1 /* SPDX-License-Identifier: GPL-2.0 */
3 #ifdef CONFIG_SCHEDSTATS
6 * Expects runqueue lock to be held for atomicity of update
9 rq_sched_info_arrive(struct rq
*rq
, unsigned long long delta
)
12 rq
->rq_sched_info
.run_delay
+= delta
;
13 rq
->rq_sched_info
.pcount
++;
18 * Expects runqueue lock to be held for atomicity of update
21 rq_sched_info_depart(struct rq
*rq
, unsigned long long delta
)
24 rq
->rq_cpu_time
+= delta
;
28 rq_sched_info_dequeued(struct rq
*rq
, unsigned long long delta
)
31 rq
->rq_sched_info
.run_delay
+= delta
;
33 #define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
34 #define __schedstat_inc(var) do { var++; } while (0)
35 #define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
36 #define __schedstat_add(var, amt) do { var += (amt); } while (0)
37 #define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
38 #define __schedstat_set(var, val) do { var = (val); } while (0)
39 #define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
40 #define schedstat_val(var) (var)
41 #define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
43 #else /* !CONFIG_SCHEDSTATS: */
44 static inline void rq_sched_info_arrive (struct rq
*rq
, unsigned long long delta
) { }
45 static inline void rq_sched_info_dequeued(struct rq
*rq
, unsigned long long delta
) { }
46 static inline void rq_sched_info_depart (struct rq
*rq
, unsigned long long delta
) { }
47 # define schedstat_enabled() 0
48 # define __schedstat_inc(var) do { } while (0)
49 # define schedstat_inc(var) do { } while (0)
50 # define __schedstat_add(var, amt) do { } while (0)
51 # define schedstat_add(var, amt) do { } while (0)
52 # define __schedstat_set(var, val) do { } while (0)
53 # define schedstat_set(var, val) do { } while (0)
54 # define schedstat_val(var) 0
55 # define schedstat_val_or_zero(var) 0
56 #endif /* CONFIG_SCHEDSTATS */
60 * PSI tracks state that persists across sleeps, such as iowaits and
61 * memory stalls. As a result, it has to distinguish between sleeps,
62 * where a task's runnable state changes, and requeues, where a task
63 * and its state are being moved between CPUs and runqueues.
65 static inline void psi_enqueue(struct task_struct
*p
, bool wakeup
)
67 int clear
= 0, set
= TSK_RUNNING
;
69 if (static_branch_likely(&psi_disabled
))
72 if (!wakeup
|| p
->sched_psi_wake_requeue
) {
75 if (p
->sched_psi_wake_requeue
)
76 p
->sched_psi_wake_requeue
= 0;
82 psi_task_change(p
, clear
, set
);
85 static inline void psi_dequeue(struct task_struct
*p
, bool sleep
)
87 int clear
= TSK_RUNNING
, set
= 0;
89 if (static_branch_likely(&psi_disabled
))
94 clear
|= TSK_MEMSTALL
;
97 * When a task sleeps, schedule() dequeues it before
98 * switching to the next one. Merge the clearing of
99 * TSK_RUNNING and TSK_ONCPU to save an unnecessary
100 * psi_task_change() call in psi_sched_switch().
108 psi_task_change(p
, clear
, set
);
111 static inline void psi_ttwu_dequeue(struct task_struct
*p
)
113 if (static_branch_likely(&psi_disabled
))
116 * Is the task being migrated during a wakeup? Make sure to
117 * deregister its sleep-persistent psi states from the old
118 * queue, and let psi_enqueue() know it has to requeue.
120 if (unlikely(p
->in_iowait
|| p
->in_memstall
)) {
128 clear
|= TSK_MEMSTALL
;
130 rq
= __task_rq_lock(p
, &rf
);
131 psi_task_change(p
, clear
, 0);
132 p
->sched_psi_wake_requeue
= 1;
133 __task_rq_unlock(rq
, &rf
);
137 static inline void psi_sched_switch(struct task_struct
*prev
,
138 struct task_struct
*next
,
141 if (static_branch_likely(&psi_disabled
))
144 psi_task_switch(prev
, next
, sleep
);
147 static inline void psi_task_tick(struct rq
*rq
)
149 if (static_branch_likely(&psi_disabled
))
152 if (unlikely(rq
->curr
->in_memstall
))
153 psi_memstall_tick(rq
->curr
, cpu_of(rq
));
155 #else /* CONFIG_PSI */
156 static inline void psi_enqueue(struct task_struct
*p
, bool wakeup
) {}
157 static inline void psi_dequeue(struct task_struct
*p
, bool sleep
) {}
158 static inline void psi_ttwu_dequeue(struct task_struct
*p
) {}
159 static inline void psi_sched_switch(struct task_struct
*prev
,
160 struct task_struct
*next
,
162 static inline void psi_task_tick(struct rq
*rq
) {}
163 #endif /* CONFIG_PSI */
165 #ifdef CONFIG_SCHED_INFO
166 static inline void sched_info_reset_dequeued(struct task_struct
*t
)
168 t
->sched_info
.last_queued
= 0;
172 * We are interested in knowing how long it was from the *first* time a
173 * task was queued to the time that it finally hit a CPU, we call this routine
174 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
175 * delta taken on each CPU would annul the skew.
177 static inline void sched_info_dequeued(struct rq
*rq
, struct task_struct
*t
)
179 unsigned long long now
= rq_clock(rq
), delta
= 0;
181 if (sched_info_on()) {
182 if (t
->sched_info
.last_queued
)
183 delta
= now
- t
->sched_info
.last_queued
;
185 sched_info_reset_dequeued(t
);
186 t
->sched_info
.run_delay
+= delta
;
188 rq_sched_info_dequeued(rq
, delta
);
192 * Called when a task finally hits the CPU. We can now calculate how
193 * long it was waiting to run. We also note when it began so that we
194 * can keep stats on how long its timeslice is.
196 static void sched_info_arrive(struct rq
*rq
, struct task_struct
*t
)
198 unsigned long long now
= rq_clock(rq
), delta
= 0;
200 if (t
->sched_info
.last_queued
)
201 delta
= now
- t
->sched_info
.last_queued
;
202 sched_info_reset_dequeued(t
);
203 t
->sched_info
.run_delay
+= delta
;
204 t
->sched_info
.last_arrival
= now
;
205 t
->sched_info
.pcount
++;
207 rq_sched_info_arrive(rq
, delta
);
211 * This function is only called from enqueue_task(), but also only updates
212 * the timestamp if it is already not set. It's assumed that
213 * sched_info_dequeued() will clear that stamp when appropriate.
215 static inline void sched_info_queued(struct rq
*rq
, struct task_struct
*t
)
217 if (sched_info_on()) {
218 if (!t
->sched_info
.last_queued
)
219 t
->sched_info
.last_queued
= rq_clock(rq
);
224 * Called when a process ceases being the active-running process involuntarily
225 * due, typically, to expiring its time slice (this may also be called when
226 * switching to the idle task). Now we can calculate how long we ran.
227 * Also, if the process is still in the TASK_RUNNING state, call
228 * sched_info_queued() to mark that it has now again started waiting on
231 static inline void sched_info_depart(struct rq
*rq
, struct task_struct
*t
)
233 unsigned long long delta
= rq_clock(rq
) - t
->sched_info
.last_arrival
;
235 rq_sched_info_depart(rq
, delta
);
237 if (t
->state
== TASK_RUNNING
)
238 sched_info_queued(rq
, t
);
242 * Called when tasks are switched involuntarily due, typically, to expiring
243 * their time slice. (This may also be called when switching to or from
244 * the idle task.) We are only called when prev != next.
247 __sched_info_switch(struct rq
*rq
, struct task_struct
*prev
, struct task_struct
*next
)
250 * prev now departs the CPU. It's not interesting to record
251 * stats about how efficient we were at scheduling the idle
254 if (prev
!= rq
->idle
)
255 sched_info_depart(rq
, prev
);
257 if (next
!= rq
->idle
)
258 sched_info_arrive(rq
, next
);
262 sched_info_switch(struct rq
*rq
, struct task_struct
*prev
, struct task_struct
*next
)
265 __sched_info_switch(rq
, prev
, next
);
268 #else /* !CONFIG_SCHED_INFO: */
269 # define sched_info_queued(rq, t) do { } while (0)
270 # define sched_info_reset_dequeued(t) do { } while (0)
271 # define sched_info_dequeued(rq, t) do { } while (0)
272 # define sched_info_depart(rq, t) do { } while (0)
273 # define sched_info_arrive(rq, next) do { } while (0)
274 # define sched_info_switch(rq, t, next) do { } while (0)
275 #endif /* CONFIG_SCHED_INFO */