serial: exar: Fix GPIO configuration for Sealevel cards based on XR17V35X
[linux/fpc-iii.git] / kernel / sched / fair.c
blob04fa8dbcfa4d78a33fa557619cd1fd8363b988de
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include "sched.h"
25 #include <trace/events/sched.h>
28 * Targeted preemption latency for CPU-bound tasks:
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 unsigned int sysctl_sched_latency = 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
44 * The initial- and re-scaling of tunables is configurable
46 * Options are:
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
57 * Minimal preemption granularity for CPU-bound tasks:
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61 unsigned int sysctl_sched_min_granularity = 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67 static unsigned int sched_nr_latency = 8;
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
76 * SCHED_OTHER wake-up granularity.
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
92 int _shift = 0;
94 if (kstrtoint(str, 0, &_shift))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
97 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 return 1;
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
102 #ifdef CONFIG_SMP
104 * For asym packing, by default the lower numbered CPU has higher priority.
106 int __weak arch_asym_cpu_priority(int cpu)
108 return -cpu;
112 * The margin used when comparing utilization with CPU capacity.
114 * (default: ~20%)
116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
118 #endif
120 #ifdef CONFIG_CFS_BANDWIDTH
122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123 * each time a cfs_rq requests quota.
125 * Note: in the case that the slice exceeds the runtime remaining (either due
126 * to consumption or the quota being specified to be smaller than the slice)
127 * we will always only issue the remaining available time.
129 * (default: 5 msec, units: microseconds)
131 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
132 #endif
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
136 lw->weight += inc;
137 lw->inv_weight = 0;
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
142 lw->weight -= dec;
143 lw->inv_weight = 0;
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
148 lw->weight = w;
149 lw->inv_weight = 0;
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
159 * This idea comes from the SD scheduler of Con Kolivas:
161 static unsigned int get_update_sysctl_factor(void)
163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 unsigned int factor;
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
179 return factor;
182 static void update_sysctl(void)
184 unsigned int factor = get_update_sysctl_factor();
186 #define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
194 void __init sched_init_granularity(void)
196 update_sysctl();
199 #define WMULT_CONST (~0U)
200 #define WMULT_SHIFT 32
202 static void __update_inv_weight(struct load_weight *lw)
204 unsigned long w;
206 if (likely(lw->inv_weight))
207 return;
209 w = scale_load_down(lw->weight);
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
236 __update_inv_weight(lw);
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
245 fact = mul_u32_u32(fact, lw->inv_weight);
247 while (fact >> 32) {
248 fact >>= 1;
249 shift--;
252 return mul_u64_u32_shr(delta_exec, fact, shift);
256 const struct sched_class fair_sched_class;
258 /**************************************************************
259 * CFS operations on generic schedulable entities:
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 static inline struct task_struct *task_of(struct sched_entity *se)
265 SCHED_WARN_ON(!entity_is_task(se));
266 return container_of(se, struct task_struct, se);
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
275 return p->se.cfs_rq;
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
281 return se->cfs_rq;
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
287 return grp->my_q;
290 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
292 if (!path)
293 return;
295 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
296 autogroup_path(cfs_rq->tg, path, len);
297 else if (cfs_rq && cfs_rq->tg->css.cgroup)
298 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
299 else
300 strlcpy(path, "(null)", len);
303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
305 struct rq *rq = rq_of(cfs_rq);
306 int cpu = cpu_of(rq);
308 if (cfs_rq->on_list)
309 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
311 cfs_rq->on_list = 1;
314 * Ensure we either appear before our parent (if already
315 * enqueued) or force our parent to appear after us when it is
316 * enqueued. The fact that we always enqueue bottom-up
317 * reduces this to two cases and a special case for the root
318 * cfs_rq. Furthermore, it also means that we will always reset
319 * tmp_alone_branch either when the branch is connected
320 * to a tree or when we reach the top of the tree
322 if (cfs_rq->tg->parent &&
323 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
325 * If parent is already on the list, we add the child
326 * just before. Thanks to circular linked property of
327 * the list, this means to put the child at the tail
328 * of the list that starts by parent.
330 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
331 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
333 * The branch is now connected to its tree so we can
334 * reset tmp_alone_branch to the beginning of the
335 * list.
337 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
338 return true;
341 if (!cfs_rq->tg->parent) {
343 * cfs rq without parent should be put
344 * at the tail of the list.
346 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
347 &rq->leaf_cfs_rq_list);
349 * We have reach the top of a tree so we can reset
350 * tmp_alone_branch to the beginning of the list.
352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
353 return true;
357 * The parent has not already been added so we want to
358 * make sure that it will be put after us.
359 * tmp_alone_branch points to the begin of the branch
360 * where we will add parent.
362 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
364 * update tmp_alone_branch to points to the new begin
365 * of the branch
367 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
368 return false;
371 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
373 if (cfs_rq->on_list) {
374 struct rq *rq = rq_of(cfs_rq);
377 * With cfs_rq being unthrottled/throttled during an enqueue,
378 * it can happen the tmp_alone_branch points the a leaf that
379 * we finally want to del. In this case, tmp_alone_branch moves
380 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 * at the end of the enqueue.
383 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
384 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
386 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
387 cfs_rq->on_list = 0;
391 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
393 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
396 /* Iterate thr' all leaf cfs_rq's on a runqueue */
397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
399 leaf_cfs_rq_list)
401 /* Do the two (enqueued) entities belong to the same group ? */
402 static inline struct cfs_rq *
403 is_same_group(struct sched_entity *se, struct sched_entity *pse)
405 if (se->cfs_rq == pse->cfs_rq)
406 return se->cfs_rq;
408 return NULL;
411 static inline struct sched_entity *parent_entity(struct sched_entity *se)
413 return se->parent;
416 static void
417 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
419 int se_depth, pse_depth;
422 * preemption test can be made between sibling entities who are in the
423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 * both tasks until we find their ancestors who are siblings of common
425 * parent.
428 /* First walk up until both entities are at same depth */
429 se_depth = (*se)->depth;
430 pse_depth = (*pse)->depth;
432 while (se_depth > pse_depth) {
433 se_depth--;
434 *se = parent_entity(*se);
437 while (pse_depth > se_depth) {
438 pse_depth--;
439 *pse = parent_entity(*pse);
442 while (!is_same_group(*se, *pse)) {
443 *se = parent_entity(*se);
444 *pse = parent_entity(*pse);
448 #else /* !CONFIG_FAIR_GROUP_SCHED */
450 static inline struct task_struct *task_of(struct sched_entity *se)
452 return container_of(se, struct task_struct, se);
455 #define for_each_sched_entity(se) \
456 for (; se; se = NULL)
458 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
460 return &task_rq(p)->cfs;
463 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
465 struct task_struct *p = task_of(se);
466 struct rq *rq = task_rq(p);
468 return &rq->cfs;
471 /* runqueue "owned" by this group */
472 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
474 return NULL;
477 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
479 if (path)
480 strlcpy(path, "(null)", len);
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
485 return true;
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
501 return NULL;
504 static inline void
505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
509 #endif /* CONFIG_FAIR_GROUP_SCHED */
511 static __always_inline
512 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
514 /**************************************************************
515 * Scheduling class tree data structure manipulation methods:
518 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
520 s64 delta = (s64)(vruntime - max_vruntime);
521 if (delta > 0)
522 max_vruntime = vruntime;
524 return max_vruntime;
527 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
529 s64 delta = (s64)(vruntime - min_vruntime);
530 if (delta < 0)
531 min_vruntime = vruntime;
533 return min_vruntime;
536 static inline int entity_before(struct sched_entity *a,
537 struct sched_entity *b)
539 return (s64)(a->vruntime - b->vruntime) < 0;
542 static void update_min_vruntime(struct cfs_rq *cfs_rq)
544 struct sched_entity *curr = cfs_rq->curr;
545 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
547 u64 vruntime = cfs_rq->min_vruntime;
549 if (curr) {
550 if (curr->on_rq)
551 vruntime = curr->vruntime;
552 else
553 curr = NULL;
556 if (leftmost) { /* non-empty tree */
557 struct sched_entity *se;
558 se = rb_entry(leftmost, struct sched_entity, run_node);
560 if (!curr)
561 vruntime = se->vruntime;
562 else
563 vruntime = min_vruntime(vruntime, se->vruntime);
566 /* ensure we never gain time by being placed backwards. */
567 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
568 #ifndef CONFIG_64BIT
569 smp_wmb();
570 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
571 #endif
575 * Enqueue an entity into the rb-tree:
577 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
579 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
580 struct rb_node *parent = NULL;
581 struct sched_entity *entry;
582 bool leftmost = true;
585 * Find the right place in the rbtree:
587 while (*link) {
588 parent = *link;
589 entry = rb_entry(parent, struct sched_entity, run_node);
591 * We dont care about collisions. Nodes with
592 * the same key stay together.
594 if (entity_before(se, entry)) {
595 link = &parent->rb_left;
596 } else {
597 link = &parent->rb_right;
598 leftmost = false;
602 rb_link_node(&se->run_node, parent, link);
603 rb_insert_color_cached(&se->run_node,
604 &cfs_rq->tasks_timeline, leftmost);
607 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
609 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
612 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
614 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
616 if (!left)
617 return NULL;
619 return rb_entry(left, struct sched_entity, run_node);
622 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
624 struct rb_node *next = rb_next(&se->run_node);
626 if (!next)
627 return NULL;
629 return rb_entry(next, struct sched_entity, run_node);
632 #ifdef CONFIG_SCHED_DEBUG
633 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
635 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
637 if (!last)
638 return NULL;
640 return rb_entry(last, struct sched_entity, run_node);
643 /**************************************************************
644 * Scheduling class statistics methods:
647 int sched_proc_update_handler(struct ctl_table *table, int write,
648 void *buffer, size_t *lenp, loff_t *ppos)
650 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
651 unsigned int factor = get_update_sysctl_factor();
653 if (ret || !write)
654 return ret;
656 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
657 sysctl_sched_min_granularity);
659 #define WRT_SYSCTL(name) \
660 (normalized_sysctl_##name = sysctl_##name / (factor))
661 WRT_SYSCTL(sched_min_granularity);
662 WRT_SYSCTL(sched_latency);
663 WRT_SYSCTL(sched_wakeup_granularity);
664 #undef WRT_SYSCTL
666 return 0;
668 #endif
671 * delta /= w
673 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
675 if (unlikely(se->load.weight != NICE_0_LOAD))
676 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
678 return delta;
682 * The idea is to set a period in which each task runs once.
684 * When there are too many tasks (sched_nr_latency) we have to stretch
685 * this period because otherwise the slices get too small.
687 * p = (nr <= nl) ? l : l*nr/nl
689 static u64 __sched_period(unsigned long nr_running)
691 if (unlikely(nr_running > sched_nr_latency))
692 return nr_running * sysctl_sched_min_granularity;
693 else
694 return sysctl_sched_latency;
698 * We calculate the wall-time slice from the period by taking a part
699 * proportional to the weight.
701 * s = p*P[w/rw]
703 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
705 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
707 for_each_sched_entity(se) {
708 struct load_weight *load;
709 struct load_weight lw;
711 cfs_rq = cfs_rq_of(se);
712 load = &cfs_rq->load;
714 if (unlikely(!se->on_rq)) {
715 lw = cfs_rq->load;
717 update_load_add(&lw, se->load.weight);
718 load = &lw;
720 slice = __calc_delta(slice, se->load.weight, load);
722 return slice;
726 * We calculate the vruntime slice of a to-be-inserted task.
728 * vs = s/w
730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
732 return calc_delta_fair(sched_slice(cfs_rq, se), se);
735 #include "pelt.h"
736 #ifdef CONFIG_SMP
738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
739 static unsigned long task_h_load(struct task_struct *p);
740 static unsigned long capacity_of(int cpu);
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity *se)
745 struct sched_avg *sa = &se->avg;
747 memset(sa, 0, sizeof(*sa));
750 * Tasks are initialized with full load to be seen as heavy tasks until
751 * they get a chance to stabilize to their real load level.
752 * Group entities are initialized with zero load to reflect the fact that
753 * nothing has been attached to the task group yet.
755 if (entity_is_task(se))
756 sa->load_avg = scale_load_down(se->load.weight);
758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
761 static void attach_entity_cfs_rq(struct sched_entity *se);
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
778 * where n denotes the nth task and cpu_scale the CPU capacity.
780 * For example, for a CPU with 1024 of capacity, a simplest series from
781 * the beginning would be like:
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
789 void post_init_entity_util_avg(struct task_struct *p)
791 struct sched_entity *se = &p->se;
792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 struct sched_avg *sa = &se->avg;
794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
797 if (cap > 0) {
798 if (cfs_rq->avg.util_avg != 0) {
799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
800 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
802 if (sa->util_avg > cap)
803 sa->util_avg = cap;
804 } else {
805 sa->util_avg = cap;
809 sa->runnable_avg = sa->util_avg;
811 if (p->sched_class != &fair_sched_class) {
813 * For !fair tasks do:
815 update_cfs_rq_load_avg(now, cfs_rq);
816 attach_entity_load_avg(cfs_rq, se);
817 switched_from_fair(rq, p);
819 * such that the next switched_to_fair() has the
820 * expected state.
822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 return;
826 attach_entity_cfs_rq(se);
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
833 void post_init_entity_util_avg(struct task_struct *p)
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
839 #endif /* CONFIG_SMP */
842 * Update the current task's runtime statistics.
844 static void update_curr(struct cfs_rq *cfs_rq)
846 struct sched_entity *curr = cfs_rq->curr;
847 u64 now = rq_clock_task(rq_of(cfs_rq));
848 u64 delta_exec;
850 if (unlikely(!curr))
851 return;
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
855 return;
857 curr->exec_start = now;
859 schedstat_set(curr->statistics.exec_max,
860 max(delta_exec, curr->statistics.exec_max));
862 curr->sum_exec_runtime += delta_exec;
863 schedstat_add(cfs_rq->exec_clock, delta_exec);
865 curr->vruntime += calc_delta_fair(delta_exec, curr);
866 update_min_vruntime(cfs_rq);
868 if (entity_is_task(curr)) {
869 struct task_struct *curtask = task_of(curr);
871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
872 cgroup_account_cputime(curtask, delta_exec);
873 account_group_exec_runtime(curtask, delta_exec);
876 account_cfs_rq_runtime(cfs_rq, delta_exec);
879 static void update_curr_fair(struct rq *rq)
881 update_curr(cfs_rq_of(&rq->curr->se));
884 static inline void
885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
887 u64 wait_start, prev_wait_start;
889 if (!schedstat_enabled())
890 return;
892 wait_start = rq_clock(rq_of(cfs_rq));
893 prev_wait_start = schedstat_val(se->statistics.wait_start);
895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
896 likely(wait_start > prev_wait_start))
897 wait_start -= prev_wait_start;
899 __schedstat_set(se->statistics.wait_start, wait_start);
902 static inline void
903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
905 struct task_struct *p;
906 u64 delta;
908 if (!schedstat_enabled())
909 return;
911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
913 if (entity_is_task(se)) {
914 p = task_of(se);
915 if (task_on_rq_migrating(p)) {
917 * Preserve migrating task's wait time so wait_start
918 * time stamp can be adjusted to accumulate wait time
919 * prior to migration.
921 __schedstat_set(se->statistics.wait_start, delta);
922 return;
924 trace_sched_stat_wait(p, delta);
927 __schedstat_set(se->statistics.wait_max,
928 max(schedstat_val(se->statistics.wait_max), delta));
929 __schedstat_inc(se->statistics.wait_count);
930 __schedstat_add(se->statistics.wait_sum, delta);
931 __schedstat_set(se->statistics.wait_start, 0);
934 static inline void
935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
937 struct task_struct *tsk = NULL;
938 u64 sleep_start, block_start;
940 if (!schedstat_enabled())
941 return;
943 sleep_start = schedstat_val(se->statistics.sleep_start);
944 block_start = schedstat_val(se->statistics.block_start);
946 if (entity_is_task(se))
947 tsk = task_of(se);
949 if (sleep_start) {
950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
952 if ((s64)delta < 0)
953 delta = 0;
955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
956 __schedstat_set(se->statistics.sleep_max, delta);
958 __schedstat_set(se->statistics.sleep_start, 0);
959 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
961 if (tsk) {
962 account_scheduler_latency(tsk, delta >> 10, 1);
963 trace_sched_stat_sleep(tsk, delta);
966 if (block_start) {
967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
969 if ((s64)delta < 0)
970 delta = 0;
972 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
973 __schedstat_set(se->statistics.block_max, delta);
975 __schedstat_set(se->statistics.block_start, 0);
976 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
978 if (tsk) {
979 if (tsk->in_iowait) {
980 __schedstat_add(se->statistics.iowait_sum, delta);
981 __schedstat_inc(se->statistics.iowait_count);
982 trace_sched_stat_iowait(tsk, delta);
985 trace_sched_stat_blocked(tsk, delta);
988 * Blocking time is in units of nanosecs, so shift by
989 * 20 to get a milliseconds-range estimation of the
990 * amount of time that the task spent sleeping:
992 if (unlikely(prof_on == SLEEP_PROFILING)) {
993 profile_hits(SLEEP_PROFILING,
994 (void *)get_wchan(tsk),
995 delta >> 20);
997 account_scheduler_latency(tsk, delta >> 10, 0);
1003 * Task is being enqueued - update stats:
1005 static inline void
1006 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1008 if (!schedstat_enabled())
1009 return;
1012 * Are we enqueueing a waiting task? (for current tasks
1013 * a dequeue/enqueue event is a NOP)
1015 if (se != cfs_rq->curr)
1016 update_stats_wait_start(cfs_rq, se);
1018 if (flags & ENQUEUE_WAKEUP)
1019 update_stats_enqueue_sleeper(cfs_rq, se);
1022 static inline void
1023 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1026 if (!schedstat_enabled())
1027 return;
1030 * Mark the end of the wait period if dequeueing a
1031 * waiting task:
1033 if (se != cfs_rq->curr)
1034 update_stats_wait_end(cfs_rq, se);
1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 struct task_struct *tsk = task_of(se);
1039 if (tsk->state & TASK_INTERRUPTIBLE)
1040 __schedstat_set(se->statistics.sleep_start,
1041 rq_clock(rq_of(cfs_rq)));
1042 if (tsk->state & TASK_UNINTERRUPTIBLE)
1043 __schedstat_set(se->statistics.block_start,
1044 rq_clock(rq_of(cfs_rq)));
1049 * We are picking a new current task - update its stats:
1051 static inline void
1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1055 * We are starting a new run period:
1057 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1060 /**************************************************
1061 * Scheduling class queueing methods:
1064 #ifdef CONFIG_NUMA_BALANCING
1066 * Approximate time to scan a full NUMA task in ms. The task scan period is
1067 * calculated based on the tasks virtual memory size and
1068 * numa_balancing_scan_size.
1070 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1071 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1073 /* Portion of address space to scan in MB */
1074 unsigned int sysctl_numa_balancing_scan_size = 256;
1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1079 struct numa_group {
1080 refcount_t refcount;
1082 spinlock_t lock; /* nr_tasks, tasks */
1083 int nr_tasks;
1084 pid_t gid;
1085 int active_nodes;
1087 struct rcu_head rcu;
1088 unsigned long total_faults;
1089 unsigned long max_faults_cpu;
1091 * Faults_cpu is used to decide whether memory should move
1092 * towards the CPU. As a consequence, these stats are weighted
1093 * more by CPU use than by memory faults.
1095 unsigned long *faults_cpu;
1096 unsigned long faults[];
1100 * For functions that can be called in multiple contexts that permit reading
1101 * ->numa_group (see struct task_struct for locking rules).
1103 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1105 return rcu_dereference_check(p->numa_group, p == current ||
1106 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1109 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1111 return rcu_dereference_protected(p->numa_group, p == current);
1114 static inline unsigned long group_faults_priv(struct numa_group *ng);
1115 static inline unsigned long group_faults_shared(struct numa_group *ng);
1117 static unsigned int task_nr_scan_windows(struct task_struct *p)
1119 unsigned long rss = 0;
1120 unsigned long nr_scan_pages;
1123 * Calculations based on RSS as non-present and empty pages are skipped
1124 * by the PTE scanner and NUMA hinting faults should be trapped based
1125 * on resident pages
1127 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1128 rss = get_mm_rss(p->mm);
1129 if (!rss)
1130 rss = nr_scan_pages;
1132 rss = round_up(rss, nr_scan_pages);
1133 return rss / nr_scan_pages;
1136 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1137 #define MAX_SCAN_WINDOW 2560
1139 static unsigned int task_scan_min(struct task_struct *p)
1141 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1142 unsigned int scan, floor;
1143 unsigned int windows = 1;
1145 if (scan_size < MAX_SCAN_WINDOW)
1146 windows = MAX_SCAN_WINDOW / scan_size;
1147 floor = 1000 / windows;
1149 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1150 return max_t(unsigned int, floor, scan);
1153 static unsigned int task_scan_start(struct task_struct *p)
1155 unsigned long smin = task_scan_min(p);
1156 unsigned long period = smin;
1157 struct numa_group *ng;
1159 /* Scale the maximum scan period with the amount of shared memory. */
1160 rcu_read_lock();
1161 ng = rcu_dereference(p->numa_group);
1162 if (ng) {
1163 unsigned long shared = group_faults_shared(ng);
1164 unsigned long private = group_faults_priv(ng);
1166 period *= refcount_read(&ng->refcount);
1167 period *= shared + 1;
1168 period /= private + shared + 1;
1170 rcu_read_unlock();
1172 return max(smin, period);
1175 static unsigned int task_scan_max(struct task_struct *p)
1177 unsigned long smin = task_scan_min(p);
1178 unsigned long smax;
1179 struct numa_group *ng;
1181 /* Watch for min being lower than max due to floor calculations */
1182 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1184 /* Scale the maximum scan period with the amount of shared memory. */
1185 ng = deref_curr_numa_group(p);
1186 if (ng) {
1187 unsigned long shared = group_faults_shared(ng);
1188 unsigned long private = group_faults_priv(ng);
1189 unsigned long period = smax;
1191 period *= refcount_read(&ng->refcount);
1192 period *= shared + 1;
1193 period /= private + shared + 1;
1195 smax = max(smax, period);
1198 return max(smin, smax);
1201 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1203 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1204 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1207 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1209 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1210 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1213 /* Shared or private faults. */
1214 #define NR_NUMA_HINT_FAULT_TYPES 2
1216 /* Memory and CPU locality */
1217 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1219 /* Averaged statistics, and temporary buffers. */
1220 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1222 pid_t task_numa_group_id(struct task_struct *p)
1224 struct numa_group *ng;
1225 pid_t gid = 0;
1227 rcu_read_lock();
1228 ng = rcu_dereference(p->numa_group);
1229 if (ng)
1230 gid = ng->gid;
1231 rcu_read_unlock();
1233 return gid;
1237 * The averaged statistics, shared & private, memory & CPU,
1238 * occupy the first half of the array. The second half of the
1239 * array is for current counters, which are averaged into the
1240 * first set by task_numa_placement.
1242 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1244 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1247 static inline unsigned long task_faults(struct task_struct *p, int nid)
1249 if (!p->numa_faults)
1250 return 0;
1252 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1256 static inline unsigned long group_faults(struct task_struct *p, int nid)
1258 struct numa_group *ng = deref_task_numa_group(p);
1260 if (!ng)
1261 return 0;
1263 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1264 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1267 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1269 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1270 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1273 static inline unsigned long group_faults_priv(struct numa_group *ng)
1275 unsigned long faults = 0;
1276 int node;
1278 for_each_online_node(node) {
1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1282 return faults;
1285 static inline unsigned long group_faults_shared(struct numa_group *ng)
1287 unsigned long faults = 0;
1288 int node;
1290 for_each_online_node(node) {
1291 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1294 return faults;
1298 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1299 * considered part of a numa group's pseudo-interleaving set. Migrations
1300 * between these nodes are slowed down, to allow things to settle down.
1302 #define ACTIVE_NODE_FRACTION 3
1304 static bool numa_is_active_node(int nid, struct numa_group *ng)
1306 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1309 /* Handle placement on systems where not all nodes are directly connected. */
1310 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1311 int maxdist, bool task)
1313 unsigned long score = 0;
1314 int node;
1317 * All nodes are directly connected, and the same distance
1318 * from each other. No need for fancy placement algorithms.
1320 if (sched_numa_topology_type == NUMA_DIRECT)
1321 return 0;
1324 * This code is called for each node, introducing N^2 complexity,
1325 * which should be ok given the number of nodes rarely exceeds 8.
1327 for_each_online_node(node) {
1328 unsigned long faults;
1329 int dist = node_distance(nid, node);
1332 * The furthest away nodes in the system are not interesting
1333 * for placement; nid was already counted.
1335 if (dist == sched_max_numa_distance || node == nid)
1336 continue;
1339 * On systems with a backplane NUMA topology, compare groups
1340 * of nodes, and move tasks towards the group with the most
1341 * memory accesses. When comparing two nodes at distance
1342 * "hoplimit", only nodes closer by than "hoplimit" are part
1343 * of each group. Skip other nodes.
1345 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1346 dist >= maxdist)
1347 continue;
1349 /* Add up the faults from nearby nodes. */
1350 if (task)
1351 faults = task_faults(p, node);
1352 else
1353 faults = group_faults(p, node);
1356 * On systems with a glueless mesh NUMA topology, there are
1357 * no fixed "groups of nodes". Instead, nodes that are not
1358 * directly connected bounce traffic through intermediate
1359 * nodes; a numa_group can occupy any set of nodes.
1360 * The further away a node is, the less the faults count.
1361 * This seems to result in good task placement.
1363 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1364 faults *= (sched_max_numa_distance - dist);
1365 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1368 score += faults;
1371 return score;
1375 * These return the fraction of accesses done by a particular task, or
1376 * task group, on a particular numa node. The group weight is given a
1377 * larger multiplier, in order to group tasks together that are almost
1378 * evenly spread out between numa nodes.
1380 static inline unsigned long task_weight(struct task_struct *p, int nid,
1381 int dist)
1383 unsigned long faults, total_faults;
1385 if (!p->numa_faults)
1386 return 0;
1388 total_faults = p->total_numa_faults;
1390 if (!total_faults)
1391 return 0;
1393 faults = task_faults(p, nid);
1394 faults += score_nearby_nodes(p, nid, dist, true);
1396 return 1000 * faults / total_faults;
1399 static inline unsigned long group_weight(struct task_struct *p, int nid,
1400 int dist)
1402 struct numa_group *ng = deref_task_numa_group(p);
1403 unsigned long faults, total_faults;
1405 if (!ng)
1406 return 0;
1408 total_faults = ng->total_faults;
1410 if (!total_faults)
1411 return 0;
1413 faults = group_faults(p, nid);
1414 faults += score_nearby_nodes(p, nid, dist, false);
1416 return 1000 * faults / total_faults;
1419 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1420 int src_nid, int dst_cpu)
1422 struct numa_group *ng = deref_curr_numa_group(p);
1423 int dst_nid = cpu_to_node(dst_cpu);
1424 int last_cpupid, this_cpupid;
1426 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1427 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1430 * Allow first faults or private faults to migrate immediately early in
1431 * the lifetime of a task. The magic number 4 is based on waiting for
1432 * two full passes of the "multi-stage node selection" test that is
1433 * executed below.
1435 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1436 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1437 return true;
1440 * Multi-stage node selection is used in conjunction with a periodic
1441 * migration fault to build a temporal task<->page relation. By using
1442 * a two-stage filter we remove short/unlikely relations.
1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1445 * a task's usage of a particular page (n_p) per total usage of this
1446 * page (n_t) (in a given time-span) to a probability.
1448 * Our periodic faults will sample this probability and getting the
1449 * same result twice in a row, given these samples are fully
1450 * independent, is then given by P(n)^2, provided our sample period
1451 * is sufficiently short compared to the usage pattern.
1453 * This quadric squishes small probabilities, making it less likely we
1454 * act on an unlikely task<->page relation.
1456 if (!cpupid_pid_unset(last_cpupid) &&
1457 cpupid_to_nid(last_cpupid) != dst_nid)
1458 return false;
1460 /* Always allow migrate on private faults */
1461 if (cpupid_match_pid(p, last_cpupid))
1462 return true;
1464 /* A shared fault, but p->numa_group has not been set up yet. */
1465 if (!ng)
1466 return true;
1469 * Destination node is much more heavily used than the source
1470 * node? Allow migration.
1472 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1473 ACTIVE_NODE_FRACTION)
1474 return true;
1477 * Distribute memory according to CPU & memory use on each node,
1478 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1480 * faults_cpu(dst) 3 faults_cpu(src)
1481 * --------------- * - > ---------------
1482 * faults_mem(dst) 4 faults_mem(src)
1484 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1485 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1489 * 'numa_type' describes the node at the moment of load balancing.
1491 enum numa_type {
1492 /* The node has spare capacity that can be used to run more tasks. */
1493 node_has_spare = 0,
1495 * The node is fully used and the tasks don't compete for more CPU
1496 * cycles. Nevertheless, some tasks might wait before running.
1498 node_fully_busy,
1500 * The node is overloaded and can't provide expected CPU cycles to all
1501 * tasks.
1503 node_overloaded
1506 /* Cached statistics for all CPUs within a node */
1507 struct numa_stats {
1508 unsigned long load;
1509 unsigned long util;
1510 /* Total compute capacity of CPUs on a node */
1511 unsigned long compute_capacity;
1512 unsigned int nr_running;
1513 unsigned int weight;
1514 enum numa_type node_type;
1515 int idle_cpu;
1518 static inline bool is_core_idle(int cpu)
1520 #ifdef CONFIG_SCHED_SMT
1521 int sibling;
1523 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1524 if (cpu == sibling)
1525 continue;
1527 if (!idle_cpu(cpu))
1528 return false;
1530 #endif
1532 return true;
1535 struct task_numa_env {
1536 struct task_struct *p;
1538 int src_cpu, src_nid;
1539 int dst_cpu, dst_nid;
1541 struct numa_stats src_stats, dst_stats;
1543 int imbalance_pct;
1544 int dist;
1546 struct task_struct *best_task;
1547 long best_imp;
1548 int best_cpu;
1551 static unsigned long cpu_load(struct rq *rq);
1552 static unsigned long cpu_util(int cpu);
1553 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
1555 static inline enum
1556 numa_type numa_classify(unsigned int imbalance_pct,
1557 struct numa_stats *ns)
1559 if ((ns->nr_running > ns->weight) &&
1560 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1561 return node_overloaded;
1563 if ((ns->nr_running < ns->weight) ||
1564 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1565 return node_has_spare;
1567 return node_fully_busy;
1570 #ifdef CONFIG_SCHED_SMT
1571 /* Forward declarations of select_idle_sibling helpers */
1572 static inline bool test_idle_cores(int cpu, bool def);
1573 static inline int numa_idle_core(int idle_core, int cpu)
1575 if (!static_branch_likely(&sched_smt_present) ||
1576 idle_core >= 0 || !test_idle_cores(cpu, false))
1577 return idle_core;
1580 * Prefer cores instead of packing HT siblings
1581 * and triggering future load balancing.
1583 if (is_core_idle(cpu))
1584 idle_core = cpu;
1586 return idle_core;
1588 #else
1589 static inline int numa_idle_core(int idle_core, int cpu)
1591 return idle_core;
1593 #endif
1596 * Gather all necessary information to make NUMA balancing placement
1597 * decisions that are compatible with standard load balancer. This
1598 * borrows code and logic from update_sg_lb_stats but sharing a
1599 * common implementation is impractical.
1601 static void update_numa_stats(struct task_numa_env *env,
1602 struct numa_stats *ns, int nid,
1603 bool find_idle)
1605 int cpu, idle_core = -1;
1607 memset(ns, 0, sizeof(*ns));
1608 ns->idle_cpu = -1;
1610 rcu_read_lock();
1611 for_each_cpu(cpu, cpumask_of_node(nid)) {
1612 struct rq *rq = cpu_rq(cpu);
1614 ns->load += cpu_load(rq);
1615 ns->util += cpu_util(cpu);
1616 ns->nr_running += rq->cfs.h_nr_running;
1617 ns->compute_capacity += capacity_of(cpu);
1619 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1620 if (READ_ONCE(rq->numa_migrate_on) ||
1621 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1622 continue;
1624 if (ns->idle_cpu == -1)
1625 ns->idle_cpu = cpu;
1627 idle_core = numa_idle_core(idle_core, cpu);
1630 rcu_read_unlock();
1632 ns->weight = cpumask_weight(cpumask_of_node(nid));
1634 ns->node_type = numa_classify(env->imbalance_pct, ns);
1636 if (idle_core >= 0)
1637 ns->idle_cpu = idle_core;
1640 static void task_numa_assign(struct task_numa_env *env,
1641 struct task_struct *p, long imp)
1643 struct rq *rq = cpu_rq(env->dst_cpu);
1645 /* Check if run-queue part of active NUMA balance. */
1646 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1647 int cpu;
1648 int start = env->dst_cpu;
1650 /* Find alternative idle CPU. */
1651 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1652 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1653 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1654 continue;
1657 env->dst_cpu = cpu;
1658 rq = cpu_rq(env->dst_cpu);
1659 if (!xchg(&rq->numa_migrate_on, 1))
1660 goto assign;
1663 /* Failed to find an alternative idle CPU */
1664 return;
1667 assign:
1669 * Clear previous best_cpu/rq numa-migrate flag, since task now
1670 * found a better CPU to move/swap.
1672 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1673 rq = cpu_rq(env->best_cpu);
1674 WRITE_ONCE(rq->numa_migrate_on, 0);
1677 if (env->best_task)
1678 put_task_struct(env->best_task);
1679 if (p)
1680 get_task_struct(p);
1682 env->best_task = p;
1683 env->best_imp = imp;
1684 env->best_cpu = env->dst_cpu;
1687 static bool load_too_imbalanced(long src_load, long dst_load,
1688 struct task_numa_env *env)
1690 long imb, old_imb;
1691 long orig_src_load, orig_dst_load;
1692 long src_capacity, dst_capacity;
1695 * The load is corrected for the CPU capacity available on each node.
1697 * src_load dst_load
1698 * ------------ vs ---------
1699 * src_capacity dst_capacity
1701 src_capacity = env->src_stats.compute_capacity;
1702 dst_capacity = env->dst_stats.compute_capacity;
1704 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1706 orig_src_load = env->src_stats.load;
1707 orig_dst_load = env->dst_stats.load;
1709 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1711 /* Would this change make things worse? */
1712 return (imb > old_imb);
1716 * Maximum NUMA importance can be 1998 (2*999);
1717 * SMALLIMP @ 30 would be close to 1998/64.
1718 * Used to deter task migration.
1720 #define SMALLIMP 30
1723 * This checks if the overall compute and NUMA accesses of the system would
1724 * be improved if the source tasks was migrated to the target dst_cpu taking
1725 * into account that it might be best if task running on the dst_cpu should
1726 * be exchanged with the source task
1728 static bool task_numa_compare(struct task_numa_env *env,
1729 long taskimp, long groupimp, bool maymove)
1731 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1732 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1733 long imp = p_ng ? groupimp : taskimp;
1734 struct task_struct *cur;
1735 long src_load, dst_load;
1736 int dist = env->dist;
1737 long moveimp = imp;
1738 long load;
1739 bool stopsearch = false;
1741 if (READ_ONCE(dst_rq->numa_migrate_on))
1742 return false;
1744 rcu_read_lock();
1745 cur = rcu_dereference(dst_rq->curr);
1746 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1747 cur = NULL;
1750 * Because we have preemption enabled we can get migrated around and
1751 * end try selecting ourselves (current == env->p) as a swap candidate.
1753 if (cur == env->p) {
1754 stopsearch = true;
1755 goto unlock;
1758 if (!cur) {
1759 if (maymove && moveimp >= env->best_imp)
1760 goto assign;
1761 else
1762 goto unlock;
1765 /* Skip this swap candidate if cannot move to the source cpu. */
1766 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1767 goto unlock;
1770 * Skip this swap candidate if it is not moving to its preferred
1771 * node and the best task is.
1773 if (env->best_task &&
1774 env->best_task->numa_preferred_nid == env->src_nid &&
1775 cur->numa_preferred_nid != env->src_nid) {
1776 goto unlock;
1780 * "imp" is the fault differential for the source task between the
1781 * source and destination node. Calculate the total differential for
1782 * the source task and potential destination task. The more negative
1783 * the value is, the more remote accesses that would be expected to
1784 * be incurred if the tasks were swapped.
1786 * If dst and source tasks are in the same NUMA group, or not
1787 * in any group then look only at task weights.
1789 cur_ng = rcu_dereference(cur->numa_group);
1790 if (cur_ng == p_ng) {
1791 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1792 task_weight(cur, env->dst_nid, dist);
1794 * Add some hysteresis to prevent swapping the
1795 * tasks within a group over tiny differences.
1797 if (cur_ng)
1798 imp -= imp / 16;
1799 } else {
1801 * Compare the group weights. If a task is all by itself
1802 * (not part of a group), use the task weight instead.
1804 if (cur_ng && p_ng)
1805 imp += group_weight(cur, env->src_nid, dist) -
1806 group_weight(cur, env->dst_nid, dist);
1807 else
1808 imp += task_weight(cur, env->src_nid, dist) -
1809 task_weight(cur, env->dst_nid, dist);
1812 /* Discourage picking a task already on its preferred node */
1813 if (cur->numa_preferred_nid == env->dst_nid)
1814 imp -= imp / 16;
1817 * Encourage picking a task that moves to its preferred node.
1818 * This potentially makes imp larger than it's maximum of
1819 * 1998 (see SMALLIMP and task_weight for why) but in this
1820 * case, it does not matter.
1822 if (cur->numa_preferred_nid == env->src_nid)
1823 imp += imp / 8;
1825 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1826 imp = moveimp;
1827 cur = NULL;
1828 goto assign;
1832 * Prefer swapping with a task moving to its preferred node over a
1833 * task that is not.
1835 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1836 env->best_task->numa_preferred_nid != env->src_nid) {
1837 goto assign;
1841 * If the NUMA importance is less than SMALLIMP,
1842 * task migration might only result in ping pong
1843 * of tasks and also hurt performance due to cache
1844 * misses.
1846 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1847 goto unlock;
1850 * In the overloaded case, try and keep the load balanced.
1852 load = task_h_load(env->p) - task_h_load(cur);
1853 if (!load)
1854 goto assign;
1856 dst_load = env->dst_stats.load + load;
1857 src_load = env->src_stats.load - load;
1859 if (load_too_imbalanced(src_load, dst_load, env))
1860 goto unlock;
1862 assign:
1863 /* Evaluate an idle CPU for a task numa move. */
1864 if (!cur) {
1865 int cpu = env->dst_stats.idle_cpu;
1867 /* Nothing cached so current CPU went idle since the search. */
1868 if (cpu < 0)
1869 cpu = env->dst_cpu;
1872 * If the CPU is no longer truly idle and the previous best CPU
1873 * is, keep using it.
1875 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1876 idle_cpu(env->best_cpu)) {
1877 cpu = env->best_cpu;
1880 env->dst_cpu = cpu;
1883 task_numa_assign(env, cur, imp);
1886 * If a move to idle is allowed because there is capacity or load
1887 * balance improves then stop the search. While a better swap
1888 * candidate may exist, a search is not free.
1890 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1891 stopsearch = true;
1894 * If a swap candidate must be identified and the current best task
1895 * moves its preferred node then stop the search.
1897 if (!maymove && env->best_task &&
1898 env->best_task->numa_preferred_nid == env->src_nid) {
1899 stopsearch = true;
1901 unlock:
1902 rcu_read_unlock();
1904 return stopsearch;
1907 static void task_numa_find_cpu(struct task_numa_env *env,
1908 long taskimp, long groupimp)
1910 bool maymove = false;
1911 int cpu;
1914 * If dst node has spare capacity, then check if there is an
1915 * imbalance that would be overruled by the load balancer.
1917 if (env->dst_stats.node_type == node_has_spare) {
1918 unsigned int imbalance;
1919 int src_running, dst_running;
1922 * Would movement cause an imbalance? Note that if src has
1923 * more running tasks that the imbalance is ignored as the
1924 * move improves the imbalance from the perspective of the
1925 * CPU load balancer.
1926 * */
1927 src_running = env->src_stats.nr_running - 1;
1928 dst_running = env->dst_stats.nr_running + 1;
1929 imbalance = max(0, dst_running - src_running);
1930 imbalance = adjust_numa_imbalance(imbalance, src_running);
1932 /* Use idle CPU if there is no imbalance */
1933 if (!imbalance) {
1934 maymove = true;
1935 if (env->dst_stats.idle_cpu >= 0) {
1936 env->dst_cpu = env->dst_stats.idle_cpu;
1937 task_numa_assign(env, NULL, 0);
1938 return;
1941 } else {
1942 long src_load, dst_load, load;
1944 * If the improvement from just moving env->p direction is better
1945 * than swapping tasks around, check if a move is possible.
1947 load = task_h_load(env->p);
1948 dst_load = env->dst_stats.load + load;
1949 src_load = env->src_stats.load - load;
1950 maymove = !load_too_imbalanced(src_load, dst_load, env);
1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1954 /* Skip this CPU if the source task cannot migrate */
1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1956 continue;
1958 env->dst_cpu = cpu;
1959 if (task_numa_compare(env, taskimp, groupimp, maymove))
1960 break;
1964 static int task_numa_migrate(struct task_struct *p)
1966 struct task_numa_env env = {
1967 .p = p,
1969 .src_cpu = task_cpu(p),
1970 .src_nid = task_node(p),
1972 .imbalance_pct = 112,
1974 .best_task = NULL,
1975 .best_imp = 0,
1976 .best_cpu = -1,
1978 unsigned long taskweight, groupweight;
1979 struct sched_domain *sd;
1980 long taskimp, groupimp;
1981 struct numa_group *ng;
1982 struct rq *best_rq;
1983 int nid, ret, dist;
1986 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 * imbalance and would be the first to start moving tasks about.
1989 * And we want to avoid any moving of tasks about, as that would create
1990 * random movement of tasks -- counter the numa conditions we're trying
1991 * to satisfy here.
1993 rcu_read_lock();
1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1995 if (sd)
1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1997 rcu_read_unlock();
2000 * Cpusets can break the scheduler domain tree into smaller
2001 * balance domains, some of which do not cross NUMA boundaries.
2002 * Tasks that are "trapped" in such domains cannot be migrated
2003 * elsewhere, so there is no point in (re)trying.
2005 if (unlikely(!sd)) {
2006 sched_setnuma(p, task_node(p));
2007 return -EINVAL;
2010 env.dst_nid = p->numa_preferred_nid;
2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2012 taskweight = task_weight(p, env.src_nid, dist);
2013 groupweight = group_weight(p, env.src_nid, dist);
2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2019 /* Try to find a spot on the preferred nid. */
2020 task_numa_find_cpu(&env, taskimp, groupimp);
2023 * Look at other nodes in these cases:
2024 * - there is no space available on the preferred_nid
2025 * - the task is part of a numa_group that is interleaved across
2026 * multiple NUMA nodes; in order to better consolidate the group,
2027 * we need to check other locations.
2029 ng = deref_curr_numa_group(p);
2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2031 for_each_online_node(nid) {
2032 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2033 continue;
2035 dist = node_distance(env.src_nid, env.dst_nid);
2036 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2037 dist != env.dist) {
2038 taskweight = task_weight(p, env.src_nid, dist);
2039 groupweight = group_weight(p, env.src_nid, dist);
2042 /* Only consider nodes where both task and groups benefit */
2043 taskimp = task_weight(p, nid, dist) - taskweight;
2044 groupimp = group_weight(p, nid, dist) - groupweight;
2045 if (taskimp < 0 && groupimp < 0)
2046 continue;
2048 env.dist = dist;
2049 env.dst_nid = nid;
2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2051 task_numa_find_cpu(&env, taskimp, groupimp);
2056 * If the task is part of a workload that spans multiple NUMA nodes,
2057 * and is migrating into one of the workload's active nodes, remember
2058 * this node as the task's preferred numa node, so the workload can
2059 * settle down.
2060 * A task that migrated to a second choice node will be better off
2061 * trying for a better one later. Do not set the preferred node here.
2063 if (ng) {
2064 if (env.best_cpu == -1)
2065 nid = env.src_nid;
2066 else
2067 nid = cpu_to_node(env.best_cpu);
2069 if (nid != p->numa_preferred_nid)
2070 sched_setnuma(p, nid);
2073 /* No better CPU than the current one was found. */
2074 if (env.best_cpu == -1) {
2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2076 return -EAGAIN;
2079 best_rq = cpu_rq(env.best_cpu);
2080 if (env.best_task == NULL) {
2081 ret = migrate_task_to(p, env.best_cpu);
2082 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2083 if (ret != 0)
2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2085 return ret;
2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2089 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2091 if (ret != 0)
2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2093 put_task_struct(env.best_task);
2094 return ret;
2097 /* Attempt to migrate a task to a CPU on the preferred node. */
2098 static void numa_migrate_preferred(struct task_struct *p)
2100 unsigned long interval = HZ;
2102 /* This task has no NUMA fault statistics yet */
2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2104 return;
2106 /* Periodically retry migrating the task to the preferred node */
2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2108 p->numa_migrate_retry = jiffies + interval;
2110 /* Success if task is already running on preferred CPU */
2111 if (task_node(p) == p->numa_preferred_nid)
2112 return;
2114 /* Otherwise, try migrate to a CPU on the preferred node */
2115 task_numa_migrate(p);
2119 * Find out how many nodes on the workload is actively running on. Do this by
2120 * tracking the nodes from which NUMA hinting faults are triggered. This can
2121 * be different from the set of nodes where the workload's memory is currently
2122 * located.
2124 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2126 unsigned long faults, max_faults = 0;
2127 int nid, active_nodes = 0;
2129 for_each_online_node(nid) {
2130 faults = group_faults_cpu(numa_group, nid);
2131 if (faults > max_faults)
2132 max_faults = faults;
2135 for_each_online_node(nid) {
2136 faults = group_faults_cpu(numa_group, nid);
2137 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2138 active_nodes++;
2141 numa_group->max_faults_cpu = max_faults;
2142 numa_group->active_nodes = active_nodes;
2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147 * increments. The more local the fault statistics are, the higher the scan
2148 * period will be for the next scan window. If local/(local+remote) ratio is
2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150 * the scan period will decrease. Aim for 70% local accesses.
2152 #define NUMA_PERIOD_SLOTS 10
2153 #define NUMA_PERIOD_THRESHOLD 7
2156 * Increase the scan period (slow down scanning) if the majority of
2157 * our memory is already on our local node, or if the majority of
2158 * the page accesses are shared with other processes.
2159 * Otherwise, decrease the scan period.
2161 static void update_task_scan_period(struct task_struct *p,
2162 unsigned long shared, unsigned long private)
2164 unsigned int period_slot;
2165 int lr_ratio, ps_ratio;
2166 int diff;
2168 unsigned long remote = p->numa_faults_locality[0];
2169 unsigned long local = p->numa_faults_locality[1];
2172 * If there were no record hinting faults then either the task is
2173 * completely idle or all activity is areas that are not of interest
2174 * to automatic numa balancing. Related to that, if there were failed
2175 * migration then it implies we are migrating too quickly or the local
2176 * node is overloaded. In either case, scan slower
2178 if (local + shared == 0 || p->numa_faults_locality[2]) {
2179 p->numa_scan_period = min(p->numa_scan_period_max,
2180 p->numa_scan_period << 1);
2182 p->mm->numa_next_scan = jiffies +
2183 msecs_to_jiffies(p->numa_scan_period);
2185 return;
2189 * Prepare to scale scan period relative to the current period.
2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2200 * Most memory accesses are local. There is no need to
2201 * do fast NUMA scanning, since memory is already local.
2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2204 if (!slot)
2205 slot = 1;
2206 diff = slot * period_slot;
2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2209 * Most memory accesses are shared with other tasks.
2210 * There is no point in continuing fast NUMA scanning,
2211 * since other tasks may just move the memory elsewhere.
2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2214 if (!slot)
2215 slot = 1;
2216 diff = slot * period_slot;
2217 } else {
2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 * yet they are not on the local NUMA node. Speed up
2221 * NUMA scanning to get the memory moved over.
2223 int ratio = max(lr_ratio, ps_ratio);
2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2227 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2228 task_scan_min(p), task_scan_max(p));
2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2233 * Get the fraction of time the task has been running since the last
2234 * NUMA placement cycle. The scheduler keeps similar statistics, but
2235 * decays those on a 32ms period, which is orders of magnitude off
2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237 * stats only if the task is so new there are no NUMA statistics yet.
2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2241 u64 runtime, delta, now;
2242 /* Use the start of this time slice to avoid calculations. */
2243 now = p->se.exec_start;
2244 runtime = p->se.sum_exec_runtime;
2246 if (p->last_task_numa_placement) {
2247 delta = runtime - p->last_sum_exec_runtime;
2248 *period = now - p->last_task_numa_placement;
2250 /* Avoid time going backwards, prevent potential divide error: */
2251 if (unlikely((s64)*period < 0))
2252 *period = 0;
2253 } else {
2254 delta = p->se.avg.load_sum;
2255 *period = LOAD_AVG_MAX;
2258 p->last_sum_exec_runtime = runtime;
2259 p->last_task_numa_placement = now;
2261 return delta;
2265 * Determine the preferred nid for a task in a numa_group. This needs to
2266 * be done in a way that produces consistent results with group_weight,
2267 * otherwise workloads might not converge.
2269 static int preferred_group_nid(struct task_struct *p, int nid)
2271 nodemask_t nodes;
2272 int dist;
2274 /* Direct connections between all NUMA nodes. */
2275 if (sched_numa_topology_type == NUMA_DIRECT)
2276 return nid;
2279 * On a system with glueless mesh NUMA topology, group_weight
2280 * scores nodes according to the number of NUMA hinting faults on
2281 * both the node itself, and on nearby nodes.
2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2284 unsigned long score, max_score = 0;
2285 int node, max_node = nid;
2287 dist = sched_max_numa_distance;
2289 for_each_online_node(node) {
2290 score = group_weight(p, node, dist);
2291 if (score > max_score) {
2292 max_score = score;
2293 max_node = node;
2296 return max_node;
2300 * Finding the preferred nid in a system with NUMA backplane
2301 * interconnect topology is more involved. The goal is to locate
2302 * tasks from numa_groups near each other in the system, and
2303 * untangle workloads from different sides of the system. This requires
2304 * searching down the hierarchy of node groups, recursively searching
2305 * inside the highest scoring group of nodes. The nodemask tricks
2306 * keep the complexity of the search down.
2308 nodes = node_online_map;
2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2310 unsigned long max_faults = 0;
2311 nodemask_t max_group = NODE_MASK_NONE;
2312 int a, b;
2314 /* Are there nodes at this distance from each other? */
2315 if (!find_numa_distance(dist))
2316 continue;
2318 for_each_node_mask(a, nodes) {
2319 unsigned long faults = 0;
2320 nodemask_t this_group;
2321 nodes_clear(this_group);
2323 /* Sum group's NUMA faults; includes a==b case. */
2324 for_each_node_mask(b, nodes) {
2325 if (node_distance(a, b) < dist) {
2326 faults += group_faults(p, b);
2327 node_set(b, this_group);
2328 node_clear(b, nodes);
2332 /* Remember the top group. */
2333 if (faults > max_faults) {
2334 max_faults = faults;
2335 max_group = this_group;
2337 * subtle: at the smallest distance there is
2338 * just one node left in each "group", the
2339 * winner is the preferred nid.
2341 nid = a;
2344 /* Next round, evaluate the nodes within max_group. */
2345 if (!max_faults)
2346 break;
2347 nodes = max_group;
2349 return nid;
2352 static void task_numa_placement(struct task_struct *p)
2354 int seq, nid, max_nid = NUMA_NO_NODE;
2355 unsigned long max_faults = 0;
2356 unsigned long fault_types[2] = { 0, 0 };
2357 unsigned long total_faults;
2358 u64 runtime, period;
2359 spinlock_t *group_lock = NULL;
2360 struct numa_group *ng;
2363 * The p->mm->numa_scan_seq field gets updated without
2364 * exclusive access. Use READ_ONCE() here to ensure
2365 * that the field is read in a single access:
2367 seq = READ_ONCE(p->mm->numa_scan_seq);
2368 if (p->numa_scan_seq == seq)
2369 return;
2370 p->numa_scan_seq = seq;
2371 p->numa_scan_period_max = task_scan_max(p);
2373 total_faults = p->numa_faults_locality[0] +
2374 p->numa_faults_locality[1];
2375 runtime = numa_get_avg_runtime(p, &period);
2377 /* If the task is part of a group prevent parallel updates to group stats */
2378 ng = deref_curr_numa_group(p);
2379 if (ng) {
2380 group_lock = &ng->lock;
2381 spin_lock_irq(group_lock);
2384 /* Find the node with the highest number of faults */
2385 for_each_online_node(nid) {
2386 /* Keep track of the offsets in numa_faults array */
2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2388 unsigned long faults = 0, group_faults = 0;
2389 int priv;
2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2392 long diff, f_diff, f_weight;
2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2399 /* Decay existing window, copy faults since last scan */
2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2401 fault_types[priv] += p->numa_faults[membuf_idx];
2402 p->numa_faults[membuf_idx] = 0;
2405 * Normalize the faults_from, so all tasks in a group
2406 * count according to CPU use, instead of by the raw
2407 * number of faults. Tasks with little runtime have
2408 * little over-all impact on throughput, and thus their
2409 * faults are less important.
2411 f_weight = div64_u64(runtime << 16, period + 1);
2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2413 (total_faults + 1);
2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2415 p->numa_faults[cpubuf_idx] = 0;
2417 p->numa_faults[mem_idx] += diff;
2418 p->numa_faults[cpu_idx] += f_diff;
2419 faults += p->numa_faults[mem_idx];
2420 p->total_numa_faults += diff;
2421 if (ng) {
2423 * safe because we can only change our own group
2425 * mem_idx represents the offset for a given
2426 * nid and priv in a specific region because it
2427 * is at the beginning of the numa_faults array.
2429 ng->faults[mem_idx] += diff;
2430 ng->faults_cpu[mem_idx] += f_diff;
2431 ng->total_faults += diff;
2432 group_faults += ng->faults[mem_idx];
2436 if (!ng) {
2437 if (faults > max_faults) {
2438 max_faults = faults;
2439 max_nid = nid;
2441 } else if (group_faults > max_faults) {
2442 max_faults = group_faults;
2443 max_nid = nid;
2447 if (ng) {
2448 numa_group_count_active_nodes(ng);
2449 spin_unlock_irq(group_lock);
2450 max_nid = preferred_group_nid(p, max_nid);
2453 if (max_faults) {
2454 /* Set the new preferred node */
2455 if (max_nid != p->numa_preferred_nid)
2456 sched_setnuma(p, max_nid);
2459 update_task_scan_period(p, fault_types[0], fault_types[1]);
2462 static inline int get_numa_group(struct numa_group *grp)
2464 return refcount_inc_not_zero(&grp->refcount);
2467 static inline void put_numa_group(struct numa_group *grp)
2469 if (refcount_dec_and_test(&grp->refcount))
2470 kfree_rcu(grp, rcu);
2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2474 int *priv)
2476 struct numa_group *grp, *my_grp;
2477 struct task_struct *tsk;
2478 bool join = false;
2479 int cpu = cpupid_to_cpu(cpupid);
2480 int i;
2482 if (unlikely(!deref_curr_numa_group(p))) {
2483 unsigned int size = sizeof(struct numa_group) +
2484 4*nr_node_ids*sizeof(unsigned long);
2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2487 if (!grp)
2488 return;
2490 refcount_set(&grp->refcount, 1);
2491 grp->active_nodes = 1;
2492 grp->max_faults_cpu = 0;
2493 spin_lock_init(&grp->lock);
2494 grp->gid = p->pid;
2495 /* Second half of the array tracks nids where faults happen */
2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2497 nr_node_ids;
2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2500 grp->faults[i] = p->numa_faults[i];
2502 grp->total_faults = p->total_numa_faults;
2504 grp->nr_tasks++;
2505 rcu_assign_pointer(p->numa_group, grp);
2508 rcu_read_lock();
2509 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2511 if (!cpupid_match_pid(tsk, cpupid))
2512 goto no_join;
2514 grp = rcu_dereference(tsk->numa_group);
2515 if (!grp)
2516 goto no_join;
2518 my_grp = deref_curr_numa_group(p);
2519 if (grp == my_grp)
2520 goto no_join;
2523 * Only join the other group if its bigger; if we're the bigger group,
2524 * the other task will join us.
2526 if (my_grp->nr_tasks > grp->nr_tasks)
2527 goto no_join;
2530 * Tie-break on the grp address.
2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2533 goto no_join;
2535 /* Always join threads in the same process. */
2536 if (tsk->mm == current->mm)
2537 join = true;
2539 /* Simple filter to avoid false positives due to PID collisions */
2540 if (flags & TNF_SHARED)
2541 join = true;
2543 /* Update priv based on whether false sharing was detected */
2544 *priv = !join;
2546 if (join && !get_numa_group(grp))
2547 goto no_join;
2549 rcu_read_unlock();
2551 if (!join)
2552 return;
2554 BUG_ON(irqs_disabled());
2555 double_lock_irq(&my_grp->lock, &grp->lock);
2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2558 my_grp->faults[i] -= p->numa_faults[i];
2559 grp->faults[i] += p->numa_faults[i];
2561 my_grp->total_faults -= p->total_numa_faults;
2562 grp->total_faults += p->total_numa_faults;
2564 my_grp->nr_tasks--;
2565 grp->nr_tasks++;
2567 spin_unlock(&my_grp->lock);
2568 spin_unlock_irq(&grp->lock);
2570 rcu_assign_pointer(p->numa_group, grp);
2572 put_numa_group(my_grp);
2573 return;
2575 no_join:
2576 rcu_read_unlock();
2577 return;
2581 * Get rid of NUMA staticstics associated with a task (either current or dead).
2582 * If @final is set, the task is dead and has reached refcount zero, so we can
2583 * safely free all relevant data structures. Otherwise, there might be
2584 * concurrent reads from places like load balancing and procfs, and we should
2585 * reset the data back to default state without freeing ->numa_faults.
2587 void task_numa_free(struct task_struct *p, bool final)
2589 /* safe: p either is current or is being freed by current */
2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2591 unsigned long *numa_faults = p->numa_faults;
2592 unsigned long flags;
2593 int i;
2595 if (!numa_faults)
2596 return;
2598 if (grp) {
2599 spin_lock_irqsave(&grp->lock, flags);
2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2601 grp->faults[i] -= p->numa_faults[i];
2602 grp->total_faults -= p->total_numa_faults;
2604 grp->nr_tasks--;
2605 spin_unlock_irqrestore(&grp->lock, flags);
2606 RCU_INIT_POINTER(p->numa_group, NULL);
2607 put_numa_group(grp);
2610 if (final) {
2611 p->numa_faults = NULL;
2612 kfree(numa_faults);
2613 } else {
2614 p->total_numa_faults = 0;
2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2616 numa_faults[i] = 0;
2621 * Got a PROT_NONE fault for a page on @node.
2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2625 struct task_struct *p = current;
2626 bool migrated = flags & TNF_MIGRATED;
2627 int cpu_node = task_node(current);
2628 int local = !!(flags & TNF_FAULT_LOCAL);
2629 struct numa_group *ng;
2630 int priv;
2632 if (!static_branch_likely(&sched_numa_balancing))
2633 return;
2635 /* for example, ksmd faulting in a user's mm */
2636 if (!p->mm)
2637 return;
2639 /* Allocate buffer to track faults on a per-node basis */
2640 if (unlikely(!p->numa_faults)) {
2641 int size = sizeof(*p->numa_faults) *
2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2645 if (!p->numa_faults)
2646 return;
2648 p->total_numa_faults = 0;
2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2653 * First accesses are treated as private, otherwise consider accesses
2654 * to be private if the accessing pid has not changed
2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2657 priv = 1;
2658 } else {
2659 priv = cpupid_match_pid(p, last_cpupid);
2660 if (!priv && !(flags & TNF_NO_GROUP))
2661 task_numa_group(p, last_cpupid, flags, &priv);
2665 * If a workload spans multiple NUMA nodes, a shared fault that
2666 * occurs wholly within the set of nodes that the workload is
2667 * actively using should be counted as local. This allows the
2668 * scan rate to slow down when a workload has settled down.
2670 ng = deref_curr_numa_group(p);
2671 if (!priv && !local && ng && ng->active_nodes > 1 &&
2672 numa_is_active_node(cpu_node, ng) &&
2673 numa_is_active_node(mem_node, ng))
2674 local = 1;
2677 * Retry to migrate task to preferred node periodically, in case it
2678 * previously failed, or the scheduler moved us.
2680 if (time_after(jiffies, p->numa_migrate_retry)) {
2681 task_numa_placement(p);
2682 numa_migrate_preferred(p);
2685 if (migrated)
2686 p->numa_pages_migrated += pages;
2687 if (flags & TNF_MIGRATE_FAIL)
2688 p->numa_faults_locality[2] += pages;
2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2692 p->numa_faults_locality[local] += pages;
2695 static void reset_ptenuma_scan(struct task_struct *p)
2698 * We only did a read acquisition of the mmap sem, so
2699 * p->mm->numa_scan_seq is written to without exclusive access
2700 * and the update is not guaranteed to be atomic. That's not
2701 * much of an issue though, since this is just used for
2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 * expensive, to avoid any form of compiler optimizations:
2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2706 p->mm->numa_scan_offset = 0;
2710 * The expensive part of numa migration is done from task_work context.
2711 * Triggered from task_tick_numa().
2713 static void task_numa_work(struct callback_head *work)
2715 unsigned long migrate, next_scan, now = jiffies;
2716 struct task_struct *p = current;
2717 struct mm_struct *mm = p->mm;
2718 u64 runtime = p->se.sum_exec_runtime;
2719 struct vm_area_struct *vma;
2720 unsigned long start, end;
2721 unsigned long nr_pte_updates = 0;
2722 long pages, virtpages;
2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2726 work->next = work;
2728 * Who cares about NUMA placement when they're dying.
2730 * NOTE: make sure not to dereference p->mm before this check,
2731 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 * without p->mm even though we still had it when we enqueued this
2733 * work.
2735 if (p->flags & PF_EXITING)
2736 return;
2738 if (!mm->numa_next_scan) {
2739 mm->numa_next_scan = now +
2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2744 * Enforce maximal scan/migration frequency..
2746 migrate = mm->numa_next_scan;
2747 if (time_before(now, migrate))
2748 return;
2750 if (p->numa_scan_period == 0) {
2751 p->numa_scan_period_max = task_scan_max(p);
2752 p->numa_scan_period = task_scan_start(p);
2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2757 return;
2760 * Delay this task enough that another task of this mm will likely win
2761 * the next time around.
2763 p->node_stamp += 2 * TICK_NSEC;
2765 start = mm->numa_scan_offset;
2766 pages = sysctl_numa_balancing_scan_size;
2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2768 virtpages = pages * 8; /* Scan up to this much virtual space */
2769 if (!pages)
2770 return;
2773 if (!mmap_read_trylock(mm))
2774 return;
2775 vma = find_vma(mm, start);
2776 if (!vma) {
2777 reset_ptenuma_scan(p);
2778 start = 0;
2779 vma = mm->mmap;
2781 for (; vma; vma = vma->vm_next) {
2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2784 continue;
2788 * Shared library pages mapped by multiple processes are not
2789 * migrated as it is expected they are cache replicated. Avoid
2790 * hinting faults in read-only file-backed mappings or the vdso
2791 * as migrating the pages will be of marginal benefit.
2793 if (!vma->vm_mm ||
2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2795 continue;
2798 * Skip inaccessible VMAs to avoid any confusion between
2799 * PROT_NONE and NUMA hinting ptes
2801 if (!vma_is_accessible(vma))
2802 continue;
2804 do {
2805 start = max(start, vma->vm_start);
2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2807 end = min(end, vma->vm_end);
2808 nr_pte_updates = change_prot_numa(vma, start, end);
2811 * Try to scan sysctl_numa_balancing_size worth of
2812 * hpages that have at least one present PTE that
2813 * is not already pte-numa. If the VMA contains
2814 * areas that are unused or already full of prot_numa
2815 * PTEs, scan up to virtpages, to skip through those
2816 * areas faster.
2818 if (nr_pte_updates)
2819 pages -= (end - start) >> PAGE_SHIFT;
2820 virtpages -= (end - start) >> PAGE_SHIFT;
2822 start = end;
2823 if (pages <= 0 || virtpages <= 0)
2824 goto out;
2826 cond_resched();
2827 } while (end != vma->vm_end);
2830 out:
2832 * It is possible to reach the end of the VMA list but the last few
2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 * would find the !migratable VMA on the next scan but not reset the
2835 * scanner to the start so check it now.
2837 if (vma)
2838 mm->numa_scan_offset = start;
2839 else
2840 reset_ptenuma_scan(p);
2841 mmap_read_unlock(mm);
2844 * Make sure tasks use at least 32x as much time to run other code
2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 * Usually update_task_scan_period slows down scanning enough; on an
2847 * overloaded system we need to limit overhead on a per task basis.
2849 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2850 u64 diff = p->se.sum_exec_runtime - runtime;
2851 p->node_stamp += 32 * diff;
2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2857 int mm_users = 0;
2858 struct mm_struct *mm = p->mm;
2860 if (mm) {
2861 mm_users = atomic_read(&mm->mm_users);
2862 if (mm_users == 1) {
2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2864 mm->numa_scan_seq = 0;
2867 p->node_stamp = 0;
2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2870 /* Protect against double add, see task_tick_numa and task_numa_work */
2871 p->numa_work.next = &p->numa_work;
2872 p->numa_faults = NULL;
2873 RCU_INIT_POINTER(p->numa_group, NULL);
2874 p->last_task_numa_placement = 0;
2875 p->last_sum_exec_runtime = 0;
2877 init_task_work(&p->numa_work, task_numa_work);
2879 /* New address space, reset the preferred nid */
2880 if (!(clone_flags & CLONE_VM)) {
2881 p->numa_preferred_nid = NUMA_NO_NODE;
2882 return;
2886 * New thread, keep existing numa_preferred_nid which should be copied
2887 * already by arch_dup_task_struct but stagger when scans start.
2889 if (mm) {
2890 unsigned int delay;
2892 delay = min_t(unsigned int, task_scan_max(current),
2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2894 delay += 2 * TICK_NSEC;
2895 p->node_stamp = delay;
2900 * Drive the periodic memory faults..
2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2904 struct callback_head *work = &curr->numa_work;
2905 u64 period, now;
2908 * We don't care about NUMA placement if we don't have memory.
2910 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2911 return;
2914 * Using runtime rather than walltime has the dual advantage that
2915 * we (mostly) drive the selection from busy threads and that the
2916 * task needs to have done some actual work before we bother with
2917 * NUMA placement.
2919 now = curr->se.sum_exec_runtime;
2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2922 if (now > curr->node_stamp + period) {
2923 if (!curr->node_stamp)
2924 curr->numa_scan_period = task_scan_start(curr);
2925 curr->node_stamp += period;
2927 if (!time_before(jiffies, curr->mm->numa_next_scan))
2928 task_work_add(curr, work, true);
2932 static void update_scan_period(struct task_struct *p, int new_cpu)
2934 int src_nid = cpu_to_node(task_cpu(p));
2935 int dst_nid = cpu_to_node(new_cpu);
2937 if (!static_branch_likely(&sched_numa_balancing))
2938 return;
2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2941 return;
2943 if (src_nid == dst_nid)
2944 return;
2947 * Allow resets if faults have been trapped before one scan
2948 * has completed. This is most likely due to a new task that
2949 * is pulled cross-node due to wakeups or load balancing.
2951 if (p->numa_scan_seq) {
2953 * Avoid scan adjustments if moving to the preferred
2954 * node or if the task was not previously running on
2955 * the preferred node.
2957 if (dst_nid == p->numa_preferred_nid ||
2958 (p->numa_preferred_nid != NUMA_NO_NODE &&
2959 src_nid != p->numa_preferred_nid))
2960 return;
2963 p->numa_scan_period = task_scan_start(p);
2966 #else
2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2979 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2983 #endif /* CONFIG_NUMA_BALANCING */
2985 static void
2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2988 update_load_add(&cfs_rq->load, se->load.weight);
2989 #ifdef CONFIG_SMP
2990 if (entity_is_task(se)) {
2991 struct rq *rq = rq_of(cfs_rq);
2993 account_numa_enqueue(rq, task_of(se));
2994 list_add(&se->group_node, &rq->cfs_tasks);
2996 #endif
2997 cfs_rq->nr_running++;
3000 static void
3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3003 update_load_sub(&cfs_rq->load, se->load.weight);
3004 #ifdef CONFIG_SMP
3005 if (entity_is_task(se)) {
3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3007 list_del_init(&se->group_node);
3009 #endif
3010 cfs_rq->nr_running--;
3014 * Signed add and clamp on underflow.
3016 * Explicitly do a load-store to ensure the intermediate value never hits
3017 * memory. This allows lockless observations without ever seeing the negative
3018 * values.
3020 #define add_positive(_ptr, _val) do { \
3021 typeof(_ptr) ptr = (_ptr); \
3022 typeof(_val) val = (_val); \
3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3025 res = var + val; \
3027 if (val < 0 && res > var) \
3028 res = 0; \
3030 WRITE_ONCE(*ptr, res); \
3031 } while (0)
3034 * Unsigned subtract and clamp on underflow.
3036 * Explicitly do a load-store to ensure the intermediate value never hits
3037 * memory. This allows lockless observations without ever seeing the negative
3038 * values.
3040 #define sub_positive(_ptr, _val) do { \
3041 typeof(_ptr) ptr = (_ptr); \
3042 typeof(*ptr) val = (_val); \
3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3044 res = var - val; \
3045 if (res > var) \
3046 res = 0; \
3047 WRITE_ONCE(*ptr, res); \
3048 } while (0)
3051 * Remove and clamp on negative, from a local variable.
3053 * A variant of sub_positive(), which does not use explicit load-store
3054 * and is thus optimized for local variable updates.
3056 #define lsub_positive(_ptr, _val) do { \
3057 typeof(_ptr) ptr = (_ptr); \
3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3059 } while (0)
3061 #ifdef CONFIG_SMP
3062 static inline void
3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3065 cfs_rq->avg.load_avg += se->avg.load_avg;
3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3069 static inline void
3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3072 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3073 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3075 #else
3076 static inline void
3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3078 static inline void
3079 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3080 #endif
3082 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3083 unsigned long weight)
3085 if (se->on_rq) {
3086 /* commit outstanding execution time */
3087 if (cfs_rq->curr == se)
3088 update_curr(cfs_rq);
3089 account_entity_dequeue(cfs_rq, se);
3091 dequeue_load_avg(cfs_rq, se);
3093 update_load_set(&se->load, weight);
3095 #ifdef CONFIG_SMP
3096 do {
3097 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
3099 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3100 } while (0);
3101 #endif
3103 enqueue_load_avg(cfs_rq, se);
3104 if (se->on_rq)
3105 account_entity_enqueue(cfs_rq, se);
3109 void reweight_task(struct task_struct *p, int prio)
3111 struct sched_entity *se = &p->se;
3112 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3113 struct load_weight *load = &se->load;
3114 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3116 reweight_entity(cfs_rq, se, weight);
3117 load->inv_weight = sched_prio_to_wmult[prio];
3120 #ifdef CONFIG_FAIR_GROUP_SCHED
3121 #ifdef CONFIG_SMP
3123 * All this does is approximate the hierarchical proportion which includes that
3124 * global sum we all love to hate.
3126 * That is, the weight of a group entity, is the proportional share of the
3127 * group weight based on the group runqueue weights. That is:
3129 * tg->weight * grq->load.weight
3130 * ge->load.weight = ----------------------------- (1)
3131 * \Sum grq->load.weight
3133 * Now, because computing that sum is prohibitively expensive to compute (been
3134 * there, done that) we approximate it with this average stuff. The average
3135 * moves slower and therefore the approximation is cheaper and more stable.
3137 * So instead of the above, we substitute:
3139 * grq->load.weight -> grq->avg.load_avg (2)
3141 * which yields the following:
3143 * tg->weight * grq->avg.load_avg
3144 * ge->load.weight = ------------------------------ (3)
3145 * tg->load_avg
3147 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3149 * That is shares_avg, and it is right (given the approximation (2)).
3151 * The problem with it is that because the average is slow -- it was designed
3152 * to be exactly that of course -- this leads to transients in boundary
3153 * conditions. In specific, the case where the group was idle and we start the
3154 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3155 * yielding bad latency etc..
3157 * Now, in that special case (1) reduces to:
3159 * tg->weight * grq->load.weight
3160 * ge->load.weight = ----------------------------- = tg->weight (4)
3161 * grp->load.weight
3163 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3165 * So what we do is modify our approximation (3) to approach (4) in the (near)
3166 * UP case, like:
3168 * ge->load.weight =
3170 * tg->weight * grq->load.weight
3171 * --------------------------------------------------- (5)
3172 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3174 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3175 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3178 * tg->weight * grq->load.weight
3179 * ge->load.weight = ----------------------------- (6)
3180 * tg_load_avg'
3182 * Where:
3184 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3185 * max(grq->load.weight, grq->avg.load_avg)
3187 * And that is shares_weight and is icky. In the (near) UP case it approaches
3188 * (4) while in the normal case it approaches (3). It consistently
3189 * overestimates the ge->load.weight and therefore:
3191 * \Sum ge->load.weight >= tg->weight
3193 * hence icky!
3195 static long calc_group_shares(struct cfs_rq *cfs_rq)
3197 long tg_weight, tg_shares, load, shares;
3198 struct task_group *tg = cfs_rq->tg;
3200 tg_shares = READ_ONCE(tg->shares);
3202 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3204 tg_weight = atomic_long_read(&tg->load_avg);
3206 /* Ensure tg_weight >= load */
3207 tg_weight -= cfs_rq->tg_load_avg_contrib;
3208 tg_weight += load;
3210 shares = (tg_shares * load);
3211 if (tg_weight)
3212 shares /= tg_weight;
3215 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3216 * of a group with small tg->shares value. It is a floor value which is
3217 * assigned as a minimum load.weight to the sched_entity representing
3218 * the group on a CPU.
3220 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3221 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3222 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3223 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3224 * instead of 0.
3226 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3228 #endif /* CONFIG_SMP */
3230 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3233 * Recomputes the group entity based on the current state of its group
3234 * runqueue.
3236 static void update_cfs_group(struct sched_entity *se)
3238 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3239 long shares;
3241 if (!gcfs_rq)
3242 return;
3244 if (throttled_hierarchy(gcfs_rq))
3245 return;
3247 #ifndef CONFIG_SMP
3248 shares = READ_ONCE(gcfs_rq->tg->shares);
3250 if (likely(se->load.weight == shares))
3251 return;
3252 #else
3253 shares = calc_group_shares(gcfs_rq);
3254 #endif
3256 reweight_entity(cfs_rq_of(se), se, shares);
3259 #else /* CONFIG_FAIR_GROUP_SCHED */
3260 static inline void update_cfs_group(struct sched_entity *se)
3263 #endif /* CONFIG_FAIR_GROUP_SCHED */
3265 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3267 struct rq *rq = rq_of(cfs_rq);
3269 if (&rq->cfs == cfs_rq) {
3271 * There are a few boundary cases this might miss but it should
3272 * get called often enough that that should (hopefully) not be
3273 * a real problem.
3275 * It will not get called when we go idle, because the idle
3276 * thread is a different class (!fair), nor will the utilization
3277 * number include things like RT tasks.
3279 * As is, the util number is not freq-invariant (we'd have to
3280 * implement arch_scale_freq_capacity() for that).
3282 * See cpu_util().
3284 cpufreq_update_util(rq, flags);
3288 #ifdef CONFIG_SMP
3289 #ifdef CONFIG_FAIR_GROUP_SCHED
3291 * update_tg_load_avg - update the tg's load avg
3292 * @cfs_rq: the cfs_rq whose avg changed
3293 * @force: update regardless of how small the difference
3295 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3296 * However, because tg->load_avg is a global value there are performance
3297 * considerations.
3299 * In order to avoid having to look at the other cfs_rq's, we use a
3300 * differential update where we store the last value we propagated. This in
3301 * turn allows skipping updates if the differential is 'small'.
3303 * Updating tg's load_avg is necessary before update_cfs_share().
3305 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3307 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3310 * No need to update load_avg for root_task_group as it is not used.
3312 if (cfs_rq->tg == &root_task_group)
3313 return;
3315 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3316 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3317 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3322 * Called within set_task_rq() right before setting a task's CPU. The
3323 * caller only guarantees p->pi_lock is held; no other assumptions,
3324 * including the state of rq->lock, should be made.
3326 void set_task_rq_fair(struct sched_entity *se,
3327 struct cfs_rq *prev, struct cfs_rq *next)
3329 u64 p_last_update_time;
3330 u64 n_last_update_time;
3332 if (!sched_feat(ATTACH_AGE_LOAD))
3333 return;
3336 * We are supposed to update the task to "current" time, then its up to
3337 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3338 * getting what current time is, so simply throw away the out-of-date
3339 * time. This will result in the wakee task is less decayed, but giving
3340 * the wakee more load sounds not bad.
3342 if (!(se->avg.last_update_time && prev))
3343 return;
3345 #ifndef CONFIG_64BIT
3347 u64 p_last_update_time_copy;
3348 u64 n_last_update_time_copy;
3350 do {
3351 p_last_update_time_copy = prev->load_last_update_time_copy;
3352 n_last_update_time_copy = next->load_last_update_time_copy;
3354 smp_rmb();
3356 p_last_update_time = prev->avg.last_update_time;
3357 n_last_update_time = next->avg.last_update_time;
3359 } while (p_last_update_time != p_last_update_time_copy ||
3360 n_last_update_time != n_last_update_time_copy);
3362 #else
3363 p_last_update_time = prev->avg.last_update_time;
3364 n_last_update_time = next->avg.last_update_time;
3365 #endif
3366 __update_load_avg_blocked_se(p_last_update_time, se);
3367 se->avg.last_update_time = n_last_update_time;
3372 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3373 * propagate its contribution. The key to this propagation is the invariant
3374 * that for each group:
3376 * ge->avg == grq->avg (1)
3378 * _IFF_ we look at the pure running and runnable sums. Because they
3379 * represent the very same entity, just at different points in the hierarchy.
3381 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3382 * and simply copies the running/runnable sum over (but still wrong, because
3383 * the group entity and group rq do not have their PELT windows aligned).
3385 * However, update_tg_cfs_load() is more complex. So we have:
3387 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3389 * And since, like util, the runnable part should be directly transferable,
3390 * the following would _appear_ to be the straight forward approach:
3392 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3394 * And per (1) we have:
3396 * ge->avg.runnable_avg == grq->avg.runnable_avg
3398 * Which gives:
3400 * ge->load.weight * grq->avg.load_avg
3401 * ge->avg.load_avg = ----------------------------------- (4)
3402 * grq->load.weight
3404 * Except that is wrong!
3406 * Because while for entities historical weight is not important and we
3407 * really only care about our future and therefore can consider a pure
3408 * runnable sum, runqueues can NOT do this.
3410 * We specifically want runqueues to have a load_avg that includes
3411 * historical weights. Those represent the blocked load, the load we expect
3412 * to (shortly) return to us. This only works by keeping the weights as
3413 * integral part of the sum. We therefore cannot decompose as per (3).
3415 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3416 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3417 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3418 * runnable section of these tasks overlap (or not). If they were to perfectly
3419 * align the rq as a whole would be runnable 2/3 of the time. If however we
3420 * always have at least 1 runnable task, the rq as a whole is always runnable.
3422 * So we'll have to approximate.. :/
3424 * Given the constraint:
3426 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3428 * We can construct a rule that adds runnable to a rq by assuming minimal
3429 * overlap.
3431 * On removal, we'll assume each task is equally runnable; which yields:
3433 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3435 * XXX: only do this for the part of runnable > running ?
3439 static inline void
3440 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3442 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3444 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3445 * See ___update_load_avg() for details.
3447 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3449 /* Nothing to update */
3450 if (!delta)
3451 return;
3453 /* Set new sched_entity's utilization */
3454 se->avg.util_avg = gcfs_rq->avg.util_avg;
3455 se->avg.util_sum = se->avg.util_avg * divider;
3457 /* Update parent cfs_rq utilization */
3458 add_positive(&cfs_rq->avg.util_avg, delta);
3459 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3462 static inline void
3463 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3465 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3467 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3468 * See ___update_load_avg() for details.
3470 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3472 /* Nothing to update */
3473 if (!delta)
3474 return;
3476 /* Set new sched_entity's runnable */
3477 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3478 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3480 /* Update parent cfs_rq runnable */
3481 add_positive(&cfs_rq->avg.runnable_avg, delta);
3482 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3485 static inline void
3486 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3488 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3489 unsigned long load_avg;
3490 u64 load_sum = 0;
3491 s64 delta_sum;
3492 u32 divider;
3494 if (!runnable_sum)
3495 return;
3497 gcfs_rq->prop_runnable_sum = 0;
3500 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3501 * See ___update_load_avg() for details.
3503 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3505 if (runnable_sum >= 0) {
3507 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3508 * the CPU is saturated running == runnable.
3510 runnable_sum += se->avg.load_sum;
3511 runnable_sum = min_t(long, runnable_sum, divider);
3512 } else {
3514 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3515 * assuming all tasks are equally runnable.
3517 if (scale_load_down(gcfs_rq->load.weight)) {
3518 load_sum = div_s64(gcfs_rq->avg.load_sum,
3519 scale_load_down(gcfs_rq->load.weight));
3522 /* But make sure to not inflate se's runnable */
3523 runnable_sum = min(se->avg.load_sum, load_sum);
3527 * runnable_sum can't be lower than running_sum
3528 * Rescale running sum to be in the same range as runnable sum
3529 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3530 * runnable_sum is in [0 : LOAD_AVG_MAX]
3532 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3533 runnable_sum = max(runnable_sum, running_sum);
3535 load_sum = (s64)se_weight(se) * runnable_sum;
3536 load_avg = div_s64(load_sum, divider);
3538 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3539 delta_avg = load_avg - se->avg.load_avg;
3541 se->avg.load_sum = runnable_sum;
3542 se->avg.load_avg = load_avg;
3543 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3544 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3547 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3549 cfs_rq->propagate = 1;
3550 cfs_rq->prop_runnable_sum += runnable_sum;
3553 /* Update task and its cfs_rq load average */
3554 static inline int propagate_entity_load_avg(struct sched_entity *se)
3556 struct cfs_rq *cfs_rq, *gcfs_rq;
3558 if (entity_is_task(se))
3559 return 0;
3561 gcfs_rq = group_cfs_rq(se);
3562 if (!gcfs_rq->propagate)
3563 return 0;
3565 gcfs_rq->propagate = 0;
3567 cfs_rq = cfs_rq_of(se);
3569 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3571 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3572 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3573 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3575 trace_pelt_cfs_tp(cfs_rq);
3576 trace_pelt_se_tp(se);
3578 return 1;
3582 * Check if we need to update the load and the utilization of a blocked
3583 * group_entity:
3585 static inline bool skip_blocked_update(struct sched_entity *se)
3587 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3590 * If sched_entity still have not zero load or utilization, we have to
3591 * decay it:
3593 if (se->avg.load_avg || se->avg.util_avg)
3594 return false;
3597 * If there is a pending propagation, we have to update the load and
3598 * the utilization of the sched_entity:
3600 if (gcfs_rq->propagate)
3601 return false;
3604 * Otherwise, the load and the utilization of the sched_entity is
3605 * already zero and there is no pending propagation, so it will be a
3606 * waste of time to try to decay it:
3608 return true;
3611 #else /* CONFIG_FAIR_GROUP_SCHED */
3613 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3615 static inline int propagate_entity_load_avg(struct sched_entity *se)
3617 return 0;
3620 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3622 #endif /* CONFIG_FAIR_GROUP_SCHED */
3625 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3626 * @now: current time, as per cfs_rq_clock_pelt()
3627 * @cfs_rq: cfs_rq to update
3629 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3630 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3631 * post_init_entity_util_avg().
3633 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3635 * Returns true if the load decayed or we removed load.
3637 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3638 * call update_tg_load_avg() when this function returns true.
3640 static inline int
3641 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3643 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3644 struct sched_avg *sa = &cfs_rq->avg;
3645 int decayed = 0;
3647 if (cfs_rq->removed.nr) {
3648 unsigned long r;
3649 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3651 raw_spin_lock(&cfs_rq->removed.lock);
3652 swap(cfs_rq->removed.util_avg, removed_util);
3653 swap(cfs_rq->removed.load_avg, removed_load);
3654 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3655 cfs_rq->removed.nr = 0;
3656 raw_spin_unlock(&cfs_rq->removed.lock);
3658 r = removed_load;
3659 sub_positive(&sa->load_avg, r);
3660 sub_positive(&sa->load_sum, r * divider);
3662 r = removed_util;
3663 sub_positive(&sa->util_avg, r);
3664 sub_positive(&sa->util_sum, r * divider);
3666 r = removed_runnable;
3667 sub_positive(&sa->runnable_avg, r);
3668 sub_positive(&sa->runnable_sum, r * divider);
3671 * removed_runnable is the unweighted version of removed_load so we
3672 * can use it to estimate removed_load_sum.
3674 add_tg_cfs_propagate(cfs_rq,
3675 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3677 decayed = 1;
3680 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3682 #ifndef CONFIG_64BIT
3683 smp_wmb();
3684 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3685 #endif
3687 return decayed;
3691 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3692 * @cfs_rq: cfs_rq to attach to
3693 * @se: sched_entity to attach
3695 * Must call update_cfs_rq_load_avg() before this, since we rely on
3696 * cfs_rq->avg.last_update_time being current.
3698 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3701 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3702 * See ___update_load_avg() for details.
3704 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3707 * When we attach the @se to the @cfs_rq, we must align the decay
3708 * window because without that, really weird and wonderful things can
3709 * happen.
3711 * XXX illustrate
3713 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3714 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3717 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3718 * period_contrib. This isn't strictly correct, but since we're
3719 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3720 * _sum a little.
3722 se->avg.util_sum = se->avg.util_avg * divider;
3724 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3726 se->avg.load_sum = divider;
3727 if (se_weight(se)) {
3728 se->avg.load_sum =
3729 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3732 enqueue_load_avg(cfs_rq, se);
3733 cfs_rq->avg.util_avg += se->avg.util_avg;
3734 cfs_rq->avg.util_sum += se->avg.util_sum;
3735 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3736 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3738 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3740 cfs_rq_util_change(cfs_rq, 0);
3742 trace_pelt_cfs_tp(cfs_rq);
3746 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3747 * @cfs_rq: cfs_rq to detach from
3748 * @se: sched_entity to detach
3750 * Must call update_cfs_rq_load_avg() before this, since we rely on
3751 * cfs_rq->avg.last_update_time being current.
3753 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3755 dequeue_load_avg(cfs_rq, se);
3756 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3757 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3758 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3759 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3761 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3763 cfs_rq_util_change(cfs_rq, 0);
3765 trace_pelt_cfs_tp(cfs_rq);
3769 * Optional action to be done while updating the load average
3771 #define UPDATE_TG 0x1
3772 #define SKIP_AGE_LOAD 0x2
3773 #define DO_ATTACH 0x4
3775 /* Update task and its cfs_rq load average */
3776 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3778 u64 now = cfs_rq_clock_pelt(cfs_rq);
3779 int decayed;
3782 * Track task load average for carrying it to new CPU after migrated, and
3783 * track group sched_entity load average for task_h_load calc in migration
3785 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3786 __update_load_avg_se(now, cfs_rq, se);
3788 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3789 decayed |= propagate_entity_load_avg(se);
3791 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3794 * DO_ATTACH means we're here from enqueue_entity().
3795 * !last_update_time means we've passed through
3796 * migrate_task_rq_fair() indicating we migrated.
3798 * IOW we're enqueueing a task on a new CPU.
3800 attach_entity_load_avg(cfs_rq, se);
3801 update_tg_load_avg(cfs_rq, 0);
3803 } else if (decayed) {
3804 cfs_rq_util_change(cfs_rq, 0);
3806 if (flags & UPDATE_TG)
3807 update_tg_load_avg(cfs_rq, 0);
3811 #ifndef CONFIG_64BIT
3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3814 u64 last_update_time_copy;
3815 u64 last_update_time;
3817 do {
3818 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3819 smp_rmb();
3820 last_update_time = cfs_rq->avg.last_update_time;
3821 } while (last_update_time != last_update_time_copy);
3823 return last_update_time;
3825 #else
3826 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3828 return cfs_rq->avg.last_update_time;
3830 #endif
3833 * Synchronize entity load avg of dequeued entity without locking
3834 * the previous rq.
3836 static void sync_entity_load_avg(struct sched_entity *se)
3838 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3839 u64 last_update_time;
3841 last_update_time = cfs_rq_last_update_time(cfs_rq);
3842 __update_load_avg_blocked_se(last_update_time, se);
3846 * Task first catches up with cfs_rq, and then subtract
3847 * itself from the cfs_rq (task must be off the queue now).
3849 static void remove_entity_load_avg(struct sched_entity *se)
3851 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3852 unsigned long flags;
3855 * tasks cannot exit without having gone through wake_up_new_task() ->
3856 * post_init_entity_util_avg() which will have added things to the
3857 * cfs_rq, so we can remove unconditionally.
3860 sync_entity_load_avg(se);
3862 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3863 ++cfs_rq->removed.nr;
3864 cfs_rq->removed.util_avg += se->avg.util_avg;
3865 cfs_rq->removed.load_avg += se->avg.load_avg;
3866 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3867 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3870 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3872 return cfs_rq->avg.runnable_avg;
3875 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3877 return cfs_rq->avg.load_avg;
3880 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3882 static inline unsigned long task_util(struct task_struct *p)
3884 return READ_ONCE(p->se.avg.util_avg);
3887 static inline unsigned long _task_util_est(struct task_struct *p)
3889 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3891 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3894 static inline unsigned long task_util_est(struct task_struct *p)
3896 return max(task_util(p), _task_util_est(p));
3899 #ifdef CONFIG_UCLAMP_TASK
3900 static inline unsigned long uclamp_task_util(struct task_struct *p)
3902 return clamp(task_util_est(p),
3903 uclamp_eff_value(p, UCLAMP_MIN),
3904 uclamp_eff_value(p, UCLAMP_MAX));
3906 #else
3907 static inline unsigned long uclamp_task_util(struct task_struct *p)
3909 return task_util_est(p);
3911 #endif
3913 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3914 struct task_struct *p)
3916 unsigned int enqueued;
3918 if (!sched_feat(UTIL_EST))
3919 return;
3921 /* Update root cfs_rq's estimated utilization */
3922 enqueued = cfs_rq->avg.util_est.enqueued;
3923 enqueued += _task_util_est(p);
3924 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3928 * Check if a (signed) value is within a specified (unsigned) margin,
3929 * based on the observation that:
3931 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3933 * NOTE: this only works when value + maring < INT_MAX.
3935 static inline bool within_margin(int value, int margin)
3937 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3940 static void
3941 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3943 long last_ewma_diff;
3944 struct util_est ue;
3945 int cpu;
3947 if (!sched_feat(UTIL_EST))
3948 return;
3950 /* Update root cfs_rq's estimated utilization */
3951 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3952 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3953 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3956 * Skip update of task's estimated utilization when the task has not
3957 * yet completed an activation, e.g. being migrated.
3959 if (!task_sleep)
3960 return;
3963 * If the PELT values haven't changed since enqueue time,
3964 * skip the util_est update.
3966 ue = p->se.avg.util_est;
3967 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3968 return;
3971 * Reset EWMA on utilization increases, the moving average is used only
3972 * to smooth utilization decreases.
3974 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3975 if (sched_feat(UTIL_EST_FASTUP)) {
3976 if (ue.ewma < ue.enqueued) {
3977 ue.ewma = ue.enqueued;
3978 goto done;
3983 * Skip update of task's estimated utilization when its EWMA is
3984 * already ~1% close to its last activation value.
3986 last_ewma_diff = ue.enqueued - ue.ewma;
3987 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3988 return;
3991 * To avoid overestimation of actual task utilization, skip updates if
3992 * we cannot grant there is idle time in this CPU.
3994 cpu = cpu_of(rq_of(cfs_rq));
3995 if (task_util(p) > capacity_orig_of(cpu))
3996 return;
3999 * Update Task's estimated utilization
4001 * When *p completes an activation we can consolidate another sample
4002 * of the task size. This is done by storing the current PELT value
4003 * as ue.enqueued and by using this value to update the Exponential
4004 * Weighted Moving Average (EWMA):
4006 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4007 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4008 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4009 * = w * ( last_ewma_diff ) + ewma(t-1)
4010 * = w * (last_ewma_diff + ewma(t-1) / w)
4012 * Where 'w' is the weight of new samples, which is configured to be
4013 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4015 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4016 ue.ewma += last_ewma_diff;
4017 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4018 done:
4019 WRITE_ONCE(p->se.avg.util_est, ue);
4022 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4024 return fits_capacity(uclamp_task_util(p), capacity);
4027 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4029 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4030 return;
4032 if (!p) {
4033 rq->misfit_task_load = 0;
4034 return;
4037 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4038 rq->misfit_task_load = 0;
4039 return;
4043 * Make sure that misfit_task_load will not be null even if
4044 * task_h_load() returns 0.
4046 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4049 #else /* CONFIG_SMP */
4051 #define UPDATE_TG 0x0
4052 #define SKIP_AGE_LOAD 0x0
4053 #define DO_ATTACH 0x0
4055 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4057 cfs_rq_util_change(cfs_rq, 0);
4060 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4062 static inline void
4063 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4064 static inline void
4065 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4067 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4069 return 0;
4072 static inline void
4073 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4075 static inline void
4076 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4077 bool task_sleep) {}
4078 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4080 #endif /* CONFIG_SMP */
4082 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4084 #ifdef CONFIG_SCHED_DEBUG
4085 s64 d = se->vruntime - cfs_rq->min_vruntime;
4087 if (d < 0)
4088 d = -d;
4090 if (d > 3*sysctl_sched_latency)
4091 schedstat_inc(cfs_rq->nr_spread_over);
4092 #endif
4095 static void
4096 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4098 u64 vruntime = cfs_rq->min_vruntime;
4101 * The 'current' period is already promised to the current tasks,
4102 * however the extra weight of the new task will slow them down a
4103 * little, place the new task so that it fits in the slot that
4104 * stays open at the end.
4106 if (initial && sched_feat(START_DEBIT))
4107 vruntime += sched_vslice(cfs_rq, se);
4109 /* sleeps up to a single latency don't count. */
4110 if (!initial) {
4111 unsigned long thresh = sysctl_sched_latency;
4114 * Halve their sleep time's effect, to allow
4115 * for a gentler effect of sleepers:
4117 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4118 thresh >>= 1;
4120 vruntime -= thresh;
4123 /* ensure we never gain time by being placed backwards. */
4124 se->vruntime = max_vruntime(se->vruntime, vruntime);
4127 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4129 static inline void check_schedstat_required(void)
4131 #ifdef CONFIG_SCHEDSTATS
4132 if (schedstat_enabled())
4133 return;
4135 /* Force schedstat enabled if a dependent tracepoint is active */
4136 if (trace_sched_stat_wait_enabled() ||
4137 trace_sched_stat_sleep_enabled() ||
4138 trace_sched_stat_iowait_enabled() ||
4139 trace_sched_stat_blocked_enabled() ||
4140 trace_sched_stat_runtime_enabled()) {
4141 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4142 "stat_blocked and stat_runtime require the "
4143 "kernel parameter schedstats=enable or "
4144 "kernel.sched_schedstats=1\n");
4146 #endif
4149 static inline bool cfs_bandwidth_used(void);
4152 * MIGRATION
4154 * dequeue
4155 * update_curr()
4156 * update_min_vruntime()
4157 * vruntime -= min_vruntime
4159 * enqueue
4160 * update_curr()
4161 * update_min_vruntime()
4162 * vruntime += min_vruntime
4164 * this way the vruntime transition between RQs is done when both
4165 * min_vruntime are up-to-date.
4167 * WAKEUP (remote)
4169 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4170 * vruntime -= min_vruntime
4172 * enqueue
4173 * update_curr()
4174 * update_min_vruntime()
4175 * vruntime += min_vruntime
4177 * this way we don't have the most up-to-date min_vruntime on the originating
4178 * CPU and an up-to-date min_vruntime on the destination CPU.
4181 static void
4182 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4184 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4185 bool curr = cfs_rq->curr == se;
4188 * If we're the current task, we must renormalise before calling
4189 * update_curr().
4191 if (renorm && curr)
4192 se->vruntime += cfs_rq->min_vruntime;
4194 update_curr(cfs_rq);
4197 * Otherwise, renormalise after, such that we're placed at the current
4198 * moment in time, instead of some random moment in the past. Being
4199 * placed in the past could significantly boost this task to the
4200 * fairness detriment of existing tasks.
4202 if (renorm && !curr)
4203 se->vruntime += cfs_rq->min_vruntime;
4206 * When enqueuing a sched_entity, we must:
4207 * - Update loads to have both entity and cfs_rq synced with now.
4208 * - Add its load to cfs_rq->runnable_avg
4209 * - For group_entity, update its weight to reflect the new share of
4210 * its group cfs_rq
4211 * - Add its new weight to cfs_rq->load.weight
4213 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4214 se_update_runnable(se);
4215 update_cfs_group(se);
4216 account_entity_enqueue(cfs_rq, se);
4218 if (flags & ENQUEUE_WAKEUP)
4219 place_entity(cfs_rq, se, 0);
4221 check_schedstat_required();
4222 update_stats_enqueue(cfs_rq, se, flags);
4223 check_spread(cfs_rq, se);
4224 if (!curr)
4225 __enqueue_entity(cfs_rq, se);
4226 se->on_rq = 1;
4229 * When bandwidth control is enabled, cfs might have been removed
4230 * because of a parent been throttled but cfs->nr_running > 1. Try to
4231 * add it unconditionnally.
4233 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4234 list_add_leaf_cfs_rq(cfs_rq);
4236 if (cfs_rq->nr_running == 1)
4237 check_enqueue_throttle(cfs_rq);
4240 static void __clear_buddies_last(struct sched_entity *se)
4242 for_each_sched_entity(se) {
4243 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4244 if (cfs_rq->last != se)
4245 break;
4247 cfs_rq->last = NULL;
4251 static void __clear_buddies_next(struct sched_entity *se)
4253 for_each_sched_entity(se) {
4254 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4255 if (cfs_rq->next != se)
4256 break;
4258 cfs_rq->next = NULL;
4262 static void __clear_buddies_skip(struct sched_entity *se)
4264 for_each_sched_entity(se) {
4265 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4266 if (cfs_rq->skip != se)
4267 break;
4269 cfs_rq->skip = NULL;
4273 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4275 if (cfs_rq->last == se)
4276 __clear_buddies_last(se);
4278 if (cfs_rq->next == se)
4279 __clear_buddies_next(se);
4281 if (cfs_rq->skip == se)
4282 __clear_buddies_skip(se);
4285 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4287 static void
4288 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4291 * Update run-time statistics of the 'current'.
4293 update_curr(cfs_rq);
4296 * When dequeuing a sched_entity, we must:
4297 * - Update loads to have both entity and cfs_rq synced with now.
4298 * - Subtract its load from the cfs_rq->runnable_avg.
4299 * - Subtract its previous weight from cfs_rq->load.weight.
4300 * - For group entity, update its weight to reflect the new share
4301 * of its group cfs_rq.
4303 update_load_avg(cfs_rq, se, UPDATE_TG);
4304 se_update_runnable(se);
4306 update_stats_dequeue(cfs_rq, se, flags);
4308 clear_buddies(cfs_rq, se);
4310 if (se != cfs_rq->curr)
4311 __dequeue_entity(cfs_rq, se);
4312 se->on_rq = 0;
4313 account_entity_dequeue(cfs_rq, se);
4316 * Normalize after update_curr(); which will also have moved
4317 * min_vruntime if @se is the one holding it back. But before doing
4318 * update_min_vruntime() again, which will discount @se's position and
4319 * can move min_vruntime forward still more.
4321 if (!(flags & DEQUEUE_SLEEP))
4322 se->vruntime -= cfs_rq->min_vruntime;
4324 /* return excess runtime on last dequeue */
4325 return_cfs_rq_runtime(cfs_rq);
4327 update_cfs_group(se);
4330 * Now advance min_vruntime if @se was the entity holding it back,
4331 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4332 * put back on, and if we advance min_vruntime, we'll be placed back
4333 * further than we started -- ie. we'll be penalized.
4335 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4336 update_min_vruntime(cfs_rq);
4340 * Preempt the current task with a newly woken task if needed:
4342 static void
4343 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4345 unsigned long ideal_runtime, delta_exec;
4346 struct sched_entity *se;
4347 s64 delta;
4349 ideal_runtime = sched_slice(cfs_rq, curr);
4350 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4351 if (delta_exec > ideal_runtime) {
4352 resched_curr(rq_of(cfs_rq));
4354 * The current task ran long enough, ensure it doesn't get
4355 * re-elected due to buddy favours.
4357 clear_buddies(cfs_rq, curr);
4358 return;
4362 * Ensure that a task that missed wakeup preemption by a
4363 * narrow margin doesn't have to wait for a full slice.
4364 * This also mitigates buddy induced latencies under load.
4366 if (delta_exec < sysctl_sched_min_granularity)
4367 return;
4369 se = __pick_first_entity(cfs_rq);
4370 delta = curr->vruntime - se->vruntime;
4372 if (delta < 0)
4373 return;
4375 if (delta > ideal_runtime)
4376 resched_curr(rq_of(cfs_rq));
4379 static void
4380 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4382 /* 'current' is not kept within the tree. */
4383 if (se->on_rq) {
4385 * Any task has to be enqueued before it get to execute on
4386 * a CPU. So account for the time it spent waiting on the
4387 * runqueue.
4389 update_stats_wait_end(cfs_rq, se);
4390 __dequeue_entity(cfs_rq, se);
4391 update_load_avg(cfs_rq, se, UPDATE_TG);
4394 update_stats_curr_start(cfs_rq, se);
4395 cfs_rq->curr = se;
4398 * Track our maximum slice length, if the CPU's load is at
4399 * least twice that of our own weight (i.e. dont track it
4400 * when there are only lesser-weight tasks around):
4402 if (schedstat_enabled() &&
4403 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4404 schedstat_set(se->statistics.slice_max,
4405 max((u64)schedstat_val(se->statistics.slice_max),
4406 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4409 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4412 static int
4413 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4416 * Pick the next process, keeping these things in mind, in this order:
4417 * 1) keep things fair between processes/task groups
4418 * 2) pick the "next" process, since someone really wants that to run
4419 * 3) pick the "last" process, for cache locality
4420 * 4) do not run the "skip" process, if something else is available
4422 static struct sched_entity *
4423 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4425 struct sched_entity *left = __pick_first_entity(cfs_rq);
4426 struct sched_entity *se;
4429 * If curr is set we have to see if its left of the leftmost entity
4430 * still in the tree, provided there was anything in the tree at all.
4432 if (!left || (curr && entity_before(curr, left)))
4433 left = curr;
4435 se = left; /* ideally we run the leftmost entity */
4438 * Avoid running the skip buddy, if running something else can
4439 * be done without getting too unfair.
4441 if (cfs_rq->skip == se) {
4442 struct sched_entity *second;
4444 if (se == curr) {
4445 second = __pick_first_entity(cfs_rq);
4446 } else {
4447 second = __pick_next_entity(se);
4448 if (!second || (curr && entity_before(curr, second)))
4449 second = curr;
4452 if (second && wakeup_preempt_entity(second, left) < 1)
4453 se = second;
4457 * Prefer last buddy, try to return the CPU to a preempted task.
4459 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4460 se = cfs_rq->last;
4463 * Someone really wants this to run. If it's not unfair, run it.
4465 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4466 se = cfs_rq->next;
4468 clear_buddies(cfs_rq, se);
4470 return se;
4473 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4475 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4478 * If still on the runqueue then deactivate_task()
4479 * was not called and update_curr() has to be done:
4481 if (prev->on_rq)
4482 update_curr(cfs_rq);
4484 /* throttle cfs_rqs exceeding runtime */
4485 check_cfs_rq_runtime(cfs_rq);
4487 check_spread(cfs_rq, prev);
4489 if (prev->on_rq) {
4490 update_stats_wait_start(cfs_rq, prev);
4491 /* Put 'current' back into the tree. */
4492 __enqueue_entity(cfs_rq, prev);
4493 /* in !on_rq case, update occurred at dequeue */
4494 update_load_avg(cfs_rq, prev, 0);
4496 cfs_rq->curr = NULL;
4499 static void
4500 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4503 * Update run-time statistics of the 'current'.
4505 update_curr(cfs_rq);
4508 * Ensure that runnable average is periodically updated.
4510 update_load_avg(cfs_rq, curr, UPDATE_TG);
4511 update_cfs_group(curr);
4513 #ifdef CONFIG_SCHED_HRTICK
4515 * queued ticks are scheduled to match the slice, so don't bother
4516 * validating it and just reschedule.
4518 if (queued) {
4519 resched_curr(rq_of(cfs_rq));
4520 return;
4523 * don't let the period tick interfere with the hrtick preemption
4525 if (!sched_feat(DOUBLE_TICK) &&
4526 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4527 return;
4528 #endif
4530 if (cfs_rq->nr_running > 1)
4531 check_preempt_tick(cfs_rq, curr);
4535 /**************************************************
4536 * CFS bandwidth control machinery
4539 #ifdef CONFIG_CFS_BANDWIDTH
4541 #ifdef CONFIG_JUMP_LABEL
4542 static struct static_key __cfs_bandwidth_used;
4544 static inline bool cfs_bandwidth_used(void)
4546 return static_key_false(&__cfs_bandwidth_used);
4549 void cfs_bandwidth_usage_inc(void)
4551 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4554 void cfs_bandwidth_usage_dec(void)
4556 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4558 #else /* CONFIG_JUMP_LABEL */
4559 static bool cfs_bandwidth_used(void)
4561 return true;
4564 void cfs_bandwidth_usage_inc(void) {}
4565 void cfs_bandwidth_usage_dec(void) {}
4566 #endif /* CONFIG_JUMP_LABEL */
4569 * default period for cfs group bandwidth.
4570 * default: 0.1s, units: nanoseconds
4572 static inline u64 default_cfs_period(void)
4574 return 100000000ULL;
4577 static inline u64 sched_cfs_bandwidth_slice(void)
4579 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4583 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4584 * directly instead of rq->clock to avoid adding additional synchronization
4585 * around rq->lock.
4587 * requires cfs_b->lock
4589 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4591 if (cfs_b->quota != RUNTIME_INF)
4592 cfs_b->runtime = cfs_b->quota;
4595 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4597 return &tg->cfs_bandwidth;
4600 /* returns 0 on failure to allocate runtime */
4601 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4602 struct cfs_rq *cfs_rq, u64 target_runtime)
4604 u64 min_amount, amount = 0;
4606 lockdep_assert_held(&cfs_b->lock);
4608 /* note: this is a positive sum as runtime_remaining <= 0 */
4609 min_amount = target_runtime - cfs_rq->runtime_remaining;
4611 if (cfs_b->quota == RUNTIME_INF)
4612 amount = min_amount;
4613 else {
4614 start_cfs_bandwidth(cfs_b);
4616 if (cfs_b->runtime > 0) {
4617 amount = min(cfs_b->runtime, min_amount);
4618 cfs_b->runtime -= amount;
4619 cfs_b->idle = 0;
4623 cfs_rq->runtime_remaining += amount;
4625 return cfs_rq->runtime_remaining > 0;
4628 /* returns 0 on failure to allocate runtime */
4629 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4631 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4632 int ret;
4634 raw_spin_lock(&cfs_b->lock);
4635 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4636 raw_spin_unlock(&cfs_b->lock);
4638 return ret;
4641 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4643 /* dock delta_exec before expiring quota (as it could span periods) */
4644 cfs_rq->runtime_remaining -= delta_exec;
4646 if (likely(cfs_rq->runtime_remaining > 0))
4647 return;
4649 if (cfs_rq->throttled)
4650 return;
4652 * if we're unable to extend our runtime we resched so that the active
4653 * hierarchy can be throttled
4655 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4656 resched_curr(rq_of(cfs_rq));
4659 static __always_inline
4660 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4662 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4663 return;
4665 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4670 return cfs_bandwidth_used() && cfs_rq->throttled;
4673 /* check whether cfs_rq, or any parent, is throttled */
4674 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4676 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4680 * Ensure that neither of the group entities corresponding to src_cpu or
4681 * dest_cpu are members of a throttled hierarchy when performing group
4682 * load-balance operations.
4684 static inline int throttled_lb_pair(struct task_group *tg,
4685 int src_cpu, int dest_cpu)
4687 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4689 src_cfs_rq = tg->cfs_rq[src_cpu];
4690 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4692 return throttled_hierarchy(src_cfs_rq) ||
4693 throttled_hierarchy(dest_cfs_rq);
4696 static int tg_unthrottle_up(struct task_group *tg, void *data)
4698 struct rq *rq = data;
4699 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4701 cfs_rq->throttle_count--;
4702 if (!cfs_rq->throttle_count) {
4703 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4704 cfs_rq->throttled_clock_task;
4706 /* Add cfs_rq with already running entity in the list */
4707 if (cfs_rq->nr_running >= 1)
4708 list_add_leaf_cfs_rq(cfs_rq);
4711 return 0;
4714 static int tg_throttle_down(struct task_group *tg, void *data)
4716 struct rq *rq = data;
4717 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4719 /* group is entering throttled state, stop time */
4720 if (!cfs_rq->throttle_count) {
4721 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4722 list_del_leaf_cfs_rq(cfs_rq);
4724 cfs_rq->throttle_count++;
4726 return 0;
4729 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4731 struct rq *rq = rq_of(cfs_rq);
4732 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4733 struct sched_entity *se;
4734 long task_delta, idle_task_delta, dequeue = 1;
4736 raw_spin_lock(&cfs_b->lock);
4737 /* This will start the period timer if necessary */
4738 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4740 * We have raced with bandwidth becoming available, and if we
4741 * actually throttled the timer might not unthrottle us for an
4742 * entire period. We additionally needed to make sure that any
4743 * subsequent check_cfs_rq_runtime calls agree not to throttle
4744 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4745 * for 1ns of runtime rather than just check cfs_b.
4747 dequeue = 0;
4748 } else {
4749 list_add_tail_rcu(&cfs_rq->throttled_list,
4750 &cfs_b->throttled_cfs_rq);
4752 raw_spin_unlock(&cfs_b->lock);
4754 if (!dequeue)
4755 return false; /* Throttle no longer required. */
4757 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4759 /* freeze hierarchy runnable averages while throttled */
4760 rcu_read_lock();
4761 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4762 rcu_read_unlock();
4764 task_delta = cfs_rq->h_nr_running;
4765 idle_task_delta = cfs_rq->idle_h_nr_running;
4766 for_each_sched_entity(se) {
4767 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4768 /* throttled entity or throttle-on-deactivate */
4769 if (!se->on_rq)
4770 break;
4772 if (dequeue) {
4773 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4774 } else {
4775 update_load_avg(qcfs_rq, se, 0);
4776 se_update_runnable(se);
4779 qcfs_rq->h_nr_running -= task_delta;
4780 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4782 if (qcfs_rq->load.weight)
4783 dequeue = 0;
4786 if (!se)
4787 sub_nr_running(rq, task_delta);
4790 * Note: distribution will already see us throttled via the
4791 * throttled-list. rq->lock protects completion.
4793 cfs_rq->throttled = 1;
4794 cfs_rq->throttled_clock = rq_clock(rq);
4795 return true;
4798 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4800 struct rq *rq = rq_of(cfs_rq);
4801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4802 struct sched_entity *se;
4803 long task_delta, idle_task_delta;
4805 se = cfs_rq->tg->se[cpu_of(rq)];
4807 cfs_rq->throttled = 0;
4809 update_rq_clock(rq);
4811 raw_spin_lock(&cfs_b->lock);
4812 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4813 list_del_rcu(&cfs_rq->throttled_list);
4814 raw_spin_unlock(&cfs_b->lock);
4816 /* update hierarchical throttle state */
4817 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4819 if (!cfs_rq->load.weight)
4820 return;
4822 task_delta = cfs_rq->h_nr_running;
4823 idle_task_delta = cfs_rq->idle_h_nr_running;
4824 for_each_sched_entity(se) {
4825 if (se->on_rq)
4826 break;
4827 cfs_rq = cfs_rq_of(se);
4828 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4830 cfs_rq->h_nr_running += task_delta;
4831 cfs_rq->idle_h_nr_running += idle_task_delta;
4833 /* end evaluation on encountering a throttled cfs_rq */
4834 if (cfs_rq_throttled(cfs_rq))
4835 goto unthrottle_throttle;
4838 for_each_sched_entity(se) {
4839 cfs_rq = cfs_rq_of(se);
4841 update_load_avg(cfs_rq, se, UPDATE_TG);
4842 se_update_runnable(se);
4844 cfs_rq->h_nr_running += task_delta;
4845 cfs_rq->idle_h_nr_running += idle_task_delta;
4848 /* end evaluation on encountering a throttled cfs_rq */
4849 if (cfs_rq_throttled(cfs_rq))
4850 goto unthrottle_throttle;
4853 * One parent has been throttled and cfs_rq removed from the
4854 * list. Add it back to not break the leaf list.
4856 if (throttled_hierarchy(cfs_rq))
4857 list_add_leaf_cfs_rq(cfs_rq);
4860 /* At this point se is NULL and we are at root level*/
4861 add_nr_running(rq, task_delta);
4863 unthrottle_throttle:
4865 * The cfs_rq_throttled() breaks in the above iteration can result in
4866 * incomplete leaf list maintenance, resulting in triggering the
4867 * assertion below.
4869 for_each_sched_entity(se) {
4870 cfs_rq = cfs_rq_of(se);
4872 if (list_add_leaf_cfs_rq(cfs_rq))
4873 break;
4876 assert_list_leaf_cfs_rq(rq);
4878 /* Determine whether we need to wake up potentially idle CPU: */
4879 if (rq->curr == rq->idle && rq->cfs.nr_running)
4880 resched_curr(rq);
4883 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4885 struct cfs_rq *cfs_rq;
4886 u64 runtime, remaining = 1;
4888 rcu_read_lock();
4889 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4890 throttled_list) {
4891 struct rq *rq = rq_of(cfs_rq);
4892 struct rq_flags rf;
4894 rq_lock_irqsave(rq, &rf);
4895 if (!cfs_rq_throttled(cfs_rq))
4896 goto next;
4898 /* By the above check, this should never be true */
4899 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4901 raw_spin_lock(&cfs_b->lock);
4902 runtime = -cfs_rq->runtime_remaining + 1;
4903 if (runtime > cfs_b->runtime)
4904 runtime = cfs_b->runtime;
4905 cfs_b->runtime -= runtime;
4906 remaining = cfs_b->runtime;
4907 raw_spin_unlock(&cfs_b->lock);
4909 cfs_rq->runtime_remaining += runtime;
4911 /* we check whether we're throttled above */
4912 if (cfs_rq->runtime_remaining > 0)
4913 unthrottle_cfs_rq(cfs_rq);
4915 next:
4916 rq_unlock_irqrestore(rq, &rf);
4918 if (!remaining)
4919 break;
4921 rcu_read_unlock();
4925 * Responsible for refilling a task_group's bandwidth and unthrottling its
4926 * cfs_rqs as appropriate. If there has been no activity within the last
4927 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4928 * used to track this state.
4930 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4932 int throttled;
4934 /* no need to continue the timer with no bandwidth constraint */
4935 if (cfs_b->quota == RUNTIME_INF)
4936 goto out_deactivate;
4938 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4939 cfs_b->nr_periods += overrun;
4942 * idle depends on !throttled (for the case of a large deficit), and if
4943 * we're going inactive then everything else can be deferred
4945 if (cfs_b->idle && !throttled)
4946 goto out_deactivate;
4948 __refill_cfs_bandwidth_runtime(cfs_b);
4950 if (!throttled) {
4951 /* mark as potentially idle for the upcoming period */
4952 cfs_b->idle = 1;
4953 return 0;
4956 /* account preceding periods in which throttling occurred */
4957 cfs_b->nr_throttled += overrun;
4960 * This check is repeated as we release cfs_b->lock while we unthrottle.
4962 while (throttled && cfs_b->runtime > 0) {
4963 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4964 /* we can't nest cfs_b->lock while distributing bandwidth */
4965 distribute_cfs_runtime(cfs_b);
4966 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4968 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4972 * While we are ensured activity in the period following an
4973 * unthrottle, this also covers the case in which the new bandwidth is
4974 * insufficient to cover the existing bandwidth deficit. (Forcing the
4975 * timer to remain active while there are any throttled entities.)
4977 cfs_b->idle = 0;
4979 return 0;
4981 out_deactivate:
4982 return 1;
4985 /* a cfs_rq won't donate quota below this amount */
4986 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4987 /* minimum remaining period time to redistribute slack quota */
4988 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4989 /* how long we wait to gather additional slack before distributing */
4990 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4993 * Are we near the end of the current quota period?
4995 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4996 * hrtimer base being cleared by hrtimer_start. In the case of
4997 * migrate_hrtimers, base is never cleared, so we are fine.
4999 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5001 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5002 u64 remaining;
5004 /* if the call-back is running a quota refresh is already occurring */
5005 if (hrtimer_callback_running(refresh_timer))
5006 return 1;
5008 /* is a quota refresh about to occur? */
5009 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5010 if (remaining < min_expire)
5011 return 1;
5013 return 0;
5016 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5018 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5020 /* if there's a quota refresh soon don't bother with slack */
5021 if (runtime_refresh_within(cfs_b, min_left))
5022 return;
5024 /* don't push forwards an existing deferred unthrottle */
5025 if (cfs_b->slack_started)
5026 return;
5027 cfs_b->slack_started = true;
5029 hrtimer_start(&cfs_b->slack_timer,
5030 ns_to_ktime(cfs_bandwidth_slack_period),
5031 HRTIMER_MODE_REL);
5034 /* we know any runtime found here is valid as update_curr() precedes return */
5035 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5037 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5038 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5040 if (slack_runtime <= 0)
5041 return;
5043 raw_spin_lock(&cfs_b->lock);
5044 if (cfs_b->quota != RUNTIME_INF) {
5045 cfs_b->runtime += slack_runtime;
5047 /* we are under rq->lock, defer unthrottling using a timer */
5048 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5049 !list_empty(&cfs_b->throttled_cfs_rq))
5050 start_cfs_slack_bandwidth(cfs_b);
5052 raw_spin_unlock(&cfs_b->lock);
5054 /* even if it's not valid for return we don't want to try again */
5055 cfs_rq->runtime_remaining -= slack_runtime;
5058 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5060 if (!cfs_bandwidth_used())
5061 return;
5063 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5064 return;
5066 __return_cfs_rq_runtime(cfs_rq);
5070 * This is done with a timer (instead of inline with bandwidth return) since
5071 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5073 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5075 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5076 unsigned long flags;
5078 /* confirm we're still not at a refresh boundary */
5079 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5080 cfs_b->slack_started = false;
5082 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5083 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5084 return;
5087 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5088 runtime = cfs_b->runtime;
5090 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5092 if (!runtime)
5093 return;
5095 distribute_cfs_runtime(cfs_b);
5097 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5098 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5102 * When a group wakes up we want to make sure that its quota is not already
5103 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5104 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5106 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5108 if (!cfs_bandwidth_used())
5109 return;
5111 /* an active group must be handled by the update_curr()->put() path */
5112 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5113 return;
5115 /* ensure the group is not already throttled */
5116 if (cfs_rq_throttled(cfs_rq))
5117 return;
5119 /* update runtime allocation */
5120 account_cfs_rq_runtime(cfs_rq, 0);
5121 if (cfs_rq->runtime_remaining <= 0)
5122 throttle_cfs_rq(cfs_rq);
5125 static void sync_throttle(struct task_group *tg, int cpu)
5127 struct cfs_rq *pcfs_rq, *cfs_rq;
5129 if (!cfs_bandwidth_used())
5130 return;
5132 if (!tg->parent)
5133 return;
5135 cfs_rq = tg->cfs_rq[cpu];
5136 pcfs_rq = tg->parent->cfs_rq[cpu];
5138 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5139 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5142 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5143 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5145 if (!cfs_bandwidth_used())
5146 return false;
5148 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5149 return false;
5152 * it's possible for a throttled entity to be forced into a running
5153 * state (e.g. set_curr_task), in this case we're finished.
5155 if (cfs_rq_throttled(cfs_rq))
5156 return true;
5158 return throttle_cfs_rq(cfs_rq);
5161 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5163 struct cfs_bandwidth *cfs_b =
5164 container_of(timer, struct cfs_bandwidth, slack_timer);
5166 do_sched_cfs_slack_timer(cfs_b);
5168 return HRTIMER_NORESTART;
5171 extern const u64 max_cfs_quota_period;
5173 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5175 struct cfs_bandwidth *cfs_b =
5176 container_of(timer, struct cfs_bandwidth, period_timer);
5177 unsigned long flags;
5178 int overrun;
5179 int idle = 0;
5180 int count = 0;
5182 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5183 for (;;) {
5184 overrun = hrtimer_forward_now(timer, cfs_b->period);
5185 if (!overrun)
5186 break;
5188 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5190 if (++count > 3) {
5191 u64 new, old = ktime_to_ns(cfs_b->period);
5194 * Grow period by a factor of 2 to avoid losing precision.
5195 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5196 * to fail.
5198 new = old * 2;
5199 if (new < max_cfs_quota_period) {
5200 cfs_b->period = ns_to_ktime(new);
5201 cfs_b->quota *= 2;
5203 pr_warn_ratelimited(
5204 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5205 smp_processor_id(),
5206 div_u64(new, NSEC_PER_USEC),
5207 div_u64(cfs_b->quota, NSEC_PER_USEC));
5208 } else {
5209 pr_warn_ratelimited(
5210 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5211 smp_processor_id(),
5212 div_u64(old, NSEC_PER_USEC),
5213 div_u64(cfs_b->quota, NSEC_PER_USEC));
5216 /* reset count so we don't come right back in here */
5217 count = 0;
5220 if (idle)
5221 cfs_b->period_active = 0;
5222 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5224 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5227 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5229 raw_spin_lock_init(&cfs_b->lock);
5230 cfs_b->runtime = 0;
5231 cfs_b->quota = RUNTIME_INF;
5232 cfs_b->period = ns_to_ktime(default_cfs_period());
5234 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5235 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5236 cfs_b->period_timer.function = sched_cfs_period_timer;
5237 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5238 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5239 cfs_b->slack_started = false;
5242 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5244 cfs_rq->runtime_enabled = 0;
5245 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5248 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5250 lockdep_assert_held(&cfs_b->lock);
5252 if (cfs_b->period_active)
5253 return;
5255 cfs_b->period_active = 1;
5256 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5257 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5260 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5262 /* init_cfs_bandwidth() was not called */
5263 if (!cfs_b->throttled_cfs_rq.next)
5264 return;
5266 hrtimer_cancel(&cfs_b->period_timer);
5267 hrtimer_cancel(&cfs_b->slack_timer);
5271 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5273 * The race is harmless, since modifying bandwidth settings of unhooked group
5274 * bits doesn't do much.
5277 /* cpu online calback */
5278 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5280 struct task_group *tg;
5282 lockdep_assert_held(&rq->lock);
5284 rcu_read_lock();
5285 list_for_each_entry_rcu(tg, &task_groups, list) {
5286 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5287 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5289 raw_spin_lock(&cfs_b->lock);
5290 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5291 raw_spin_unlock(&cfs_b->lock);
5293 rcu_read_unlock();
5296 /* cpu offline callback */
5297 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5299 struct task_group *tg;
5301 lockdep_assert_held(&rq->lock);
5303 rcu_read_lock();
5304 list_for_each_entry_rcu(tg, &task_groups, list) {
5305 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5307 if (!cfs_rq->runtime_enabled)
5308 continue;
5311 * clock_task is not advancing so we just need to make sure
5312 * there's some valid quota amount
5314 cfs_rq->runtime_remaining = 1;
5316 * Offline rq is schedulable till CPU is completely disabled
5317 * in take_cpu_down(), so we prevent new cfs throttling here.
5319 cfs_rq->runtime_enabled = 0;
5321 if (cfs_rq_throttled(cfs_rq))
5322 unthrottle_cfs_rq(cfs_rq);
5324 rcu_read_unlock();
5327 #else /* CONFIG_CFS_BANDWIDTH */
5329 static inline bool cfs_bandwidth_used(void)
5331 return false;
5334 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5335 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5336 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5337 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5338 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5340 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5342 return 0;
5345 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5347 return 0;
5350 static inline int throttled_lb_pair(struct task_group *tg,
5351 int src_cpu, int dest_cpu)
5353 return 0;
5356 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5358 #ifdef CONFIG_FAIR_GROUP_SCHED
5359 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5360 #endif
5362 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5364 return NULL;
5366 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5367 static inline void update_runtime_enabled(struct rq *rq) {}
5368 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5370 #endif /* CONFIG_CFS_BANDWIDTH */
5372 /**************************************************
5373 * CFS operations on tasks:
5376 #ifdef CONFIG_SCHED_HRTICK
5377 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5379 struct sched_entity *se = &p->se;
5380 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5382 SCHED_WARN_ON(task_rq(p) != rq);
5384 if (rq->cfs.h_nr_running > 1) {
5385 u64 slice = sched_slice(cfs_rq, se);
5386 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5387 s64 delta = slice - ran;
5389 if (delta < 0) {
5390 if (rq->curr == p)
5391 resched_curr(rq);
5392 return;
5394 hrtick_start(rq, delta);
5399 * called from enqueue/dequeue and updates the hrtick when the
5400 * current task is from our class and nr_running is low enough
5401 * to matter.
5403 static void hrtick_update(struct rq *rq)
5405 struct task_struct *curr = rq->curr;
5407 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5408 return;
5410 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5411 hrtick_start_fair(rq, curr);
5413 #else /* !CONFIG_SCHED_HRTICK */
5414 static inline void
5415 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5419 static inline void hrtick_update(struct rq *rq)
5422 #endif
5424 #ifdef CONFIG_SMP
5425 static inline unsigned long cpu_util(int cpu);
5427 static inline bool cpu_overutilized(int cpu)
5429 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5432 static inline void update_overutilized_status(struct rq *rq)
5434 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5435 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5436 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5439 #else
5440 static inline void update_overutilized_status(struct rq *rq) { }
5441 #endif
5443 /* Runqueue only has SCHED_IDLE tasks enqueued */
5444 static int sched_idle_rq(struct rq *rq)
5446 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5447 rq->nr_running);
5450 #ifdef CONFIG_SMP
5451 static int sched_idle_cpu(int cpu)
5453 return sched_idle_rq(cpu_rq(cpu));
5455 #endif
5458 * The enqueue_task method is called before nr_running is
5459 * increased. Here we update the fair scheduling stats and
5460 * then put the task into the rbtree:
5462 static void
5463 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5465 struct cfs_rq *cfs_rq;
5466 struct sched_entity *se = &p->se;
5467 int idle_h_nr_running = task_has_idle_policy(p);
5470 * The code below (indirectly) updates schedutil which looks at
5471 * the cfs_rq utilization to select a frequency.
5472 * Let's add the task's estimated utilization to the cfs_rq's
5473 * estimated utilization, before we update schedutil.
5475 util_est_enqueue(&rq->cfs, p);
5478 * If in_iowait is set, the code below may not trigger any cpufreq
5479 * utilization updates, so do it here explicitly with the IOWAIT flag
5480 * passed.
5482 if (p->in_iowait)
5483 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5485 for_each_sched_entity(se) {
5486 if (se->on_rq)
5487 break;
5488 cfs_rq = cfs_rq_of(se);
5489 enqueue_entity(cfs_rq, se, flags);
5491 cfs_rq->h_nr_running++;
5492 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5494 /* end evaluation on encountering a throttled cfs_rq */
5495 if (cfs_rq_throttled(cfs_rq))
5496 goto enqueue_throttle;
5498 flags = ENQUEUE_WAKEUP;
5501 for_each_sched_entity(se) {
5502 cfs_rq = cfs_rq_of(se);
5504 update_load_avg(cfs_rq, se, UPDATE_TG);
5505 se_update_runnable(se);
5506 update_cfs_group(se);
5508 cfs_rq->h_nr_running++;
5509 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5511 /* end evaluation on encountering a throttled cfs_rq */
5512 if (cfs_rq_throttled(cfs_rq))
5513 goto enqueue_throttle;
5516 * One parent has been throttled and cfs_rq removed from the
5517 * list. Add it back to not break the leaf list.
5519 if (throttled_hierarchy(cfs_rq))
5520 list_add_leaf_cfs_rq(cfs_rq);
5523 /* At this point se is NULL and we are at root level*/
5524 add_nr_running(rq, 1);
5527 * Since new tasks are assigned an initial util_avg equal to
5528 * half of the spare capacity of their CPU, tiny tasks have the
5529 * ability to cross the overutilized threshold, which will
5530 * result in the load balancer ruining all the task placement
5531 * done by EAS. As a way to mitigate that effect, do not account
5532 * for the first enqueue operation of new tasks during the
5533 * overutilized flag detection.
5535 * A better way of solving this problem would be to wait for
5536 * the PELT signals of tasks to converge before taking them
5537 * into account, but that is not straightforward to implement,
5538 * and the following generally works well enough in practice.
5540 if (flags & ENQUEUE_WAKEUP)
5541 update_overutilized_status(rq);
5543 enqueue_throttle:
5544 if (cfs_bandwidth_used()) {
5546 * When bandwidth control is enabled; the cfs_rq_throttled()
5547 * breaks in the above iteration can result in incomplete
5548 * leaf list maintenance, resulting in triggering the assertion
5549 * below.
5551 for_each_sched_entity(se) {
5552 cfs_rq = cfs_rq_of(se);
5554 if (list_add_leaf_cfs_rq(cfs_rq))
5555 break;
5559 assert_list_leaf_cfs_rq(rq);
5561 hrtick_update(rq);
5564 static void set_next_buddy(struct sched_entity *se);
5567 * The dequeue_task method is called before nr_running is
5568 * decreased. We remove the task from the rbtree and
5569 * update the fair scheduling stats:
5571 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5573 struct cfs_rq *cfs_rq;
5574 struct sched_entity *se = &p->se;
5575 int task_sleep = flags & DEQUEUE_SLEEP;
5576 int idle_h_nr_running = task_has_idle_policy(p);
5577 bool was_sched_idle = sched_idle_rq(rq);
5579 for_each_sched_entity(se) {
5580 cfs_rq = cfs_rq_of(se);
5581 dequeue_entity(cfs_rq, se, flags);
5583 cfs_rq->h_nr_running--;
5584 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5586 /* end evaluation on encountering a throttled cfs_rq */
5587 if (cfs_rq_throttled(cfs_rq))
5588 goto dequeue_throttle;
5590 /* Don't dequeue parent if it has other entities besides us */
5591 if (cfs_rq->load.weight) {
5592 /* Avoid re-evaluating load for this entity: */
5593 se = parent_entity(se);
5595 * Bias pick_next to pick a task from this cfs_rq, as
5596 * p is sleeping when it is within its sched_slice.
5598 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5599 set_next_buddy(se);
5600 break;
5602 flags |= DEQUEUE_SLEEP;
5605 for_each_sched_entity(se) {
5606 cfs_rq = cfs_rq_of(se);
5608 update_load_avg(cfs_rq, se, UPDATE_TG);
5609 se_update_runnable(se);
5610 update_cfs_group(se);
5612 cfs_rq->h_nr_running--;
5613 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5615 /* end evaluation on encountering a throttled cfs_rq */
5616 if (cfs_rq_throttled(cfs_rq))
5617 goto dequeue_throttle;
5621 dequeue_throttle:
5622 if (!se)
5623 sub_nr_running(rq, 1);
5625 /* balance early to pull high priority tasks */
5626 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5627 rq->next_balance = jiffies;
5629 util_est_dequeue(&rq->cfs, p, task_sleep);
5630 hrtick_update(rq);
5633 #ifdef CONFIG_SMP
5635 /* Working cpumask for: load_balance, load_balance_newidle. */
5636 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5637 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5639 #ifdef CONFIG_NO_HZ_COMMON
5641 static struct {
5642 cpumask_var_t idle_cpus_mask;
5643 atomic_t nr_cpus;
5644 int has_blocked; /* Idle CPUS has blocked load */
5645 unsigned long next_balance; /* in jiffy units */
5646 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5647 } nohz ____cacheline_aligned;
5649 #endif /* CONFIG_NO_HZ_COMMON */
5651 static unsigned long cpu_load(struct rq *rq)
5653 return cfs_rq_load_avg(&rq->cfs);
5657 * cpu_load_without - compute CPU load without any contributions from *p
5658 * @cpu: the CPU which load is requested
5659 * @p: the task which load should be discounted
5661 * The load of a CPU is defined by the load of tasks currently enqueued on that
5662 * CPU as well as tasks which are currently sleeping after an execution on that
5663 * CPU.
5665 * This method returns the load of the specified CPU by discounting the load of
5666 * the specified task, whenever the task is currently contributing to the CPU
5667 * load.
5669 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5671 struct cfs_rq *cfs_rq;
5672 unsigned int load;
5674 /* Task has no contribution or is new */
5675 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5676 return cpu_load(rq);
5678 cfs_rq = &rq->cfs;
5679 load = READ_ONCE(cfs_rq->avg.load_avg);
5681 /* Discount task's util from CPU's util */
5682 lsub_positive(&load, task_h_load(p));
5684 return load;
5687 static unsigned long cpu_runnable(struct rq *rq)
5689 return cfs_rq_runnable_avg(&rq->cfs);
5692 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5694 struct cfs_rq *cfs_rq;
5695 unsigned int runnable;
5697 /* Task has no contribution or is new */
5698 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5699 return cpu_runnable(rq);
5701 cfs_rq = &rq->cfs;
5702 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5704 /* Discount task's runnable from CPU's runnable */
5705 lsub_positive(&runnable, p->se.avg.runnable_avg);
5707 return runnable;
5710 static unsigned long capacity_of(int cpu)
5712 return cpu_rq(cpu)->cpu_capacity;
5715 static void record_wakee(struct task_struct *p)
5718 * Only decay a single time; tasks that have less then 1 wakeup per
5719 * jiffy will not have built up many flips.
5721 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5722 current->wakee_flips >>= 1;
5723 current->wakee_flip_decay_ts = jiffies;
5726 if (current->last_wakee != p) {
5727 current->last_wakee = p;
5728 current->wakee_flips++;
5733 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5735 * A waker of many should wake a different task than the one last awakened
5736 * at a frequency roughly N times higher than one of its wakees.
5738 * In order to determine whether we should let the load spread vs consolidating
5739 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5740 * partner, and a factor of lls_size higher frequency in the other.
5742 * With both conditions met, we can be relatively sure that the relationship is
5743 * non-monogamous, with partner count exceeding socket size.
5745 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5746 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5747 * socket size.
5749 static int wake_wide(struct task_struct *p)
5751 unsigned int master = current->wakee_flips;
5752 unsigned int slave = p->wakee_flips;
5753 int factor = __this_cpu_read(sd_llc_size);
5755 if (master < slave)
5756 swap(master, slave);
5757 if (slave < factor || master < slave * factor)
5758 return 0;
5759 return 1;
5763 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5764 * soonest. For the purpose of speed we only consider the waking and previous
5765 * CPU.
5767 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5768 * cache-affine and is (or will be) idle.
5770 * wake_affine_weight() - considers the weight to reflect the average
5771 * scheduling latency of the CPUs. This seems to work
5772 * for the overloaded case.
5774 static int
5775 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5778 * If this_cpu is idle, it implies the wakeup is from interrupt
5779 * context. Only allow the move if cache is shared. Otherwise an
5780 * interrupt intensive workload could force all tasks onto one
5781 * node depending on the IO topology or IRQ affinity settings.
5783 * If the prev_cpu is idle and cache affine then avoid a migration.
5784 * There is no guarantee that the cache hot data from an interrupt
5785 * is more important than cache hot data on the prev_cpu and from
5786 * a cpufreq perspective, it's better to have higher utilisation
5787 * on one CPU.
5789 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5790 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5792 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5793 return this_cpu;
5795 return nr_cpumask_bits;
5798 static int
5799 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5800 int this_cpu, int prev_cpu, int sync)
5802 s64 this_eff_load, prev_eff_load;
5803 unsigned long task_load;
5805 this_eff_load = cpu_load(cpu_rq(this_cpu));
5807 if (sync) {
5808 unsigned long current_load = task_h_load(current);
5810 if (current_load > this_eff_load)
5811 return this_cpu;
5813 this_eff_load -= current_load;
5816 task_load = task_h_load(p);
5818 this_eff_load += task_load;
5819 if (sched_feat(WA_BIAS))
5820 this_eff_load *= 100;
5821 this_eff_load *= capacity_of(prev_cpu);
5823 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5824 prev_eff_load -= task_load;
5825 if (sched_feat(WA_BIAS))
5826 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5827 prev_eff_load *= capacity_of(this_cpu);
5830 * If sync, adjust the weight of prev_eff_load such that if
5831 * prev_eff == this_eff that select_idle_sibling() will consider
5832 * stacking the wakee on top of the waker if no other CPU is
5833 * idle.
5835 if (sync)
5836 prev_eff_load += 1;
5838 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5841 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5842 int this_cpu, int prev_cpu, int sync)
5844 int target = nr_cpumask_bits;
5846 if (sched_feat(WA_IDLE))
5847 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5849 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5850 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5852 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5853 if (target == nr_cpumask_bits)
5854 return prev_cpu;
5856 schedstat_inc(sd->ttwu_move_affine);
5857 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5858 return target;
5861 static struct sched_group *
5862 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5865 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5867 static int
5868 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5870 unsigned long load, min_load = ULONG_MAX;
5871 unsigned int min_exit_latency = UINT_MAX;
5872 u64 latest_idle_timestamp = 0;
5873 int least_loaded_cpu = this_cpu;
5874 int shallowest_idle_cpu = -1;
5875 int i;
5877 /* Check if we have any choice: */
5878 if (group->group_weight == 1)
5879 return cpumask_first(sched_group_span(group));
5881 /* Traverse only the allowed CPUs */
5882 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5883 if (sched_idle_cpu(i))
5884 return i;
5886 if (available_idle_cpu(i)) {
5887 struct rq *rq = cpu_rq(i);
5888 struct cpuidle_state *idle = idle_get_state(rq);
5889 if (idle && idle->exit_latency < min_exit_latency) {
5891 * We give priority to a CPU whose idle state
5892 * has the smallest exit latency irrespective
5893 * of any idle timestamp.
5895 min_exit_latency = idle->exit_latency;
5896 latest_idle_timestamp = rq->idle_stamp;
5897 shallowest_idle_cpu = i;
5898 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5899 rq->idle_stamp > latest_idle_timestamp) {
5901 * If equal or no active idle state, then
5902 * the most recently idled CPU might have
5903 * a warmer cache.
5905 latest_idle_timestamp = rq->idle_stamp;
5906 shallowest_idle_cpu = i;
5908 } else if (shallowest_idle_cpu == -1) {
5909 load = cpu_load(cpu_rq(i));
5910 if (load < min_load) {
5911 min_load = load;
5912 least_loaded_cpu = i;
5917 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5920 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5921 int cpu, int prev_cpu, int sd_flag)
5923 int new_cpu = cpu;
5925 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5926 return prev_cpu;
5929 * We need task's util for cpu_util_without, sync it up to
5930 * prev_cpu's last_update_time.
5932 if (!(sd_flag & SD_BALANCE_FORK))
5933 sync_entity_load_avg(&p->se);
5935 while (sd) {
5936 struct sched_group *group;
5937 struct sched_domain *tmp;
5938 int weight;
5940 if (!(sd->flags & sd_flag)) {
5941 sd = sd->child;
5942 continue;
5945 group = find_idlest_group(sd, p, cpu);
5946 if (!group) {
5947 sd = sd->child;
5948 continue;
5951 new_cpu = find_idlest_group_cpu(group, p, cpu);
5952 if (new_cpu == cpu) {
5953 /* Now try balancing at a lower domain level of 'cpu': */
5954 sd = sd->child;
5955 continue;
5958 /* Now try balancing at a lower domain level of 'new_cpu': */
5959 cpu = new_cpu;
5960 weight = sd->span_weight;
5961 sd = NULL;
5962 for_each_domain(cpu, tmp) {
5963 if (weight <= tmp->span_weight)
5964 break;
5965 if (tmp->flags & sd_flag)
5966 sd = tmp;
5970 return new_cpu;
5973 #ifdef CONFIG_SCHED_SMT
5974 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5975 EXPORT_SYMBOL_GPL(sched_smt_present);
5977 static inline void set_idle_cores(int cpu, int val)
5979 struct sched_domain_shared *sds;
5981 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5982 if (sds)
5983 WRITE_ONCE(sds->has_idle_cores, val);
5986 static inline bool test_idle_cores(int cpu, bool def)
5988 struct sched_domain_shared *sds;
5990 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5991 if (sds)
5992 return READ_ONCE(sds->has_idle_cores);
5994 return def;
5998 * Scans the local SMT mask to see if the entire core is idle, and records this
5999 * information in sd_llc_shared->has_idle_cores.
6001 * Since SMT siblings share all cache levels, inspecting this limited remote
6002 * state should be fairly cheap.
6004 void __update_idle_core(struct rq *rq)
6006 int core = cpu_of(rq);
6007 int cpu;
6009 rcu_read_lock();
6010 if (test_idle_cores(core, true))
6011 goto unlock;
6013 for_each_cpu(cpu, cpu_smt_mask(core)) {
6014 if (cpu == core)
6015 continue;
6017 if (!available_idle_cpu(cpu))
6018 goto unlock;
6021 set_idle_cores(core, 1);
6022 unlock:
6023 rcu_read_unlock();
6027 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6028 * there are no idle cores left in the system; tracked through
6029 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6031 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6033 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6034 int core, cpu;
6036 if (!static_branch_likely(&sched_smt_present))
6037 return -1;
6039 if (!test_idle_cores(target, false))
6040 return -1;
6042 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6044 for_each_cpu_wrap(core, cpus, target) {
6045 bool idle = true;
6047 for_each_cpu(cpu, cpu_smt_mask(core)) {
6048 if (!available_idle_cpu(cpu)) {
6049 idle = false;
6050 break;
6053 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6055 if (idle)
6056 return core;
6060 * Failed to find an idle core; stop looking for one.
6062 set_idle_cores(target, 0);
6064 return -1;
6068 * Scan the local SMT mask for idle CPUs.
6070 static int select_idle_smt(struct task_struct *p, int target)
6072 int cpu;
6074 if (!static_branch_likely(&sched_smt_present))
6075 return -1;
6077 for_each_cpu(cpu, cpu_smt_mask(target)) {
6078 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6079 continue;
6080 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6081 return cpu;
6084 return -1;
6087 #else /* CONFIG_SCHED_SMT */
6089 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6091 return -1;
6094 static inline int select_idle_smt(struct task_struct *p, int target)
6096 return -1;
6099 #endif /* CONFIG_SCHED_SMT */
6102 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6103 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6104 * average idle time for this rq (as found in rq->avg_idle).
6106 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6108 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6109 struct sched_domain *this_sd;
6110 u64 avg_cost, avg_idle;
6111 u64 time;
6112 int this = smp_processor_id();
6113 int cpu, nr = INT_MAX;
6115 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6116 if (!this_sd)
6117 return -1;
6120 * Due to large variance we need a large fuzz factor; hackbench in
6121 * particularly is sensitive here.
6123 avg_idle = this_rq()->avg_idle / 512;
6124 avg_cost = this_sd->avg_scan_cost + 1;
6126 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6127 return -1;
6129 if (sched_feat(SIS_PROP)) {
6130 u64 span_avg = sd->span_weight * avg_idle;
6131 if (span_avg > 4*avg_cost)
6132 nr = div_u64(span_avg, avg_cost);
6133 else
6134 nr = 4;
6137 time = cpu_clock(this);
6139 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6141 for_each_cpu_wrap(cpu, cpus, target) {
6142 if (!--nr)
6143 return -1;
6144 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6145 break;
6148 time = cpu_clock(this) - time;
6149 update_avg(&this_sd->avg_scan_cost, time);
6151 return cpu;
6155 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6156 * the task fits. If no CPU is big enough, but there are idle ones, try to
6157 * maximize capacity.
6159 static int
6160 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6162 unsigned long best_cap = 0;
6163 int cpu, best_cpu = -1;
6164 struct cpumask *cpus;
6166 sync_entity_load_avg(&p->se);
6168 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6169 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6171 for_each_cpu_wrap(cpu, cpus, target) {
6172 unsigned long cpu_cap = capacity_of(cpu);
6174 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6175 continue;
6176 if (task_fits_capacity(p, cpu_cap))
6177 return cpu;
6179 if (cpu_cap > best_cap) {
6180 best_cap = cpu_cap;
6181 best_cpu = cpu;
6185 return best_cpu;
6189 * Try and locate an idle core/thread in the LLC cache domain.
6191 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6193 struct sched_domain *sd;
6194 int i, recent_used_cpu;
6197 * For asymmetric CPU capacity systems, our domain of interest is
6198 * sd_asym_cpucapacity rather than sd_llc.
6200 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6201 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6203 * On an asymmetric CPU capacity system where an exclusive
6204 * cpuset defines a symmetric island (i.e. one unique
6205 * capacity_orig value through the cpuset), the key will be set
6206 * but the CPUs within that cpuset will not have a domain with
6207 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6208 * capacity path.
6210 if (!sd)
6211 goto symmetric;
6213 i = select_idle_capacity(p, sd, target);
6214 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6217 symmetric:
6218 if (available_idle_cpu(target) || sched_idle_cpu(target))
6219 return target;
6222 * If the previous CPU is cache affine and idle, don't be stupid:
6224 if (prev != target && cpus_share_cache(prev, target) &&
6225 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6226 return prev;
6229 * Allow a per-cpu kthread to stack with the wakee if the
6230 * kworker thread and the tasks previous CPUs are the same.
6231 * The assumption is that the wakee queued work for the
6232 * per-cpu kthread that is now complete and the wakeup is
6233 * essentially a sync wakeup. An obvious example of this
6234 * pattern is IO completions.
6236 if (is_per_cpu_kthread(current) &&
6237 prev == smp_processor_id() &&
6238 this_rq()->nr_running <= 1) {
6239 return prev;
6242 /* Check a recently used CPU as a potential idle candidate: */
6243 recent_used_cpu = p->recent_used_cpu;
6244 if (recent_used_cpu != prev &&
6245 recent_used_cpu != target &&
6246 cpus_share_cache(recent_used_cpu, target) &&
6247 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6248 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6250 * Replace recent_used_cpu with prev as it is a potential
6251 * candidate for the next wake:
6253 p->recent_used_cpu = prev;
6254 return recent_used_cpu;
6257 sd = rcu_dereference(per_cpu(sd_llc, target));
6258 if (!sd)
6259 return target;
6261 i = select_idle_core(p, sd, target);
6262 if ((unsigned)i < nr_cpumask_bits)
6263 return i;
6265 i = select_idle_cpu(p, sd, target);
6266 if ((unsigned)i < nr_cpumask_bits)
6267 return i;
6269 i = select_idle_smt(p, target);
6270 if ((unsigned)i < nr_cpumask_bits)
6271 return i;
6273 return target;
6277 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6278 * @cpu: the CPU to get the utilization of
6280 * The unit of the return value must be the one of capacity so we can compare
6281 * the utilization with the capacity of the CPU that is available for CFS task
6282 * (ie cpu_capacity).
6284 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6285 * recent utilization of currently non-runnable tasks on a CPU. It represents
6286 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6287 * capacity_orig is the cpu_capacity available at the highest frequency
6288 * (arch_scale_freq_capacity()).
6289 * The utilization of a CPU converges towards a sum equal to or less than the
6290 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6291 * the running time on this CPU scaled by capacity_curr.
6293 * The estimated utilization of a CPU is defined to be the maximum between its
6294 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6295 * currently RUNNABLE on that CPU.
6296 * This allows to properly represent the expected utilization of a CPU which
6297 * has just got a big task running since a long sleep period. At the same time
6298 * however it preserves the benefits of the "blocked utilization" in
6299 * describing the potential for other tasks waking up on the same CPU.
6301 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6302 * higher than capacity_orig because of unfortunate rounding in
6303 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6304 * the average stabilizes with the new running time. We need to check that the
6305 * utilization stays within the range of [0..capacity_orig] and cap it if
6306 * necessary. Without utilization capping, a group could be seen as overloaded
6307 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6308 * available capacity. We allow utilization to overshoot capacity_curr (but not
6309 * capacity_orig) as it useful for predicting the capacity required after task
6310 * migrations (scheduler-driven DVFS).
6312 * Return: the (estimated) utilization for the specified CPU
6314 static inline unsigned long cpu_util(int cpu)
6316 struct cfs_rq *cfs_rq;
6317 unsigned int util;
6319 cfs_rq = &cpu_rq(cpu)->cfs;
6320 util = READ_ONCE(cfs_rq->avg.util_avg);
6322 if (sched_feat(UTIL_EST))
6323 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6325 return min_t(unsigned long, util, capacity_orig_of(cpu));
6329 * cpu_util_without: compute cpu utilization without any contributions from *p
6330 * @cpu: the CPU which utilization is requested
6331 * @p: the task which utilization should be discounted
6333 * The utilization of a CPU is defined by the utilization of tasks currently
6334 * enqueued on that CPU as well as tasks which are currently sleeping after an
6335 * execution on that CPU.
6337 * This method returns the utilization of the specified CPU by discounting the
6338 * utilization of the specified task, whenever the task is currently
6339 * contributing to the CPU utilization.
6341 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6343 struct cfs_rq *cfs_rq;
6344 unsigned int util;
6346 /* Task has no contribution or is new */
6347 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6348 return cpu_util(cpu);
6350 cfs_rq = &cpu_rq(cpu)->cfs;
6351 util = READ_ONCE(cfs_rq->avg.util_avg);
6353 /* Discount task's util from CPU's util */
6354 lsub_positive(&util, task_util(p));
6357 * Covered cases:
6359 * a) if *p is the only task sleeping on this CPU, then:
6360 * cpu_util (== task_util) > util_est (== 0)
6361 * and thus we return:
6362 * cpu_util_without = (cpu_util - task_util) = 0
6364 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6365 * IDLE, then:
6366 * cpu_util >= task_util
6367 * cpu_util > util_est (== 0)
6368 * and thus we discount *p's blocked utilization to return:
6369 * cpu_util_without = (cpu_util - task_util) >= 0
6371 * c) if other tasks are RUNNABLE on that CPU and
6372 * util_est > cpu_util
6373 * then we use util_est since it returns a more restrictive
6374 * estimation of the spare capacity on that CPU, by just
6375 * considering the expected utilization of tasks already
6376 * runnable on that CPU.
6378 * Cases a) and b) are covered by the above code, while case c) is
6379 * covered by the following code when estimated utilization is
6380 * enabled.
6382 if (sched_feat(UTIL_EST)) {
6383 unsigned int estimated =
6384 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6387 * Despite the following checks we still have a small window
6388 * for a possible race, when an execl's select_task_rq_fair()
6389 * races with LB's detach_task():
6391 * detach_task()
6392 * p->on_rq = TASK_ON_RQ_MIGRATING;
6393 * ---------------------------------- A
6394 * deactivate_task() \
6395 * dequeue_task() + RaceTime
6396 * util_est_dequeue() /
6397 * ---------------------------------- B
6399 * The additional check on "current == p" it's required to
6400 * properly fix the execl regression and it helps in further
6401 * reducing the chances for the above race.
6403 if (unlikely(task_on_rq_queued(p) || current == p))
6404 lsub_positive(&estimated, _task_util_est(p));
6406 util = max(util, estimated);
6410 * Utilization (estimated) can exceed the CPU capacity, thus let's
6411 * clamp to the maximum CPU capacity to ensure consistency with
6412 * the cpu_util call.
6414 return min_t(unsigned long, util, capacity_orig_of(cpu));
6418 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6419 * to @dst_cpu.
6421 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6423 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6424 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6427 * If @p migrates from @cpu to another, remove its contribution. Or,
6428 * if @p migrates from another CPU to @cpu, add its contribution. In
6429 * the other cases, @cpu is not impacted by the migration, so the
6430 * util_avg should already be correct.
6432 if (task_cpu(p) == cpu && dst_cpu != cpu)
6433 sub_positive(&util, task_util(p));
6434 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6435 util += task_util(p);
6437 if (sched_feat(UTIL_EST)) {
6438 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6441 * During wake-up, the task isn't enqueued yet and doesn't
6442 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6443 * so just add it (if needed) to "simulate" what will be
6444 * cpu_util() after the task has been enqueued.
6446 if (dst_cpu == cpu)
6447 util_est += _task_util_est(p);
6449 util = max(util, util_est);
6452 return min(util, capacity_orig_of(cpu));
6456 * compute_energy(): Estimates the energy that @pd would consume if @p was
6457 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6458 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6459 * to compute what would be the energy if we decided to actually migrate that
6460 * task.
6462 static long
6463 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6465 struct cpumask *pd_mask = perf_domain_span(pd);
6466 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6467 unsigned long max_util = 0, sum_util = 0;
6468 int cpu;
6471 * The capacity state of CPUs of the current rd can be driven by CPUs
6472 * of another rd if they belong to the same pd. So, account for the
6473 * utilization of these CPUs too by masking pd with cpu_online_mask
6474 * instead of the rd span.
6476 * If an entire pd is outside of the current rd, it will not appear in
6477 * its pd list and will not be accounted by compute_energy().
6479 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6480 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6481 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6484 * Busy time computation: utilization clamping is not
6485 * required since the ratio (sum_util / cpu_capacity)
6486 * is already enough to scale the EM reported power
6487 * consumption at the (eventually clamped) cpu_capacity.
6489 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6490 ENERGY_UTIL, NULL);
6493 * Performance domain frequency: utilization clamping
6494 * must be considered since it affects the selection
6495 * of the performance domain frequency.
6496 * NOTE: in case RT tasks are running, by default the
6497 * FREQUENCY_UTIL's utilization can be max OPP.
6499 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6500 FREQUENCY_UTIL, tsk);
6501 max_util = max(max_util, cpu_util);
6504 return em_pd_energy(pd->em_pd, max_util, sum_util);
6508 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6509 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6510 * spare capacity in each performance domain and uses it as a potential
6511 * candidate to execute the task. Then, it uses the Energy Model to figure
6512 * out which of the CPU candidates is the most energy-efficient.
6514 * The rationale for this heuristic is as follows. In a performance domain,
6515 * all the most energy efficient CPU candidates (according to the Energy
6516 * Model) are those for which we'll request a low frequency. When there are
6517 * several CPUs for which the frequency request will be the same, we don't
6518 * have enough data to break the tie between them, because the Energy Model
6519 * only includes active power costs. With this model, if we assume that
6520 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6521 * the maximum spare capacity in a performance domain is guaranteed to be among
6522 * the best candidates of the performance domain.
6524 * In practice, it could be preferable from an energy standpoint to pack
6525 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6526 * but that could also hurt our chances to go cluster idle, and we have no
6527 * ways to tell with the current Energy Model if this is actually a good
6528 * idea or not. So, find_energy_efficient_cpu() basically favors
6529 * cluster-packing, and spreading inside a cluster. That should at least be
6530 * a good thing for latency, and this is consistent with the idea that most
6531 * of the energy savings of EAS come from the asymmetry of the system, and
6532 * not so much from breaking the tie between identical CPUs. That's also the
6533 * reason why EAS is enabled in the topology code only for systems where
6534 * SD_ASYM_CPUCAPACITY is set.
6536 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6537 * they don't have any useful utilization data yet and it's not possible to
6538 * forecast their impact on energy consumption. Consequently, they will be
6539 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6540 * to be energy-inefficient in some use-cases. The alternative would be to
6541 * bias new tasks towards specific types of CPUs first, or to try to infer
6542 * their util_avg from the parent task, but those heuristics could hurt
6543 * other use-cases too. So, until someone finds a better way to solve this,
6544 * let's keep things simple by re-using the existing slow path.
6546 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6548 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6549 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6550 unsigned long cpu_cap, util, base_energy = 0;
6551 int cpu, best_energy_cpu = prev_cpu;
6552 struct sched_domain *sd;
6553 struct perf_domain *pd;
6555 rcu_read_lock();
6556 pd = rcu_dereference(rd->pd);
6557 if (!pd || READ_ONCE(rd->overutilized))
6558 goto fail;
6561 * Energy-aware wake-up happens on the lowest sched_domain starting
6562 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6564 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6565 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6566 sd = sd->parent;
6567 if (!sd)
6568 goto fail;
6570 sync_entity_load_avg(&p->se);
6571 if (!task_util_est(p))
6572 goto unlock;
6574 for (; pd; pd = pd->next) {
6575 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6576 unsigned long base_energy_pd;
6577 int max_spare_cap_cpu = -1;
6579 /* Compute the 'base' energy of the pd, without @p */
6580 base_energy_pd = compute_energy(p, -1, pd);
6581 base_energy += base_energy_pd;
6583 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6584 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6585 continue;
6587 util = cpu_util_next(cpu, p, cpu);
6588 cpu_cap = capacity_of(cpu);
6589 spare_cap = cpu_cap - util;
6592 * Skip CPUs that cannot satisfy the capacity request.
6593 * IOW, placing the task there would make the CPU
6594 * overutilized. Take uclamp into account to see how
6595 * much capacity we can get out of the CPU; this is
6596 * aligned with schedutil_cpu_util().
6598 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6599 if (!fits_capacity(util, cpu_cap))
6600 continue;
6602 /* Always use prev_cpu as a candidate. */
6603 if (cpu == prev_cpu) {
6604 prev_delta = compute_energy(p, prev_cpu, pd);
6605 prev_delta -= base_energy_pd;
6606 best_delta = min(best_delta, prev_delta);
6610 * Find the CPU with the maximum spare capacity in
6611 * the performance domain
6613 if (spare_cap > max_spare_cap) {
6614 max_spare_cap = spare_cap;
6615 max_spare_cap_cpu = cpu;
6619 /* Evaluate the energy impact of using this CPU. */
6620 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6621 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6622 cur_delta -= base_energy_pd;
6623 if (cur_delta < best_delta) {
6624 best_delta = cur_delta;
6625 best_energy_cpu = max_spare_cap_cpu;
6629 unlock:
6630 rcu_read_unlock();
6633 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6634 * least 6% of the energy used by prev_cpu.
6636 if (prev_delta == ULONG_MAX)
6637 return best_energy_cpu;
6639 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6640 return best_energy_cpu;
6642 return prev_cpu;
6644 fail:
6645 rcu_read_unlock();
6647 return -1;
6651 * select_task_rq_fair: Select target runqueue for the waking task in domains
6652 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6653 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6655 * Balances load by selecting the idlest CPU in the idlest group, or under
6656 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6658 * Returns the target CPU number.
6660 * preempt must be disabled.
6662 static int
6663 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6665 struct sched_domain *tmp, *sd = NULL;
6666 int cpu = smp_processor_id();
6667 int new_cpu = prev_cpu;
6668 int want_affine = 0;
6669 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6671 if (sd_flag & SD_BALANCE_WAKE) {
6672 record_wakee(p);
6674 if (sched_energy_enabled()) {
6675 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6676 if (new_cpu >= 0)
6677 return new_cpu;
6678 new_cpu = prev_cpu;
6681 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6684 rcu_read_lock();
6685 for_each_domain(cpu, tmp) {
6687 * If both 'cpu' and 'prev_cpu' are part of this domain,
6688 * cpu is a valid SD_WAKE_AFFINE target.
6690 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6691 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6692 if (cpu != prev_cpu)
6693 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6695 sd = NULL; /* Prefer wake_affine over balance flags */
6696 break;
6699 if (tmp->flags & sd_flag)
6700 sd = tmp;
6701 else if (!want_affine)
6702 break;
6705 if (unlikely(sd)) {
6706 /* Slow path */
6707 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6708 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6709 /* Fast path */
6711 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6713 if (want_affine)
6714 current->recent_used_cpu = cpu;
6716 rcu_read_unlock();
6718 return new_cpu;
6721 static void detach_entity_cfs_rq(struct sched_entity *se);
6724 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6725 * cfs_rq_of(p) references at time of call are still valid and identify the
6726 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6728 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6731 * As blocked tasks retain absolute vruntime the migration needs to
6732 * deal with this by subtracting the old and adding the new
6733 * min_vruntime -- the latter is done by enqueue_entity() when placing
6734 * the task on the new runqueue.
6736 if (p->state == TASK_WAKING) {
6737 struct sched_entity *se = &p->se;
6738 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6739 u64 min_vruntime;
6741 #ifndef CONFIG_64BIT
6742 u64 min_vruntime_copy;
6744 do {
6745 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6746 smp_rmb();
6747 min_vruntime = cfs_rq->min_vruntime;
6748 } while (min_vruntime != min_vruntime_copy);
6749 #else
6750 min_vruntime = cfs_rq->min_vruntime;
6751 #endif
6753 se->vruntime -= min_vruntime;
6756 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6758 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6759 * rq->lock and can modify state directly.
6761 lockdep_assert_held(&task_rq(p)->lock);
6762 detach_entity_cfs_rq(&p->se);
6764 } else {
6766 * We are supposed to update the task to "current" time, then
6767 * its up to date and ready to go to new CPU/cfs_rq. But we
6768 * have difficulty in getting what current time is, so simply
6769 * throw away the out-of-date time. This will result in the
6770 * wakee task is less decayed, but giving the wakee more load
6771 * sounds not bad.
6773 remove_entity_load_avg(&p->se);
6776 /* Tell new CPU we are migrated */
6777 p->se.avg.last_update_time = 0;
6779 /* We have migrated, no longer consider this task hot */
6780 p->se.exec_start = 0;
6782 update_scan_period(p, new_cpu);
6785 static void task_dead_fair(struct task_struct *p)
6787 remove_entity_load_avg(&p->se);
6790 static int
6791 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6793 if (rq->nr_running)
6794 return 1;
6796 return newidle_balance(rq, rf) != 0;
6798 #endif /* CONFIG_SMP */
6800 static unsigned long wakeup_gran(struct sched_entity *se)
6802 unsigned long gran = sysctl_sched_wakeup_granularity;
6805 * Since its curr running now, convert the gran from real-time
6806 * to virtual-time in his units.
6808 * By using 'se' instead of 'curr' we penalize light tasks, so
6809 * they get preempted easier. That is, if 'se' < 'curr' then
6810 * the resulting gran will be larger, therefore penalizing the
6811 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6812 * be smaller, again penalizing the lighter task.
6814 * This is especially important for buddies when the leftmost
6815 * task is higher priority than the buddy.
6817 return calc_delta_fair(gran, se);
6821 * Should 'se' preempt 'curr'.
6823 * |s1
6824 * |s2
6825 * |s3
6827 * |<--->|c
6829 * w(c, s1) = -1
6830 * w(c, s2) = 0
6831 * w(c, s3) = 1
6834 static int
6835 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6837 s64 gran, vdiff = curr->vruntime - se->vruntime;
6839 if (vdiff <= 0)
6840 return -1;
6842 gran = wakeup_gran(se);
6843 if (vdiff > gran)
6844 return 1;
6846 return 0;
6849 static void set_last_buddy(struct sched_entity *se)
6851 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6852 return;
6854 for_each_sched_entity(se) {
6855 if (SCHED_WARN_ON(!se->on_rq))
6856 return;
6857 cfs_rq_of(se)->last = se;
6861 static void set_next_buddy(struct sched_entity *se)
6863 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6864 return;
6866 for_each_sched_entity(se) {
6867 if (SCHED_WARN_ON(!se->on_rq))
6868 return;
6869 cfs_rq_of(se)->next = se;
6873 static void set_skip_buddy(struct sched_entity *se)
6875 for_each_sched_entity(se)
6876 cfs_rq_of(se)->skip = se;
6880 * Preempt the current task with a newly woken task if needed:
6882 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6884 struct task_struct *curr = rq->curr;
6885 struct sched_entity *se = &curr->se, *pse = &p->se;
6886 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6887 int scale = cfs_rq->nr_running >= sched_nr_latency;
6888 int next_buddy_marked = 0;
6890 if (unlikely(se == pse))
6891 return;
6894 * This is possible from callers such as attach_tasks(), in which we
6895 * unconditionally check_prempt_curr() after an enqueue (which may have
6896 * lead to a throttle). This both saves work and prevents false
6897 * next-buddy nomination below.
6899 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6900 return;
6902 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6903 set_next_buddy(pse);
6904 next_buddy_marked = 1;
6908 * We can come here with TIF_NEED_RESCHED already set from new task
6909 * wake up path.
6911 * Note: this also catches the edge-case of curr being in a throttled
6912 * group (e.g. via set_curr_task), since update_curr() (in the
6913 * enqueue of curr) will have resulted in resched being set. This
6914 * prevents us from potentially nominating it as a false LAST_BUDDY
6915 * below.
6917 if (test_tsk_need_resched(curr))
6918 return;
6920 /* Idle tasks are by definition preempted by non-idle tasks. */
6921 if (unlikely(task_has_idle_policy(curr)) &&
6922 likely(!task_has_idle_policy(p)))
6923 goto preempt;
6926 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6927 * is driven by the tick):
6929 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6930 return;
6932 find_matching_se(&se, &pse);
6933 update_curr(cfs_rq_of(se));
6934 BUG_ON(!pse);
6935 if (wakeup_preempt_entity(se, pse) == 1) {
6937 * Bias pick_next to pick the sched entity that is
6938 * triggering this preemption.
6940 if (!next_buddy_marked)
6941 set_next_buddy(pse);
6942 goto preempt;
6945 return;
6947 preempt:
6948 resched_curr(rq);
6950 * Only set the backward buddy when the current task is still
6951 * on the rq. This can happen when a wakeup gets interleaved
6952 * with schedule on the ->pre_schedule() or idle_balance()
6953 * point, either of which can * drop the rq lock.
6955 * Also, during early boot the idle thread is in the fair class,
6956 * for obvious reasons its a bad idea to schedule back to it.
6958 if (unlikely(!se->on_rq || curr == rq->idle))
6959 return;
6961 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6962 set_last_buddy(se);
6965 struct task_struct *
6966 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6968 struct cfs_rq *cfs_rq = &rq->cfs;
6969 struct sched_entity *se;
6970 struct task_struct *p;
6971 int new_tasks;
6973 again:
6974 if (!sched_fair_runnable(rq))
6975 goto idle;
6977 #ifdef CONFIG_FAIR_GROUP_SCHED
6978 if (!prev || prev->sched_class != &fair_sched_class)
6979 goto simple;
6982 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6983 * likely that a next task is from the same cgroup as the current.
6985 * Therefore attempt to avoid putting and setting the entire cgroup
6986 * hierarchy, only change the part that actually changes.
6989 do {
6990 struct sched_entity *curr = cfs_rq->curr;
6993 * Since we got here without doing put_prev_entity() we also
6994 * have to consider cfs_rq->curr. If it is still a runnable
6995 * entity, update_curr() will update its vruntime, otherwise
6996 * forget we've ever seen it.
6998 if (curr) {
6999 if (curr->on_rq)
7000 update_curr(cfs_rq);
7001 else
7002 curr = NULL;
7005 * This call to check_cfs_rq_runtime() will do the
7006 * throttle and dequeue its entity in the parent(s).
7007 * Therefore the nr_running test will indeed
7008 * be correct.
7010 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7011 cfs_rq = &rq->cfs;
7013 if (!cfs_rq->nr_running)
7014 goto idle;
7016 goto simple;
7020 se = pick_next_entity(cfs_rq, curr);
7021 cfs_rq = group_cfs_rq(se);
7022 } while (cfs_rq);
7024 p = task_of(se);
7027 * Since we haven't yet done put_prev_entity and if the selected task
7028 * is a different task than we started out with, try and touch the
7029 * least amount of cfs_rqs.
7031 if (prev != p) {
7032 struct sched_entity *pse = &prev->se;
7034 while (!(cfs_rq = is_same_group(se, pse))) {
7035 int se_depth = se->depth;
7036 int pse_depth = pse->depth;
7038 if (se_depth <= pse_depth) {
7039 put_prev_entity(cfs_rq_of(pse), pse);
7040 pse = parent_entity(pse);
7042 if (se_depth >= pse_depth) {
7043 set_next_entity(cfs_rq_of(se), se);
7044 se = parent_entity(se);
7048 put_prev_entity(cfs_rq, pse);
7049 set_next_entity(cfs_rq, se);
7052 goto done;
7053 simple:
7054 #endif
7055 if (prev)
7056 put_prev_task(rq, prev);
7058 do {
7059 se = pick_next_entity(cfs_rq, NULL);
7060 set_next_entity(cfs_rq, se);
7061 cfs_rq = group_cfs_rq(se);
7062 } while (cfs_rq);
7064 p = task_of(se);
7066 done: __maybe_unused;
7067 #ifdef CONFIG_SMP
7069 * Move the next running task to the front of
7070 * the list, so our cfs_tasks list becomes MRU
7071 * one.
7073 list_move(&p->se.group_node, &rq->cfs_tasks);
7074 #endif
7076 if (hrtick_enabled(rq))
7077 hrtick_start_fair(rq, p);
7079 update_misfit_status(p, rq);
7081 return p;
7083 idle:
7084 if (!rf)
7085 return NULL;
7087 new_tasks = newidle_balance(rq, rf);
7090 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7091 * possible for any higher priority task to appear. In that case we
7092 * must re-start the pick_next_entity() loop.
7094 if (new_tasks < 0)
7095 return RETRY_TASK;
7097 if (new_tasks > 0)
7098 goto again;
7101 * rq is about to be idle, check if we need to update the
7102 * lost_idle_time of clock_pelt
7104 update_idle_rq_clock_pelt(rq);
7106 return NULL;
7109 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7111 return pick_next_task_fair(rq, NULL, NULL);
7115 * Account for a descheduled task:
7117 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7119 struct sched_entity *se = &prev->se;
7120 struct cfs_rq *cfs_rq;
7122 for_each_sched_entity(se) {
7123 cfs_rq = cfs_rq_of(se);
7124 put_prev_entity(cfs_rq, se);
7129 * sched_yield() is very simple
7131 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7133 static void yield_task_fair(struct rq *rq)
7135 struct task_struct *curr = rq->curr;
7136 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7137 struct sched_entity *se = &curr->se;
7140 * Are we the only task in the tree?
7142 if (unlikely(rq->nr_running == 1))
7143 return;
7145 clear_buddies(cfs_rq, se);
7147 if (curr->policy != SCHED_BATCH) {
7148 update_rq_clock(rq);
7150 * Update run-time statistics of the 'current'.
7152 update_curr(cfs_rq);
7154 * Tell update_rq_clock() that we've just updated,
7155 * so we don't do microscopic update in schedule()
7156 * and double the fastpath cost.
7158 rq_clock_skip_update(rq);
7161 set_skip_buddy(se);
7164 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7166 struct sched_entity *se = &p->se;
7168 /* throttled hierarchies are not runnable */
7169 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7170 return false;
7172 /* Tell the scheduler that we'd really like pse to run next. */
7173 set_next_buddy(se);
7175 yield_task_fair(rq);
7177 return true;
7180 #ifdef CONFIG_SMP
7181 /**************************************************
7182 * Fair scheduling class load-balancing methods.
7184 * BASICS
7186 * The purpose of load-balancing is to achieve the same basic fairness the
7187 * per-CPU scheduler provides, namely provide a proportional amount of compute
7188 * time to each task. This is expressed in the following equation:
7190 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7192 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7193 * W_i,0 is defined as:
7195 * W_i,0 = \Sum_j w_i,j (2)
7197 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7198 * is derived from the nice value as per sched_prio_to_weight[].
7200 * The weight average is an exponential decay average of the instantaneous
7201 * weight:
7203 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7205 * C_i is the compute capacity of CPU i, typically it is the
7206 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7207 * can also include other factors [XXX].
7209 * To achieve this balance we define a measure of imbalance which follows
7210 * directly from (1):
7212 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7214 * We them move tasks around to minimize the imbalance. In the continuous
7215 * function space it is obvious this converges, in the discrete case we get
7216 * a few fun cases generally called infeasible weight scenarios.
7218 * [XXX expand on:
7219 * - infeasible weights;
7220 * - local vs global optima in the discrete case. ]
7223 * SCHED DOMAINS
7225 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7226 * for all i,j solution, we create a tree of CPUs that follows the hardware
7227 * topology where each level pairs two lower groups (or better). This results
7228 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7229 * tree to only the first of the previous level and we decrease the frequency
7230 * of load-balance at each level inv. proportional to the number of CPUs in
7231 * the groups.
7233 * This yields:
7235 * log_2 n 1 n
7236 * \Sum { --- * --- * 2^i } = O(n) (5)
7237 * i = 0 2^i 2^i
7238 * `- size of each group
7239 * | | `- number of CPUs doing load-balance
7240 * | `- freq
7241 * `- sum over all levels
7243 * Coupled with a limit on how many tasks we can migrate every balance pass,
7244 * this makes (5) the runtime complexity of the balancer.
7246 * An important property here is that each CPU is still (indirectly) connected
7247 * to every other CPU in at most O(log n) steps:
7249 * The adjacency matrix of the resulting graph is given by:
7251 * log_2 n
7252 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7253 * k = 0
7255 * And you'll find that:
7257 * A^(log_2 n)_i,j != 0 for all i,j (7)
7259 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7260 * The task movement gives a factor of O(m), giving a convergence complexity
7261 * of:
7263 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7266 * WORK CONSERVING
7268 * In order to avoid CPUs going idle while there's still work to do, new idle
7269 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7270 * tree itself instead of relying on other CPUs to bring it work.
7272 * This adds some complexity to both (5) and (8) but it reduces the total idle
7273 * time.
7275 * [XXX more?]
7278 * CGROUPS
7280 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7282 * s_k,i
7283 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7284 * S_k
7286 * Where
7288 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7290 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7292 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7293 * property.
7295 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7296 * rewrite all of this once again.]
7299 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7301 enum fbq_type { regular, remote, all };
7304 * 'group_type' describes the group of CPUs at the moment of load balancing.
7306 * The enum is ordered by pulling priority, with the group with lowest priority
7307 * first so the group_type can simply be compared when selecting the busiest
7308 * group. See update_sd_pick_busiest().
7310 enum group_type {
7311 /* The group has spare capacity that can be used to run more tasks. */
7312 group_has_spare = 0,
7314 * The group is fully used and the tasks don't compete for more CPU
7315 * cycles. Nevertheless, some tasks might wait before running.
7317 group_fully_busy,
7319 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7320 * and must be migrated to a more powerful CPU.
7322 group_misfit_task,
7324 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7325 * and the task should be migrated to it instead of running on the
7326 * current CPU.
7328 group_asym_packing,
7330 * The tasks' affinity constraints previously prevented the scheduler
7331 * from balancing the load across the system.
7333 group_imbalanced,
7335 * The CPU is overloaded and can't provide expected CPU cycles to all
7336 * tasks.
7338 group_overloaded
7341 enum migration_type {
7342 migrate_load = 0,
7343 migrate_util,
7344 migrate_task,
7345 migrate_misfit
7348 #define LBF_ALL_PINNED 0x01
7349 #define LBF_NEED_BREAK 0x02
7350 #define LBF_DST_PINNED 0x04
7351 #define LBF_SOME_PINNED 0x08
7352 #define LBF_NOHZ_STATS 0x10
7353 #define LBF_NOHZ_AGAIN 0x20
7355 struct lb_env {
7356 struct sched_domain *sd;
7358 struct rq *src_rq;
7359 int src_cpu;
7361 int dst_cpu;
7362 struct rq *dst_rq;
7364 struct cpumask *dst_grpmask;
7365 int new_dst_cpu;
7366 enum cpu_idle_type idle;
7367 long imbalance;
7368 /* The set of CPUs under consideration for load-balancing */
7369 struct cpumask *cpus;
7371 unsigned int flags;
7373 unsigned int loop;
7374 unsigned int loop_break;
7375 unsigned int loop_max;
7377 enum fbq_type fbq_type;
7378 enum migration_type migration_type;
7379 struct list_head tasks;
7383 * Is this task likely cache-hot:
7385 static int task_hot(struct task_struct *p, struct lb_env *env)
7387 s64 delta;
7389 lockdep_assert_held(&env->src_rq->lock);
7391 if (p->sched_class != &fair_sched_class)
7392 return 0;
7394 if (unlikely(task_has_idle_policy(p)))
7395 return 0;
7398 * Buddy candidates are cache hot:
7400 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7401 (&p->se == cfs_rq_of(&p->se)->next ||
7402 &p->se == cfs_rq_of(&p->se)->last))
7403 return 1;
7405 if (sysctl_sched_migration_cost == -1)
7406 return 1;
7407 if (sysctl_sched_migration_cost == 0)
7408 return 0;
7410 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7412 return delta < (s64)sysctl_sched_migration_cost;
7415 #ifdef CONFIG_NUMA_BALANCING
7417 * Returns 1, if task migration degrades locality
7418 * Returns 0, if task migration improves locality i.e migration preferred.
7419 * Returns -1, if task migration is not affected by locality.
7421 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7423 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7424 unsigned long src_weight, dst_weight;
7425 int src_nid, dst_nid, dist;
7427 if (!static_branch_likely(&sched_numa_balancing))
7428 return -1;
7430 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7431 return -1;
7433 src_nid = cpu_to_node(env->src_cpu);
7434 dst_nid = cpu_to_node(env->dst_cpu);
7436 if (src_nid == dst_nid)
7437 return -1;
7439 /* Migrating away from the preferred node is always bad. */
7440 if (src_nid == p->numa_preferred_nid) {
7441 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7442 return 1;
7443 else
7444 return -1;
7447 /* Encourage migration to the preferred node. */
7448 if (dst_nid == p->numa_preferred_nid)
7449 return 0;
7451 /* Leaving a core idle is often worse than degrading locality. */
7452 if (env->idle == CPU_IDLE)
7453 return -1;
7455 dist = node_distance(src_nid, dst_nid);
7456 if (numa_group) {
7457 src_weight = group_weight(p, src_nid, dist);
7458 dst_weight = group_weight(p, dst_nid, dist);
7459 } else {
7460 src_weight = task_weight(p, src_nid, dist);
7461 dst_weight = task_weight(p, dst_nid, dist);
7464 return dst_weight < src_weight;
7467 #else
7468 static inline int migrate_degrades_locality(struct task_struct *p,
7469 struct lb_env *env)
7471 return -1;
7473 #endif
7476 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7478 static
7479 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7481 int tsk_cache_hot;
7483 lockdep_assert_held(&env->src_rq->lock);
7486 * We do not migrate tasks that are:
7487 * 1) throttled_lb_pair, or
7488 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7489 * 3) running (obviously), or
7490 * 4) are cache-hot on their current CPU.
7492 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7493 return 0;
7495 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7496 int cpu;
7498 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7500 env->flags |= LBF_SOME_PINNED;
7503 * Remember if this task can be migrated to any other CPU in
7504 * our sched_group. We may want to revisit it if we couldn't
7505 * meet load balance goals by pulling other tasks on src_cpu.
7507 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7508 * already computed one in current iteration.
7510 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7511 return 0;
7513 /* Prevent to re-select dst_cpu via env's CPUs: */
7514 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7515 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7516 env->flags |= LBF_DST_PINNED;
7517 env->new_dst_cpu = cpu;
7518 break;
7522 return 0;
7525 /* Record that we found atleast one task that could run on dst_cpu */
7526 env->flags &= ~LBF_ALL_PINNED;
7528 if (task_running(env->src_rq, p)) {
7529 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7530 return 0;
7534 * Aggressive migration if:
7535 * 1) destination numa is preferred
7536 * 2) task is cache cold, or
7537 * 3) too many balance attempts have failed.
7539 tsk_cache_hot = migrate_degrades_locality(p, env);
7540 if (tsk_cache_hot == -1)
7541 tsk_cache_hot = task_hot(p, env);
7543 if (tsk_cache_hot <= 0 ||
7544 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7545 if (tsk_cache_hot == 1) {
7546 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7547 schedstat_inc(p->se.statistics.nr_forced_migrations);
7549 return 1;
7552 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7553 return 0;
7557 * detach_task() -- detach the task for the migration specified in env
7559 static void detach_task(struct task_struct *p, struct lb_env *env)
7561 lockdep_assert_held(&env->src_rq->lock);
7563 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7564 set_task_cpu(p, env->dst_cpu);
7568 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7569 * part of active balancing operations within "domain".
7571 * Returns a task if successful and NULL otherwise.
7573 static struct task_struct *detach_one_task(struct lb_env *env)
7575 struct task_struct *p;
7577 lockdep_assert_held(&env->src_rq->lock);
7579 list_for_each_entry_reverse(p,
7580 &env->src_rq->cfs_tasks, se.group_node) {
7581 if (!can_migrate_task(p, env))
7582 continue;
7584 detach_task(p, env);
7587 * Right now, this is only the second place where
7588 * lb_gained[env->idle] is updated (other is detach_tasks)
7589 * so we can safely collect stats here rather than
7590 * inside detach_tasks().
7592 schedstat_inc(env->sd->lb_gained[env->idle]);
7593 return p;
7595 return NULL;
7598 static const unsigned int sched_nr_migrate_break = 32;
7601 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7602 * busiest_rq, as part of a balancing operation within domain "sd".
7604 * Returns number of detached tasks if successful and 0 otherwise.
7606 static int detach_tasks(struct lb_env *env)
7608 struct list_head *tasks = &env->src_rq->cfs_tasks;
7609 unsigned long util, load;
7610 struct task_struct *p;
7611 int detached = 0;
7613 lockdep_assert_held(&env->src_rq->lock);
7615 if (env->imbalance <= 0)
7616 return 0;
7618 while (!list_empty(tasks)) {
7620 * We don't want to steal all, otherwise we may be treated likewise,
7621 * which could at worst lead to a livelock crash.
7623 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7624 break;
7626 p = list_last_entry(tasks, struct task_struct, se.group_node);
7628 env->loop++;
7629 /* We've more or less seen every task there is, call it quits */
7630 if (env->loop > env->loop_max)
7631 break;
7633 /* take a breather every nr_migrate tasks */
7634 if (env->loop > env->loop_break) {
7635 env->loop_break += sched_nr_migrate_break;
7636 env->flags |= LBF_NEED_BREAK;
7637 break;
7640 if (!can_migrate_task(p, env))
7641 goto next;
7643 switch (env->migration_type) {
7644 case migrate_load:
7646 * Depending of the number of CPUs and tasks and the
7647 * cgroup hierarchy, task_h_load() can return a null
7648 * value. Make sure that env->imbalance decreases
7649 * otherwise detach_tasks() will stop only after
7650 * detaching up to loop_max tasks.
7652 load = max_t(unsigned long, task_h_load(p), 1);
7654 if (sched_feat(LB_MIN) &&
7655 load < 16 && !env->sd->nr_balance_failed)
7656 goto next;
7659 * Make sure that we don't migrate too much load.
7660 * Nevertheless, let relax the constraint if
7661 * scheduler fails to find a good waiting task to
7662 * migrate.
7664 if (load/2 > env->imbalance &&
7665 env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7666 goto next;
7668 env->imbalance -= load;
7669 break;
7671 case migrate_util:
7672 util = task_util_est(p);
7674 if (util > env->imbalance)
7675 goto next;
7677 env->imbalance -= util;
7678 break;
7680 case migrate_task:
7681 env->imbalance--;
7682 break;
7684 case migrate_misfit:
7685 /* This is not a misfit task */
7686 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7687 goto next;
7689 env->imbalance = 0;
7690 break;
7693 detach_task(p, env);
7694 list_add(&p->se.group_node, &env->tasks);
7696 detached++;
7698 #ifdef CONFIG_PREEMPTION
7700 * NEWIDLE balancing is a source of latency, so preemptible
7701 * kernels will stop after the first task is detached to minimize
7702 * the critical section.
7704 if (env->idle == CPU_NEWLY_IDLE)
7705 break;
7706 #endif
7709 * We only want to steal up to the prescribed amount of
7710 * load/util/tasks.
7712 if (env->imbalance <= 0)
7713 break;
7715 continue;
7716 next:
7717 list_move(&p->se.group_node, tasks);
7721 * Right now, this is one of only two places we collect this stat
7722 * so we can safely collect detach_one_task() stats here rather
7723 * than inside detach_one_task().
7725 schedstat_add(env->sd->lb_gained[env->idle], detached);
7727 return detached;
7731 * attach_task() -- attach the task detached by detach_task() to its new rq.
7733 static void attach_task(struct rq *rq, struct task_struct *p)
7735 lockdep_assert_held(&rq->lock);
7737 BUG_ON(task_rq(p) != rq);
7738 activate_task(rq, p, ENQUEUE_NOCLOCK);
7739 check_preempt_curr(rq, p, 0);
7743 * attach_one_task() -- attaches the task returned from detach_one_task() to
7744 * its new rq.
7746 static void attach_one_task(struct rq *rq, struct task_struct *p)
7748 struct rq_flags rf;
7750 rq_lock(rq, &rf);
7751 update_rq_clock(rq);
7752 attach_task(rq, p);
7753 rq_unlock(rq, &rf);
7757 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7758 * new rq.
7760 static void attach_tasks(struct lb_env *env)
7762 struct list_head *tasks = &env->tasks;
7763 struct task_struct *p;
7764 struct rq_flags rf;
7766 rq_lock(env->dst_rq, &rf);
7767 update_rq_clock(env->dst_rq);
7769 while (!list_empty(tasks)) {
7770 p = list_first_entry(tasks, struct task_struct, se.group_node);
7771 list_del_init(&p->se.group_node);
7773 attach_task(env->dst_rq, p);
7776 rq_unlock(env->dst_rq, &rf);
7779 #ifdef CONFIG_NO_HZ_COMMON
7780 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7782 if (cfs_rq->avg.load_avg)
7783 return true;
7785 if (cfs_rq->avg.util_avg)
7786 return true;
7788 return false;
7791 static inline bool others_have_blocked(struct rq *rq)
7793 if (READ_ONCE(rq->avg_rt.util_avg))
7794 return true;
7796 if (READ_ONCE(rq->avg_dl.util_avg))
7797 return true;
7799 if (thermal_load_avg(rq))
7800 return true;
7802 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7803 if (READ_ONCE(rq->avg_irq.util_avg))
7804 return true;
7805 #endif
7807 return false;
7810 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7812 rq->last_blocked_load_update_tick = jiffies;
7814 if (!has_blocked)
7815 rq->has_blocked_load = 0;
7817 #else
7818 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7819 static inline bool others_have_blocked(struct rq *rq) { return false; }
7820 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7821 #endif
7823 static bool __update_blocked_others(struct rq *rq, bool *done)
7825 const struct sched_class *curr_class;
7826 u64 now = rq_clock_pelt(rq);
7827 unsigned long thermal_pressure;
7828 bool decayed;
7831 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7832 * DL and IRQ signals have been updated before updating CFS.
7834 curr_class = rq->curr->sched_class;
7836 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7838 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7839 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7840 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7841 update_irq_load_avg(rq, 0);
7843 if (others_have_blocked(rq))
7844 *done = false;
7846 return decayed;
7849 #ifdef CONFIG_FAIR_GROUP_SCHED
7851 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7853 if (cfs_rq->load.weight)
7854 return false;
7856 if (cfs_rq->avg.load_sum)
7857 return false;
7859 if (cfs_rq->avg.util_sum)
7860 return false;
7862 if (cfs_rq->avg.runnable_sum)
7863 return false;
7865 return true;
7868 static bool __update_blocked_fair(struct rq *rq, bool *done)
7870 struct cfs_rq *cfs_rq, *pos;
7871 bool decayed = false;
7872 int cpu = cpu_of(rq);
7875 * Iterates the task_group tree in a bottom up fashion, see
7876 * list_add_leaf_cfs_rq() for details.
7878 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7879 struct sched_entity *se;
7881 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7882 update_tg_load_avg(cfs_rq, 0);
7884 if (cfs_rq == &rq->cfs)
7885 decayed = true;
7888 /* Propagate pending load changes to the parent, if any: */
7889 se = cfs_rq->tg->se[cpu];
7890 if (se && !skip_blocked_update(se))
7891 update_load_avg(cfs_rq_of(se), se, 0);
7894 * There can be a lot of idle CPU cgroups. Don't let fully
7895 * decayed cfs_rqs linger on the list.
7897 if (cfs_rq_is_decayed(cfs_rq))
7898 list_del_leaf_cfs_rq(cfs_rq);
7900 /* Don't need periodic decay once load/util_avg are null */
7901 if (cfs_rq_has_blocked(cfs_rq))
7902 *done = false;
7905 return decayed;
7909 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7910 * This needs to be done in a top-down fashion because the load of a child
7911 * group is a fraction of its parents load.
7913 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7915 struct rq *rq = rq_of(cfs_rq);
7916 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7917 unsigned long now = jiffies;
7918 unsigned long load;
7920 if (cfs_rq->last_h_load_update == now)
7921 return;
7923 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7924 for_each_sched_entity(se) {
7925 cfs_rq = cfs_rq_of(se);
7926 WRITE_ONCE(cfs_rq->h_load_next, se);
7927 if (cfs_rq->last_h_load_update == now)
7928 break;
7931 if (!se) {
7932 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7933 cfs_rq->last_h_load_update = now;
7936 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7937 load = cfs_rq->h_load;
7938 load = div64_ul(load * se->avg.load_avg,
7939 cfs_rq_load_avg(cfs_rq) + 1);
7940 cfs_rq = group_cfs_rq(se);
7941 cfs_rq->h_load = load;
7942 cfs_rq->last_h_load_update = now;
7946 static unsigned long task_h_load(struct task_struct *p)
7948 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7950 update_cfs_rq_h_load(cfs_rq);
7951 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7952 cfs_rq_load_avg(cfs_rq) + 1);
7954 #else
7955 static bool __update_blocked_fair(struct rq *rq, bool *done)
7957 struct cfs_rq *cfs_rq = &rq->cfs;
7958 bool decayed;
7960 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7961 if (cfs_rq_has_blocked(cfs_rq))
7962 *done = false;
7964 return decayed;
7967 static unsigned long task_h_load(struct task_struct *p)
7969 return p->se.avg.load_avg;
7971 #endif
7973 static void update_blocked_averages(int cpu)
7975 bool decayed = false, done = true;
7976 struct rq *rq = cpu_rq(cpu);
7977 struct rq_flags rf;
7979 rq_lock_irqsave(rq, &rf);
7980 update_rq_clock(rq);
7982 decayed |= __update_blocked_others(rq, &done);
7983 decayed |= __update_blocked_fair(rq, &done);
7985 update_blocked_load_status(rq, !done);
7986 if (decayed)
7987 cpufreq_update_util(rq, 0);
7988 rq_unlock_irqrestore(rq, &rf);
7991 /********** Helpers for find_busiest_group ************************/
7994 * sg_lb_stats - stats of a sched_group required for load_balancing
7996 struct sg_lb_stats {
7997 unsigned long avg_load; /*Avg load across the CPUs of the group */
7998 unsigned long group_load; /* Total load over the CPUs of the group */
7999 unsigned long group_capacity;
8000 unsigned long group_util; /* Total utilization over the CPUs of the group */
8001 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8002 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8003 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8004 unsigned int idle_cpus;
8005 unsigned int group_weight;
8006 enum group_type group_type;
8007 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8008 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8009 #ifdef CONFIG_NUMA_BALANCING
8010 unsigned int nr_numa_running;
8011 unsigned int nr_preferred_running;
8012 #endif
8016 * sd_lb_stats - Structure to store the statistics of a sched_domain
8017 * during load balancing.
8019 struct sd_lb_stats {
8020 struct sched_group *busiest; /* Busiest group in this sd */
8021 struct sched_group *local; /* Local group in this sd */
8022 unsigned long total_load; /* Total load of all groups in sd */
8023 unsigned long total_capacity; /* Total capacity of all groups in sd */
8024 unsigned long avg_load; /* Average load across all groups in sd */
8025 unsigned int prefer_sibling; /* tasks should go to sibling first */
8027 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8028 struct sg_lb_stats local_stat; /* Statistics of the local group */
8031 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8034 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8035 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8036 * We must however set busiest_stat::group_type and
8037 * busiest_stat::idle_cpus to the worst busiest group because
8038 * update_sd_pick_busiest() reads these before assignment.
8040 *sds = (struct sd_lb_stats){
8041 .busiest = NULL,
8042 .local = NULL,
8043 .total_load = 0UL,
8044 .total_capacity = 0UL,
8045 .busiest_stat = {
8046 .idle_cpus = UINT_MAX,
8047 .group_type = group_has_spare,
8052 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
8054 struct rq *rq = cpu_rq(cpu);
8055 unsigned long max = arch_scale_cpu_capacity(cpu);
8056 unsigned long used, free;
8057 unsigned long irq;
8059 irq = cpu_util_irq(rq);
8061 if (unlikely(irq >= max))
8062 return 1;
8065 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8066 * (running and not running) with weights 0 and 1024 respectively.
8067 * avg_thermal.load_avg tracks thermal pressure and the weighted
8068 * average uses the actual delta max capacity(load).
8070 used = READ_ONCE(rq->avg_rt.util_avg);
8071 used += READ_ONCE(rq->avg_dl.util_avg);
8072 used += thermal_load_avg(rq);
8074 if (unlikely(used >= max))
8075 return 1;
8077 free = max - used;
8079 return scale_irq_capacity(free, irq, max);
8082 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8084 unsigned long capacity = scale_rt_capacity(sd, cpu);
8085 struct sched_group *sdg = sd->groups;
8087 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8089 if (!capacity)
8090 capacity = 1;
8092 cpu_rq(cpu)->cpu_capacity = capacity;
8093 sdg->sgc->capacity = capacity;
8094 sdg->sgc->min_capacity = capacity;
8095 sdg->sgc->max_capacity = capacity;
8098 void update_group_capacity(struct sched_domain *sd, int cpu)
8100 struct sched_domain *child = sd->child;
8101 struct sched_group *group, *sdg = sd->groups;
8102 unsigned long capacity, min_capacity, max_capacity;
8103 unsigned long interval;
8105 interval = msecs_to_jiffies(sd->balance_interval);
8106 interval = clamp(interval, 1UL, max_load_balance_interval);
8107 sdg->sgc->next_update = jiffies + interval;
8109 if (!child) {
8110 update_cpu_capacity(sd, cpu);
8111 return;
8114 capacity = 0;
8115 min_capacity = ULONG_MAX;
8116 max_capacity = 0;
8118 if (child->flags & SD_OVERLAP) {
8120 * SD_OVERLAP domains cannot assume that child groups
8121 * span the current group.
8124 for_each_cpu(cpu, sched_group_span(sdg)) {
8125 unsigned long cpu_cap = capacity_of(cpu);
8127 capacity += cpu_cap;
8128 min_capacity = min(cpu_cap, min_capacity);
8129 max_capacity = max(cpu_cap, max_capacity);
8131 } else {
8133 * !SD_OVERLAP domains can assume that child groups
8134 * span the current group.
8137 group = child->groups;
8138 do {
8139 struct sched_group_capacity *sgc = group->sgc;
8141 capacity += sgc->capacity;
8142 min_capacity = min(sgc->min_capacity, min_capacity);
8143 max_capacity = max(sgc->max_capacity, max_capacity);
8144 group = group->next;
8145 } while (group != child->groups);
8148 sdg->sgc->capacity = capacity;
8149 sdg->sgc->min_capacity = min_capacity;
8150 sdg->sgc->max_capacity = max_capacity;
8154 * Check whether the capacity of the rq has been noticeably reduced by side
8155 * activity. The imbalance_pct is used for the threshold.
8156 * Return true is the capacity is reduced
8158 static inline int
8159 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8161 return ((rq->cpu_capacity * sd->imbalance_pct) <
8162 (rq->cpu_capacity_orig * 100));
8166 * Check whether a rq has a misfit task and if it looks like we can actually
8167 * help that task: we can migrate the task to a CPU of higher capacity, or
8168 * the task's current CPU is heavily pressured.
8170 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8172 return rq->misfit_task_load &&
8173 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8174 check_cpu_capacity(rq, sd));
8178 * Group imbalance indicates (and tries to solve) the problem where balancing
8179 * groups is inadequate due to ->cpus_ptr constraints.
8181 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8182 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8183 * Something like:
8185 * { 0 1 2 3 } { 4 5 6 7 }
8186 * * * * *
8188 * If we were to balance group-wise we'd place two tasks in the first group and
8189 * two tasks in the second group. Clearly this is undesired as it will overload
8190 * cpu 3 and leave one of the CPUs in the second group unused.
8192 * The current solution to this issue is detecting the skew in the first group
8193 * by noticing the lower domain failed to reach balance and had difficulty
8194 * moving tasks due to affinity constraints.
8196 * When this is so detected; this group becomes a candidate for busiest; see
8197 * update_sd_pick_busiest(). And calculate_imbalance() and
8198 * find_busiest_group() avoid some of the usual balance conditions to allow it
8199 * to create an effective group imbalance.
8201 * This is a somewhat tricky proposition since the next run might not find the
8202 * group imbalance and decide the groups need to be balanced again. A most
8203 * subtle and fragile situation.
8206 static inline int sg_imbalanced(struct sched_group *group)
8208 return group->sgc->imbalance;
8212 * group_has_capacity returns true if the group has spare capacity that could
8213 * be used by some tasks.
8214 * We consider that a group has spare capacity if the * number of task is
8215 * smaller than the number of CPUs or if the utilization is lower than the
8216 * available capacity for CFS tasks.
8217 * For the latter, we use a threshold to stabilize the state, to take into
8218 * account the variance of the tasks' load and to return true if the available
8219 * capacity in meaningful for the load balancer.
8220 * As an example, an available capacity of 1% can appear but it doesn't make
8221 * any benefit for the load balance.
8223 static inline bool
8224 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8226 if (sgs->sum_nr_running < sgs->group_weight)
8227 return true;
8229 if ((sgs->group_capacity * imbalance_pct) <
8230 (sgs->group_runnable * 100))
8231 return false;
8233 if ((sgs->group_capacity * 100) >
8234 (sgs->group_util * imbalance_pct))
8235 return true;
8237 return false;
8241 * group_is_overloaded returns true if the group has more tasks than it can
8242 * handle.
8243 * group_is_overloaded is not equals to !group_has_capacity because a group
8244 * with the exact right number of tasks, has no more spare capacity but is not
8245 * overloaded so both group_has_capacity and group_is_overloaded return
8246 * false.
8248 static inline bool
8249 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8251 if (sgs->sum_nr_running <= sgs->group_weight)
8252 return false;
8254 if ((sgs->group_capacity * 100) <
8255 (sgs->group_util * imbalance_pct))
8256 return true;
8258 if ((sgs->group_capacity * imbalance_pct) <
8259 (sgs->group_runnable * 100))
8260 return true;
8262 return false;
8266 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8267 * per-CPU capacity than sched_group ref.
8269 static inline bool
8270 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8272 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8276 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8277 * per-CPU capacity_orig than sched_group ref.
8279 static inline bool
8280 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8282 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8285 static inline enum
8286 group_type group_classify(unsigned int imbalance_pct,
8287 struct sched_group *group,
8288 struct sg_lb_stats *sgs)
8290 if (group_is_overloaded(imbalance_pct, sgs))
8291 return group_overloaded;
8293 if (sg_imbalanced(group))
8294 return group_imbalanced;
8296 if (sgs->group_asym_packing)
8297 return group_asym_packing;
8299 if (sgs->group_misfit_task_load)
8300 return group_misfit_task;
8302 if (!group_has_capacity(imbalance_pct, sgs))
8303 return group_fully_busy;
8305 return group_has_spare;
8308 static bool update_nohz_stats(struct rq *rq, bool force)
8310 #ifdef CONFIG_NO_HZ_COMMON
8311 unsigned int cpu = rq->cpu;
8313 if (!rq->has_blocked_load)
8314 return false;
8316 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8317 return false;
8319 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8320 return true;
8322 update_blocked_averages(cpu);
8324 return rq->has_blocked_load;
8325 #else
8326 return false;
8327 #endif
8331 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8332 * @env: The load balancing environment.
8333 * @group: sched_group whose statistics are to be updated.
8334 * @sgs: variable to hold the statistics for this group.
8335 * @sg_status: Holds flag indicating the status of the sched_group
8337 static inline void update_sg_lb_stats(struct lb_env *env,
8338 struct sched_group *group,
8339 struct sg_lb_stats *sgs,
8340 int *sg_status)
8342 int i, nr_running, local_group;
8344 memset(sgs, 0, sizeof(*sgs));
8346 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8348 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8349 struct rq *rq = cpu_rq(i);
8351 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8352 env->flags |= LBF_NOHZ_AGAIN;
8354 sgs->group_load += cpu_load(rq);
8355 sgs->group_util += cpu_util(i);
8356 sgs->group_runnable += cpu_runnable(rq);
8357 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8359 nr_running = rq->nr_running;
8360 sgs->sum_nr_running += nr_running;
8362 if (nr_running > 1)
8363 *sg_status |= SG_OVERLOAD;
8365 if (cpu_overutilized(i))
8366 *sg_status |= SG_OVERUTILIZED;
8368 #ifdef CONFIG_NUMA_BALANCING
8369 sgs->nr_numa_running += rq->nr_numa_running;
8370 sgs->nr_preferred_running += rq->nr_preferred_running;
8371 #endif
8373 * No need to call idle_cpu() if nr_running is not 0
8375 if (!nr_running && idle_cpu(i)) {
8376 sgs->idle_cpus++;
8377 /* Idle cpu can't have misfit task */
8378 continue;
8381 if (local_group)
8382 continue;
8384 /* Check for a misfit task on the cpu */
8385 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8386 sgs->group_misfit_task_load < rq->misfit_task_load) {
8387 sgs->group_misfit_task_load = rq->misfit_task_load;
8388 *sg_status |= SG_OVERLOAD;
8392 /* Check if dst CPU is idle and preferred to this group */
8393 if (env->sd->flags & SD_ASYM_PACKING &&
8394 env->idle != CPU_NOT_IDLE &&
8395 sgs->sum_h_nr_running &&
8396 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8397 sgs->group_asym_packing = 1;
8400 sgs->group_capacity = group->sgc->capacity;
8402 sgs->group_weight = group->group_weight;
8404 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8406 /* Computing avg_load makes sense only when group is overloaded */
8407 if (sgs->group_type == group_overloaded)
8408 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8409 sgs->group_capacity;
8413 * update_sd_pick_busiest - return 1 on busiest group
8414 * @env: The load balancing environment.
8415 * @sds: sched_domain statistics
8416 * @sg: sched_group candidate to be checked for being the busiest
8417 * @sgs: sched_group statistics
8419 * Determine if @sg is a busier group than the previously selected
8420 * busiest group.
8422 * Return: %true if @sg is a busier group than the previously selected
8423 * busiest group. %false otherwise.
8425 static bool update_sd_pick_busiest(struct lb_env *env,
8426 struct sd_lb_stats *sds,
8427 struct sched_group *sg,
8428 struct sg_lb_stats *sgs)
8430 struct sg_lb_stats *busiest = &sds->busiest_stat;
8432 /* Make sure that there is at least one task to pull */
8433 if (!sgs->sum_h_nr_running)
8434 return false;
8437 * Don't try to pull misfit tasks we can't help.
8438 * We can use max_capacity here as reduction in capacity on some
8439 * CPUs in the group should either be possible to resolve
8440 * internally or be covered by avg_load imbalance (eventually).
8442 if (sgs->group_type == group_misfit_task &&
8443 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8444 sds->local_stat.group_type != group_has_spare))
8445 return false;
8447 if (sgs->group_type > busiest->group_type)
8448 return true;
8450 if (sgs->group_type < busiest->group_type)
8451 return false;
8454 * The candidate and the current busiest group are the same type of
8455 * group. Let check which one is the busiest according to the type.
8458 switch (sgs->group_type) {
8459 case group_overloaded:
8460 /* Select the overloaded group with highest avg_load. */
8461 if (sgs->avg_load <= busiest->avg_load)
8462 return false;
8463 break;
8465 case group_imbalanced:
8467 * Select the 1st imbalanced group as we don't have any way to
8468 * choose one more than another.
8470 return false;
8472 case group_asym_packing:
8473 /* Prefer to move from lowest priority CPU's work */
8474 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8475 return false;
8476 break;
8478 case group_misfit_task:
8480 * If we have more than one misfit sg go with the biggest
8481 * misfit.
8483 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8484 return false;
8485 break;
8487 case group_fully_busy:
8489 * Select the fully busy group with highest avg_load. In
8490 * theory, there is no need to pull task from such kind of
8491 * group because tasks have all compute capacity that they need
8492 * but we can still improve the overall throughput by reducing
8493 * contention when accessing shared HW resources.
8495 * XXX for now avg_load is not computed and always 0 so we
8496 * select the 1st one.
8498 if (sgs->avg_load <= busiest->avg_load)
8499 return false;
8500 break;
8502 case group_has_spare:
8504 * Select not overloaded group with lowest number of idle cpus
8505 * and highest number of running tasks. We could also compare
8506 * the spare capacity which is more stable but it can end up
8507 * that the group has less spare capacity but finally more idle
8508 * CPUs which means less opportunity to pull tasks.
8510 if (sgs->idle_cpus > busiest->idle_cpus)
8511 return false;
8512 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8513 (sgs->sum_nr_running <= busiest->sum_nr_running))
8514 return false;
8516 break;
8520 * Candidate sg has no more than one task per CPU and has higher
8521 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8522 * throughput. Maximize throughput, power/energy consequences are not
8523 * considered.
8525 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8526 (sgs->group_type <= group_fully_busy) &&
8527 (group_smaller_min_cpu_capacity(sds->local, sg)))
8528 return false;
8530 return true;
8533 #ifdef CONFIG_NUMA_BALANCING
8534 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8536 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8537 return regular;
8538 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8539 return remote;
8540 return all;
8543 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8545 if (rq->nr_running > rq->nr_numa_running)
8546 return regular;
8547 if (rq->nr_running > rq->nr_preferred_running)
8548 return remote;
8549 return all;
8551 #else
8552 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8554 return all;
8557 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8559 return regular;
8561 #endif /* CONFIG_NUMA_BALANCING */
8564 struct sg_lb_stats;
8567 * task_running_on_cpu - return 1 if @p is running on @cpu.
8570 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8572 /* Task has no contribution or is new */
8573 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8574 return 0;
8576 if (task_on_rq_queued(p))
8577 return 1;
8579 return 0;
8583 * idle_cpu_without - would a given CPU be idle without p ?
8584 * @cpu: the processor on which idleness is tested.
8585 * @p: task which should be ignored.
8587 * Return: 1 if the CPU would be idle. 0 otherwise.
8589 static int idle_cpu_without(int cpu, struct task_struct *p)
8591 struct rq *rq = cpu_rq(cpu);
8593 if (rq->curr != rq->idle && rq->curr != p)
8594 return 0;
8597 * rq->nr_running can't be used but an updated version without the
8598 * impact of p on cpu must be used instead. The updated nr_running
8599 * be computed and tested before calling idle_cpu_without().
8602 #ifdef CONFIG_SMP
8603 if (rq->ttwu_pending)
8604 return 0;
8605 #endif
8607 return 1;
8611 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8612 * @sd: The sched_domain level to look for idlest group.
8613 * @group: sched_group whose statistics are to be updated.
8614 * @sgs: variable to hold the statistics for this group.
8615 * @p: The task for which we look for the idlest group/CPU.
8617 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8618 struct sched_group *group,
8619 struct sg_lb_stats *sgs,
8620 struct task_struct *p)
8622 int i, nr_running;
8624 memset(sgs, 0, sizeof(*sgs));
8626 for_each_cpu(i, sched_group_span(group)) {
8627 struct rq *rq = cpu_rq(i);
8628 unsigned int local;
8630 sgs->group_load += cpu_load_without(rq, p);
8631 sgs->group_util += cpu_util_without(i, p);
8632 sgs->group_runnable += cpu_runnable_without(rq, p);
8633 local = task_running_on_cpu(i, p);
8634 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8636 nr_running = rq->nr_running - local;
8637 sgs->sum_nr_running += nr_running;
8640 * No need to call idle_cpu_without() if nr_running is not 0
8642 if (!nr_running && idle_cpu_without(i, p))
8643 sgs->idle_cpus++;
8647 /* Check if task fits in the group */
8648 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8649 !task_fits_capacity(p, group->sgc->max_capacity)) {
8650 sgs->group_misfit_task_load = 1;
8653 sgs->group_capacity = group->sgc->capacity;
8655 sgs->group_weight = group->group_weight;
8657 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8660 * Computing avg_load makes sense only when group is fully busy or
8661 * overloaded
8663 if (sgs->group_type == group_fully_busy ||
8664 sgs->group_type == group_overloaded)
8665 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8666 sgs->group_capacity;
8669 static bool update_pick_idlest(struct sched_group *idlest,
8670 struct sg_lb_stats *idlest_sgs,
8671 struct sched_group *group,
8672 struct sg_lb_stats *sgs)
8674 if (sgs->group_type < idlest_sgs->group_type)
8675 return true;
8677 if (sgs->group_type > idlest_sgs->group_type)
8678 return false;
8681 * The candidate and the current idlest group are the same type of
8682 * group. Let check which one is the idlest according to the type.
8685 switch (sgs->group_type) {
8686 case group_overloaded:
8687 case group_fully_busy:
8688 /* Select the group with lowest avg_load. */
8689 if (idlest_sgs->avg_load <= sgs->avg_load)
8690 return false;
8691 break;
8693 case group_imbalanced:
8694 case group_asym_packing:
8695 /* Those types are not used in the slow wakeup path */
8696 return false;
8698 case group_misfit_task:
8699 /* Select group with the highest max capacity */
8700 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8701 return false;
8702 break;
8704 case group_has_spare:
8705 /* Select group with most idle CPUs */
8706 if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8707 return false;
8708 break;
8711 return true;
8715 * find_idlest_group() finds and returns the least busy CPU group within the
8716 * domain.
8718 * Assumes p is allowed on at least one CPU in sd.
8720 static struct sched_group *
8721 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8723 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8724 struct sg_lb_stats local_sgs, tmp_sgs;
8725 struct sg_lb_stats *sgs;
8726 unsigned long imbalance;
8727 struct sg_lb_stats idlest_sgs = {
8728 .avg_load = UINT_MAX,
8729 .group_type = group_overloaded,
8732 imbalance = scale_load_down(NICE_0_LOAD) *
8733 (sd->imbalance_pct-100) / 100;
8735 do {
8736 int local_group;
8738 /* Skip over this group if it has no CPUs allowed */
8739 if (!cpumask_intersects(sched_group_span(group),
8740 p->cpus_ptr))
8741 continue;
8743 local_group = cpumask_test_cpu(this_cpu,
8744 sched_group_span(group));
8746 if (local_group) {
8747 sgs = &local_sgs;
8748 local = group;
8749 } else {
8750 sgs = &tmp_sgs;
8753 update_sg_wakeup_stats(sd, group, sgs, p);
8755 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8756 idlest = group;
8757 idlest_sgs = *sgs;
8760 } while (group = group->next, group != sd->groups);
8763 /* There is no idlest group to push tasks to */
8764 if (!idlest)
8765 return NULL;
8767 /* The local group has been skipped because of CPU affinity */
8768 if (!local)
8769 return idlest;
8772 * If the local group is idler than the selected idlest group
8773 * don't try and push the task.
8775 if (local_sgs.group_type < idlest_sgs.group_type)
8776 return NULL;
8779 * If the local group is busier than the selected idlest group
8780 * try and push the task.
8782 if (local_sgs.group_type > idlest_sgs.group_type)
8783 return idlest;
8785 switch (local_sgs.group_type) {
8786 case group_overloaded:
8787 case group_fully_busy:
8789 * When comparing groups across NUMA domains, it's possible for
8790 * the local domain to be very lightly loaded relative to the
8791 * remote domains but "imbalance" skews the comparison making
8792 * remote CPUs look much more favourable. When considering
8793 * cross-domain, add imbalance to the load on the remote node
8794 * and consider staying local.
8797 if ((sd->flags & SD_NUMA) &&
8798 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8799 return NULL;
8802 * If the local group is less loaded than the selected
8803 * idlest group don't try and push any tasks.
8805 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8806 return NULL;
8808 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8809 return NULL;
8810 break;
8812 case group_imbalanced:
8813 case group_asym_packing:
8814 /* Those type are not used in the slow wakeup path */
8815 return NULL;
8817 case group_misfit_task:
8818 /* Select group with the highest max capacity */
8819 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8820 return NULL;
8821 break;
8823 case group_has_spare:
8824 if (sd->flags & SD_NUMA) {
8825 #ifdef CONFIG_NUMA_BALANCING
8826 int idlest_cpu;
8828 * If there is spare capacity at NUMA, try to select
8829 * the preferred node
8831 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8832 return NULL;
8834 idlest_cpu = cpumask_first(sched_group_span(idlest));
8835 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8836 return idlest;
8837 #endif
8839 * Otherwise, keep the task on this node to stay close
8840 * its wakeup source and improve locality. If there is
8841 * a real need of migration, periodic load balance will
8842 * take care of it.
8844 if (local_sgs.idle_cpus)
8845 return NULL;
8849 * Select group with highest number of idle CPUs. We could also
8850 * compare the utilization which is more stable but it can end
8851 * up that the group has less spare capacity but finally more
8852 * idle CPUs which means more opportunity to run task.
8854 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8855 return NULL;
8856 break;
8859 return idlest;
8863 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8864 * @env: The load balancing environment.
8865 * @sds: variable to hold the statistics for this sched_domain.
8868 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8870 struct sched_domain *child = env->sd->child;
8871 struct sched_group *sg = env->sd->groups;
8872 struct sg_lb_stats *local = &sds->local_stat;
8873 struct sg_lb_stats tmp_sgs;
8874 int sg_status = 0;
8876 #ifdef CONFIG_NO_HZ_COMMON
8877 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8878 env->flags |= LBF_NOHZ_STATS;
8879 #endif
8881 do {
8882 struct sg_lb_stats *sgs = &tmp_sgs;
8883 int local_group;
8885 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8886 if (local_group) {
8887 sds->local = sg;
8888 sgs = local;
8890 if (env->idle != CPU_NEWLY_IDLE ||
8891 time_after_eq(jiffies, sg->sgc->next_update))
8892 update_group_capacity(env->sd, env->dst_cpu);
8895 update_sg_lb_stats(env, sg, sgs, &sg_status);
8897 if (local_group)
8898 goto next_group;
8901 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8902 sds->busiest = sg;
8903 sds->busiest_stat = *sgs;
8906 next_group:
8907 /* Now, start updating sd_lb_stats */
8908 sds->total_load += sgs->group_load;
8909 sds->total_capacity += sgs->group_capacity;
8911 sg = sg->next;
8912 } while (sg != env->sd->groups);
8914 /* Tag domain that child domain prefers tasks go to siblings first */
8915 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8917 #ifdef CONFIG_NO_HZ_COMMON
8918 if ((env->flags & LBF_NOHZ_AGAIN) &&
8919 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8921 WRITE_ONCE(nohz.next_blocked,
8922 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8924 #endif
8926 if (env->sd->flags & SD_NUMA)
8927 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8929 if (!env->sd->parent) {
8930 struct root_domain *rd = env->dst_rq->rd;
8932 /* update overload indicator if we are at root domain */
8933 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8935 /* Update over-utilization (tipping point, U >= 0) indicator */
8936 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8937 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8938 } else if (sg_status & SG_OVERUTILIZED) {
8939 struct root_domain *rd = env->dst_rq->rd;
8941 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8942 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8946 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8948 unsigned int imbalance_min;
8951 * Allow a small imbalance based on a simple pair of communicating
8952 * tasks that remain local when the source domain is almost idle.
8954 imbalance_min = 2;
8955 if (src_nr_running <= imbalance_min)
8956 return 0;
8958 return imbalance;
8962 * calculate_imbalance - Calculate the amount of imbalance present within the
8963 * groups of a given sched_domain during load balance.
8964 * @env: load balance environment
8965 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8967 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8969 struct sg_lb_stats *local, *busiest;
8971 local = &sds->local_stat;
8972 busiest = &sds->busiest_stat;
8974 if (busiest->group_type == group_misfit_task) {
8975 /* Set imbalance to allow misfit tasks to be balanced. */
8976 env->migration_type = migrate_misfit;
8977 env->imbalance = 1;
8978 return;
8981 if (busiest->group_type == group_asym_packing) {
8983 * In case of asym capacity, we will try to migrate all load to
8984 * the preferred CPU.
8986 env->migration_type = migrate_task;
8987 env->imbalance = busiest->sum_h_nr_running;
8988 return;
8991 if (busiest->group_type == group_imbalanced) {
8993 * In the group_imb case we cannot rely on group-wide averages
8994 * to ensure CPU-load equilibrium, try to move any task to fix
8995 * the imbalance. The next load balance will take care of
8996 * balancing back the system.
8998 env->migration_type = migrate_task;
8999 env->imbalance = 1;
9000 return;
9004 * Try to use spare capacity of local group without overloading it or
9005 * emptying busiest.
9007 if (local->group_type == group_has_spare) {
9008 if (busiest->group_type > group_fully_busy) {
9010 * If busiest is overloaded, try to fill spare
9011 * capacity. This might end up creating spare capacity
9012 * in busiest or busiest still being overloaded but
9013 * there is no simple way to directly compute the
9014 * amount of load to migrate in order to balance the
9015 * system.
9017 env->migration_type = migrate_util;
9018 env->imbalance = max(local->group_capacity, local->group_util) -
9019 local->group_util;
9022 * In some cases, the group's utilization is max or even
9023 * higher than capacity because of migrations but the
9024 * local CPU is (newly) idle. There is at least one
9025 * waiting task in this overloaded busiest group. Let's
9026 * try to pull it.
9028 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9029 env->migration_type = migrate_task;
9030 env->imbalance = 1;
9033 return;
9036 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9037 unsigned int nr_diff = busiest->sum_nr_running;
9039 * When prefer sibling, evenly spread running tasks on
9040 * groups.
9042 env->migration_type = migrate_task;
9043 lsub_positive(&nr_diff, local->sum_nr_running);
9044 env->imbalance = nr_diff >> 1;
9045 } else {
9048 * If there is no overload, we just want to even the number of
9049 * idle cpus.
9051 env->migration_type = migrate_task;
9052 env->imbalance = max_t(long, 0, (local->idle_cpus -
9053 busiest->idle_cpus) >> 1);
9056 /* Consider allowing a small imbalance between NUMA groups */
9057 if (env->sd->flags & SD_NUMA)
9058 env->imbalance = adjust_numa_imbalance(env->imbalance,
9059 busiest->sum_nr_running);
9061 return;
9065 * Local is fully busy but has to take more load to relieve the
9066 * busiest group
9068 if (local->group_type < group_overloaded) {
9070 * Local will become overloaded so the avg_load metrics are
9071 * finally needed.
9074 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9075 local->group_capacity;
9077 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9078 sds->total_capacity;
9080 * If the local group is more loaded than the selected
9081 * busiest group don't try to pull any tasks.
9083 if (local->avg_load >= busiest->avg_load) {
9084 env->imbalance = 0;
9085 return;
9090 * Both group are or will become overloaded and we're trying to get all
9091 * the CPUs to the average_load, so we don't want to push ourselves
9092 * above the average load, nor do we wish to reduce the max loaded CPU
9093 * below the average load. At the same time, we also don't want to
9094 * reduce the group load below the group capacity. Thus we look for
9095 * the minimum possible imbalance.
9097 env->migration_type = migrate_load;
9098 env->imbalance = min(
9099 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9100 (sds->avg_load - local->avg_load) * local->group_capacity
9101 ) / SCHED_CAPACITY_SCALE;
9104 /******* find_busiest_group() helpers end here *********************/
9107 * Decision matrix according to the local and busiest group type:
9109 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9110 * has_spare nr_idle balanced N/A N/A balanced balanced
9111 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9112 * misfit_task force N/A N/A N/A force force
9113 * asym_packing force force N/A N/A force force
9114 * imbalanced force force N/A N/A force force
9115 * overloaded force force N/A N/A force avg_load
9117 * N/A : Not Applicable because already filtered while updating
9118 * statistics.
9119 * balanced : The system is balanced for these 2 groups.
9120 * force : Calculate the imbalance as load migration is probably needed.
9121 * avg_load : Only if imbalance is significant enough.
9122 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9123 * different in groups.
9127 * find_busiest_group - Returns the busiest group within the sched_domain
9128 * if there is an imbalance.
9130 * Also calculates the amount of runnable load which should be moved
9131 * to restore balance.
9133 * @env: The load balancing environment.
9135 * Return: - The busiest group if imbalance exists.
9137 static struct sched_group *find_busiest_group(struct lb_env *env)
9139 struct sg_lb_stats *local, *busiest;
9140 struct sd_lb_stats sds;
9142 init_sd_lb_stats(&sds);
9145 * Compute the various statistics relevant for load balancing at
9146 * this level.
9148 update_sd_lb_stats(env, &sds);
9150 if (sched_energy_enabled()) {
9151 struct root_domain *rd = env->dst_rq->rd;
9153 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9154 goto out_balanced;
9157 local = &sds.local_stat;
9158 busiest = &sds.busiest_stat;
9160 /* There is no busy sibling group to pull tasks from */
9161 if (!sds.busiest)
9162 goto out_balanced;
9164 /* Misfit tasks should be dealt with regardless of the avg load */
9165 if (busiest->group_type == group_misfit_task)
9166 goto force_balance;
9168 /* ASYM feature bypasses nice load balance check */
9169 if (busiest->group_type == group_asym_packing)
9170 goto force_balance;
9173 * If the busiest group is imbalanced the below checks don't
9174 * work because they assume all things are equal, which typically
9175 * isn't true due to cpus_ptr constraints and the like.
9177 if (busiest->group_type == group_imbalanced)
9178 goto force_balance;
9181 * If the local group is busier than the selected busiest group
9182 * don't try and pull any tasks.
9184 if (local->group_type > busiest->group_type)
9185 goto out_balanced;
9188 * When groups are overloaded, use the avg_load to ensure fairness
9189 * between tasks.
9191 if (local->group_type == group_overloaded) {
9193 * If the local group is more loaded than the selected
9194 * busiest group don't try to pull any tasks.
9196 if (local->avg_load >= busiest->avg_load)
9197 goto out_balanced;
9199 /* XXX broken for overlapping NUMA groups */
9200 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9201 sds.total_capacity;
9204 * Don't pull any tasks if this group is already above the
9205 * domain average load.
9207 if (local->avg_load >= sds.avg_load)
9208 goto out_balanced;
9211 * If the busiest group is more loaded, use imbalance_pct to be
9212 * conservative.
9214 if (100 * busiest->avg_load <=
9215 env->sd->imbalance_pct * local->avg_load)
9216 goto out_balanced;
9219 /* Try to move all excess tasks to child's sibling domain */
9220 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9221 busiest->sum_nr_running > local->sum_nr_running + 1)
9222 goto force_balance;
9224 if (busiest->group_type != group_overloaded) {
9225 if (env->idle == CPU_NOT_IDLE)
9227 * If the busiest group is not overloaded (and as a
9228 * result the local one too) but this CPU is already
9229 * busy, let another idle CPU try to pull task.
9231 goto out_balanced;
9233 if (busiest->group_weight > 1 &&
9234 local->idle_cpus <= (busiest->idle_cpus + 1))
9236 * If the busiest group is not overloaded
9237 * and there is no imbalance between this and busiest
9238 * group wrt idle CPUs, it is balanced. The imbalance
9239 * becomes significant if the diff is greater than 1
9240 * otherwise we might end up to just move the imbalance
9241 * on another group. Of course this applies only if
9242 * there is more than 1 CPU per group.
9244 goto out_balanced;
9246 if (busiest->sum_h_nr_running == 1)
9248 * busiest doesn't have any tasks waiting to run
9250 goto out_balanced;
9253 force_balance:
9254 /* Looks like there is an imbalance. Compute it */
9255 calculate_imbalance(env, &sds);
9256 return env->imbalance ? sds.busiest : NULL;
9258 out_balanced:
9259 env->imbalance = 0;
9260 return NULL;
9264 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9266 static struct rq *find_busiest_queue(struct lb_env *env,
9267 struct sched_group *group)
9269 struct rq *busiest = NULL, *rq;
9270 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9271 unsigned int busiest_nr = 0;
9272 int i;
9274 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9275 unsigned long capacity, load, util;
9276 unsigned int nr_running;
9277 enum fbq_type rt;
9279 rq = cpu_rq(i);
9280 rt = fbq_classify_rq(rq);
9283 * We classify groups/runqueues into three groups:
9284 * - regular: there are !numa tasks
9285 * - remote: there are numa tasks that run on the 'wrong' node
9286 * - all: there is no distinction
9288 * In order to avoid migrating ideally placed numa tasks,
9289 * ignore those when there's better options.
9291 * If we ignore the actual busiest queue to migrate another
9292 * task, the next balance pass can still reduce the busiest
9293 * queue by moving tasks around inside the node.
9295 * If we cannot move enough load due to this classification
9296 * the next pass will adjust the group classification and
9297 * allow migration of more tasks.
9299 * Both cases only affect the total convergence complexity.
9301 if (rt > env->fbq_type)
9302 continue;
9304 capacity = capacity_of(i);
9305 nr_running = rq->cfs.h_nr_running;
9308 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9309 * eventually lead to active_balancing high->low capacity.
9310 * Higher per-CPU capacity is considered better than balancing
9311 * average load.
9313 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9314 capacity_of(env->dst_cpu) < capacity &&
9315 nr_running == 1)
9316 continue;
9318 switch (env->migration_type) {
9319 case migrate_load:
9321 * When comparing with load imbalance, use cpu_load()
9322 * which is not scaled with the CPU capacity.
9324 load = cpu_load(rq);
9326 if (nr_running == 1 && load > env->imbalance &&
9327 !check_cpu_capacity(rq, env->sd))
9328 break;
9331 * For the load comparisons with the other CPUs,
9332 * consider the cpu_load() scaled with the CPU
9333 * capacity, so that the load can be moved away
9334 * from the CPU that is potentially running at a
9335 * lower capacity.
9337 * Thus we're looking for max(load_i / capacity_i),
9338 * crosswise multiplication to rid ourselves of the
9339 * division works out to:
9340 * load_i * capacity_j > load_j * capacity_i;
9341 * where j is our previous maximum.
9343 if (load * busiest_capacity > busiest_load * capacity) {
9344 busiest_load = load;
9345 busiest_capacity = capacity;
9346 busiest = rq;
9348 break;
9350 case migrate_util:
9351 util = cpu_util(cpu_of(rq));
9354 * Don't try to pull utilization from a CPU with one
9355 * running task. Whatever its utilization, we will fail
9356 * detach the task.
9358 if (nr_running <= 1)
9359 continue;
9361 if (busiest_util < util) {
9362 busiest_util = util;
9363 busiest = rq;
9365 break;
9367 case migrate_task:
9368 if (busiest_nr < nr_running) {
9369 busiest_nr = nr_running;
9370 busiest = rq;
9372 break;
9374 case migrate_misfit:
9376 * For ASYM_CPUCAPACITY domains with misfit tasks we
9377 * simply seek the "biggest" misfit task.
9379 if (rq->misfit_task_load > busiest_load) {
9380 busiest_load = rq->misfit_task_load;
9381 busiest = rq;
9384 break;
9389 return busiest;
9393 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9394 * so long as it is large enough.
9396 #define MAX_PINNED_INTERVAL 512
9398 static inline bool
9399 asym_active_balance(struct lb_env *env)
9402 * ASYM_PACKING needs to force migrate tasks from busy but
9403 * lower priority CPUs in order to pack all tasks in the
9404 * highest priority CPUs.
9406 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9407 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9410 static inline bool
9411 voluntary_active_balance(struct lb_env *env)
9413 struct sched_domain *sd = env->sd;
9415 if (asym_active_balance(env))
9416 return 1;
9419 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9420 * It's worth migrating the task if the src_cpu's capacity is reduced
9421 * because of other sched_class or IRQs if more capacity stays
9422 * available on dst_cpu.
9424 if ((env->idle != CPU_NOT_IDLE) &&
9425 (env->src_rq->cfs.h_nr_running == 1)) {
9426 if ((check_cpu_capacity(env->src_rq, sd)) &&
9427 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9428 return 1;
9431 if (env->migration_type == migrate_misfit)
9432 return 1;
9434 return 0;
9437 static int need_active_balance(struct lb_env *env)
9439 struct sched_domain *sd = env->sd;
9441 if (voluntary_active_balance(env))
9442 return 1;
9444 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9447 static int active_load_balance_cpu_stop(void *data);
9449 static int should_we_balance(struct lb_env *env)
9451 struct sched_group *sg = env->sd->groups;
9452 int cpu;
9455 * Ensure the balancing environment is consistent; can happen
9456 * when the softirq triggers 'during' hotplug.
9458 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9459 return 0;
9462 * In the newly idle case, we will allow all the CPUs
9463 * to do the newly idle load balance.
9465 if (env->idle == CPU_NEWLY_IDLE)
9466 return 1;
9468 /* Try to find first idle CPU */
9469 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9470 if (!idle_cpu(cpu))
9471 continue;
9473 /* Are we the first idle CPU? */
9474 return cpu == env->dst_cpu;
9477 /* Are we the first CPU of this group ? */
9478 return group_balance_cpu(sg) == env->dst_cpu;
9482 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9483 * tasks if there is an imbalance.
9485 static int load_balance(int this_cpu, struct rq *this_rq,
9486 struct sched_domain *sd, enum cpu_idle_type idle,
9487 int *continue_balancing)
9489 int ld_moved, cur_ld_moved, active_balance = 0;
9490 struct sched_domain *sd_parent = sd->parent;
9491 struct sched_group *group;
9492 struct rq *busiest;
9493 struct rq_flags rf;
9494 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9496 struct lb_env env = {
9497 .sd = sd,
9498 .dst_cpu = this_cpu,
9499 .dst_rq = this_rq,
9500 .dst_grpmask = sched_group_span(sd->groups),
9501 .idle = idle,
9502 .loop_break = sched_nr_migrate_break,
9503 .cpus = cpus,
9504 .fbq_type = all,
9505 .tasks = LIST_HEAD_INIT(env.tasks),
9508 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9510 schedstat_inc(sd->lb_count[idle]);
9512 redo:
9513 if (!should_we_balance(&env)) {
9514 *continue_balancing = 0;
9515 goto out_balanced;
9518 group = find_busiest_group(&env);
9519 if (!group) {
9520 schedstat_inc(sd->lb_nobusyg[idle]);
9521 goto out_balanced;
9524 busiest = find_busiest_queue(&env, group);
9525 if (!busiest) {
9526 schedstat_inc(sd->lb_nobusyq[idle]);
9527 goto out_balanced;
9530 BUG_ON(busiest == env.dst_rq);
9532 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9534 env.src_cpu = busiest->cpu;
9535 env.src_rq = busiest;
9537 ld_moved = 0;
9538 if (busiest->nr_running > 1) {
9540 * Attempt to move tasks. If find_busiest_group has found
9541 * an imbalance but busiest->nr_running <= 1, the group is
9542 * still unbalanced. ld_moved simply stays zero, so it is
9543 * correctly treated as an imbalance.
9545 env.flags |= LBF_ALL_PINNED;
9546 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9548 more_balance:
9549 rq_lock_irqsave(busiest, &rf);
9550 update_rq_clock(busiest);
9553 * cur_ld_moved - load moved in current iteration
9554 * ld_moved - cumulative load moved across iterations
9556 cur_ld_moved = detach_tasks(&env);
9559 * We've detached some tasks from busiest_rq. Every
9560 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9561 * unlock busiest->lock, and we are able to be sure
9562 * that nobody can manipulate the tasks in parallel.
9563 * See task_rq_lock() family for the details.
9566 rq_unlock(busiest, &rf);
9568 if (cur_ld_moved) {
9569 attach_tasks(&env);
9570 ld_moved += cur_ld_moved;
9573 local_irq_restore(rf.flags);
9575 if (env.flags & LBF_NEED_BREAK) {
9576 env.flags &= ~LBF_NEED_BREAK;
9577 goto more_balance;
9581 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9582 * us and move them to an alternate dst_cpu in our sched_group
9583 * where they can run. The upper limit on how many times we
9584 * iterate on same src_cpu is dependent on number of CPUs in our
9585 * sched_group.
9587 * This changes load balance semantics a bit on who can move
9588 * load to a given_cpu. In addition to the given_cpu itself
9589 * (or a ilb_cpu acting on its behalf where given_cpu is
9590 * nohz-idle), we now have balance_cpu in a position to move
9591 * load to given_cpu. In rare situations, this may cause
9592 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9593 * _independently_ and at _same_ time to move some load to
9594 * given_cpu) causing exceess load to be moved to given_cpu.
9595 * This however should not happen so much in practice and
9596 * moreover subsequent load balance cycles should correct the
9597 * excess load moved.
9599 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9601 /* Prevent to re-select dst_cpu via env's CPUs */
9602 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9604 env.dst_rq = cpu_rq(env.new_dst_cpu);
9605 env.dst_cpu = env.new_dst_cpu;
9606 env.flags &= ~LBF_DST_PINNED;
9607 env.loop = 0;
9608 env.loop_break = sched_nr_migrate_break;
9611 * Go back to "more_balance" rather than "redo" since we
9612 * need to continue with same src_cpu.
9614 goto more_balance;
9618 * We failed to reach balance because of affinity.
9620 if (sd_parent) {
9621 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9623 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9624 *group_imbalance = 1;
9627 /* All tasks on this runqueue were pinned by CPU affinity */
9628 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9629 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9631 * Attempting to continue load balancing at the current
9632 * sched_domain level only makes sense if there are
9633 * active CPUs remaining as possible busiest CPUs to
9634 * pull load from which are not contained within the
9635 * destination group that is receiving any migrated
9636 * load.
9638 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9639 env.loop = 0;
9640 env.loop_break = sched_nr_migrate_break;
9641 goto redo;
9643 goto out_all_pinned;
9647 if (!ld_moved) {
9648 schedstat_inc(sd->lb_failed[idle]);
9650 * Increment the failure counter only on periodic balance.
9651 * We do not want newidle balance, which can be very
9652 * frequent, pollute the failure counter causing
9653 * excessive cache_hot migrations and active balances.
9655 if (idle != CPU_NEWLY_IDLE)
9656 sd->nr_balance_failed++;
9658 if (need_active_balance(&env)) {
9659 unsigned long flags;
9661 raw_spin_lock_irqsave(&busiest->lock, flags);
9664 * Don't kick the active_load_balance_cpu_stop,
9665 * if the curr task on busiest CPU can't be
9666 * moved to this_cpu:
9668 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9669 raw_spin_unlock_irqrestore(&busiest->lock,
9670 flags);
9671 env.flags |= LBF_ALL_PINNED;
9672 goto out_one_pinned;
9676 * ->active_balance synchronizes accesses to
9677 * ->active_balance_work. Once set, it's cleared
9678 * only after active load balance is finished.
9680 if (!busiest->active_balance) {
9681 busiest->active_balance = 1;
9682 busiest->push_cpu = this_cpu;
9683 active_balance = 1;
9685 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9687 if (active_balance) {
9688 stop_one_cpu_nowait(cpu_of(busiest),
9689 active_load_balance_cpu_stop, busiest,
9690 &busiest->active_balance_work);
9693 /* We've kicked active balancing, force task migration. */
9694 sd->nr_balance_failed = sd->cache_nice_tries+1;
9696 } else
9697 sd->nr_balance_failed = 0;
9699 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9700 /* We were unbalanced, so reset the balancing interval */
9701 sd->balance_interval = sd->min_interval;
9702 } else {
9704 * If we've begun active balancing, start to back off. This
9705 * case may not be covered by the all_pinned logic if there
9706 * is only 1 task on the busy runqueue (because we don't call
9707 * detach_tasks).
9709 if (sd->balance_interval < sd->max_interval)
9710 sd->balance_interval *= 2;
9713 goto out;
9715 out_balanced:
9717 * We reach balance although we may have faced some affinity
9718 * constraints. Clear the imbalance flag only if other tasks got
9719 * a chance to move and fix the imbalance.
9721 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9722 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9724 if (*group_imbalance)
9725 *group_imbalance = 0;
9728 out_all_pinned:
9730 * We reach balance because all tasks are pinned at this level so
9731 * we can't migrate them. Let the imbalance flag set so parent level
9732 * can try to migrate them.
9734 schedstat_inc(sd->lb_balanced[idle]);
9736 sd->nr_balance_failed = 0;
9738 out_one_pinned:
9739 ld_moved = 0;
9742 * newidle_balance() disregards balance intervals, so we could
9743 * repeatedly reach this code, which would lead to balance_interval
9744 * skyrocketting in a short amount of time. Skip the balance_interval
9745 * increase logic to avoid that.
9747 if (env.idle == CPU_NEWLY_IDLE)
9748 goto out;
9750 /* tune up the balancing interval */
9751 if ((env.flags & LBF_ALL_PINNED &&
9752 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9753 sd->balance_interval < sd->max_interval)
9754 sd->balance_interval *= 2;
9755 out:
9756 return ld_moved;
9759 static inline unsigned long
9760 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9762 unsigned long interval = sd->balance_interval;
9764 if (cpu_busy)
9765 interval *= sd->busy_factor;
9767 /* scale ms to jiffies */
9768 interval = msecs_to_jiffies(interval);
9769 interval = clamp(interval, 1UL, max_load_balance_interval);
9771 return interval;
9774 static inline void
9775 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9777 unsigned long interval, next;
9779 /* used by idle balance, so cpu_busy = 0 */
9780 interval = get_sd_balance_interval(sd, 0);
9781 next = sd->last_balance + interval;
9783 if (time_after(*next_balance, next))
9784 *next_balance = next;
9788 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9789 * running tasks off the busiest CPU onto idle CPUs. It requires at
9790 * least 1 task to be running on each physical CPU where possible, and
9791 * avoids physical / logical imbalances.
9793 static int active_load_balance_cpu_stop(void *data)
9795 struct rq *busiest_rq = data;
9796 int busiest_cpu = cpu_of(busiest_rq);
9797 int target_cpu = busiest_rq->push_cpu;
9798 struct rq *target_rq = cpu_rq(target_cpu);
9799 struct sched_domain *sd;
9800 struct task_struct *p = NULL;
9801 struct rq_flags rf;
9803 rq_lock_irq(busiest_rq, &rf);
9805 * Between queueing the stop-work and running it is a hole in which
9806 * CPUs can become inactive. We should not move tasks from or to
9807 * inactive CPUs.
9809 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9810 goto out_unlock;
9812 /* Make sure the requested CPU hasn't gone down in the meantime: */
9813 if (unlikely(busiest_cpu != smp_processor_id() ||
9814 !busiest_rq->active_balance))
9815 goto out_unlock;
9817 /* Is there any task to move? */
9818 if (busiest_rq->nr_running <= 1)
9819 goto out_unlock;
9822 * This condition is "impossible", if it occurs
9823 * we need to fix it. Originally reported by
9824 * Bjorn Helgaas on a 128-CPU setup.
9826 BUG_ON(busiest_rq == target_rq);
9828 /* Search for an sd spanning us and the target CPU. */
9829 rcu_read_lock();
9830 for_each_domain(target_cpu, sd) {
9831 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9832 break;
9835 if (likely(sd)) {
9836 struct lb_env env = {
9837 .sd = sd,
9838 .dst_cpu = target_cpu,
9839 .dst_rq = target_rq,
9840 .src_cpu = busiest_rq->cpu,
9841 .src_rq = busiest_rq,
9842 .idle = CPU_IDLE,
9844 * can_migrate_task() doesn't need to compute new_dst_cpu
9845 * for active balancing. Since we have CPU_IDLE, but no
9846 * @dst_grpmask we need to make that test go away with lying
9847 * about DST_PINNED.
9849 .flags = LBF_DST_PINNED,
9852 schedstat_inc(sd->alb_count);
9853 update_rq_clock(busiest_rq);
9855 p = detach_one_task(&env);
9856 if (p) {
9857 schedstat_inc(sd->alb_pushed);
9858 /* Active balancing done, reset the failure counter. */
9859 sd->nr_balance_failed = 0;
9860 } else {
9861 schedstat_inc(sd->alb_failed);
9864 rcu_read_unlock();
9865 out_unlock:
9866 busiest_rq->active_balance = 0;
9867 rq_unlock(busiest_rq, &rf);
9869 if (p)
9870 attach_one_task(target_rq, p);
9872 local_irq_enable();
9874 return 0;
9877 static DEFINE_SPINLOCK(balancing);
9880 * Scale the max load_balance interval with the number of CPUs in the system.
9881 * This trades load-balance latency on larger machines for less cross talk.
9883 void update_max_interval(void)
9885 max_load_balance_interval = HZ*num_online_cpus()/10;
9889 * It checks each scheduling domain to see if it is due to be balanced,
9890 * and initiates a balancing operation if so.
9892 * Balancing parameters are set up in init_sched_domains.
9894 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9896 int continue_balancing = 1;
9897 int cpu = rq->cpu;
9898 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9899 unsigned long interval;
9900 struct sched_domain *sd;
9901 /* Earliest time when we have to do rebalance again */
9902 unsigned long next_balance = jiffies + 60*HZ;
9903 int update_next_balance = 0;
9904 int need_serialize, need_decay = 0;
9905 u64 max_cost = 0;
9907 rcu_read_lock();
9908 for_each_domain(cpu, sd) {
9910 * Decay the newidle max times here because this is a regular
9911 * visit to all the domains. Decay ~1% per second.
9913 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9914 sd->max_newidle_lb_cost =
9915 (sd->max_newidle_lb_cost * 253) / 256;
9916 sd->next_decay_max_lb_cost = jiffies + HZ;
9917 need_decay = 1;
9919 max_cost += sd->max_newidle_lb_cost;
9922 * Stop the load balance at this level. There is another
9923 * CPU in our sched group which is doing load balancing more
9924 * actively.
9926 if (!continue_balancing) {
9927 if (need_decay)
9928 continue;
9929 break;
9932 interval = get_sd_balance_interval(sd, busy);
9934 need_serialize = sd->flags & SD_SERIALIZE;
9935 if (need_serialize) {
9936 if (!spin_trylock(&balancing))
9937 goto out;
9940 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9941 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9943 * The LBF_DST_PINNED logic could have changed
9944 * env->dst_cpu, so we can't know our idle
9945 * state even if we migrated tasks. Update it.
9947 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9948 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9950 sd->last_balance = jiffies;
9951 interval = get_sd_balance_interval(sd, busy);
9953 if (need_serialize)
9954 spin_unlock(&balancing);
9955 out:
9956 if (time_after(next_balance, sd->last_balance + interval)) {
9957 next_balance = sd->last_balance + interval;
9958 update_next_balance = 1;
9961 if (need_decay) {
9963 * Ensure the rq-wide value also decays but keep it at a
9964 * reasonable floor to avoid funnies with rq->avg_idle.
9966 rq->max_idle_balance_cost =
9967 max((u64)sysctl_sched_migration_cost, max_cost);
9969 rcu_read_unlock();
9972 * next_balance will be updated only when there is a need.
9973 * When the cpu is attached to null domain for ex, it will not be
9974 * updated.
9976 if (likely(update_next_balance)) {
9977 rq->next_balance = next_balance;
9979 #ifdef CONFIG_NO_HZ_COMMON
9981 * If this CPU has been elected to perform the nohz idle
9982 * balance. Other idle CPUs have already rebalanced with
9983 * nohz_idle_balance() and nohz.next_balance has been
9984 * updated accordingly. This CPU is now running the idle load
9985 * balance for itself and we need to update the
9986 * nohz.next_balance accordingly.
9988 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9989 nohz.next_balance = rq->next_balance;
9990 #endif
9994 static inline int on_null_domain(struct rq *rq)
9996 return unlikely(!rcu_dereference_sched(rq->sd));
9999 #ifdef CONFIG_NO_HZ_COMMON
10001 * idle load balancing details
10002 * - When one of the busy CPUs notice that there may be an idle rebalancing
10003 * needed, they will kick the idle load balancer, which then does idle
10004 * load balancing for all the idle CPUs.
10005 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10006 * anywhere yet.
10009 static inline int find_new_ilb(void)
10011 int ilb;
10013 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10014 housekeeping_cpumask(HK_FLAG_MISC)) {
10015 if (idle_cpu(ilb))
10016 return ilb;
10019 return nr_cpu_ids;
10023 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10024 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10026 static void kick_ilb(unsigned int flags)
10028 int ilb_cpu;
10030 nohz.next_balance++;
10032 ilb_cpu = find_new_ilb();
10034 if (ilb_cpu >= nr_cpu_ids)
10035 return;
10038 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10039 * the first flag owns it; cleared by nohz_csd_func().
10041 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10042 if (flags & NOHZ_KICK_MASK)
10043 return;
10046 * This way we generate an IPI on the target CPU which
10047 * is idle. And the softirq performing nohz idle load balance
10048 * will be run before returning from the IPI.
10050 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10054 * Current decision point for kicking the idle load balancer in the presence
10055 * of idle CPUs in the system.
10057 static void nohz_balancer_kick(struct rq *rq)
10059 unsigned long now = jiffies;
10060 struct sched_domain_shared *sds;
10061 struct sched_domain *sd;
10062 int nr_busy, i, cpu = rq->cpu;
10063 unsigned int flags = 0;
10065 if (unlikely(rq->idle_balance))
10066 return;
10069 * We may be recently in ticked or tickless idle mode. At the first
10070 * busy tick after returning from idle, we will update the busy stats.
10072 nohz_balance_exit_idle(rq);
10075 * None are in tickless mode and hence no need for NOHZ idle load
10076 * balancing.
10078 if (likely(!atomic_read(&nohz.nr_cpus)))
10079 return;
10081 if (READ_ONCE(nohz.has_blocked) &&
10082 time_after(now, READ_ONCE(nohz.next_blocked)))
10083 flags = NOHZ_STATS_KICK;
10085 if (time_before(now, nohz.next_balance))
10086 goto out;
10088 if (rq->nr_running >= 2) {
10089 flags = NOHZ_KICK_MASK;
10090 goto out;
10093 rcu_read_lock();
10095 sd = rcu_dereference(rq->sd);
10096 if (sd) {
10098 * If there's a CFS task and the current CPU has reduced
10099 * capacity; kick the ILB to see if there's a better CPU to run
10100 * on.
10102 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10103 flags = NOHZ_KICK_MASK;
10104 goto unlock;
10108 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10109 if (sd) {
10111 * When ASYM_PACKING; see if there's a more preferred CPU
10112 * currently idle; in which case, kick the ILB to move tasks
10113 * around.
10115 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10116 if (sched_asym_prefer(i, cpu)) {
10117 flags = NOHZ_KICK_MASK;
10118 goto unlock;
10123 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10124 if (sd) {
10126 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10127 * to run the misfit task on.
10129 if (check_misfit_status(rq, sd)) {
10130 flags = NOHZ_KICK_MASK;
10131 goto unlock;
10135 * For asymmetric systems, we do not want to nicely balance
10136 * cache use, instead we want to embrace asymmetry and only
10137 * ensure tasks have enough CPU capacity.
10139 * Skip the LLC logic because it's not relevant in that case.
10141 goto unlock;
10144 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10145 if (sds) {
10147 * If there is an imbalance between LLC domains (IOW we could
10148 * increase the overall cache use), we need some less-loaded LLC
10149 * domain to pull some load. Likewise, we may need to spread
10150 * load within the current LLC domain (e.g. packed SMT cores but
10151 * other CPUs are idle). We can't really know from here how busy
10152 * the others are - so just get a nohz balance going if it looks
10153 * like this LLC domain has tasks we could move.
10155 nr_busy = atomic_read(&sds->nr_busy_cpus);
10156 if (nr_busy > 1) {
10157 flags = NOHZ_KICK_MASK;
10158 goto unlock;
10161 unlock:
10162 rcu_read_unlock();
10163 out:
10164 if (flags)
10165 kick_ilb(flags);
10168 static void set_cpu_sd_state_busy(int cpu)
10170 struct sched_domain *sd;
10172 rcu_read_lock();
10173 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10175 if (!sd || !sd->nohz_idle)
10176 goto unlock;
10177 sd->nohz_idle = 0;
10179 atomic_inc(&sd->shared->nr_busy_cpus);
10180 unlock:
10181 rcu_read_unlock();
10184 void nohz_balance_exit_idle(struct rq *rq)
10186 SCHED_WARN_ON(rq != this_rq());
10188 if (likely(!rq->nohz_tick_stopped))
10189 return;
10191 rq->nohz_tick_stopped = 0;
10192 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10193 atomic_dec(&nohz.nr_cpus);
10195 set_cpu_sd_state_busy(rq->cpu);
10198 static void set_cpu_sd_state_idle(int cpu)
10200 struct sched_domain *sd;
10202 rcu_read_lock();
10203 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10205 if (!sd || sd->nohz_idle)
10206 goto unlock;
10207 sd->nohz_idle = 1;
10209 atomic_dec(&sd->shared->nr_busy_cpus);
10210 unlock:
10211 rcu_read_unlock();
10215 * This routine will record that the CPU is going idle with tick stopped.
10216 * This info will be used in performing idle load balancing in the future.
10218 void nohz_balance_enter_idle(int cpu)
10220 struct rq *rq = cpu_rq(cpu);
10222 SCHED_WARN_ON(cpu != smp_processor_id());
10224 /* If this CPU is going down, then nothing needs to be done: */
10225 if (!cpu_active(cpu))
10226 return;
10228 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10229 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10230 return;
10233 * Can be set safely without rq->lock held
10234 * If a clear happens, it will have evaluated last additions because
10235 * rq->lock is held during the check and the clear
10237 rq->has_blocked_load = 1;
10240 * The tick is still stopped but load could have been added in the
10241 * meantime. We set the nohz.has_blocked flag to trig a check of the
10242 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10243 * of nohz.has_blocked can only happen after checking the new load
10245 if (rq->nohz_tick_stopped)
10246 goto out;
10248 /* If we're a completely isolated CPU, we don't play: */
10249 if (on_null_domain(rq))
10250 return;
10252 rq->nohz_tick_stopped = 1;
10254 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10255 atomic_inc(&nohz.nr_cpus);
10258 * Ensures that if nohz_idle_balance() fails to observe our
10259 * @idle_cpus_mask store, it must observe the @has_blocked
10260 * store.
10262 smp_mb__after_atomic();
10264 set_cpu_sd_state_idle(cpu);
10266 out:
10268 * Each time a cpu enter idle, we assume that it has blocked load and
10269 * enable the periodic update of the load of idle cpus
10271 WRITE_ONCE(nohz.has_blocked, 1);
10275 * Internal function that runs load balance for all idle cpus. The load balance
10276 * can be a simple update of blocked load or a complete load balance with
10277 * tasks movement depending of flags.
10278 * The function returns false if the loop has stopped before running
10279 * through all idle CPUs.
10281 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10282 enum cpu_idle_type idle)
10284 /* Earliest time when we have to do rebalance again */
10285 unsigned long now = jiffies;
10286 unsigned long next_balance = now + 60*HZ;
10287 bool has_blocked_load = false;
10288 int update_next_balance = 0;
10289 int this_cpu = this_rq->cpu;
10290 int balance_cpu;
10291 int ret = false;
10292 struct rq *rq;
10294 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10297 * We assume there will be no idle load after this update and clear
10298 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10299 * set the has_blocked flag and trig another update of idle load.
10300 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10301 * setting the flag, we are sure to not clear the state and not
10302 * check the load of an idle cpu.
10304 WRITE_ONCE(nohz.has_blocked, 0);
10307 * Ensures that if we miss the CPU, we must see the has_blocked
10308 * store from nohz_balance_enter_idle().
10310 smp_mb();
10312 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10313 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10314 continue;
10317 * If this CPU gets work to do, stop the load balancing
10318 * work being done for other CPUs. Next load
10319 * balancing owner will pick it up.
10321 if (need_resched()) {
10322 has_blocked_load = true;
10323 goto abort;
10326 rq = cpu_rq(balance_cpu);
10328 has_blocked_load |= update_nohz_stats(rq, true);
10331 * If time for next balance is due,
10332 * do the balance.
10334 if (time_after_eq(jiffies, rq->next_balance)) {
10335 struct rq_flags rf;
10337 rq_lock_irqsave(rq, &rf);
10338 update_rq_clock(rq);
10339 rq_unlock_irqrestore(rq, &rf);
10341 if (flags & NOHZ_BALANCE_KICK)
10342 rebalance_domains(rq, CPU_IDLE);
10345 if (time_after(next_balance, rq->next_balance)) {
10346 next_balance = rq->next_balance;
10347 update_next_balance = 1;
10351 /* Newly idle CPU doesn't need an update */
10352 if (idle != CPU_NEWLY_IDLE) {
10353 update_blocked_averages(this_cpu);
10354 has_blocked_load |= this_rq->has_blocked_load;
10357 if (flags & NOHZ_BALANCE_KICK)
10358 rebalance_domains(this_rq, CPU_IDLE);
10360 WRITE_ONCE(nohz.next_blocked,
10361 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10363 /* The full idle balance loop has been done */
10364 ret = true;
10366 abort:
10367 /* There is still blocked load, enable periodic update */
10368 if (has_blocked_load)
10369 WRITE_ONCE(nohz.has_blocked, 1);
10372 * next_balance will be updated only when there is a need.
10373 * When the CPU is attached to null domain for ex, it will not be
10374 * updated.
10376 if (likely(update_next_balance))
10377 nohz.next_balance = next_balance;
10379 return ret;
10383 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10384 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10386 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10388 unsigned int flags = this_rq->nohz_idle_balance;
10390 if (!flags)
10391 return false;
10393 this_rq->nohz_idle_balance = 0;
10395 if (idle != CPU_IDLE)
10396 return false;
10398 _nohz_idle_balance(this_rq, flags, idle);
10400 return true;
10403 static void nohz_newidle_balance(struct rq *this_rq)
10405 int this_cpu = this_rq->cpu;
10408 * This CPU doesn't want to be disturbed by scheduler
10409 * housekeeping
10411 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10412 return;
10414 /* Will wake up very soon. No time for doing anything else*/
10415 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10416 return;
10418 /* Don't need to update blocked load of idle CPUs*/
10419 if (!READ_ONCE(nohz.has_blocked) ||
10420 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10421 return;
10423 raw_spin_unlock(&this_rq->lock);
10425 * This CPU is going to be idle and blocked load of idle CPUs
10426 * need to be updated. Run the ilb locally as it is a good
10427 * candidate for ilb instead of waking up another idle CPU.
10428 * Kick an normal ilb if we failed to do the update.
10430 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10431 kick_ilb(NOHZ_STATS_KICK);
10432 raw_spin_lock(&this_rq->lock);
10435 #else /* !CONFIG_NO_HZ_COMMON */
10436 static inline void nohz_balancer_kick(struct rq *rq) { }
10438 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10440 return false;
10443 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10444 #endif /* CONFIG_NO_HZ_COMMON */
10447 * idle_balance is called by schedule() if this_cpu is about to become
10448 * idle. Attempts to pull tasks from other CPUs.
10450 * Returns:
10451 * < 0 - we released the lock and there are !fair tasks present
10452 * 0 - failed, no new tasks
10453 * > 0 - success, new (fair) tasks present
10455 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10457 unsigned long next_balance = jiffies + HZ;
10458 int this_cpu = this_rq->cpu;
10459 struct sched_domain *sd;
10460 int pulled_task = 0;
10461 u64 curr_cost = 0;
10463 update_misfit_status(NULL, this_rq);
10465 * We must set idle_stamp _before_ calling idle_balance(), such that we
10466 * measure the duration of idle_balance() as idle time.
10468 this_rq->idle_stamp = rq_clock(this_rq);
10471 * Do not pull tasks towards !active CPUs...
10473 if (!cpu_active(this_cpu))
10474 return 0;
10477 * This is OK, because current is on_cpu, which avoids it being picked
10478 * for load-balance and preemption/IRQs are still disabled avoiding
10479 * further scheduler activity on it and we're being very careful to
10480 * re-start the picking loop.
10482 rq_unpin_lock(this_rq, rf);
10484 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10485 !READ_ONCE(this_rq->rd->overload)) {
10487 rcu_read_lock();
10488 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10489 if (sd)
10490 update_next_balance(sd, &next_balance);
10491 rcu_read_unlock();
10493 nohz_newidle_balance(this_rq);
10495 goto out;
10498 raw_spin_unlock(&this_rq->lock);
10500 update_blocked_averages(this_cpu);
10501 rcu_read_lock();
10502 for_each_domain(this_cpu, sd) {
10503 int continue_balancing = 1;
10504 u64 t0, domain_cost;
10506 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10507 update_next_balance(sd, &next_balance);
10508 break;
10511 if (sd->flags & SD_BALANCE_NEWIDLE) {
10512 t0 = sched_clock_cpu(this_cpu);
10514 pulled_task = load_balance(this_cpu, this_rq,
10515 sd, CPU_NEWLY_IDLE,
10516 &continue_balancing);
10518 domain_cost = sched_clock_cpu(this_cpu) - t0;
10519 if (domain_cost > sd->max_newidle_lb_cost)
10520 sd->max_newidle_lb_cost = domain_cost;
10522 curr_cost += domain_cost;
10525 update_next_balance(sd, &next_balance);
10528 * Stop searching for tasks to pull if there are
10529 * now runnable tasks on this rq.
10531 if (pulled_task || this_rq->nr_running > 0)
10532 break;
10534 rcu_read_unlock();
10536 raw_spin_lock(&this_rq->lock);
10538 if (curr_cost > this_rq->max_idle_balance_cost)
10539 this_rq->max_idle_balance_cost = curr_cost;
10541 out:
10543 * While browsing the domains, we released the rq lock, a task could
10544 * have been enqueued in the meantime. Since we're not going idle,
10545 * pretend we pulled a task.
10547 if (this_rq->cfs.h_nr_running && !pulled_task)
10548 pulled_task = 1;
10550 /* Move the next balance forward */
10551 if (time_after(this_rq->next_balance, next_balance))
10552 this_rq->next_balance = next_balance;
10554 /* Is there a task of a high priority class? */
10555 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10556 pulled_task = -1;
10558 if (pulled_task)
10559 this_rq->idle_stamp = 0;
10561 rq_repin_lock(this_rq, rf);
10563 return pulled_task;
10567 * run_rebalance_domains is triggered when needed from the scheduler tick.
10568 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10570 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10572 struct rq *this_rq = this_rq();
10573 enum cpu_idle_type idle = this_rq->idle_balance ?
10574 CPU_IDLE : CPU_NOT_IDLE;
10577 * If this CPU has a pending nohz_balance_kick, then do the
10578 * balancing on behalf of the other idle CPUs whose ticks are
10579 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10580 * give the idle CPUs a chance to load balance. Else we may
10581 * load balance only within the local sched_domain hierarchy
10582 * and abort nohz_idle_balance altogether if we pull some load.
10584 if (nohz_idle_balance(this_rq, idle))
10585 return;
10587 /* normal load balance */
10588 update_blocked_averages(this_rq->cpu);
10589 rebalance_domains(this_rq, idle);
10593 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10595 void trigger_load_balance(struct rq *rq)
10597 /* Don't need to rebalance while attached to NULL domain */
10598 if (unlikely(on_null_domain(rq)))
10599 return;
10601 if (time_after_eq(jiffies, rq->next_balance))
10602 raise_softirq(SCHED_SOFTIRQ);
10604 nohz_balancer_kick(rq);
10607 static void rq_online_fair(struct rq *rq)
10609 update_sysctl();
10611 update_runtime_enabled(rq);
10614 static void rq_offline_fair(struct rq *rq)
10616 update_sysctl();
10618 /* Ensure any throttled groups are reachable by pick_next_task */
10619 unthrottle_offline_cfs_rqs(rq);
10622 #endif /* CONFIG_SMP */
10625 * scheduler tick hitting a task of our scheduling class.
10627 * NOTE: This function can be called remotely by the tick offload that
10628 * goes along full dynticks. Therefore no local assumption can be made
10629 * and everything must be accessed through the @rq and @curr passed in
10630 * parameters.
10632 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10634 struct cfs_rq *cfs_rq;
10635 struct sched_entity *se = &curr->se;
10637 for_each_sched_entity(se) {
10638 cfs_rq = cfs_rq_of(se);
10639 entity_tick(cfs_rq, se, queued);
10642 if (static_branch_unlikely(&sched_numa_balancing))
10643 task_tick_numa(rq, curr);
10645 update_misfit_status(curr, rq);
10646 update_overutilized_status(task_rq(curr));
10650 * called on fork with the child task as argument from the parent's context
10651 * - child not yet on the tasklist
10652 * - preemption disabled
10654 static void task_fork_fair(struct task_struct *p)
10656 struct cfs_rq *cfs_rq;
10657 struct sched_entity *se = &p->se, *curr;
10658 struct rq *rq = this_rq();
10659 struct rq_flags rf;
10661 rq_lock(rq, &rf);
10662 update_rq_clock(rq);
10664 cfs_rq = task_cfs_rq(current);
10665 curr = cfs_rq->curr;
10666 if (curr) {
10667 update_curr(cfs_rq);
10668 se->vruntime = curr->vruntime;
10670 place_entity(cfs_rq, se, 1);
10672 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10674 * Upon rescheduling, sched_class::put_prev_task() will place
10675 * 'current' within the tree based on its new key value.
10677 swap(curr->vruntime, se->vruntime);
10678 resched_curr(rq);
10681 se->vruntime -= cfs_rq->min_vruntime;
10682 rq_unlock(rq, &rf);
10686 * Priority of the task has changed. Check to see if we preempt
10687 * the current task.
10689 static void
10690 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10692 if (!task_on_rq_queued(p))
10693 return;
10695 if (rq->cfs.nr_running == 1)
10696 return;
10699 * Reschedule if we are currently running on this runqueue and
10700 * our priority decreased, or if we are not currently running on
10701 * this runqueue and our priority is higher than the current's
10703 if (rq->curr == p) {
10704 if (p->prio > oldprio)
10705 resched_curr(rq);
10706 } else
10707 check_preempt_curr(rq, p, 0);
10710 static inline bool vruntime_normalized(struct task_struct *p)
10712 struct sched_entity *se = &p->se;
10715 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10716 * the dequeue_entity(.flags=0) will already have normalized the
10717 * vruntime.
10719 if (p->on_rq)
10720 return true;
10723 * When !on_rq, vruntime of the task has usually NOT been normalized.
10724 * But there are some cases where it has already been normalized:
10726 * - A forked child which is waiting for being woken up by
10727 * wake_up_new_task().
10728 * - A task which has been woken up by try_to_wake_up() and
10729 * waiting for actually being woken up by sched_ttwu_pending().
10731 if (!se->sum_exec_runtime ||
10732 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10733 return true;
10735 return false;
10738 #ifdef CONFIG_FAIR_GROUP_SCHED
10740 * Propagate the changes of the sched_entity across the tg tree to make it
10741 * visible to the root
10743 static void propagate_entity_cfs_rq(struct sched_entity *se)
10745 struct cfs_rq *cfs_rq;
10747 /* Start to propagate at parent */
10748 se = se->parent;
10750 for_each_sched_entity(se) {
10751 cfs_rq = cfs_rq_of(se);
10753 if (cfs_rq_throttled(cfs_rq))
10754 break;
10756 update_load_avg(cfs_rq, se, UPDATE_TG);
10759 #else
10760 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10761 #endif
10763 static void detach_entity_cfs_rq(struct sched_entity *se)
10765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10767 /* Catch up with the cfs_rq and remove our load when we leave */
10768 update_load_avg(cfs_rq, se, 0);
10769 detach_entity_load_avg(cfs_rq, se);
10770 update_tg_load_avg(cfs_rq, false);
10771 propagate_entity_cfs_rq(se);
10774 static void attach_entity_cfs_rq(struct sched_entity *se)
10776 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10778 #ifdef CONFIG_FAIR_GROUP_SCHED
10780 * Since the real-depth could have been changed (only FAIR
10781 * class maintain depth value), reset depth properly.
10783 se->depth = se->parent ? se->parent->depth + 1 : 0;
10784 #endif
10786 /* Synchronize entity with its cfs_rq */
10787 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10788 attach_entity_load_avg(cfs_rq, se);
10789 update_tg_load_avg(cfs_rq, false);
10790 propagate_entity_cfs_rq(se);
10793 static void detach_task_cfs_rq(struct task_struct *p)
10795 struct sched_entity *se = &p->se;
10796 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10798 if (!vruntime_normalized(p)) {
10800 * Fix up our vruntime so that the current sleep doesn't
10801 * cause 'unlimited' sleep bonus.
10803 place_entity(cfs_rq, se, 0);
10804 se->vruntime -= cfs_rq->min_vruntime;
10807 detach_entity_cfs_rq(se);
10810 static void attach_task_cfs_rq(struct task_struct *p)
10812 struct sched_entity *se = &p->se;
10813 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10815 attach_entity_cfs_rq(se);
10817 if (!vruntime_normalized(p))
10818 se->vruntime += cfs_rq->min_vruntime;
10821 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10823 detach_task_cfs_rq(p);
10826 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10828 attach_task_cfs_rq(p);
10830 if (task_on_rq_queued(p)) {
10832 * We were most likely switched from sched_rt, so
10833 * kick off the schedule if running, otherwise just see
10834 * if we can still preempt the current task.
10836 if (rq->curr == p)
10837 resched_curr(rq);
10838 else
10839 check_preempt_curr(rq, p, 0);
10843 /* Account for a task changing its policy or group.
10845 * This routine is mostly called to set cfs_rq->curr field when a task
10846 * migrates between groups/classes.
10848 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10850 struct sched_entity *se = &p->se;
10852 #ifdef CONFIG_SMP
10853 if (task_on_rq_queued(p)) {
10855 * Move the next running task to the front of the list, so our
10856 * cfs_tasks list becomes MRU one.
10858 list_move(&se->group_node, &rq->cfs_tasks);
10860 #endif
10862 for_each_sched_entity(se) {
10863 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10865 set_next_entity(cfs_rq, se);
10866 /* ensure bandwidth has been allocated on our new cfs_rq */
10867 account_cfs_rq_runtime(cfs_rq, 0);
10871 void init_cfs_rq(struct cfs_rq *cfs_rq)
10873 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10874 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10875 #ifndef CONFIG_64BIT
10876 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10877 #endif
10878 #ifdef CONFIG_SMP
10879 raw_spin_lock_init(&cfs_rq->removed.lock);
10880 #endif
10883 #ifdef CONFIG_FAIR_GROUP_SCHED
10884 static void task_set_group_fair(struct task_struct *p)
10886 struct sched_entity *se = &p->se;
10888 set_task_rq(p, task_cpu(p));
10889 se->depth = se->parent ? se->parent->depth + 1 : 0;
10892 static void task_move_group_fair(struct task_struct *p)
10894 detach_task_cfs_rq(p);
10895 set_task_rq(p, task_cpu(p));
10897 #ifdef CONFIG_SMP
10898 /* Tell se's cfs_rq has been changed -- migrated */
10899 p->se.avg.last_update_time = 0;
10900 #endif
10901 attach_task_cfs_rq(p);
10904 static void task_change_group_fair(struct task_struct *p, int type)
10906 switch (type) {
10907 case TASK_SET_GROUP:
10908 task_set_group_fair(p);
10909 break;
10911 case TASK_MOVE_GROUP:
10912 task_move_group_fair(p);
10913 break;
10917 void free_fair_sched_group(struct task_group *tg)
10919 int i;
10921 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10923 for_each_possible_cpu(i) {
10924 if (tg->cfs_rq)
10925 kfree(tg->cfs_rq[i]);
10926 if (tg->se)
10927 kfree(tg->se[i]);
10930 kfree(tg->cfs_rq);
10931 kfree(tg->se);
10934 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10936 struct sched_entity *se;
10937 struct cfs_rq *cfs_rq;
10938 int i;
10940 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10941 if (!tg->cfs_rq)
10942 goto err;
10943 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10944 if (!tg->se)
10945 goto err;
10947 tg->shares = NICE_0_LOAD;
10949 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10951 for_each_possible_cpu(i) {
10952 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10953 GFP_KERNEL, cpu_to_node(i));
10954 if (!cfs_rq)
10955 goto err;
10957 se = kzalloc_node(sizeof(struct sched_entity),
10958 GFP_KERNEL, cpu_to_node(i));
10959 if (!se)
10960 goto err_free_rq;
10962 init_cfs_rq(cfs_rq);
10963 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10964 init_entity_runnable_average(se);
10967 return 1;
10969 err_free_rq:
10970 kfree(cfs_rq);
10971 err:
10972 return 0;
10975 void online_fair_sched_group(struct task_group *tg)
10977 struct sched_entity *se;
10978 struct rq_flags rf;
10979 struct rq *rq;
10980 int i;
10982 for_each_possible_cpu(i) {
10983 rq = cpu_rq(i);
10984 se = tg->se[i];
10985 rq_lock_irq(rq, &rf);
10986 update_rq_clock(rq);
10987 attach_entity_cfs_rq(se);
10988 sync_throttle(tg, i);
10989 rq_unlock_irq(rq, &rf);
10993 void unregister_fair_sched_group(struct task_group *tg)
10995 unsigned long flags;
10996 struct rq *rq;
10997 int cpu;
10999 for_each_possible_cpu(cpu) {
11000 if (tg->se[cpu])
11001 remove_entity_load_avg(tg->se[cpu]);
11004 * Only empty task groups can be destroyed; so we can speculatively
11005 * check on_list without danger of it being re-added.
11007 if (!tg->cfs_rq[cpu]->on_list)
11008 continue;
11010 rq = cpu_rq(cpu);
11012 raw_spin_lock_irqsave(&rq->lock, flags);
11013 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11014 raw_spin_unlock_irqrestore(&rq->lock, flags);
11018 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11019 struct sched_entity *se, int cpu,
11020 struct sched_entity *parent)
11022 struct rq *rq = cpu_rq(cpu);
11024 cfs_rq->tg = tg;
11025 cfs_rq->rq = rq;
11026 init_cfs_rq_runtime(cfs_rq);
11028 tg->cfs_rq[cpu] = cfs_rq;
11029 tg->se[cpu] = se;
11031 /* se could be NULL for root_task_group */
11032 if (!se)
11033 return;
11035 if (!parent) {
11036 se->cfs_rq = &rq->cfs;
11037 se->depth = 0;
11038 } else {
11039 se->cfs_rq = parent->my_q;
11040 se->depth = parent->depth + 1;
11043 se->my_q = cfs_rq;
11044 /* guarantee group entities always have weight */
11045 update_load_set(&se->load, NICE_0_LOAD);
11046 se->parent = parent;
11049 static DEFINE_MUTEX(shares_mutex);
11051 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11053 int i;
11056 * We can't change the weight of the root cgroup.
11058 if (!tg->se[0])
11059 return -EINVAL;
11061 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11063 mutex_lock(&shares_mutex);
11064 if (tg->shares == shares)
11065 goto done;
11067 tg->shares = shares;
11068 for_each_possible_cpu(i) {
11069 struct rq *rq = cpu_rq(i);
11070 struct sched_entity *se = tg->se[i];
11071 struct rq_flags rf;
11073 /* Propagate contribution to hierarchy */
11074 rq_lock_irqsave(rq, &rf);
11075 update_rq_clock(rq);
11076 for_each_sched_entity(se) {
11077 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11078 update_cfs_group(se);
11080 rq_unlock_irqrestore(rq, &rf);
11083 done:
11084 mutex_unlock(&shares_mutex);
11085 return 0;
11087 #else /* CONFIG_FAIR_GROUP_SCHED */
11089 void free_fair_sched_group(struct task_group *tg) { }
11091 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11093 return 1;
11096 void online_fair_sched_group(struct task_group *tg) { }
11098 void unregister_fair_sched_group(struct task_group *tg) { }
11100 #endif /* CONFIG_FAIR_GROUP_SCHED */
11103 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11105 struct sched_entity *se = &task->se;
11106 unsigned int rr_interval = 0;
11109 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11110 * idle runqueue:
11112 if (rq->cfs.load.weight)
11113 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11115 return rr_interval;
11119 * All the scheduling class methods:
11121 const struct sched_class fair_sched_class = {
11122 .next = &idle_sched_class,
11123 .enqueue_task = enqueue_task_fair,
11124 .dequeue_task = dequeue_task_fair,
11125 .yield_task = yield_task_fair,
11126 .yield_to_task = yield_to_task_fair,
11128 .check_preempt_curr = check_preempt_wakeup,
11130 .pick_next_task = __pick_next_task_fair,
11131 .put_prev_task = put_prev_task_fair,
11132 .set_next_task = set_next_task_fair,
11134 #ifdef CONFIG_SMP
11135 .balance = balance_fair,
11136 .select_task_rq = select_task_rq_fair,
11137 .migrate_task_rq = migrate_task_rq_fair,
11139 .rq_online = rq_online_fair,
11140 .rq_offline = rq_offline_fair,
11142 .task_dead = task_dead_fair,
11143 .set_cpus_allowed = set_cpus_allowed_common,
11144 #endif
11146 .task_tick = task_tick_fair,
11147 .task_fork = task_fork_fair,
11149 .prio_changed = prio_changed_fair,
11150 .switched_from = switched_from_fair,
11151 .switched_to = switched_to_fair,
11153 .get_rr_interval = get_rr_interval_fair,
11155 .update_curr = update_curr_fair,
11157 #ifdef CONFIG_FAIR_GROUP_SCHED
11158 .task_change_group = task_change_group_fair,
11159 #endif
11161 #ifdef CONFIG_UCLAMP_TASK
11162 .uclamp_enabled = 1,
11163 #endif
11166 #ifdef CONFIG_SCHED_DEBUG
11167 void print_cfs_stats(struct seq_file *m, int cpu)
11169 struct cfs_rq *cfs_rq, *pos;
11171 rcu_read_lock();
11172 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11173 print_cfs_rq(m, cpu, cfs_rq);
11174 rcu_read_unlock();
11177 #ifdef CONFIG_NUMA_BALANCING
11178 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11180 int node;
11181 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11182 struct numa_group *ng;
11184 rcu_read_lock();
11185 ng = rcu_dereference(p->numa_group);
11186 for_each_online_node(node) {
11187 if (p->numa_faults) {
11188 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11189 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11191 if (ng) {
11192 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11193 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11195 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11197 rcu_read_unlock();
11199 #endif /* CONFIG_NUMA_BALANCING */
11200 #endif /* CONFIG_SCHED_DEBUG */
11202 __init void init_sched_fair_class(void)
11204 #ifdef CONFIG_SMP
11205 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11207 #ifdef CONFIG_NO_HZ_COMMON
11208 nohz.next_balance = jiffies;
11209 nohz.next_blocked = jiffies;
11210 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11211 #endif
11212 #endif /* SMP */
11217 * Helper functions to facilitate extracting info from tracepoints.
11220 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11222 #ifdef CONFIG_SMP
11223 return cfs_rq ? &cfs_rq->avg : NULL;
11224 #else
11225 return NULL;
11226 #endif
11228 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11230 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11232 if (!cfs_rq) {
11233 if (str)
11234 strlcpy(str, "(null)", len);
11235 else
11236 return NULL;
11239 cfs_rq_tg_path(cfs_rq, str, len);
11240 return str;
11242 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11244 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11246 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11248 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11250 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11252 #ifdef CONFIG_SMP
11253 return rq ? &rq->avg_rt : NULL;
11254 #else
11255 return NULL;
11256 #endif
11258 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11260 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11262 #ifdef CONFIG_SMP
11263 return rq ? &rq->avg_dl : NULL;
11264 #else
11265 return NULL;
11266 #endif
11268 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11270 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11272 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11273 return rq ? &rq->avg_irq : NULL;
11274 #else
11275 return NULL;
11276 #endif
11278 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11280 int sched_trace_rq_cpu(struct rq *rq)
11282 return rq ? cpu_of(rq) : -1;
11284 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11286 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11288 #ifdef CONFIG_SMP
11289 return rd ? rd->span : NULL;
11290 #else
11291 return NULL;
11292 #endif
11294 EXPORT_SYMBOL_GPL(sched_trace_rd_span);