4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
45 * FIXME: remove all knowledge of the buffer layer from the core VM
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * Shared mappings now work. 15.8.1995 Bruno.
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
80 * ->lock_page (access_process_vm)
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
90 * ->anon_vma.lock (vma_adjust)
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 static int page_cache_tree_insert(struct address_space
*mapping
,
115 struct page
*page
, void **shadowp
)
117 struct radix_tree_node
*node
;
121 error
= __radix_tree_create(&mapping
->page_tree
, page
->index
, 0,
128 p
= radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
129 if (!radix_tree_exceptional_entry(p
))
132 mapping
->nrexceptional
--;
133 if (!dax_mapping(mapping
)) {
137 /* DAX can replace empty locked entry with a hole */
139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY
));
140 /* Wakeup waiters for exceptional entry lock */
141 dax_wake_mapping_entry_waiter(mapping
, page
->index
, p
,
145 __radix_tree_replace(&mapping
->page_tree
, node
, slot
, page
,
146 workingset_update_node
, mapping
);
151 static void page_cache_tree_delete(struct address_space
*mapping
,
152 struct page
*page
, void *shadow
)
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr
= PageHuge(page
) ? 1 : hpage_nr_pages(page
);
159 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
160 VM_BUG_ON_PAGE(PageTail(page
), page
);
161 VM_BUG_ON_PAGE(nr
!= 1 && shadow
, page
);
163 for (i
= 0; i
< nr
; i
++) {
164 struct radix_tree_node
*node
;
167 __radix_tree_lookup(&mapping
->page_tree
, page
->index
+ i
,
170 VM_BUG_ON_PAGE(!node
&& nr
!= 1, page
);
172 radix_tree_clear_tags(&mapping
->page_tree
, node
, slot
);
173 __radix_tree_replace(&mapping
->page_tree
, node
, slot
, shadow
,
174 workingset_update_node
, mapping
);
178 mapping
->nrexceptional
+= nr
;
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
187 mapping
->nrpages
-= nr
;
191 * Delete a page from the page cache and free it. Caller has to make
192 * sure the page is locked and that nobody else uses it - or that usage
193 * is safe. The caller must hold the mapping's tree_lock.
195 void __delete_from_page_cache(struct page
*page
, void *shadow
)
197 struct address_space
*mapping
= page
->mapping
;
198 int nr
= hpage_nr_pages(page
);
200 trace_mm_filemap_delete_from_page_cache(page
);
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
206 if (PageUptodate(page
) && PageMappedToDisk(page
))
207 cleancache_put_page(page
);
209 cleancache_invalidate_page(mapping
, page
);
211 VM_BUG_ON_PAGE(PageTail(page
), page
);
212 VM_BUG_ON_PAGE(page_mapped(page
), page
);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM
) && unlikely(page_mapped(page
))) {
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current
->comm
, page_to_pfn(page
));
218 dump_page(page
, "still mapped when deleted");
220 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
222 mapcount
= page_mapcount(page
);
223 if (mapping_exiting(mapping
) &&
224 page_count(page
) >= mapcount
+ 2) {
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
231 page_mapcount_reset(page
);
232 page_ref_sub(page
, mapcount
);
236 page_cache_tree_delete(mapping
, page
, shadow
);
238 page
->mapping
= NULL
;
239 /* Leave page->index set: truncation lookup relies upon it */
241 /* hugetlb pages do not participate in page cache accounting. */
243 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, -nr
);
244 if (PageSwapBacked(page
)) {
245 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, -nr
);
246 if (PageTransHuge(page
))
247 __dec_node_page_state(page
, NR_SHMEM_THPS
);
249 VM_BUG_ON_PAGE(PageTransHuge(page
) && !PageHuge(page
), page
);
253 * At this point page must be either written or cleaned by truncate.
254 * Dirty page here signals a bug and loss of unwritten data.
256 * This fixes dirty accounting after removing the page entirely but
257 * leaves PageDirty set: it has no effect for truncated page and
258 * anyway will be cleared before returning page into buddy allocator.
260 if (WARN_ON_ONCE(PageDirty(page
)))
261 account_page_cleaned(page
, mapping
, inode_to_wb(mapping
->host
));
265 * delete_from_page_cache - delete page from page cache
266 * @page: the page which the kernel is trying to remove from page cache
268 * This must be called only on pages that have been verified to be in the page
269 * cache and locked. It will never put the page into the free list, the caller
270 * has a reference on the page.
272 void delete_from_page_cache(struct page
*page
)
274 struct address_space
*mapping
= page_mapping(page
);
276 void (*freepage
)(struct page
*);
278 BUG_ON(!PageLocked(page
));
280 freepage
= mapping
->a_ops
->freepage
;
282 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
283 __delete_from_page_cache(page
, NULL
);
284 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
289 if (PageTransHuge(page
) && !PageHuge(page
)) {
290 page_ref_sub(page
, HPAGE_PMD_NR
);
291 VM_BUG_ON_PAGE(page_count(page
) <= 0, page
);
296 EXPORT_SYMBOL(delete_from_page_cache
);
298 int filemap_check_errors(struct address_space
*mapping
)
301 /* Check for outstanding write errors */
302 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
303 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
305 if (test_bit(AS_EIO
, &mapping
->flags
) &&
306 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
310 EXPORT_SYMBOL(filemap_check_errors
);
313 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
314 * @mapping: address space structure to write
315 * @start: offset in bytes where the range starts
316 * @end: offset in bytes where the range ends (inclusive)
317 * @sync_mode: enable synchronous operation
319 * Start writeback against all of a mapping's dirty pages that lie
320 * within the byte offsets <start, end> inclusive.
322 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
323 * opposed to a regular memory cleansing writeback. The difference between
324 * these two operations is that if a dirty page/buffer is encountered, it must
325 * be waited upon, and not just skipped over.
327 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
328 loff_t end
, int sync_mode
)
331 struct writeback_control wbc
= {
332 .sync_mode
= sync_mode
,
333 .nr_to_write
= LONG_MAX
,
334 .range_start
= start
,
338 if (!mapping_cap_writeback_dirty(mapping
))
341 wbc_attach_fdatawrite_inode(&wbc
, mapping
->host
);
342 ret
= do_writepages(mapping
, &wbc
);
343 wbc_detach_inode(&wbc
);
347 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
350 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
353 int filemap_fdatawrite(struct address_space
*mapping
)
355 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
357 EXPORT_SYMBOL(filemap_fdatawrite
);
359 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
362 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
364 EXPORT_SYMBOL(filemap_fdatawrite_range
);
367 * filemap_flush - mostly a non-blocking flush
368 * @mapping: target address_space
370 * This is a mostly non-blocking flush. Not suitable for data-integrity
371 * purposes - I/O may not be started against all dirty pages.
373 int filemap_flush(struct address_space
*mapping
)
375 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
377 EXPORT_SYMBOL(filemap_flush
);
379 static int __filemap_fdatawait_range(struct address_space
*mapping
,
380 loff_t start_byte
, loff_t end_byte
)
382 pgoff_t index
= start_byte
>> PAGE_SHIFT
;
383 pgoff_t end
= end_byte
>> PAGE_SHIFT
;
388 if (end_byte
< start_byte
)
391 pagevec_init(&pvec
, 0);
392 while ((index
<= end
) &&
393 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
394 PAGECACHE_TAG_WRITEBACK
,
395 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
398 for (i
= 0; i
< nr_pages
; i
++) {
399 struct page
*page
= pvec
.pages
[i
];
401 /* until radix tree lookup accepts end_index */
402 if (page
->index
> end
)
405 wait_on_page_writeback(page
);
406 if (TestClearPageError(page
))
409 pagevec_release(&pvec
);
417 * filemap_fdatawait_range - wait for writeback to complete
418 * @mapping: address space structure to wait for
419 * @start_byte: offset in bytes where the range starts
420 * @end_byte: offset in bytes where the range ends (inclusive)
422 * Walk the list of under-writeback pages of the given address space
423 * in the given range and wait for all of them. Check error status of
424 * the address space and return it.
426 * Since the error status of the address space is cleared by this function,
427 * callers are responsible for checking the return value and handling and/or
428 * reporting the error.
430 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
435 ret
= __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
436 ret2
= filemap_check_errors(mapping
);
442 EXPORT_SYMBOL(filemap_fdatawait_range
);
445 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
446 * @mapping: address space structure to wait for
448 * Walk the list of under-writeback pages of the given address space
449 * and wait for all of them. Unlike filemap_fdatawait(), this function
450 * does not clear error status of the address space.
452 * Use this function if callers don't handle errors themselves. Expected
453 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
456 void filemap_fdatawait_keep_errors(struct address_space
*mapping
)
458 loff_t i_size
= i_size_read(mapping
->host
);
463 __filemap_fdatawait_range(mapping
, 0, i_size
- 1);
467 * filemap_fdatawait - wait for all under-writeback pages to complete
468 * @mapping: address space structure to wait for
470 * Walk the list of under-writeback pages of the given address space
471 * and wait for all of them. Check error status of the address space
474 * Since the error status of the address space is cleared by this function,
475 * callers are responsible for checking the return value and handling and/or
476 * reporting the error.
478 int filemap_fdatawait(struct address_space
*mapping
)
480 loff_t i_size
= i_size_read(mapping
->host
);
485 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
487 EXPORT_SYMBOL(filemap_fdatawait
);
489 int filemap_write_and_wait(struct address_space
*mapping
)
493 if ((!dax_mapping(mapping
) && mapping
->nrpages
) ||
494 (dax_mapping(mapping
) && mapping
->nrexceptional
)) {
495 err
= filemap_fdatawrite(mapping
);
497 * Even if the above returned error, the pages may be
498 * written partially (e.g. -ENOSPC), so we wait for it.
499 * But the -EIO is special case, it may indicate the worst
500 * thing (e.g. bug) happened, so we avoid waiting for it.
503 int err2
= filemap_fdatawait(mapping
);
508 err
= filemap_check_errors(mapping
);
512 EXPORT_SYMBOL(filemap_write_and_wait
);
515 * filemap_write_and_wait_range - write out & wait on a file range
516 * @mapping: the address_space for the pages
517 * @lstart: offset in bytes where the range starts
518 * @lend: offset in bytes where the range ends (inclusive)
520 * Write out and wait upon file offsets lstart->lend, inclusive.
522 * Note that `lend' is inclusive (describes the last byte to be written) so
523 * that this function can be used to write to the very end-of-file (end = -1).
525 int filemap_write_and_wait_range(struct address_space
*mapping
,
526 loff_t lstart
, loff_t lend
)
530 if ((!dax_mapping(mapping
) && mapping
->nrpages
) ||
531 (dax_mapping(mapping
) && mapping
->nrexceptional
)) {
532 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
534 /* See comment of filemap_write_and_wait() */
536 int err2
= filemap_fdatawait_range(mapping
,
542 err
= filemap_check_errors(mapping
);
546 EXPORT_SYMBOL(filemap_write_and_wait_range
);
549 * replace_page_cache_page - replace a pagecache page with a new one
550 * @old: page to be replaced
551 * @new: page to replace with
552 * @gfp_mask: allocation mode
554 * This function replaces a page in the pagecache with a new one. On
555 * success it acquires the pagecache reference for the new page and
556 * drops it for the old page. Both the old and new pages must be
557 * locked. This function does not add the new page to the LRU, the
558 * caller must do that.
560 * The remove + add is atomic. The only way this function can fail is
561 * memory allocation failure.
563 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
567 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
568 VM_BUG_ON_PAGE(!PageLocked(new), new);
569 VM_BUG_ON_PAGE(new->mapping
, new);
571 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
573 struct address_space
*mapping
= old
->mapping
;
574 void (*freepage
)(struct page
*);
577 pgoff_t offset
= old
->index
;
578 freepage
= mapping
->a_ops
->freepage
;
581 new->mapping
= mapping
;
584 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
585 __delete_from_page_cache(old
, NULL
);
586 error
= page_cache_tree_insert(mapping
, new, NULL
);
590 * hugetlb pages do not participate in page cache accounting.
593 __inc_node_page_state(new, NR_FILE_PAGES
);
594 if (PageSwapBacked(new))
595 __inc_node_page_state(new, NR_SHMEM
);
596 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
597 mem_cgroup_migrate(old
, new);
598 radix_tree_preload_end();
606 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
608 static int __add_to_page_cache_locked(struct page
*page
,
609 struct address_space
*mapping
,
610 pgoff_t offset
, gfp_t gfp_mask
,
613 int huge
= PageHuge(page
);
614 struct mem_cgroup
*memcg
;
617 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
618 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
621 error
= mem_cgroup_try_charge(page
, current
->mm
,
622 gfp_mask
, &memcg
, false);
627 error
= radix_tree_maybe_preload(gfp_mask
& ~__GFP_HIGHMEM
);
630 mem_cgroup_cancel_charge(page
, memcg
, false);
635 page
->mapping
= mapping
;
636 page
->index
= offset
;
638 spin_lock_irq(&mapping
->tree_lock
);
639 error
= page_cache_tree_insert(mapping
, page
, shadowp
);
640 radix_tree_preload_end();
644 /* hugetlb pages do not participate in page cache accounting. */
646 __inc_node_page_state(page
, NR_FILE_PAGES
);
647 spin_unlock_irq(&mapping
->tree_lock
);
649 mem_cgroup_commit_charge(page
, memcg
, false, false);
650 trace_mm_filemap_add_to_page_cache(page
);
653 page
->mapping
= NULL
;
654 /* Leave page->index set: truncation relies upon it */
655 spin_unlock_irq(&mapping
->tree_lock
);
657 mem_cgroup_cancel_charge(page
, memcg
, false);
663 * add_to_page_cache_locked - add a locked page to the pagecache
665 * @mapping: the page's address_space
666 * @offset: page index
667 * @gfp_mask: page allocation mode
669 * This function is used to add a page to the pagecache. It must be locked.
670 * This function does not add the page to the LRU. The caller must do that.
672 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
673 pgoff_t offset
, gfp_t gfp_mask
)
675 return __add_to_page_cache_locked(page
, mapping
, offset
,
678 EXPORT_SYMBOL(add_to_page_cache_locked
);
680 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
681 pgoff_t offset
, gfp_t gfp_mask
)
686 __SetPageLocked(page
);
687 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
690 __ClearPageLocked(page
);
693 * The page might have been evicted from cache only
694 * recently, in which case it should be activated like
695 * any other repeatedly accessed page.
696 * The exception is pages getting rewritten; evicting other
697 * data from the working set, only to cache data that will
698 * get overwritten with something else, is a waste of memory.
700 if (!(gfp_mask
& __GFP_WRITE
) &&
701 shadow
&& workingset_refault(shadow
)) {
703 workingset_activation(page
);
705 ClearPageActive(page
);
710 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
713 struct page
*__page_cache_alloc(gfp_t gfp
)
718 if (cpuset_do_page_mem_spread()) {
719 unsigned int cpuset_mems_cookie
;
721 cpuset_mems_cookie
= read_mems_allowed_begin();
722 n
= cpuset_mem_spread_node();
723 page
= __alloc_pages_node(n
, gfp
, 0);
724 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
728 return alloc_pages(gfp
, 0);
730 EXPORT_SYMBOL(__page_cache_alloc
);
734 * In order to wait for pages to become available there must be
735 * waitqueues associated with pages. By using a hash table of
736 * waitqueues where the bucket discipline is to maintain all
737 * waiters on the same queue and wake all when any of the pages
738 * become available, and for the woken contexts to check to be
739 * sure the appropriate page became available, this saves space
740 * at a cost of "thundering herd" phenomena during rare hash
743 #define PAGE_WAIT_TABLE_BITS 8
744 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
745 static wait_queue_head_t page_wait_table
[PAGE_WAIT_TABLE_SIZE
] __cacheline_aligned
;
747 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
749 return &page_wait_table
[hash_ptr(page
, PAGE_WAIT_TABLE_BITS
)];
752 void __init
pagecache_init(void)
756 for (i
= 0; i
< PAGE_WAIT_TABLE_SIZE
; i
++)
757 init_waitqueue_head(&page_wait_table
[i
]);
759 page_writeback_init();
762 struct wait_page_key
{
768 struct wait_page_queue
{
774 static int wake_page_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *arg
)
776 struct wait_page_key
*key
= arg
;
777 struct wait_page_queue
*wait_page
778 = container_of(wait
, struct wait_page_queue
, wait
);
780 if (wait_page
->page
!= key
->page
)
784 if (wait_page
->bit_nr
!= key
->bit_nr
)
786 if (test_bit(key
->bit_nr
, &key
->page
->flags
))
789 return autoremove_wake_function(wait
, mode
, sync
, key
);
792 static void wake_up_page_bit(struct page
*page
, int bit_nr
)
794 wait_queue_head_t
*q
= page_waitqueue(page
);
795 struct wait_page_key key
;
802 spin_lock_irqsave(&q
->lock
, flags
);
803 __wake_up_locked_key(q
, TASK_NORMAL
, &key
);
805 * It is possible for other pages to have collided on the waitqueue
806 * hash, so in that case check for a page match. That prevents a long-
809 * It is still possible to miss a case here, when we woke page waiters
810 * and removed them from the waitqueue, but there are still other
813 if (!waitqueue_active(q
) || !key
.page_match
) {
814 ClearPageWaiters(page
);
816 * It's possible to miss clearing Waiters here, when we woke
817 * our page waiters, but the hashed waitqueue has waiters for
820 * That's okay, it's a rare case. The next waker will clear it.
823 spin_unlock_irqrestore(&q
->lock
, flags
);
826 static void wake_up_page(struct page
*page
, int bit
)
828 if (!PageWaiters(page
))
830 wake_up_page_bit(page
, bit
);
833 static inline int wait_on_page_bit_common(wait_queue_head_t
*q
,
834 struct page
*page
, int bit_nr
, int state
, bool lock
)
836 struct wait_page_queue wait_page
;
837 wait_queue_t
*wait
= &wait_page
.wait
;
841 wait
->func
= wake_page_function
;
842 wait_page
.page
= page
;
843 wait_page
.bit_nr
= bit_nr
;
846 spin_lock_irq(&q
->lock
);
848 if (likely(list_empty(&wait
->task_list
))) {
850 __add_wait_queue_tail_exclusive(q
, wait
);
852 __add_wait_queue(q
, wait
);
853 SetPageWaiters(page
);
856 set_current_state(state
);
858 spin_unlock_irq(&q
->lock
);
860 if (likely(test_bit(bit_nr
, &page
->flags
))) {
862 if (unlikely(signal_pending_state(state
, current
))) {
869 if (!test_and_set_bit_lock(bit_nr
, &page
->flags
))
872 if (!test_bit(bit_nr
, &page
->flags
))
877 finish_wait(q
, wait
);
880 * A signal could leave PageWaiters set. Clearing it here if
881 * !waitqueue_active would be possible (by open-coding finish_wait),
882 * but still fail to catch it in the case of wait hash collision. We
883 * already can fail to clear wait hash collision cases, so don't
884 * bother with signals either.
890 void wait_on_page_bit(struct page
*page
, int bit_nr
)
892 wait_queue_head_t
*q
= page_waitqueue(page
);
893 wait_on_page_bit_common(q
, page
, bit_nr
, TASK_UNINTERRUPTIBLE
, false);
895 EXPORT_SYMBOL(wait_on_page_bit
);
897 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
899 wait_queue_head_t
*q
= page_waitqueue(page
);
900 return wait_on_page_bit_common(q
, page
, bit_nr
, TASK_KILLABLE
, false);
904 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
905 * @page: Page defining the wait queue of interest
906 * @waiter: Waiter to add to the queue
908 * Add an arbitrary @waiter to the wait queue for the nominated @page.
910 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
912 wait_queue_head_t
*q
= page_waitqueue(page
);
915 spin_lock_irqsave(&q
->lock
, flags
);
916 __add_wait_queue(q
, waiter
);
917 SetPageWaiters(page
);
918 spin_unlock_irqrestore(&q
->lock
, flags
);
920 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
922 #ifndef clear_bit_unlock_is_negative_byte
925 * PG_waiters is the high bit in the same byte as PG_lock.
927 * On x86 (and on many other architectures), we can clear PG_lock and
928 * test the sign bit at the same time. But if the architecture does
929 * not support that special operation, we just do this all by hand
932 * The read of PG_waiters has to be after (or concurrently with) PG_locked
933 * being cleared, but a memory barrier should be unneccssary since it is
934 * in the same byte as PG_locked.
936 static inline bool clear_bit_unlock_is_negative_byte(long nr
, volatile void *mem
)
938 clear_bit_unlock(nr
, mem
);
939 /* smp_mb__after_atomic(); */
940 return test_bit(PG_waiters
, mem
);
946 * unlock_page - unlock a locked page
949 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
950 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
951 * mechanism between PageLocked pages and PageWriteback pages is shared.
952 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
954 * Note that this depends on PG_waiters being the sign bit in the byte
955 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
956 * clear the PG_locked bit and test PG_waiters at the same time fairly
957 * portably (architectures that do LL/SC can test any bit, while x86 can
958 * test the sign bit).
960 void unlock_page(struct page
*page
)
962 BUILD_BUG_ON(PG_waiters
!= 7);
963 page
= compound_head(page
);
964 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
965 if (clear_bit_unlock_is_negative_byte(PG_locked
, &page
->flags
))
966 wake_up_page_bit(page
, PG_locked
);
968 EXPORT_SYMBOL(unlock_page
);
971 * end_page_writeback - end writeback against a page
974 void end_page_writeback(struct page
*page
)
977 * TestClearPageReclaim could be used here but it is an atomic
978 * operation and overkill in this particular case. Failing to
979 * shuffle a page marked for immediate reclaim is too mild to
980 * justify taking an atomic operation penalty at the end of
981 * ever page writeback.
983 if (PageReclaim(page
)) {
984 ClearPageReclaim(page
);
985 rotate_reclaimable_page(page
);
988 if (!test_clear_page_writeback(page
))
991 smp_mb__after_atomic();
992 wake_up_page(page
, PG_writeback
);
994 EXPORT_SYMBOL(end_page_writeback
);
997 * After completing I/O on a page, call this routine to update the page
998 * flags appropriately
1000 void page_endio(struct page
*page
, bool is_write
, int err
)
1004 SetPageUptodate(page
);
1006 ClearPageUptodate(page
);
1012 struct address_space
*mapping
;
1015 mapping
= page_mapping(page
);
1017 mapping_set_error(mapping
, err
);
1019 end_page_writeback(page
);
1022 EXPORT_SYMBOL_GPL(page_endio
);
1025 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1026 * @__page: the page to lock
1028 void __lock_page(struct page
*__page
)
1030 struct page
*page
= compound_head(__page
);
1031 wait_queue_head_t
*q
= page_waitqueue(page
);
1032 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
, true);
1034 EXPORT_SYMBOL(__lock_page
);
1036 int __lock_page_killable(struct page
*__page
)
1038 struct page
*page
= compound_head(__page
);
1039 wait_queue_head_t
*q
= page_waitqueue(page
);
1040 return wait_on_page_bit_common(q
, page
, PG_locked
, TASK_KILLABLE
, true);
1042 EXPORT_SYMBOL_GPL(__lock_page_killable
);
1046 * 1 - page is locked; mmap_sem is still held.
1047 * 0 - page is not locked.
1048 * mmap_sem has been released (up_read()), unless flags had both
1049 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1050 * which case mmap_sem is still held.
1052 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1053 * with the page locked and the mmap_sem unperturbed.
1055 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
1058 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1060 * CAUTION! In this case, mmap_sem is not released
1061 * even though return 0.
1063 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
1066 up_read(&mm
->mmap_sem
);
1067 if (flags
& FAULT_FLAG_KILLABLE
)
1068 wait_on_page_locked_killable(page
);
1070 wait_on_page_locked(page
);
1073 if (flags
& FAULT_FLAG_KILLABLE
) {
1076 ret
= __lock_page_killable(page
);
1078 up_read(&mm
->mmap_sem
);
1088 * page_cache_next_hole - find the next hole (not-present entry)
1091 * @max_scan: maximum range to search
1093 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1094 * lowest indexed hole.
1096 * Returns: the index of the hole if found, otherwise returns an index
1097 * outside of the set specified (in which case 'return - index >=
1098 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1101 * page_cache_next_hole may be called under rcu_read_lock. However,
1102 * like radix_tree_gang_lookup, this will not atomically search a
1103 * snapshot of the tree at a single point in time. For example, if a
1104 * hole is created at index 5, then subsequently a hole is created at
1105 * index 10, page_cache_next_hole covering both indexes may return 10
1106 * if called under rcu_read_lock.
1108 pgoff_t
page_cache_next_hole(struct address_space
*mapping
,
1109 pgoff_t index
, unsigned long max_scan
)
1113 for (i
= 0; i
< max_scan
; i
++) {
1116 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
1117 if (!page
|| radix_tree_exceptional_entry(page
))
1126 EXPORT_SYMBOL(page_cache_next_hole
);
1129 * page_cache_prev_hole - find the prev hole (not-present entry)
1132 * @max_scan: maximum range to search
1134 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1137 * Returns: the index of the hole if found, otherwise returns an index
1138 * outside of the set specified (in which case 'index - return >=
1139 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1142 * page_cache_prev_hole may be called under rcu_read_lock. However,
1143 * like radix_tree_gang_lookup, this will not atomically search a
1144 * snapshot of the tree at a single point in time. For example, if a
1145 * hole is created at index 10, then subsequently a hole is created at
1146 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1147 * called under rcu_read_lock.
1149 pgoff_t
page_cache_prev_hole(struct address_space
*mapping
,
1150 pgoff_t index
, unsigned long max_scan
)
1154 for (i
= 0; i
< max_scan
; i
++) {
1157 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
1158 if (!page
|| radix_tree_exceptional_entry(page
))
1161 if (index
== ULONG_MAX
)
1167 EXPORT_SYMBOL(page_cache_prev_hole
);
1170 * find_get_entry - find and get a page cache entry
1171 * @mapping: the address_space to search
1172 * @offset: the page cache index
1174 * Looks up the page cache slot at @mapping & @offset. If there is a
1175 * page cache page, it is returned with an increased refcount.
1177 * If the slot holds a shadow entry of a previously evicted page, or a
1178 * swap entry from shmem/tmpfs, it is returned.
1180 * Otherwise, %NULL is returned.
1182 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
1185 struct page
*head
, *page
;
1190 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
1192 page
= radix_tree_deref_slot(pagep
);
1193 if (unlikely(!page
))
1195 if (radix_tree_exception(page
)) {
1196 if (radix_tree_deref_retry(page
))
1199 * A shadow entry of a recently evicted page,
1200 * or a swap entry from shmem/tmpfs. Return
1201 * it without attempting to raise page count.
1206 head
= compound_head(page
);
1207 if (!page_cache_get_speculative(head
))
1210 /* The page was split under us? */
1211 if (compound_head(page
) != head
) {
1217 * Has the page moved?
1218 * This is part of the lockless pagecache protocol. See
1219 * include/linux/pagemap.h for details.
1221 if (unlikely(page
!= *pagep
)) {
1231 EXPORT_SYMBOL(find_get_entry
);
1234 * find_lock_entry - locate, pin and lock a page cache entry
1235 * @mapping: the address_space to search
1236 * @offset: the page cache index
1238 * Looks up the page cache slot at @mapping & @offset. If there is a
1239 * page cache page, it is returned locked and with an increased
1242 * If the slot holds a shadow entry of a previously evicted page, or a
1243 * swap entry from shmem/tmpfs, it is returned.
1245 * Otherwise, %NULL is returned.
1247 * find_lock_entry() may sleep.
1249 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1254 page
= find_get_entry(mapping
, offset
);
1255 if (page
&& !radix_tree_exception(page
)) {
1257 /* Has the page been truncated? */
1258 if (unlikely(page_mapping(page
) != mapping
)) {
1263 VM_BUG_ON_PAGE(page_to_pgoff(page
) != offset
, page
);
1267 EXPORT_SYMBOL(find_lock_entry
);
1270 * pagecache_get_page - find and get a page reference
1271 * @mapping: the address_space to search
1272 * @offset: the page index
1273 * @fgp_flags: PCG flags
1274 * @gfp_mask: gfp mask to use for the page cache data page allocation
1276 * Looks up the page cache slot at @mapping & @offset.
1278 * PCG flags modify how the page is returned.
1280 * FGP_ACCESSED: the page will be marked accessed
1281 * FGP_LOCK: Page is return locked
1282 * FGP_CREAT: If page is not present then a new page is allocated using
1283 * @gfp_mask and added to the page cache and the VM's LRU
1284 * list. The page is returned locked and with an increased
1285 * refcount. Otherwise, %NULL is returned.
1287 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1288 * if the GFP flags specified for FGP_CREAT are atomic.
1290 * If there is a page cache page, it is returned with an increased refcount.
1292 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1293 int fgp_flags
, gfp_t gfp_mask
)
1298 page
= find_get_entry(mapping
, offset
);
1299 if (radix_tree_exceptional_entry(page
))
1304 if (fgp_flags
& FGP_LOCK
) {
1305 if (fgp_flags
& FGP_NOWAIT
) {
1306 if (!trylock_page(page
)) {
1314 /* Has the page been truncated? */
1315 if (unlikely(page
->mapping
!= mapping
)) {
1320 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1323 if (page
&& (fgp_flags
& FGP_ACCESSED
))
1324 mark_page_accessed(page
);
1327 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1329 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1330 gfp_mask
|= __GFP_WRITE
;
1331 if (fgp_flags
& FGP_NOFS
)
1332 gfp_mask
&= ~__GFP_FS
;
1334 page
= __page_cache_alloc(gfp_mask
);
1338 if (WARN_ON_ONCE(!(fgp_flags
& FGP_LOCK
)))
1339 fgp_flags
|= FGP_LOCK
;
1341 /* Init accessed so avoid atomic mark_page_accessed later */
1342 if (fgp_flags
& FGP_ACCESSED
)
1343 __SetPageReferenced(page
);
1345 err
= add_to_page_cache_lru(page
, mapping
, offset
,
1346 gfp_mask
& GFP_RECLAIM_MASK
);
1347 if (unlikely(err
)) {
1357 EXPORT_SYMBOL(pagecache_get_page
);
1360 * find_get_entries - gang pagecache lookup
1361 * @mapping: The address_space to search
1362 * @start: The starting page cache index
1363 * @nr_entries: The maximum number of entries
1364 * @entries: Where the resulting entries are placed
1365 * @indices: The cache indices corresponding to the entries in @entries
1367 * find_get_entries() will search for and return a group of up to
1368 * @nr_entries entries in the mapping. The entries are placed at
1369 * @entries. find_get_entries() takes a reference against any actual
1372 * The search returns a group of mapping-contiguous page cache entries
1373 * with ascending indexes. There may be holes in the indices due to
1374 * not-present pages.
1376 * Any shadow entries of evicted pages, or swap entries from
1377 * shmem/tmpfs, are included in the returned array.
1379 * find_get_entries() returns the number of pages and shadow entries
1382 unsigned find_get_entries(struct address_space
*mapping
,
1383 pgoff_t start
, unsigned int nr_entries
,
1384 struct page
**entries
, pgoff_t
*indices
)
1387 unsigned int ret
= 0;
1388 struct radix_tree_iter iter
;
1394 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1395 struct page
*head
, *page
;
1397 page
= radix_tree_deref_slot(slot
);
1398 if (unlikely(!page
))
1400 if (radix_tree_exception(page
)) {
1401 if (radix_tree_deref_retry(page
)) {
1402 slot
= radix_tree_iter_retry(&iter
);
1406 * A shadow entry of a recently evicted page, a swap
1407 * entry from shmem/tmpfs or a DAX entry. Return it
1408 * without attempting to raise page count.
1413 head
= compound_head(page
);
1414 if (!page_cache_get_speculative(head
))
1417 /* The page was split under us? */
1418 if (compound_head(page
) != head
) {
1423 /* Has the page moved? */
1424 if (unlikely(page
!= *slot
)) {
1429 indices
[ret
] = iter
.index
;
1430 entries
[ret
] = page
;
1431 if (++ret
== nr_entries
)
1439 * find_get_pages - gang pagecache lookup
1440 * @mapping: The address_space to search
1441 * @start: The starting page index
1442 * @nr_pages: The maximum number of pages
1443 * @pages: Where the resulting pages are placed
1445 * find_get_pages() will search for and return a group of up to
1446 * @nr_pages pages in the mapping. The pages are placed at @pages.
1447 * find_get_pages() takes a reference against the returned pages.
1449 * The search returns a group of mapping-contiguous pages with ascending
1450 * indexes. There may be holes in the indices due to not-present pages.
1452 * find_get_pages() returns the number of pages which were found.
1454 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
1455 unsigned int nr_pages
, struct page
**pages
)
1457 struct radix_tree_iter iter
;
1461 if (unlikely(!nr_pages
))
1465 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1466 struct page
*head
, *page
;
1468 page
= radix_tree_deref_slot(slot
);
1469 if (unlikely(!page
))
1472 if (radix_tree_exception(page
)) {
1473 if (radix_tree_deref_retry(page
)) {
1474 slot
= radix_tree_iter_retry(&iter
);
1478 * A shadow entry of a recently evicted page,
1479 * or a swap entry from shmem/tmpfs. Skip
1485 head
= compound_head(page
);
1486 if (!page_cache_get_speculative(head
))
1489 /* The page was split under us? */
1490 if (compound_head(page
) != head
) {
1495 /* Has the page moved? */
1496 if (unlikely(page
!= *slot
)) {
1502 if (++ret
== nr_pages
)
1511 * find_get_pages_contig - gang contiguous pagecache lookup
1512 * @mapping: The address_space to search
1513 * @index: The starting page index
1514 * @nr_pages: The maximum number of pages
1515 * @pages: Where the resulting pages are placed
1517 * find_get_pages_contig() works exactly like find_get_pages(), except
1518 * that the returned number of pages are guaranteed to be contiguous.
1520 * find_get_pages_contig() returns the number of pages which were found.
1522 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1523 unsigned int nr_pages
, struct page
**pages
)
1525 struct radix_tree_iter iter
;
1527 unsigned int ret
= 0;
1529 if (unlikely(!nr_pages
))
1533 radix_tree_for_each_contig(slot
, &mapping
->page_tree
, &iter
, index
) {
1534 struct page
*head
, *page
;
1536 page
= radix_tree_deref_slot(slot
);
1537 /* The hole, there no reason to continue */
1538 if (unlikely(!page
))
1541 if (radix_tree_exception(page
)) {
1542 if (radix_tree_deref_retry(page
)) {
1543 slot
= radix_tree_iter_retry(&iter
);
1547 * A shadow entry of a recently evicted page,
1548 * or a swap entry from shmem/tmpfs. Stop
1549 * looking for contiguous pages.
1554 head
= compound_head(page
);
1555 if (!page_cache_get_speculative(head
))
1558 /* The page was split under us? */
1559 if (compound_head(page
) != head
) {
1564 /* Has the page moved? */
1565 if (unlikely(page
!= *slot
)) {
1571 * must check mapping and index after taking the ref.
1572 * otherwise we can get both false positives and false
1573 * negatives, which is just confusing to the caller.
1575 if (page
->mapping
== NULL
|| page_to_pgoff(page
) != iter
.index
) {
1581 if (++ret
== nr_pages
)
1587 EXPORT_SYMBOL(find_get_pages_contig
);
1590 * find_get_pages_tag - find and return pages that match @tag
1591 * @mapping: the address_space to search
1592 * @index: the starting page index
1593 * @tag: the tag index
1594 * @nr_pages: the maximum number of pages
1595 * @pages: where the resulting pages are placed
1597 * Like find_get_pages, except we only return pages which are tagged with
1598 * @tag. We update @index to index the next page for the traversal.
1600 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
1601 int tag
, unsigned int nr_pages
, struct page
**pages
)
1603 struct radix_tree_iter iter
;
1607 if (unlikely(!nr_pages
))
1611 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1612 &iter
, *index
, tag
) {
1613 struct page
*head
, *page
;
1615 page
= radix_tree_deref_slot(slot
);
1616 if (unlikely(!page
))
1619 if (radix_tree_exception(page
)) {
1620 if (radix_tree_deref_retry(page
)) {
1621 slot
= radix_tree_iter_retry(&iter
);
1625 * A shadow entry of a recently evicted page.
1627 * Those entries should never be tagged, but
1628 * this tree walk is lockless and the tags are
1629 * looked up in bulk, one radix tree node at a
1630 * time, so there is a sizable window for page
1631 * reclaim to evict a page we saw tagged.
1638 head
= compound_head(page
);
1639 if (!page_cache_get_speculative(head
))
1642 /* The page was split under us? */
1643 if (compound_head(page
) != head
) {
1648 /* Has the page moved? */
1649 if (unlikely(page
!= *slot
)) {
1655 if (++ret
== nr_pages
)
1662 *index
= pages
[ret
- 1]->index
+ 1;
1666 EXPORT_SYMBOL(find_get_pages_tag
);
1669 * find_get_entries_tag - find and return entries that match @tag
1670 * @mapping: the address_space to search
1671 * @start: the starting page cache index
1672 * @tag: the tag index
1673 * @nr_entries: the maximum number of entries
1674 * @entries: where the resulting entries are placed
1675 * @indices: the cache indices corresponding to the entries in @entries
1677 * Like find_get_entries, except we only return entries which are tagged with
1680 unsigned find_get_entries_tag(struct address_space
*mapping
, pgoff_t start
,
1681 int tag
, unsigned int nr_entries
,
1682 struct page
**entries
, pgoff_t
*indices
)
1685 unsigned int ret
= 0;
1686 struct radix_tree_iter iter
;
1692 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1693 &iter
, start
, tag
) {
1694 struct page
*head
, *page
;
1696 page
= radix_tree_deref_slot(slot
);
1697 if (unlikely(!page
))
1699 if (radix_tree_exception(page
)) {
1700 if (radix_tree_deref_retry(page
)) {
1701 slot
= radix_tree_iter_retry(&iter
);
1706 * A shadow entry of a recently evicted page, a swap
1707 * entry from shmem/tmpfs or a DAX entry. Return it
1708 * without attempting to raise page count.
1713 head
= compound_head(page
);
1714 if (!page_cache_get_speculative(head
))
1717 /* The page was split under us? */
1718 if (compound_head(page
) != head
) {
1723 /* Has the page moved? */
1724 if (unlikely(page
!= *slot
)) {
1729 indices
[ret
] = iter
.index
;
1730 entries
[ret
] = page
;
1731 if (++ret
== nr_entries
)
1737 EXPORT_SYMBOL(find_get_entries_tag
);
1740 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1741 * a _large_ part of the i/o request. Imagine the worst scenario:
1743 * ---R__________________________________________B__________
1744 * ^ reading here ^ bad block(assume 4k)
1746 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1747 * => failing the whole request => read(R) => read(R+1) =>
1748 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1749 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1750 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1752 * It is going insane. Fix it by quickly scaling down the readahead size.
1754 static void shrink_readahead_size_eio(struct file
*filp
,
1755 struct file_ra_state
*ra
)
1761 * do_generic_file_read - generic file read routine
1762 * @filp: the file to read
1763 * @ppos: current file position
1764 * @iter: data destination
1765 * @written: already copied
1767 * This is a generic file read routine, and uses the
1768 * mapping->a_ops->readpage() function for the actual low-level stuff.
1770 * This is really ugly. But the goto's actually try to clarify some
1771 * of the logic when it comes to error handling etc.
1773 static ssize_t
do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1774 struct iov_iter
*iter
, ssize_t written
)
1776 struct address_space
*mapping
= filp
->f_mapping
;
1777 struct inode
*inode
= mapping
->host
;
1778 struct file_ra_state
*ra
= &filp
->f_ra
;
1782 unsigned long offset
; /* offset into pagecache page */
1783 unsigned int prev_offset
;
1786 if (unlikely(*ppos
>= inode
->i_sb
->s_maxbytes
))
1788 iov_iter_truncate(iter
, inode
->i_sb
->s_maxbytes
);
1790 index
= *ppos
>> PAGE_SHIFT
;
1791 prev_index
= ra
->prev_pos
>> PAGE_SHIFT
;
1792 prev_offset
= ra
->prev_pos
& (PAGE_SIZE
-1);
1793 last_index
= (*ppos
+ iter
->count
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
1794 offset
= *ppos
& ~PAGE_MASK
;
1800 unsigned long nr
, ret
;
1804 if (fatal_signal_pending(current
)) {
1809 page
= find_get_page(mapping
, index
);
1811 page_cache_sync_readahead(mapping
,
1813 index
, last_index
- index
);
1814 page
= find_get_page(mapping
, index
);
1815 if (unlikely(page
== NULL
))
1816 goto no_cached_page
;
1818 if (PageReadahead(page
)) {
1819 page_cache_async_readahead(mapping
,
1821 index
, last_index
- index
);
1823 if (!PageUptodate(page
)) {
1825 * See comment in do_read_cache_page on why
1826 * wait_on_page_locked is used to avoid unnecessarily
1827 * serialisations and why it's safe.
1829 error
= wait_on_page_locked_killable(page
);
1830 if (unlikely(error
))
1831 goto readpage_error
;
1832 if (PageUptodate(page
))
1835 if (inode
->i_blkbits
== PAGE_SHIFT
||
1836 !mapping
->a_ops
->is_partially_uptodate
)
1837 goto page_not_up_to_date
;
1838 /* pipes can't handle partially uptodate pages */
1839 if (unlikely(iter
->type
& ITER_PIPE
))
1840 goto page_not_up_to_date
;
1841 if (!trylock_page(page
))
1842 goto page_not_up_to_date
;
1843 /* Did it get truncated before we got the lock? */
1845 goto page_not_up_to_date_locked
;
1846 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1847 offset
, iter
->count
))
1848 goto page_not_up_to_date_locked
;
1853 * i_size must be checked after we know the page is Uptodate.
1855 * Checking i_size after the check allows us to calculate
1856 * the correct value for "nr", which means the zero-filled
1857 * part of the page is not copied back to userspace (unless
1858 * another truncate extends the file - this is desired though).
1861 isize
= i_size_read(inode
);
1862 end_index
= (isize
- 1) >> PAGE_SHIFT
;
1863 if (unlikely(!isize
|| index
> end_index
)) {
1868 /* nr is the maximum number of bytes to copy from this page */
1870 if (index
== end_index
) {
1871 nr
= ((isize
- 1) & ~PAGE_MASK
) + 1;
1879 /* If users can be writing to this page using arbitrary
1880 * virtual addresses, take care about potential aliasing
1881 * before reading the page on the kernel side.
1883 if (mapping_writably_mapped(mapping
))
1884 flush_dcache_page(page
);
1887 * When a sequential read accesses a page several times,
1888 * only mark it as accessed the first time.
1890 if (prev_index
!= index
|| offset
!= prev_offset
)
1891 mark_page_accessed(page
);
1895 * Ok, we have the page, and it's up-to-date, so
1896 * now we can copy it to user space...
1899 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
1901 index
+= offset
>> PAGE_SHIFT
;
1902 offset
&= ~PAGE_MASK
;
1903 prev_offset
= offset
;
1907 if (!iov_iter_count(iter
))
1915 page_not_up_to_date
:
1916 /* Get exclusive access to the page ... */
1917 error
= lock_page_killable(page
);
1918 if (unlikely(error
))
1919 goto readpage_error
;
1921 page_not_up_to_date_locked
:
1922 /* Did it get truncated before we got the lock? */
1923 if (!page
->mapping
) {
1929 /* Did somebody else fill it already? */
1930 if (PageUptodate(page
)) {
1937 * A previous I/O error may have been due to temporary
1938 * failures, eg. multipath errors.
1939 * PG_error will be set again if readpage fails.
1941 ClearPageError(page
);
1942 /* Start the actual read. The read will unlock the page. */
1943 error
= mapping
->a_ops
->readpage(filp
, page
);
1945 if (unlikely(error
)) {
1946 if (error
== AOP_TRUNCATED_PAGE
) {
1951 goto readpage_error
;
1954 if (!PageUptodate(page
)) {
1955 error
= lock_page_killable(page
);
1956 if (unlikely(error
))
1957 goto readpage_error
;
1958 if (!PageUptodate(page
)) {
1959 if (page
->mapping
== NULL
) {
1961 * invalidate_mapping_pages got it
1968 shrink_readahead_size_eio(filp
, ra
);
1970 goto readpage_error
;
1978 /* UHHUH! A synchronous read error occurred. Report it */
1984 * Ok, it wasn't cached, so we need to create a new
1987 page
= page_cache_alloc_cold(mapping
);
1992 error
= add_to_page_cache_lru(page
, mapping
, index
,
1993 mapping_gfp_constraint(mapping
, GFP_KERNEL
));
1996 if (error
== -EEXIST
) {
2006 ra
->prev_pos
= prev_index
;
2007 ra
->prev_pos
<<= PAGE_SHIFT
;
2008 ra
->prev_pos
|= prev_offset
;
2010 *ppos
= ((loff_t
)index
<< PAGE_SHIFT
) + offset
;
2011 file_accessed(filp
);
2012 return written
? written
: error
;
2016 * generic_file_read_iter - generic filesystem read routine
2017 * @iocb: kernel I/O control block
2018 * @iter: destination for the data read
2020 * This is the "read_iter()" routine for all filesystems
2021 * that can use the page cache directly.
2024 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
2026 struct file
*file
= iocb
->ki_filp
;
2028 size_t count
= iov_iter_count(iter
);
2031 goto out
; /* skip atime */
2033 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2034 struct address_space
*mapping
= file
->f_mapping
;
2035 struct inode
*inode
= mapping
->host
;
2036 struct iov_iter data
= *iter
;
2039 size
= i_size_read(inode
);
2040 retval
= filemap_write_and_wait_range(mapping
, iocb
->ki_pos
,
2041 iocb
->ki_pos
+ count
- 1);
2045 file_accessed(file
);
2047 retval
= mapping
->a_ops
->direct_IO(iocb
, &data
);
2049 iocb
->ki_pos
+= retval
;
2050 iov_iter_advance(iter
, retval
);
2054 * Btrfs can have a short DIO read if we encounter
2055 * compressed extents, so if there was an error, or if
2056 * we've already read everything we wanted to, or if
2057 * there was a short read because we hit EOF, go ahead
2058 * and return. Otherwise fallthrough to buffered io for
2059 * the rest of the read. Buffered reads will not work for
2060 * DAX files, so don't bother trying.
2062 if (retval
< 0 || !iov_iter_count(iter
) || iocb
->ki_pos
>= size
||
2067 retval
= do_generic_file_read(file
, &iocb
->ki_pos
, iter
, retval
);
2071 EXPORT_SYMBOL(generic_file_read_iter
);
2075 * page_cache_read - adds requested page to the page cache if not already there
2076 * @file: file to read
2077 * @offset: page index
2078 * @gfp_mask: memory allocation flags
2080 * This adds the requested page to the page cache if it isn't already there,
2081 * and schedules an I/O to read in its contents from disk.
2083 static int page_cache_read(struct file
*file
, pgoff_t offset
, gfp_t gfp_mask
)
2085 struct address_space
*mapping
= file
->f_mapping
;
2090 page
= __page_cache_alloc(gfp_mask
|__GFP_COLD
);
2094 ret
= add_to_page_cache_lru(page
, mapping
, offset
, gfp_mask
& GFP_KERNEL
);
2096 ret
= mapping
->a_ops
->readpage(file
, page
);
2097 else if (ret
== -EEXIST
)
2098 ret
= 0; /* losing race to add is OK */
2102 } while (ret
== AOP_TRUNCATED_PAGE
);
2107 #define MMAP_LOTSAMISS (100)
2110 * Synchronous readahead happens when we don't even find
2111 * a page in the page cache at all.
2113 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
2114 struct file_ra_state
*ra
,
2118 struct address_space
*mapping
= file
->f_mapping
;
2120 /* If we don't want any read-ahead, don't bother */
2121 if (vma
->vm_flags
& VM_RAND_READ
)
2126 if (vma
->vm_flags
& VM_SEQ_READ
) {
2127 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
2132 /* Avoid banging the cache line if not needed */
2133 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
2137 * Do we miss much more than hit in this file? If so,
2138 * stop bothering with read-ahead. It will only hurt.
2140 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
2146 ra
->start
= max_t(long, 0, offset
- ra
->ra_pages
/ 2);
2147 ra
->size
= ra
->ra_pages
;
2148 ra
->async_size
= ra
->ra_pages
/ 4;
2149 ra_submit(ra
, mapping
, file
);
2153 * Asynchronous readahead happens when we find the page and PG_readahead,
2154 * so we want to possibly extend the readahead further..
2156 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
2157 struct file_ra_state
*ra
,
2162 struct address_space
*mapping
= file
->f_mapping
;
2164 /* If we don't want any read-ahead, don't bother */
2165 if (vma
->vm_flags
& VM_RAND_READ
)
2167 if (ra
->mmap_miss
> 0)
2169 if (PageReadahead(page
))
2170 page_cache_async_readahead(mapping
, ra
, file
,
2171 page
, offset
, ra
->ra_pages
);
2175 * filemap_fault - read in file data for page fault handling
2176 * @vmf: struct vm_fault containing details of the fault
2178 * filemap_fault() is invoked via the vma operations vector for a
2179 * mapped memory region to read in file data during a page fault.
2181 * The goto's are kind of ugly, but this streamlines the normal case of having
2182 * it in the page cache, and handles the special cases reasonably without
2183 * having a lot of duplicated code.
2185 * vma->vm_mm->mmap_sem must be held on entry.
2187 * If our return value has VM_FAULT_RETRY set, it's because
2188 * lock_page_or_retry() returned 0.
2189 * The mmap_sem has usually been released in this case.
2190 * See __lock_page_or_retry() for the exception.
2192 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2193 * has not been released.
2195 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2197 int filemap_fault(struct vm_fault
*vmf
)
2200 struct file
*file
= vmf
->vma
->vm_file
;
2201 struct address_space
*mapping
= file
->f_mapping
;
2202 struct file_ra_state
*ra
= &file
->f_ra
;
2203 struct inode
*inode
= mapping
->host
;
2204 pgoff_t offset
= vmf
->pgoff
;
2209 size
= round_up(i_size_read(inode
), PAGE_SIZE
);
2210 if (offset
>= size
>> PAGE_SHIFT
)
2211 return VM_FAULT_SIGBUS
;
2214 * Do we have something in the page cache already?
2216 page
= find_get_page(mapping
, offset
);
2217 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
2219 * We found the page, so try async readahead before
2220 * waiting for the lock.
2222 do_async_mmap_readahead(vmf
->vma
, ra
, file
, page
, offset
);
2224 /* No page in the page cache at all */
2225 do_sync_mmap_readahead(vmf
->vma
, ra
, file
, offset
);
2226 count_vm_event(PGMAJFAULT
);
2227 mem_cgroup_count_vm_event(vmf
->vma
->vm_mm
, PGMAJFAULT
);
2228 ret
= VM_FAULT_MAJOR
;
2230 page
= find_get_page(mapping
, offset
);
2232 goto no_cached_page
;
2235 if (!lock_page_or_retry(page
, vmf
->vma
->vm_mm
, vmf
->flags
)) {
2237 return ret
| VM_FAULT_RETRY
;
2240 /* Did it get truncated? */
2241 if (unlikely(page
->mapping
!= mapping
)) {
2246 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
2249 * We have a locked page in the page cache, now we need to check
2250 * that it's up-to-date. If not, it is going to be due to an error.
2252 if (unlikely(!PageUptodate(page
)))
2253 goto page_not_uptodate
;
2256 * Found the page and have a reference on it.
2257 * We must recheck i_size under page lock.
2259 size
= round_up(i_size_read(inode
), PAGE_SIZE
);
2260 if (unlikely(offset
>= size
>> PAGE_SHIFT
)) {
2263 return VM_FAULT_SIGBUS
;
2267 return ret
| VM_FAULT_LOCKED
;
2271 * We're only likely to ever get here if MADV_RANDOM is in
2274 error
= page_cache_read(file
, offset
, vmf
->gfp_mask
);
2277 * The page we want has now been added to the page cache.
2278 * In the unlikely event that someone removed it in the
2279 * meantime, we'll just come back here and read it again.
2285 * An error return from page_cache_read can result if the
2286 * system is low on memory, or a problem occurs while trying
2289 if (error
== -ENOMEM
)
2290 return VM_FAULT_OOM
;
2291 return VM_FAULT_SIGBUS
;
2295 * Umm, take care of errors if the page isn't up-to-date.
2296 * Try to re-read it _once_. We do this synchronously,
2297 * because there really aren't any performance issues here
2298 * and we need to check for errors.
2300 ClearPageError(page
);
2301 error
= mapping
->a_ops
->readpage(file
, page
);
2303 wait_on_page_locked(page
);
2304 if (!PageUptodate(page
))
2309 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
2312 /* Things didn't work out. Return zero to tell the mm layer so. */
2313 shrink_readahead_size_eio(file
, ra
);
2314 return VM_FAULT_SIGBUS
;
2316 EXPORT_SYMBOL(filemap_fault
);
2318 void filemap_map_pages(struct vm_fault
*vmf
,
2319 pgoff_t start_pgoff
, pgoff_t end_pgoff
)
2321 struct radix_tree_iter iter
;
2323 struct file
*file
= vmf
->vma
->vm_file
;
2324 struct address_space
*mapping
= file
->f_mapping
;
2325 pgoff_t last_pgoff
= start_pgoff
;
2327 struct page
*head
, *page
;
2330 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
,
2332 if (iter
.index
> end_pgoff
)
2335 page
= radix_tree_deref_slot(slot
);
2336 if (unlikely(!page
))
2338 if (radix_tree_exception(page
)) {
2339 if (radix_tree_deref_retry(page
)) {
2340 slot
= radix_tree_iter_retry(&iter
);
2346 head
= compound_head(page
);
2347 if (!page_cache_get_speculative(head
))
2350 /* The page was split under us? */
2351 if (compound_head(page
) != head
) {
2356 /* Has the page moved? */
2357 if (unlikely(page
!= *slot
)) {
2362 if (!PageUptodate(page
) ||
2363 PageReadahead(page
) ||
2366 if (!trylock_page(page
))
2369 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2372 size
= round_up(i_size_read(mapping
->host
), PAGE_SIZE
);
2373 if (page
->index
>= size
>> PAGE_SHIFT
)
2376 if (file
->f_ra
.mmap_miss
> 0)
2377 file
->f_ra
.mmap_miss
--;
2379 vmf
->address
+= (iter
.index
- last_pgoff
) << PAGE_SHIFT
;
2381 vmf
->pte
+= iter
.index
- last_pgoff
;
2382 last_pgoff
= iter
.index
;
2383 if (alloc_set_pte(vmf
, NULL
, page
))
2392 /* Huge page is mapped? No need to proceed. */
2393 if (pmd_trans_huge(*vmf
->pmd
))
2395 if (iter
.index
== end_pgoff
)
2400 EXPORT_SYMBOL(filemap_map_pages
);
2402 int filemap_page_mkwrite(struct vm_fault
*vmf
)
2404 struct page
*page
= vmf
->page
;
2405 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
2406 int ret
= VM_FAULT_LOCKED
;
2408 sb_start_pagefault(inode
->i_sb
);
2409 file_update_time(vmf
->vma
->vm_file
);
2411 if (page
->mapping
!= inode
->i_mapping
) {
2413 ret
= VM_FAULT_NOPAGE
;
2417 * We mark the page dirty already here so that when freeze is in
2418 * progress, we are guaranteed that writeback during freezing will
2419 * see the dirty page and writeprotect it again.
2421 set_page_dirty(page
);
2422 wait_for_stable_page(page
);
2424 sb_end_pagefault(inode
->i_sb
);
2427 EXPORT_SYMBOL(filemap_page_mkwrite
);
2429 const struct vm_operations_struct generic_file_vm_ops
= {
2430 .fault
= filemap_fault
,
2431 .map_pages
= filemap_map_pages
,
2432 .page_mkwrite
= filemap_page_mkwrite
,
2435 /* This is used for a general mmap of a disk file */
2437 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2439 struct address_space
*mapping
= file
->f_mapping
;
2441 if (!mapping
->a_ops
->readpage
)
2443 file_accessed(file
);
2444 vma
->vm_ops
= &generic_file_vm_ops
;
2449 * This is for filesystems which do not implement ->writepage.
2451 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2453 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2455 return generic_file_mmap(file
, vma
);
2458 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2462 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2466 #endif /* CONFIG_MMU */
2468 EXPORT_SYMBOL(generic_file_mmap
);
2469 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2471 static struct page
*wait_on_page_read(struct page
*page
)
2473 if (!IS_ERR(page
)) {
2474 wait_on_page_locked(page
);
2475 if (!PageUptodate(page
)) {
2477 page
= ERR_PTR(-EIO
);
2483 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2485 int (*filler
)(void *, struct page
*),
2492 page
= find_get_page(mapping
, index
);
2494 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
2496 return ERR_PTR(-ENOMEM
);
2497 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2498 if (unlikely(err
)) {
2502 /* Presumably ENOMEM for radix tree node */
2503 return ERR_PTR(err
);
2507 err
= filler(data
, page
);
2510 return ERR_PTR(err
);
2513 page
= wait_on_page_read(page
);
2518 if (PageUptodate(page
))
2522 * Page is not up to date and may be locked due one of the following
2523 * case a: Page is being filled and the page lock is held
2524 * case b: Read/write error clearing the page uptodate status
2525 * case c: Truncation in progress (page locked)
2526 * case d: Reclaim in progress
2528 * Case a, the page will be up to date when the page is unlocked.
2529 * There is no need to serialise on the page lock here as the page
2530 * is pinned so the lock gives no additional protection. Even if the
2531 * the page is truncated, the data is still valid if PageUptodate as
2532 * it's a race vs truncate race.
2533 * Case b, the page will not be up to date
2534 * Case c, the page may be truncated but in itself, the data may still
2535 * be valid after IO completes as it's a read vs truncate race. The
2536 * operation must restart if the page is not uptodate on unlock but
2537 * otherwise serialising on page lock to stabilise the mapping gives
2538 * no additional guarantees to the caller as the page lock is
2539 * released before return.
2540 * Case d, similar to truncation. If reclaim holds the page lock, it
2541 * will be a race with remove_mapping that determines if the mapping
2542 * is valid on unlock but otherwise the data is valid and there is
2543 * no need to serialise with page lock.
2545 * As the page lock gives no additional guarantee, we optimistically
2546 * wait on the page to be unlocked and check if it's up to date and
2547 * use the page if it is. Otherwise, the page lock is required to
2548 * distinguish between the different cases. The motivation is that we
2549 * avoid spurious serialisations and wakeups when multiple processes
2550 * wait on the same page for IO to complete.
2552 wait_on_page_locked(page
);
2553 if (PageUptodate(page
))
2556 /* Distinguish between all the cases under the safety of the lock */
2559 /* Case c or d, restart the operation */
2560 if (!page
->mapping
) {
2566 /* Someone else locked and filled the page in a very small window */
2567 if (PageUptodate(page
)) {
2574 mark_page_accessed(page
);
2579 * read_cache_page - read into page cache, fill it if needed
2580 * @mapping: the page's address_space
2581 * @index: the page index
2582 * @filler: function to perform the read
2583 * @data: first arg to filler(data, page) function, often left as NULL
2585 * Read into the page cache. If a page already exists, and PageUptodate() is
2586 * not set, try to fill the page and wait for it to become unlocked.
2588 * If the page does not get brought uptodate, return -EIO.
2590 struct page
*read_cache_page(struct address_space
*mapping
,
2592 int (*filler
)(void *, struct page
*),
2595 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
2597 EXPORT_SYMBOL(read_cache_page
);
2600 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2601 * @mapping: the page's address_space
2602 * @index: the page index
2603 * @gfp: the page allocator flags to use if allocating
2605 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2606 * any new page allocations done using the specified allocation flags.
2608 * If the page does not get brought uptodate, return -EIO.
2610 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2614 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
2616 return do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
);
2618 EXPORT_SYMBOL(read_cache_page_gfp
);
2621 * Performs necessary checks before doing a write
2623 * Can adjust writing position or amount of bytes to write.
2624 * Returns appropriate error code that caller should return or
2625 * zero in case that write should be allowed.
2627 inline ssize_t
generic_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
)
2629 struct file
*file
= iocb
->ki_filp
;
2630 struct inode
*inode
= file
->f_mapping
->host
;
2631 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2634 if (!iov_iter_count(from
))
2637 /* FIXME: this is for backwards compatibility with 2.4 */
2638 if (iocb
->ki_flags
& IOCB_APPEND
)
2639 iocb
->ki_pos
= i_size_read(inode
);
2643 if (limit
!= RLIM_INFINITY
) {
2644 if (iocb
->ki_pos
>= limit
) {
2645 send_sig(SIGXFSZ
, current
, 0);
2648 iov_iter_truncate(from
, limit
- (unsigned long)pos
);
2654 if (unlikely(pos
+ iov_iter_count(from
) > MAX_NON_LFS
&&
2655 !(file
->f_flags
& O_LARGEFILE
))) {
2656 if (pos
>= MAX_NON_LFS
)
2658 iov_iter_truncate(from
, MAX_NON_LFS
- (unsigned long)pos
);
2662 * Are we about to exceed the fs block limit ?
2664 * If we have written data it becomes a short write. If we have
2665 * exceeded without writing data we send a signal and return EFBIG.
2666 * Linus frestrict idea will clean these up nicely..
2668 if (unlikely(pos
>= inode
->i_sb
->s_maxbytes
))
2671 iov_iter_truncate(from
, inode
->i_sb
->s_maxbytes
- pos
);
2672 return iov_iter_count(from
);
2674 EXPORT_SYMBOL(generic_write_checks
);
2676 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2677 loff_t pos
, unsigned len
, unsigned flags
,
2678 struct page
**pagep
, void **fsdata
)
2680 const struct address_space_operations
*aops
= mapping
->a_ops
;
2682 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2685 EXPORT_SYMBOL(pagecache_write_begin
);
2687 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2688 loff_t pos
, unsigned len
, unsigned copied
,
2689 struct page
*page
, void *fsdata
)
2691 const struct address_space_operations
*aops
= mapping
->a_ops
;
2693 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2695 EXPORT_SYMBOL(pagecache_write_end
);
2698 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
2700 struct file
*file
= iocb
->ki_filp
;
2701 struct address_space
*mapping
= file
->f_mapping
;
2702 struct inode
*inode
= mapping
->host
;
2703 loff_t pos
= iocb
->ki_pos
;
2707 struct iov_iter data
;
2709 write_len
= iov_iter_count(from
);
2710 end
= (pos
+ write_len
- 1) >> PAGE_SHIFT
;
2712 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2717 * After a write we want buffered reads to be sure to go to disk to get
2718 * the new data. We invalidate clean cached page from the region we're
2719 * about to write. We do this *before* the write so that we can return
2720 * without clobbering -EIOCBQUEUED from ->direct_IO().
2722 if (mapping
->nrpages
) {
2723 written
= invalidate_inode_pages2_range(mapping
,
2724 pos
>> PAGE_SHIFT
, end
);
2726 * If a page can not be invalidated, return 0 to fall back
2727 * to buffered write.
2730 if (written
== -EBUSY
)
2737 written
= mapping
->a_ops
->direct_IO(iocb
, &data
);
2740 * Finally, try again to invalidate clean pages which might have been
2741 * cached by non-direct readahead, or faulted in by get_user_pages()
2742 * if the source of the write was an mmap'ed region of the file
2743 * we're writing. Either one is a pretty crazy thing to do,
2744 * so we don't support it 100%. If this invalidation
2745 * fails, tough, the write still worked...
2747 if (mapping
->nrpages
) {
2748 invalidate_inode_pages2_range(mapping
,
2749 pos
>> PAGE_SHIFT
, end
);
2754 iov_iter_advance(from
, written
);
2755 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2756 i_size_write(inode
, pos
);
2757 mark_inode_dirty(inode
);
2764 EXPORT_SYMBOL(generic_file_direct_write
);
2767 * Find or create a page at the given pagecache position. Return the locked
2768 * page. This function is specifically for buffered writes.
2770 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2771 pgoff_t index
, unsigned flags
)
2774 int fgp_flags
= FGP_LOCK
|FGP_WRITE
|FGP_CREAT
;
2776 if (flags
& AOP_FLAG_NOFS
)
2777 fgp_flags
|= FGP_NOFS
;
2779 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
2780 mapping_gfp_mask(mapping
));
2782 wait_for_stable_page(page
);
2786 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2788 ssize_t
generic_perform_write(struct file
*file
,
2789 struct iov_iter
*i
, loff_t pos
)
2791 struct address_space
*mapping
= file
->f_mapping
;
2792 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2794 ssize_t written
= 0;
2795 unsigned int flags
= 0;
2798 * Copies from kernel address space cannot fail (NFSD is a big user).
2800 if (!iter_is_iovec(i
))
2801 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2805 unsigned long offset
; /* Offset into pagecache page */
2806 unsigned long bytes
; /* Bytes to write to page */
2807 size_t copied
; /* Bytes copied from user */
2810 offset
= (pos
& (PAGE_SIZE
- 1));
2811 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
2816 * Bring in the user page that we will copy from _first_.
2817 * Otherwise there's a nasty deadlock on copying from the
2818 * same page as we're writing to, without it being marked
2821 * Not only is this an optimisation, but it is also required
2822 * to check that the address is actually valid, when atomic
2823 * usercopies are used, below.
2825 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2830 if (fatal_signal_pending(current
)) {
2835 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2837 if (unlikely(status
< 0))
2840 if (mapping_writably_mapped(mapping
))
2841 flush_dcache_page(page
);
2843 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2844 flush_dcache_page(page
);
2846 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2848 if (unlikely(status
< 0))
2854 iov_iter_advance(i
, copied
);
2855 if (unlikely(copied
== 0)) {
2857 * If we were unable to copy any data at all, we must
2858 * fall back to a single segment length write.
2860 * If we didn't fallback here, we could livelock
2861 * because not all segments in the iov can be copied at
2862 * once without a pagefault.
2864 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
2865 iov_iter_single_seg_count(i
));
2871 balance_dirty_pages_ratelimited(mapping
);
2872 } while (iov_iter_count(i
));
2874 return written
? written
: status
;
2876 EXPORT_SYMBOL(generic_perform_write
);
2879 * __generic_file_write_iter - write data to a file
2880 * @iocb: IO state structure (file, offset, etc.)
2881 * @from: iov_iter with data to write
2883 * This function does all the work needed for actually writing data to a
2884 * file. It does all basic checks, removes SUID from the file, updates
2885 * modification times and calls proper subroutines depending on whether we
2886 * do direct IO or a standard buffered write.
2888 * It expects i_mutex to be grabbed unless we work on a block device or similar
2889 * object which does not need locking at all.
2891 * This function does *not* take care of syncing data in case of O_SYNC write.
2892 * A caller has to handle it. This is mainly due to the fact that we want to
2893 * avoid syncing under i_mutex.
2895 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2897 struct file
*file
= iocb
->ki_filp
;
2898 struct address_space
* mapping
= file
->f_mapping
;
2899 struct inode
*inode
= mapping
->host
;
2900 ssize_t written
= 0;
2904 /* We can write back this queue in page reclaim */
2905 current
->backing_dev_info
= inode_to_bdi(inode
);
2906 err
= file_remove_privs(file
);
2910 err
= file_update_time(file
);
2914 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2915 loff_t pos
, endbyte
;
2917 written
= generic_file_direct_write(iocb
, from
);
2919 * If the write stopped short of completing, fall back to
2920 * buffered writes. Some filesystems do this for writes to
2921 * holes, for example. For DAX files, a buffered write will
2922 * not succeed (even if it did, DAX does not handle dirty
2923 * page-cache pages correctly).
2925 if (written
< 0 || !iov_iter_count(from
) || IS_DAX(inode
))
2928 status
= generic_perform_write(file
, from
, pos
= iocb
->ki_pos
);
2930 * If generic_perform_write() returned a synchronous error
2931 * then we want to return the number of bytes which were
2932 * direct-written, or the error code if that was zero. Note
2933 * that this differs from normal direct-io semantics, which
2934 * will return -EFOO even if some bytes were written.
2936 if (unlikely(status
< 0)) {
2941 * We need to ensure that the page cache pages are written to
2942 * disk and invalidated to preserve the expected O_DIRECT
2945 endbyte
= pos
+ status
- 1;
2946 err
= filemap_write_and_wait_range(mapping
, pos
, endbyte
);
2948 iocb
->ki_pos
= endbyte
+ 1;
2950 invalidate_mapping_pages(mapping
,
2952 endbyte
>> PAGE_SHIFT
);
2955 * We don't know how much we wrote, so just return
2956 * the number of bytes which were direct-written
2960 written
= generic_perform_write(file
, from
, iocb
->ki_pos
);
2961 if (likely(written
> 0))
2962 iocb
->ki_pos
+= written
;
2965 current
->backing_dev_info
= NULL
;
2966 return written
? written
: err
;
2968 EXPORT_SYMBOL(__generic_file_write_iter
);
2971 * generic_file_write_iter - write data to a file
2972 * @iocb: IO state structure
2973 * @from: iov_iter with data to write
2975 * This is a wrapper around __generic_file_write_iter() to be used by most
2976 * filesystems. It takes care of syncing the file in case of O_SYNC file
2977 * and acquires i_mutex as needed.
2979 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2981 struct file
*file
= iocb
->ki_filp
;
2982 struct inode
*inode
= file
->f_mapping
->host
;
2986 ret
= generic_write_checks(iocb
, from
);
2988 ret
= __generic_file_write_iter(iocb
, from
);
2989 inode_unlock(inode
);
2992 ret
= generic_write_sync(iocb
, ret
);
2995 EXPORT_SYMBOL(generic_file_write_iter
);
2998 * try_to_release_page() - release old fs-specific metadata on a page
3000 * @page: the page which the kernel is trying to free
3001 * @gfp_mask: memory allocation flags (and I/O mode)
3003 * The address_space is to try to release any data against the page
3004 * (presumably at page->private). If the release was successful, return `1'.
3005 * Otherwise return zero.
3007 * This may also be called if PG_fscache is set on a page, indicating that the
3008 * page is known to the local caching routines.
3010 * The @gfp_mask argument specifies whether I/O may be performed to release
3011 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3014 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
3016 struct address_space
* const mapping
= page
->mapping
;
3018 BUG_ON(!PageLocked(page
));
3019 if (PageWriteback(page
))
3022 if (mapping
&& mapping
->a_ops
->releasepage
)
3023 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
3024 return try_to_free_buffers(page
);
3027 EXPORT_SYMBOL(try_to_release_page
);