When the CPU is attached to null domain for ex, it will not be
10376 if (likely(update_next_balance
))
10377 nohz
.next_balance
= next_balance
;
10383 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10384 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10386 static bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10388 unsigned int flags
= this_rq
->nohz_idle_balance
;
10393 this_rq
->nohz_idle_balance
= 0;
10395 if (idle
!= CPU_IDLE
)
10398 _nohz_idle_balance(this_rq
, flags
, idle
);
10403 static void nohz_newidle_balance(struct rq
*this_rq
)
10405 int this_cpu
= this_rq
->cpu
;
10408 * This CPU doesn't want to be disturbed by scheduler
10411 if (!housekeeping_cpu(this_cpu
, HK_FLAG_SCHED
))
10414 /* Will wake up very soon. No time for doing anything else*/
10415 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
10418 /* Don't need to update blocked load of idle CPUs*/
10419 if (!READ_ONCE(nohz
.has_blocked
) ||
10420 time_before(jiffies
, READ_ONCE(nohz
.next_blocked
)))
10423 raw_spin_unlock(&this_rq
->lock
);
10425 * This CPU is going to be idle and blocked load of idle CPUs
10426 * need to be updated. Run the ilb locally as it is a good
10427 * candidate for ilb instead of waking up another idle CPU.
10428 * Kick an normal ilb if we failed to do the update.
10430 if (!_nohz_idle_balance(this_rq
, NOHZ_STATS_KICK
, CPU_NEWLY_IDLE
))
10431 kick_ilb(NOHZ_STATS_KICK
);
10432 raw_spin_lock(&this_rq
->lock
);
10435 #else /* !CONFIG_NO_HZ_COMMON */
10436 static inline void nohz_balancer_kick(struct rq
*rq
) { }
10438 static inline bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10443 static inline void nohz_newidle_balance(struct rq
*this_rq
) { }
10444 #endif /* CONFIG_NO_HZ_COMMON */
10447 * idle_balance is called by schedule() if this_cpu is about to become
10448 * idle. Attempts to pull tasks from other CPUs.
10451 * < 0 - we released the lock and there are !fair tasks present
10452 * 0 - failed, no new tasks
10453 * > 0 - success, new (fair) tasks present
10455 static int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
)
10457 unsigned long next_balance
= jiffies
+ HZ
;
10458 int this_cpu
= this_rq
->cpu
;
10459 struct sched_domain
*sd
;
10460 int pulled_task
= 0;
10463 update_misfit_status(NULL
, this_rq
);
10465 * We must set idle_stamp _before_ calling idle_balance(), such that we
10466 * measure the duration of idle_balance() as idle time.
10468 this_rq
->idle_stamp
= rq_clock(this_rq
);
10471 * Do not pull tasks towards !active CPUs...
10473 if (!cpu_active(this_cpu
))
10477 * This is OK, because current is on_cpu, which avoids it being picked
10478 * for load-balance and preemption/IRQs are still disabled avoiding
10479 * further scheduler activity on it and we're being very careful to
10480 * re-start the picking loop.
10482 rq_unpin_lock(this_rq
, rf
);
10484 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
10485 !READ_ONCE(this_rq
->rd
->overload
)) {
10488 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
10490 update_next_balance(sd
, &next_balance
);
10493 nohz_newidle_balance(this_rq
);
10498 raw_spin_unlock(&this_rq
->lock
);
10500 update_blocked_averages(this_cpu
);
10502 for_each_domain(this_cpu
, sd
) {
10503 int continue_balancing
= 1;
10504 u64 t0
, domain_cost
;
10506 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
10507 update_next_balance(sd
, &next_balance
);
10511 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
10512 t0
= sched_clock_cpu(this_cpu
);
10514 pulled_task
= load_balance(this_cpu
, this_rq
,
10515 sd
, CPU_NEWLY_IDLE
,
10516 &continue_balancing
);
10518 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
10519 if (domain_cost
> sd
->max_newidle_lb_cost
)
10520 sd
->max_newidle_lb_cost
= domain_cost
;
10522 curr_cost
+= domain_cost
;
10525 update_next_balance(sd
, &next_balance
);
10528 * Stop searching for tasks to pull if there are
10529 * now runnable tasks on this rq.
10531 if (pulled_task
|| this_rq
->nr_running
> 0)
10536 raw_spin_lock(&this_rq
->lock
);
10538 if (curr_cost
> this_rq
->max_idle_balance_cost
)
10539 this_rq
->max_idle_balance_cost
= curr_cost
;
10543 * While browsing the domains, we released the rq lock, a task could
10544 * have been enqueued in the meantime. Since we're not going idle,
10545 * pretend we pulled a task.
10547 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
10550 /* Move the next balance forward */
10551 if (time_after(this_rq
->next_balance
, next_balance
))
10552 this_rq
->next_balance
= next_balance
;
10554 /* Is there a task of a high priority class? */
10555 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
10559 this_rq
->idle_stamp
= 0;
10561 rq_repin_lock(this_rq
, rf
);
10563 return pulled_task
;
10567 * run_rebalance_domains is triggered when needed from the scheduler tick.
10568 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10570 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
10572 struct rq
*this_rq
= this_rq();
10573 enum cpu_idle_type idle
= this_rq
->idle_balance
?
10574 CPU_IDLE
: CPU_NOT_IDLE
;
10577 * If this CPU has a pending nohz_balance_kick, then do the
10578 * balancing on behalf of the other idle CPUs whose ticks are
10579 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10580 * give the idle CPUs a chance to load balance. Else we may
10581 * load balance only within the local sched_domain hierarchy
10582 * and abort nohz_idle_balance altogether if we pull some load.
10584 if (nohz_idle_balance(this_rq
, idle
))
10587 /* normal load balance */
10588 update_blocked_averages(this_rq
->cpu
);
10589 rebalance_domains(this_rq
, idle
);
10593 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10595 void trigger_load_balance(struct rq
*rq
)
10597 /* Don't need to rebalance while attached to NULL domain */
10598 if (unlikely(on_null_domain(rq
)))
10601 if (time_after_eq(jiffies
, rq
->next_balance
))
10602 raise_softirq(SCHED_SOFTIRQ
);
10604 nohz_balancer_kick(rq
);
10607 static void rq_online_fair(struct rq
*rq
)
10611 update_runtime_enabled(rq
);
10614 static void rq_offline_fair(struct rq
*rq
)
10618 /* Ensure any throttled groups are reachable by pick_next_task */
10619 unthrottle_offline_cfs_rqs(rq
);
10622 #endif /* CONFIG_SMP */
10625 * scheduler tick hitting a task of our scheduling class.
10627 * NOTE: This function can be called remotely by the tick offload that
10628 * goes along full dynticks. Therefore no local assumption can be made
10629 * and everything must be accessed through the @rq and @curr passed in
10632 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
10634 struct cfs_rq
*cfs_rq
;
10635 struct sched_entity
*se
= &curr
->se
;
10637 for_each_sched_entity(se
) {
10638 cfs_rq
= cfs_rq_of(se
);
10639 entity_tick(cfs_rq
, se
, queued
);
10642 if (static_branch_unlikely(&sched_numa_balancing
))
10643 task_tick_numa(rq
, curr
);
10645 update_misfit_status(curr
, rq
);
10646 update_overutilized_status(task_rq(curr
));
10650 * called on fork with the child task as argument from the parent's context
10651 * - child not yet on the tasklist
10652 * - preemption disabled
10654 static void task_fork_fair(struct task_struct
*p
)
10656 struct cfs_rq
*cfs_rq
;
10657 struct sched_entity
*se
= &p
->se
, *curr
;
10658 struct rq
*rq
= this_rq();
10659 struct rq_flags rf
;
10662 update_rq_clock(rq
);
10664 cfs_rq
= task_cfs_rq(current
);
10665 curr
= cfs_rq
->curr
;
10667 update_curr(cfs_rq
);
10668 se
->vruntime
= curr
->vruntime
;
10670 place_entity(cfs_rq
, se
, 1);
10672 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
10674 * Upon rescheduling, sched_class::put_prev_task() will place
10675 * 'current' within the tree based on its new key value.
10677 swap(curr
->vruntime
, se
->vruntime
);
10681 se
->vruntime
-= cfs_rq
->min_vruntime
;
10682 rq_unlock(rq
, &rf
);
10686 * Priority of the task has changed. Check to see if we preempt
10687 * the current task.
10690 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
10692 if (!task_on_rq_queued(p
))
10695 if (rq
->cfs
.nr_running
== 1)
10699 * Reschedule if we are currently running on this runqueue and
10700 * our priority decreased, or if we are not currently running on
10701 * this runqueue and our priority is higher than the current's
10703 if (rq
->curr
== p
) {
10704 if (p
->prio
> oldprio
)
10707 check_preempt_curr(rq
, p
, 0);
10710 static inline bool vruntime_normalized(struct task_struct
*p
)
10712 struct sched_entity
*se
= &p
->se
;
10715 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10716 * the dequeue_entity(.flags=0) will already have normalized the
10723 * When !on_rq, vruntime of the task has usually NOT been normalized.
10724 * But there are some cases where it has already been normalized:
10726 * - A forked child which is waiting for being woken up by
10727 * wake_up_new_task().
10728 * - A task which has been woken up by try_to_wake_up() and
10729 * waiting for actually being woken up by sched_ttwu_pending().
10731 if (!se
->sum_exec_runtime
||
10732 (p
->state
== TASK_WAKING
&& p
->sched_remote_wakeup
))
10738 #ifdef CONFIG_FAIR_GROUP_SCHED
10740 * Propagate the changes of the sched_entity across the tg tree to make it
10741 * visible to the root
10743 static void propagate_entity_cfs_rq(struct sched_entity
*se
)
10745 struct cfs_rq
*cfs_rq
;
10747 /* Start to propagate at parent */
10750 for_each_sched_entity(se
) {
10751 cfs_rq
= cfs_rq_of(se
);
10753 if (cfs_rq_throttled(cfs_rq
))
10756 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
10760 static void propagate_entity_cfs_rq(struct sched_entity
*se
) { }
10763 static void detach_entity_cfs_rq(struct sched_entity
*se
)
10765 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10767 /* Catch up with the cfs_rq and remove our load when we leave */
10768 update_load_avg(cfs_rq
, se
, 0);
10769 detach_entity_load_avg(cfs_rq
, se
);
10770 update_tg_load_avg(cfs_rq
, false);
10771 propagate_entity_cfs_rq(se
);
10774 static void attach_entity_cfs_rq(struct sched_entity
*se
)
10776 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10778 #ifdef CONFIG_FAIR_GROUP_SCHED
10780 * Since the real-depth could have been changed (only FAIR
10781 * class maintain depth value), reset depth properly.
10783 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10786 /* Synchronize entity with its cfs_rq */
10787 update_load_avg(cfs_rq
, se
, sched_feat(ATTACH_AGE_LOAD
) ? 0 : SKIP_AGE_LOAD
);
10788 attach_entity_load_avg(cfs_rq
, se
);
10789 update_tg_load_avg(cfs_rq
, false);
10790 propagate_entity_cfs_rq(se
);
10793 static void detach_task_cfs_rq(struct task_struct
*p
)
10795 struct sched_entity
*se
= &p
->se
;
10796 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10798 if (!vruntime_normalized(p
)) {
10800 * Fix up our vruntime so that the current sleep doesn't
10801 * cause 'unlimited' sleep bonus.
10803 place_entity(cfs_rq
, se
, 0);
10804 se
->vruntime
-= cfs_rq
->min_vruntime
;
10807 detach_entity_cfs_rq(se
);
10810 static void attach_task_cfs_rq(struct task_struct
*p
)
10812 struct sched_entity
*se
= &p
->se
;
10813 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10815 attach_entity_cfs_rq(se
);
10817 if (!vruntime_normalized(p
))
10818 se
->vruntime
+= cfs_rq
->min_vruntime
;
10821 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
10823 detach_task_cfs_rq(p
);
10826 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
10828 attach_task_cfs_rq(p
);
10830 if (task_on_rq_queued(p
)) {
10832 * We were most likely switched from sched_rt, so
10833 * kick off the schedule if running, otherwise just see
10834 * if we can still preempt the current task.
10839 check_preempt_curr(rq
, p
, 0);
10843 /* Account for a task changing its policy or group.
10845 * This routine is mostly called to set cfs_rq->curr field when a task
10846 * migrates between groups/classes.
10848 static void set_next_task_fair(struct rq
*rq
, struct task_struct
*p
, bool first
)
10850 struct sched_entity
*se
= &p
->se
;
10853 if (task_on_rq_queued(p
)) {
10855 * Move the next running task to the front of the list, so our
10856 * cfs_tasks list becomes MRU one.
10858 list_move(&se
->group_node
, &rq
->cfs_tasks
);
10862 for_each_sched_entity(se
) {
10863 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10865 set_next_entity(cfs_rq
, se
);
10866 /* ensure bandwidth has been allocated on our new cfs_rq */
10867 account_cfs_rq_runtime(cfs_rq
, 0);
10871 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
10873 cfs_rq
->tasks_timeline
= RB_ROOT_CACHED
;
10874 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
10875 #ifndef CONFIG_64BIT
10876 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
10879 raw_spin_lock_init(&cfs_rq
->removed
.lock
);
10883 #ifdef CONFIG_FAIR_GROUP_SCHED
10884 static void task_set_group_fair(struct task_struct
*p
)
10886 struct sched_entity
*se
= &p
->se
;
10888 set_task_rq(p
, task_cpu(p
));
10889 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10892 static void task_move_group_fair(struct task_struct
*p
)
10894 detach_task_cfs_rq(p
);
10895 set_task_rq(p
, task_cpu(p
));
10898 /* Tell se's cfs_rq has been changed -- migrated */
10899 p
->se
.avg
.last_update_time
= 0;
10901 attach_task_cfs_rq(p
);
10904 static void task_change_group_fair(struct task_struct
*p
, int type
)
10907 case TASK_SET_GROUP
:
10908 task_set_group_fair(p
);
10911 case TASK_MOVE_GROUP
:
10912 task_move_group_fair(p
);
10917 void free_fair_sched_group(struct task_group
*tg
)
10921 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
10923 for_each_possible_cpu(i
) {
10925 kfree(tg
->cfs_rq
[i
]);
10934 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10936 struct sched_entity
*se
;
10937 struct cfs_rq
*cfs_rq
;
10940 tg
->cfs_rq
= kcalloc(nr_cpu_ids
, sizeof(cfs_rq
), GFP_KERNEL
);
10943 tg
->se
= kcalloc(nr_cpu_ids
, sizeof(se
), GFP_KERNEL
);
10947 tg
->shares
= NICE_0_LOAD
;
10949 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
10951 for_each_possible_cpu(i
) {
10952 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
10953 GFP_KERNEL
, cpu_to_node(i
));
10957 se
= kzalloc_node(sizeof(struct sched_entity
),
10958 GFP_KERNEL
, cpu_to_node(i
));
10962 init_cfs_rq(cfs_rq
);
10963 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
10964 init_entity_runnable_average(se
);
10975 void online_fair_sched_group(struct task_group
*tg
)
10977 struct sched_entity
*se
;
10978 struct rq_flags rf
;
10982 for_each_possible_cpu(i
) {
10985 rq_lock_irq(rq
, &rf
);
10986 update_rq_clock(rq
);
10987 attach_entity_cfs_rq(se
);
10988 sync_throttle(tg
, i
);
10989 rq_unlock_irq(rq
, &rf
);
10993 void unregister_fair_sched_group(struct task_group
*tg
)
10995 unsigned long flags
;
10999 for_each_possible_cpu(cpu
) {
11001 remove_entity_load_avg(tg
->se
[cpu
]);
11004 * Only empty task groups can be destroyed; so we can speculatively
11005 * check on_list without danger of it being re-added.
11007 if (!tg
->cfs_rq
[cpu
]->on_list
)
11012 raw_spin_lock_irqsave(&rq
->lock
, flags
);
11013 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
11014 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
11018 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
11019 struct sched_entity
*se
, int cpu
,
11020 struct sched_entity
*parent
)
11022 struct rq
*rq
= cpu_rq(cpu
);
11026 init_cfs_rq_runtime(cfs_rq
);
11028 tg
->cfs_rq
[cpu
] = cfs_rq
;
11031 /* se could be NULL for root_task_group */
11036 se
->cfs_rq
= &rq
->cfs
;
11039 se
->cfs_rq
= parent
->my_q
;
11040 se
->depth
= parent
->depth
+ 1;
11044 /* guarantee group entities always have weight */
11045 update_load_set(&se
->load
, NICE_0_LOAD
);
11046 se
->parent
= parent
;
11049 static DEFINE_MUTEX(shares_mutex
);
11051 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
11056 * We can't change the weight of the root cgroup.
11061 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
11063 mutex_lock(&shares_mutex
);
11064 if (tg
->shares
== shares
)
11067 tg
->shares
= shares
;
11068 for_each_possible_cpu(i
) {
11069 struct rq
*rq
= cpu_rq(i
);
11070 struct sched_entity
*se
= tg
->se
[i
];
11071 struct rq_flags rf
;
11073 /* Propagate contribution to hierarchy */
11074 rq_lock_irqsave(rq
, &rf
);
11075 update_rq_clock(rq
);
11076 for_each_sched_entity(se
) {
11077 update_load_avg(cfs_rq_of(se
), se
, UPDATE_TG
);
11078 update_cfs_group(se
);
11080 rq_unlock_irqrestore(rq
, &rf
);
11084 mutex_unlock(&shares_mutex
);
11087 #else /* CONFIG_FAIR_GROUP_SCHED */
11089 void free_fair_sched_group(struct task_group
*tg
) { }
11091 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
11096 void online_fair_sched_group(struct task_group
*tg
) { }
11098 void unregister_fair_sched_group(struct task_group
*tg
) { }
11100 #endif /* CONFIG_FAIR_GROUP_SCHED */
11103 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
11105 struct sched_entity
*se
= &task
->se
;
11106 unsigned int rr_interval
= 0;
11109 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11112 if (rq
->cfs
.load
.weight
)
11113 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
11115 return rr_interval
;
11119 * All the scheduling class methods:
11121 const struct sched_class fair_sched_class
= {
11122 .next
= &idle_sched_class
,
11123 .enqueue_task
= enqueue_task_fair
,
11124 .dequeue_task
= dequeue_task_fair
,
11125 .yield_task
= yield_task_fair
,
11126 .yield_to_task
= yield_to_task_fair
,
11128 .check_preempt_curr
= check_preempt_wakeup
,
11130 .pick_next_task
= __pick_next_task_fair
,
11131 .put_prev_task
= put_prev_task_fair
,
11132 .set_next_task
= set_next_task_fair
,
11135 .balance
= balance_fair
,
11136 .select_task_rq
= select_task_rq_fair
,
11137 .migrate_task_rq
= migrate_task_rq_fair
,
11139 .rq_online
= rq_online_fair
,
11140 .rq_offline
= rq_offline_fair
,
11142 .task_dead
= task_dead_fair
,
11143 .set_cpus_allowed
= set_cpus_allowed_common
,
11146 .task_tick
= task_tick_fair
,
11147 .task_fork
= task_fork_fair
,
11149 .prio_changed
= prio_changed_fair
,
11150 .switched_from
= switched_from_fair
,
11151 .switched_to
= switched_to_fair
,
11153 .get_rr_interval
= get_rr_interval_fair
,
11155 .update_curr
= update_curr_fair
,
11157 #ifdef CONFIG_FAIR_GROUP_SCHED
11158 .task_change_group
= task_change_group_fair
,
11161 #ifdef CONFIG_UCLAMP_TASK
11162 .uclamp_enabled
= 1,
11166 #ifdef CONFIG_SCHED_DEBUG
11167 void print_cfs_stats(struct seq_file
*m
, int cpu
)
11169 struct cfs_rq
*cfs_rq
, *pos
;
11172 for_each_leaf_cfs_rq_safe(cpu_rq(cpu
), cfs_rq
, pos
)
11173 print_cfs_rq(m
, cpu
, cfs_rq
);
11177 #ifdef CONFIG_NUMA_BALANCING
11178 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
11181 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
11182 struct numa_group
*ng
;
11185 ng
= rcu_dereference(p
->numa_group
);
11186 for_each_online_node(node
) {
11187 if (p
->numa_faults
) {
11188 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
11189 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
11192 gsf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
11193 gpf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
11195 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
11199 #endif /* CONFIG_NUMA_BALANCING */
11200 #endif /* CONFIG_SCHED_DEBUG */
11202 __init
void init_sched_fair_class(void)
11205 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
11207 #ifdef CONFIG_NO_HZ_COMMON
11208 nohz
.next_balance
= jiffies
;
11209 nohz
.next_blocked
= jiffies
;
11210 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
11217 * Helper functions to facilitate extracting info from tracepoints.
11220 const struct sched_avg
*sched_trace_cfs_rq_avg(struct cfs_rq
*cfs_rq
)
11223 return cfs_rq
? &cfs_rq
->avg
: NULL
;
11228 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg
);
11230 char *sched_trace_cfs_rq_path(struct cfs_rq
*cfs_rq
, char *str
, int len
)
11234 strlcpy(str
, "(null)", len
);
11239 cfs_rq_tg_path(cfs_rq
, str
, len
);
11242 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path
);
11244 int sched_trace_cfs_rq_cpu(struct cfs_rq
*cfs_rq
)
11246 return cfs_rq
? cpu_of(rq_of(cfs_rq
)) : -1;
11248 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu
);
11250 const struct sched_avg
*sched_trace_rq_avg_rt(struct rq
*rq
)
11253 return rq
? &rq
->avg_rt
: NULL
;
11258 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt
);
11260 const struct sched_avg
*sched_trace_rq_avg_dl(struct rq
*rq
)
11263 return rq
? &rq
->avg_dl
: NULL
;
11268 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl
);
11270 const struct sched_avg
*sched_trace_rq_avg_irq(struct rq
*rq
)
11272 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11273 return rq
? &rq
->avg_irq
: NULL
;
11278 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq
);
11280 int sched_trace_rq_cpu(struct rq
*rq
)
11282 return rq
? cpu_of(rq
) : -1;
11284 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu
);
11286 const struct cpumask
*sched_trace_rd_span(struct root_domain
*rd
)
11289 return rd
? rd
->span
: NULL
;
11294 EXPORT_SYMBOL_GPL(sched_trace_rd_span
);