usb: xhci: Fix build warning seen with CONFIG_PM=n
[linux/fpc-iii.git] / drivers / pci / pci.c
blobe87196cc1a7fba33d37661ad0f73ca1dd1418583
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
39 DEFINE_MUTEX(pci_slot_mutex);
41 const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
44 EXPORT_SYMBOL_GPL(pci_power_names);
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
52 unsigned int pci_pm_d3_delay;
54 static void pci_pme_list_scan(struct work_struct *work);
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
60 struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
69 unsigned int delay = dev->d3_delay;
71 if (delay < pci_pm_d3_delay)
72 delay = pci_pm_d3_delay;
74 if (delay)
75 msleep(delay);
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
80 #endif
82 #define DEFAULT_CARDBUS_IO_SIZE (256)
83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
88 #define DEFAULT_HOTPLUG_IO_SIZE (256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
101 #define DEFAULT_HOTPLUG_BUS_SIZE 1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
119 unsigned int pcibios_max_latency = 255;
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
127 /* If set, the PCI config space of each device is printed during boot. */
128 bool pci_early_dump;
130 bool pci_ats_disabled(void)
132 return pcie_ats_disabled;
135 /* Disable bridge_d3 for all PCIe ports */
136 static bool pci_bridge_d3_disable;
137 /* Force bridge_d3 for all PCIe ports */
138 static bool pci_bridge_d3_force;
140 static int __init pcie_port_pm_setup(char *str)
142 if (!strcmp(str, "off"))
143 pci_bridge_d3_disable = true;
144 else if (!strcmp(str, "force"))
145 pci_bridge_d3_force = true;
146 return 1;
148 __setup("pcie_port_pm=", pcie_port_pm_setup);
150 /* Time to wait after a reset for device to become responsive */
151 #define PCIE_RESET_READY_POLL_MS 60000
154 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
155 * @bus: pointer to PCI bus structure to search
157 * Given a PCI bus, returns the highest PCI bus number present in the set
158 * including the given PCI bus and its list of child PCI buses.
160 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
162 struct pci_bus *tmp;
163 unsigned char max, n;
165 max = bus->busn_res.end;
166 list_for_each_entry(tmp, &bus->children, node) {
167 n = pci_bus_max_busnr(tmp);
168 if (n > max)
169 max = n;
171 return max;
173 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
175 #ifdef CONFIG_HAS_IOMEM
176 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
178 struct resource *res = &pdev->resource[bar];
181 * Make sure the BAR is actually a memory resource, not an IO resource
183 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
184 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
185 return NULL;
187 return ioremap_nocache(res->start, resource_size(res));
189 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
191 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
194 * Make sure the BAR is actually a memory resource, not an IO resource
196 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
197 WARN_ON(1);
198 return NULL;
200 return ioremap_wc(pci_resource_start(pdev, bar),
201 pci_resource_len(pdev, bar));
203 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
204 #endif
207 * pci_dev_str_match_path - test if a path string matches a device
208 * @dev: the PCI device to test
209 * @path: string to match the device against
210 * @endptr: pointer to the string after the match
212 * Test if a string (typically from a kernel parameter) formatted as a
213 * path of device/function addresses matches a PCI device. The string must
214 * be of the form:
216 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
218 * A path for a device can be obtained using 'lspci -t'. Using a path
219 * is more robust against bus renumbering than using only a single bus,
220 * device and function address.
222 * Returns 1 if the string matches the device, 0 if it does not and
223 * a negative error code if it fails to parse the string.
225 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
226 const char **endptr)
228 int ret;
229 int seg, bus, slot, func;
230 char *wpath, *p;
231 char end;
233 *endptr = strchrnul(path, ';');
235 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
236 if (!wpath)
237 return -ENOMEM;
239 while (1) {
240 p = strrchr(wpath, '/');
241 if (!p)
242 break;
243 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
244 if (ret != 2) {
245 ret = -EINVAL;
246 goto free_and_exit;
249 if (dev->devfn != PCI_DEVFN(slot, func)) {
250 ret = 0;
251 goto free_and_exit;
255 * Note: we don't need to get a reference to the upstream
256 * bridge because we hold a reference to the top level
257 * device which should hold a reference to the bridge,
258 * and so on.
260 dev = pci_upstream_bridge(dev);
261 if (!dev) {
262 ret = 0;
263 goto free_and_exit;
266 *p = 0;
269 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
270 &func, &end);
271 if (ret != 4) {
272 seg = 0;
273 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
274 if (ret != 3) {
275 ret = -EINVAL;
276 goto free_and_exit;
280 ret = (seg == pci_domain_nr(dev->bus) &&
281 bus == dev->bus->number &&
282 dev->devfn == PCI_DEVFN(slot, func));
284 free_and_exit:
285 kfree(wpath);
286 return ret;
290 * pci_dev_str_match - test if a string matches a device
291 * @dev: the PCI device to test
292 * @p: string to match the device against
293 * @endptr: pointer to the string after the match
295 * Test if a string (typically from a kernel parameter) matches a specified
296 * PCI device. The string may be of one of the following formats:
298 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
299 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
301 * The first format specifies a PCI bus/device/function address which
302 * may change if new hardware is inserted, if motherboard firmware changes,
303 * or due to changes caused in kernel parameters. If the domain is
304 * left unspecified, it is taken to be 0. In order to be robust against
305 * bus renumbering issues, a path of PCI device/function numbers may be used
306 * to address the specific device. The path for a device can be determined
307 * through the use of 'lspci -t'.
309 * The second format matches devices using IDs in the configuration
310 * space which may match multiple devices in the system. A value of 0
311 * for any field will match all devices. (Note: this differs from
312 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
313 * legacy reasons and convenience so users don't have to specify
314 * FFFFFFFFs on the command line.)
316 * Returns 1 if the string matches the device, 0 if it does not and
317 * a negative error code if the string cannot be parsed.
319 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
320 const char **endptr)
322 int ret;
323 int count;
324 unsigned short vendor, device, subsystem_vendor, subsystem_device;
326 if (strncmp(p, "pci:", 4) == 0) {
327 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
328 p += 4;
329 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
330 &subsystem_vendor, &subsystem_device, &count);
331 if (ret != 4) {
332 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
333 if (ret != 2)
334 return -EINVAL;
336 subsystem_vendor = 0;
337 subsystem_device = 0;
340 p += count;
342 if ((!vendor || vendor == dev->vendor) &&
343 (!device || device == dev->device) &&
344 (!subsystem_vendor ||
345 subsystem_vendor == dev->subsystem_vendor) &&
346 (!subsystem_device ||
347 subsystem_device == dev->subsystem_device))
348 goto found;
349 } else {
351 * PCI Bus, Device, Function IDs are specified
352 * (optionally, may include a path of devfns following it)
354 ret = pci_dev_str_match_path(dev, p, &p);
355 if (ret < 0)
356 return ret;
357 else if (ret)
358 goto found;
361 *endptr = p;
362 return 0;
364 found:
365 *endptr = p;
366 return 1;
369 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
370 u8 pos, int cap, int *ttl)
372 u8 id;
373 u16 ent;
375 pci_bus_read_config_byte(bus, devfn, pos, &pos);
377 while ((*ttl)--) {
378 if (pos < 0x40)
379 break;
380 pos &= ~3;
381 pci_bus_read_config_word(bus, devfn, pos, &ent);
383 id = ent & 0xff;
384 if (id == 0xff)
385 break;
386 if (id == cap)
387 return pos;
388 pos = (ent >> 8);
390 return 0;
393 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
394 u8 pos, int cap)
396 int ttl = PCI_FIND_CAP_TTL;
398 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
401 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
403 return __pci_find_next_cap(dev->bus, dev->devfn,
404 pos + PCI_CAP_LIST_NEXT, cap);
406 EXPORT_SYMBOL_GPL(pci_find_next_capability);
408 static int __pci_bus_find_cap_start(struct pci_bus *bus,
409 unsigned int devfn, u8 hdr_type)
411 u16 status;
413 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
414 if (!(status & PCI_STATUS_CAP_LIST))
415 return 0;
417 switch (hdr_type) {
418 case PCI_HEADER_TYPE_NORMAL:
419 case PCI_HEADER_TYPE_BRIDGE:
420 return PCI_CAPABILITY_LIST;
421 case PCI_HEADER_TYPE_CARDBUS:
422 return PCI_CB_CAPABILITY_LIST;
425 return 0;
429 * pci_find_capability - query for devices' capabilities
430 * @dev: PCI device to query
431 * @cap: capability code
433 * Tell if a device supports a given PCI capability.
434 * Returns the address of the requested capability structure within the
435 * device's PCI configuration space or 0 in case the device does not
436 * support it. Possible values for @cap include:
438 * %PCI_CAP_ID_PM Power Management
439 * %PCI_CAP_ID_AGP Accelerated Graphics Port
440 * %PCI_CAP_ID_VPD Vital Product Data
441 * %PCI_CAP_ID_SLOTID Slot Identification
442 * %PCI_CAP_ID_MSI Message Signalled Interrupts
443 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
444 * %PCI_CAP_ID_PCIX PCI-X
445 * %PCI_CAP_ID_EXP PCI Express
447 int pci_find_capability(struct pci_dev *dev, int cap)
449 int pos;
451 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
452 if (pos)
453 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
455 return pos;
457 EXPORT_SYMBOL(pci_find_capability);
460 * pci_bus_find_capability - query for devices' capabilities
461 * @bus: the PCI bus to query
462 * @devfn: PCI device to query
463 * @cap: capability code
465 * Like pci_find_capability() but works for PCI devices that do not have a
466 * pci_dev structure set up yet.
468 * Returns the address of the requested capability structure within the
469 * device's PCI configuration space or 0 in case the device does not
470 * support it.
472 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
474 int pos;
475 u8 hdr_type;
477 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
479 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
480 if (pos)
481 pos = __pci_find_next_cap(bus, devfn, pos, cap);
483 return pos;
485 EXPORT_SYMBOL(pci_bus_find_capability);
488 * pci_find_next_ext_capability - Find an extended capability
489 * @dev: PCI device to query
490 * @start: address at which to start looking (0 to start at beginning of list)
491 * @cap: capability code
493 * Returns the address of the next matching extended capability structure
494 * within the device's PCI configuration space or 0 if the device does
495 * not support it. Some capabilities can occur several times, e.g., the
496 * vendor-specific capability, and this provides a way to find them all.
498 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
500 u32 header;
501 int ttl;
502 int pos = PCI_CFG_SPACE_SIZE;
504 /* minimum 8 bytes per capability */
505 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
507 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
508 return 0;
510 if (start)
511 pos = start;
513 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
514 return 0;
517 * If we have no capabilities, this is indicated by cap ID,
518 * cap version and next pointer all being 0.
520 if (header == 0)
521 return 0;
523 while (ttl-- > 0) {
524 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
525 return pos;
527 pos = PCI_EXT_CAP_NEXT(header);
528 if (pos < PCI_CFG_SPACE_SIZE)
529 break;
531 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
532 break;
535 return 0;
537 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
540 * pci_find_ext_capability - Find an extended capability
541 * @dev: PCI device to query
542 * @cap: capability code
544 * Returns the address of the requested extended capability structure
545 * within the device's PCI configuration space or 0 if the device does
546 * not support it. Possible values for @cap include:
548 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
549 * %PCI_EXT_CAP_ID_VC Virtual Channel
550 * %PCI_EXT_CAP_ID_DSN Device Serial Number
551 * %PCI_EXT_CAP_ID_PWR Power Budgeting
553 int pci_find_ext_capability(struct pci_dev *dev, int cap)
555 return pci_find_next_ext_capability(dev, 0, cap);
557 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
559 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
561 int rc, ttl = PCI_FIND_CAP_TTL;
562 u8 cap, mask;
564 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
565 mask = HT_3BIT_CAP_MASK;
566 else
567 mask = HT_5BIT_CAP_MASK;
569 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
570 PCI_CAP_ID_HT, &ttl);
571 while (pos) {
572 rc = pci_read_config_byte(dev, pos + 3, &cap);
573 if (rc != PCIBIOS_SUCCESSFUL)
574 return 0;
576 if ((cap & mask) == ht_cap)
577 return pos;
579 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
580 pos + PCI_CAP_LIST_NEXT,
581 PCI_CAP_ID_HT, &ttl);
584 return 0;
587 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
588 * @dev: PCI device to query
589 * @pos: Position from which to continue searching
590 * @ht_cap: Hypertransport capability code
592 * To be used in conjunction with pci_find_ht_capability() to search for
593 * all capabilities matching @ht_cap. @pos should always be a value returned
594 * from pci_find_ht_capability().
596 * NB. To be 100% safe against broken PCI devices, the caller should take
597 * steps to avoid an infinite loop.
599 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
601 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
603 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
606 * pci_find_ht_capability - query a device's Hypertransport capabilities
607 * @dev: PCI device to query
608 * @ht_cap: Hypertransport capability code
610 * Tell if a device supports a given Hypertransport capability.
611 * Returns an address within the device's PCI configuration space
612 * or 0 in case the device does not support the request capability.
613 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
614 * which has a Hypertransport capability matching @ht_cap.
616 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
618 int pos;
620 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
621 if (pos)
622 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
624 return pos;
626 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
629 * pci_find_parent_resource - return resource region of parent bus of given
630 * region
631 * @dev: PCI device structure contains resources to be searched
632 * @res: child resource record for which parent is sought
634 * For given resource region of given device, return the resource region of
635 * parent bus the given region is contained in.
637 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
638 struct resource *res)
640 const struct pci_bus *bus = dev->bus;
641 struct resource *r;
642 int i;
644 pci_bus_for_each_resource(bus, r, i) {
645 if (!r)
646 continue;
647 if (resource_contains(r, res)) {
650 * If the window is prefetchable but the BAR is
651 * not, the allocator made a mistake.
653 if (r->flags & IORESOURCE_PREFETCH &&
654 !(res->flags & IORESOURCE_PREFETCH))
655 return NULL;
658 * If we're below a transparent bridge, there may
659 * be both a positively-decoded aperture and a
660 * subtractively-decoded region that contain the BAR.
661 * We want the positively-decoded one, so this depends
662 * on pci_bus_for_each_resource() giving us those
663 * first.
665 return r;
668 return NULL;
670 EXPORT_SYMBOL(pci_find_parent_resource);
673 * pci_find_resource - Return matching PCI device resource
674 * @dev: PCI device to query
675 * @res: Resource to look for
677 * Goes over standard PCI resources (BARs) and checks if the given resource
678 * is partially or fully contained in any of them. In that case the
679 * matching resource is returned, %NULL otherwise.
681 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
683 int i;
685 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
686 struct resource *r = &dev->resource[i];
688 if (r->start && resource_contains(r, res))
689 return r;
692 return NULL;
694 EXPORT_SYMBOL(pci_find_resource);
697 * pci_find_pcie_root_port - return PCIe Root Port
698 * @dev: PCI device to query
700 * Traverse up the parent chain and return the PCIe Root Port PCI Device
701 * for a given PCI Device.
703 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
705 struct pci_dev *bridge, *highest_pcie_bridge = dev;
707 bridge = pci_upstream_bridge(dev);
708 while (bridge && pci_is_pcie(bridge)) {
709 highest_pcie_bridge = bridge;
710 bridge = pci_upstream_bridge(bridge);
713 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
714 return NULL;
716 return highest_pcie_bridge;
718 EXPORT_SYMBOL(pci_find_pcie_root_port);
721 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
722 * @dev: the PCI device to operate on
723 * @pos: config space offset of status word
724 * @mask: mask of bit(s) to care about in status word
726 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
728 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
730 int i;
732 /* Wait for Transaction Pending bit clean */
733 for (i = 0; i < 4; i++) {
734 u16 status;
735 if (i)
736 msleep((1 << (i - 1)) * 100);
738 pci_read_config_word(dev, pos, &status);
739 if (!(status & mask))
740 return 1;
743 return 0;
747 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
748 * @dev: PCI device to have its BARs restored
750 * Restore the BAR values for a given device, so as to make it
751 * accessible by its driver.
753 static void pci_restore_bars(struct pci_dev *dev)
755 int i;
757 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
758 pci_update_resource(dev, i);
761 static const struct pci_platform_pm_ops *pci_platform_pm;
763 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
765 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
766 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
767 return -EINVAL;
768 pci_platform_pm = ops;
769 return 0;
772 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
774 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
777 static inline int platform_pci_set_power_state(struct pci_dev *dev,
778 pci_power_t t)
780 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
783 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
785 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
788 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
790 if (pci_platform_pm && pci_platform_pm->refresh_state)
791 pci_platform_pm->refresh_state(dev);
794 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
796 return pci_platform_pm ?
797 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
800 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
802 return pci_platform_pm ?
803 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
806 static inline bool platform_pci_need_resume(struct pci_dev *dev)
808 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
811 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
813 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
817 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
818 * given PCI device
819 * @dev: PCI device to handle.
820 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
822 * RETURN VALUE:
823 * -EINVAL if the requested state is invalid.
824 * -EIO if device does not support PCI PM or its PM capabilities register has a
825 * wrong version, or device doesn't support the requested state.
826 * 0 if device already is in the requested state.
827 * 0 if device's power state has been successfully changed.
829 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
831 u16 pmcsr;
832 bool need_restore = false;
834 /* Check if we're already there */
835 if (dev->current_state == state)
836 return 0;
838 if (!dev->pm_cap)
839 return -EIO;
841 if (state < PCI_D0 || state > PCI_D3hot)
842 return -EINVAL;
845 * Validate transition: We can enter D0 from any state, but if
846 * we're already in a low-power state, we can only go deeper. E.g.,
847 * we can go from D1 to D3, but we can't go directly from D3 to D1;
848 * we'd have to go from D3 to D0, then to D1.
850 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
851 && dev->current_state > state) {
852 pci_err(dev, "invalid power transition (from %s to %s)\n",
853 pci_power_name(dev->current_state),
854 pci_power_name(state));
855 return -EINVAL;
858 /* Check if this device supports the desired state */
859 if ((state == PCI_D1 && !dev->d1_support)
860 || (state == PCI_D2 && !dev->d2_support))
861 return -EIO;
863 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
864 if (pmcsr == (u16) ~0) {
865 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
866 pci_power_name(dev->current_state),
867 pci_power_name(state));
868 return -EIO;
872 * If we're (effectively) in D3, force entire word to 0.
873 * This doesn't affect PME_Status, disables PME_En, and
874 * sets PowerState to 0.
876 switch (dev->current_state) {
877 case PCI_D0:
878 case PCI_D1:
879 case PCI_D2:
880 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
881 pmcsr |= state;
882 break;
883 case PCI_D3hot:
884 case PCI_D3cold:
885 case PCI_UNKNOWN: /* Boot-up */
886 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
887 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
888 need_restore = true;
889 /* Fall-through - force to D0 */
890 default:
891 pmcsr = 0;
892 break;
895 /* Enter specified state */
896 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
899 * Mandatory power management transition delays; see PCI PM 1.1
900 * 5.6.1 table 18
902 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
903 pci_dev_d3_sleep(dev);
904 else if (state == PCI_D2 || dev->current_state == PCI_D2)
905 msleep(PCI_PM_D2_DELAY);
907 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
908 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
909 if (dev->current_state != state)
910 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
911 pci_power_name(dev->current_state),
912 pci_power_name(state));
915 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
916 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
917 * from D3hot to D0 _may_ perform an internal reset, thereby
918 * going to "D0 Uninitialized" rather than "D0 Initialized".
919 * For example, at least some versions of the 3c905B and the
920 * 3c556B exhibit this behaviour.
922 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
923 * devices in a D3hot state at boot. Consequently, we need to
924 * restore at least the BARs so that the device will be
925 * accessible to its driver.
927 if (need_restore)
928 pci_restore_bars(dev);
930 if (dev->bus->self)
931 pcie_aspm_pm_state_change(dev->bus->self);
933 return 0;
937 * pci_update_current_state - Read power state of given device and cache it
938 * @dev: PCI device to handle.
939 * @state: State to cache in case the device doesn't have the PM capability
941 * The power state is read from the PMCSR register, which however is
942 * inaccessible in D3cold. The platform firmware is therefore queried first
943 * to detect accessibility of the register. In case the platform firmware
944 * reports an incorrect state or the device isn't power manageable by the
945 * platform at all, we try to detect D3cold by testing accessibility of the
946 * vendor ID in config space.
948 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
950 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
951 !pci_device_is_present(dev)) {
952 dev->current_state = PCI_D3cold;
953 } else if (dev->pm_cap) {
954 u16 pmcsr;
956 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
957 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
958 } else {
959 dev->current_state = state;
964 * pci_refresh_power_state - Refresh the given device's power state data
965 * @dev: Target PCI device.
967 * Ask the platform to refresh the devices power state information and invoke
968 * pci_update_current_state() to update its current PCI power state.
970 void pci_refresh_power_state(struct pci_dev *dev)
972 if (platform_pci_power_manageable(dev))
973 platform_pci_refresh_power_state(dev);
975 pci_update_current_state(dev, dev->current_state);
979 * pci_platform_power_transition - Use platform to change device power state
980 * @dev: PCI device to handle.
981 * @state: State to put the device into.
983 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
985 int error;
987 if (platform_pci_power_manageable(dev)) {
988 error = platform_pci_set_power_state(dev, state);
989 if (!error)
990 pci_update_current_state(dev, state);
991 } else
992 error = -ENODEV;
994 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
995 dev->current_state = PCI_D0;
997 return error;
999 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1002 * pci_wakeup - Wake up a PCI device
1003 * @pci_dev: Device to handle.
1004 * @ign: ignored parameter
1006 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1008 pci_wakeup_event(pci_dev);
1009 pm_request_resume(&pci_dev->dev);
1010 return 0;
1014 * pci_wakeup_bus - Walk given bus and wake up devices on it
1015 * @bus: Top bus of the subtree to walk.
1017 void pci_wakeup_bus(struct pci_bus *bus)
1019 if (bus)
1020 pci_walk_bus(bus, pci_wakeup, NULL);
1023 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1025 int delay = 1;
1026 u32 id;
1029 * After reset, the device should not silently discard config
1030 * requests, but it may still indicate that it needs more time by
1031 * responding to them with CRS completions. The Root Port will
1032 * generally synthesize ~0 data to complete the read (except when
1033 * CRS SV is enabled and the read was for the Vendor ID; in that
1034 * case it synthesizes 0x0001 data).
1036 * Wait for the device to return a non-CRS completion. Read the
1037 * Command register instead of Vendor ID so we don't have to
1038 * contend with the CRS SV value.
1040 pci_read_config_dword(dev, PCI_COMMAND, &id);
1041 while (id == ~0) {
1042 if (delay > timeout) {
1043 pci_warn(dev, "not ready %dms after %s; giving up\n",
1044 delay - 1, reset_type);
1045 return -ENOTTY;
1048 if (delay > 1000)
1049 pci_info(dev, "not ready %dms after %s; waiting\n",
1050 delay - 1, reset_type);
1052 msleep(delay);
1053 delay *= 2;
1054 pci_read_config_dword(dev, PCI_COMMAND, &id);
1057 if (delay > 1000)
1058 pci_info(dev, "ready %dms after %s\n", delay - 1,
1059 reset_type);
1061 return 0;
1065 * pci_power_up - Put the given device into D0
1066 * @dev: PCI device to power up
1068 int pci_power_up(struct pci_dev *dev)
1070 pci_platform_power_transition(dev, PCI_D0);
1073 * Mandatory power management transition delays are handled in
1074 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1075 * corresponding bridge.
1077 if (dev->runtime_d3cold) {
1079 * When powering on a bridge from D3cold, the whole hierarchy
1080 * may be powered on into D0uninitialized state, resume them to
1081 * give them a chance to suspend again
1083 pci_wakeup_bus(dev->subordinate);
1086 return pci_raw_set_power_state(dev, PCI_D0);
1090 * __pci_dev_set_current_state - Set current state of a PCI device
1091 * @dev: Device to handle
1092 * @data: pointer to state to be set
1094 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1096 pci_power_t state = *(pci_power_t *)data;
1098 dev->current_state = state;
1099 return 0;
1103 * pci_bus_set_current_state - Walk given bus and set current state of devices
1104 * @bus: Top bus of the subtree to walk.
1105 * @state: state to be set
1107 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1109 if (bus)
1110 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1114 * pci_set_power_state - Set the power state of a PCI device
1115 * @dev: PCI device to handle.
1116 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1118 * Transition a device to a new power state, using the platform firmware and/or
1119 * the device's PCI PM registers.
1121 * RETURN VALUE:
1122 * -EINVAL if the requested state is invalid.
1123 * -EIO if device does not support PCI PM or its PM capabilities register has a
1124 * wrong version, or device doesn't support the requested state.
1125 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1126 * 0 if device already is in the requested state.
1127 * 0 if the transition is to D3 but D3 is not supported.
1128 * 0 if device's power state has been successfully changed.
1130 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1132 int error;
1134 /* Bound the state we're entering */
1135 if (state > PCI_D3cold)
1136 state = PCI_D3cold;
1137 else if (state < PCI_D0)
1138 state = PCI_D0;
1139 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1142 * If the device or the parent bridge do not support PCI
1143 * PM, ignore the request if we're doing anything other
1144 * than putting it into D0 (which would only happen on
1145 * boot).
1147 return 0;
1149 /* Check if we're already there */
1150 if (dev->current_state == state)
1151 return 0;
1153 if (state == PCI_D0)
1154 return pci_power_up(dev);
1157 * This device is quirked not to be put into D3, so don't put it in
1158 * D3
1160 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1161 return 0;
1164 * To put device in D3cold, we put device into D3hot in native
1165 * way, then put device into D3cold with platform ops
1167 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1168 PCI_D3hot : state);
1170 if (pci_platform_power_transition(dev, state))
1171 return error;
1173 /* Powering off a bridge may power off the whole hierarchy */
1174 if (state == PCI_D3cold)
1175 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1177 return 0;
1179 EXPORT_SYMBOL(pci_set_power_state);
1182 * pci_choose_state - Choose the power state of a PCI device
1183 * @dev: PCI device to be suspended
1184 * @state: target sleep state for the whole system. This is the value
1185 * that is passed to suspend() function.
1187 * Returns PCI power state suitable for given device and given system
1188 * message.
1190 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1192 pci_power_t ret;
1194 if (!dev->pm_cap)
1195 return PCI_D0;
1197 ret = platform_pci_choose_state(dev);
1198 if (ret != PCI_POWER_ERROR)
1199 return ret;
1201 switch (state.event) {
1202 case PM_EVENT_ON:
1203 return PCI_D0;
1204 case PM_EVENT_FREEZE:
1205 case PM_EVENT_PRETHAW:
1206 /* REVISIT both freeze and pre-thaw "should" use D0 */
1207 case PM_EVENT_SUSPEND:
1208 case PM_EVENT_HIBERNATE:
1209 return PCI_D3hot;
1210 default:
1211 pci_info(dev, "unrecognized suspend event %d\n",
1212 state.event);
1213 BUG();
1215 return PCI_D0;
1217 EXPORT_SYMBOL(pci_choose_state);
1219 #define PCI_EXP_SAVE_REGS 7
1221 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1222 u16 cap, bool extended)
1224 struct pci_cap_saved_state *tmp;
1226 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1227 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1228 return tmp;
1230 return NULL;
1233 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1235 return _pci_find_saved_cap(dev, cap, false);
1238 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1240 return _pci_find_saved_cap(dev, cap, true);
1243 static int pci_save_pcie_state(struct pci_dev *dev)
1245 int i = 0;
1246 struct pci_cap_saved_state *save_state;
1247 u16 *cap;
1249 if (!pci_is_pcie(dev))
1250 return 0;
1252 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1253 if (!save_state) {
1254 pci_err(dev, "buffer not found in %s\n", __func__);
1255 return -ENOMEM;
1258 cap = (u16 *)&save_state->cap.data[0];
1259 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1260 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1261 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1262 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1263 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1264 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1265 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1267 return 0;
1270 static void pci_restore_pcie_state(struct pci_dev *dev)
1272 int i = 0;
1273 struct pci_cap_saved_state *save_state;
1274 u16 *cap;
1276 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1277 if (!save_state)
1278 return;
1280 cap = (u16 *)&save_state->cap.data[0];
1281 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1282 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1283 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1284 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1285 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1286 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1287 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1290 static int pci_save_pcix_state(struct pci_dev *dev)
1292 int pos;
1293 struct pci_cap_saved_state *save_state;
1295 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1296 if (!pos)
1297 return 0;
1299 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1300 if (!save_state) {
1301 pci_err(dev, "buffer not found in %s\n", __func__);
1302 return -ENOMEM;
1305 pci_read_config_word(dev, pos + PCI_X_CMD,
1306 (u16 *)save_state->cap.data);
1308 return 0;
1311 static void pci_restore_pcix_state(struct pci_dev *dev)
1313 int i = 0, pos;
1314 struct pci_cap_saved_state *save_state;
1315 u16 *cap;
1317 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1318 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1319 if (!save_state || !pos)
1320 return;
1321 cap = (u16 *)&save_state->cap.data[0];
1323 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1326 static void pci_save_ltr_state(struct pci_dev *dev)
1328 int ltr;
1329 struct pci_cap_saved_state *save_state;
1330 u16 *cap;
1332 if (!pci_is_pcie(dev))
1333 return;
1335 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1336 if (!ltr)
1337 return;
1339 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1340 if (!save_state) {
1341 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1342 return;
1345 cap = (u16 *)&save_state->cap.data[0];
1346 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1347 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1350 static void pci_restore_ltr_state(struct pci_dev *dev)
1352 struct pci_cap_saved_state *save_state;
1353 int ltr;
1354 u16 *cap;
1356 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1357 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1358 if (!save_state || !ltr)
1359 return;
1361 cap = (u16 *)&save_state->cap.data[0];
1362 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1363 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1367 * pci_save_state - save the PCI configuration space of a device before
1368 * suspending
1369 * @dev: PCI device that we're dealing with
1371 int pci_save_state(struct pci_dev *dev)
1373 int i;
1374 /* XXX: 100% dword access ok here? */
1375 for (i = 0; i < 16; i++)
1376 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1377 dev->state_saved = true;
1379 i = pci_save_pcie_state(dev);
1380 if (i != 0)
1381 return i;
1383 i = pci_save_pcix_state(dev);
1384 if (i != 0)
1385 return i;
1387 pci_save_ltr_state(dev);
1388 pci_save_dpc_state(dev);
1389 pci_save_aer_state(dev);
1390 return pci_save_vc_state(dev);
1392 EXPORT_SYMBOL(pci_save_state);
1394 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1395 u32 saved_val, int retry, bool force)
1397 u32 val;
1399 pci_read_config_dword(pdev, offset, &val);
1400 if (!force && val == saved_val)
1401 return;
1403 for (;;) {
1404 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1405 offset, val, saved_val);
1406 pci_write_config_dword(pdev, offset, saved_val);
1407 if (retry-- <= 0)
1408 return;
1410 pci_read_config_dword(pdev, offset, &val);
1411 if (val == saved_val)
1412 return;
1414 mdelay(1);
1418 static void pci_restore_config_space_range(struct pci_dev *pdev,
1419 int start, int end, int retry,
1420 bool force)
1422 int index;
1424 for (index = end; index >= start; index--)
1425 pci_restore_config_dword(pdev, 4 * index,
1426 pdev->saved_config_space[index],
1427 retry, force);
1430 static void pci_restore_config_space(struct pci_dev *pdev)
1432 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1433 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1434 /* Restore BARs before the command register. */
1435 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1436 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1437 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1438 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1441 * Force rewriting of prefetch registers to avoid S3 resume
1442 * issues on Intel PCI bridges that occur when these
1443 * registers are not explicitly written.
1445 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1446 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1447 } else {
1448 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1452 static void pci_restore_rebar_state(struct pci_dev *pdev)
1454 unsigned int pos, nbars, i;
1455 u32 ctrl;
1457 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1458 if (!pos)
1459 return;
1461 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1462 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1463 PCI_REBAR_CTRL_NBAR_SHIFT;
1465 for (i = 0; i < nbars; i++, pos += 8) {
1466 struct resource *res;
1467 int bar_idx, size;
1469 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1470 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1471 res = pdev->resource + bar_idx;
1472 size = ilog2(resource_size(res)) - 20;
1473 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1474 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1475 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1480 * pci_restore_state - Restore the saved state of a PCI device
1481 * @dev: PCI device that we're dealing with
1483 void pci_restore_state(struct pci_dev *dev)
1485 if (!dev->state_saved)
1486 return;
1489 * Restore max latencies (in the LTR capability) before enabling
1490 * LTR itself (in the PCIe capability).
1492 pci_restore_ltr_state(dev);
1494 pci_restore_pcie_state(dev);
1495 pci_restore_pasid_state(dev);
1496 pci_restore_pri_state(dev);
1497 pci_restore_ats_state(dev);
1498 pci_restore_vc_state(dev);
1499 pci_restore_rebar_state(dev);
1500 pci_restore_dpc_state(dev);
1502 pci_cleanup_aer_error_status_regs(dev);
1503 pci_restore_aer_state(dev);
1505 pci_restore_config_space(dev);
1507 pci_restore_pcix_state(dev);
1508 pci_restore_msi_state(dev);
1510 /* Restore ACS and IOV configuration state */
1511 pci_enable_acs(dev);
1512 pci_restore_iov_state(dev);
1514 dev->state_saved = false;
1516 EXPORT_SYMBOL(pci_restore_state);
1518 struct pci_saved_state {
1519 u32 config_space[16];
1520 struct pci_cap_saved_data cap[0];
1524 * pci_store_saved_state - Allocate and return an opaque struct containing
1525 * the device saved state.
1526 * @dev: PCI device that we're dealing with
1528 * Return NULL if no state or error.
1530 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1532 struct pci_saved_state *state;
1533 struct pci_cap_saved_state *tmp;
1534 struct pci_cap_saved_data *cap;
1535 size_t size;
1537 if (!dev->state_saved)
1538 return NULL;
1540 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1542 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1543 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1545 state = kzalloc(size, GFP_KERNEL);
1546 if (!state)
1547 return NULL;
1549 memcpy(state->config_space, dev->saved_config_space,
1550 sizeof(state->config_space));
1552 cap = state->cap;
1553 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1554 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1555 memcpy(cap, &tmp->cap, len);
1556 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1558 /* Empty cap_save terminates list */
1560 return state;
1562 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1565 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1566 * @dev: PCI device that we're dealing with
1567 * @state: Saved state returned from pci_store_saved_state()
1569 int pci_load_saved_state(struct pci_dev *dev,
1570 struct pci_saved_state *state)
1572 struct pci_cap_saved_data *cap;
1574 dev->state_saved = false;
1576 if (!state)
1577 return 0;
1579 memcpy(dev->saved_config_space, state->config_space,
1580 sizeof(state->config_space));
1582 cap = state->cap;
1583 while (cap->size) {
1584 struct pci_cap_saved_state *tmp;
1586 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1587 if (!tmp || tmp->cap.size != cap->size)
1588 return -EINVAL;
1590 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1591 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1592 sizeof(struct pci_cap_saved_data) + cap->size);
1595 dev->state_saved = true;
1596 return 0;
1598 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1601 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1602 * and free the memory allocated for it.
1603 * @dev: PCI device that we're dealing with
1604 * @state: Pointer to saved state returned from pci_store_saved_state()
1606 int pci_load_and_free_saved_state(struct pci_dev *dev,
1607 struct pci_saved_state **state)
1609 int ret = pci_load_saved_state(dev, *state);
1610 kfree(*state);
1611 *state = NULL;
1612 return ret;
1614 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1616 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1618 return pci_enable_resources(dev, bars);
1621 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1623 int err;
1624 struct pci_dev *bridge;
1625 u16 cmd;
1626 u8 pin;
1628 err = pci_set_power_state(dev, PCI_D0);
1629 if (err < 0 && err != -EIO)
1630 return err;
1632 bridge = pci_upstream_bridge(dev);
1633 if (bridge)
1634 pcie_aspm_powersave_config_link(bridge);
1636 err = pcibios_enable_device(dev, bars);
1637 if (err < 0)
1638 return err;
1639 pci_fixup_device(pci_fixup_enable, dev);
1641 if (dev->msi_enabled || dev->msix_enabled)
1642 return 0;
1644 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1645 if (pin) {
1646 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1647 if (cmd & PCI_COMMAND_INTX_DISABLE)
1648 pci_write_config_word(dev, PCI_COMMAND,
1649 cmd & ~PCI_COMMAND_INTX_DISABLE);
1652 return 0;
1656 * pci_reenable_device - Resume abandoned device
1657 * @dev: PCI device to be resumed
1659 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1660 * to be called by normal code, write proper resume handler and use it instead.
1662 int pci_reenable_device(struct pci_dev *dev)
1664 if (pci_is_enabled(dev))
1665 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1666 return 0;
1668 EXPORT_SYMBOL(pci_reenable_device);
1670 static void pci_enable_bridge(struct pci_dev *dev)
1672 struct pci_dev *bridge;
1673 int retval;
1675 bridge = pci_upstream_bridge(dev);
1676 if (bridge)
1677 pci_enable_bridge(bridge);
1679 if (pci_is_enabled(dev)) {
1680 if (!dev->is_busmaster)
1681 pci_set_master(dev);
1682 return;
1685 retval = pci_enable_device(dev);
1686 if (retval)
1687 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1688 retval);
1689 pci_set_master(dev);
1692 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1694 struct pci_dev *bridge;
1695 int err;
1696 int i, bars = 0;
1699 * Power state could be unknown at this point, either due to a fresh
1700 * boot or a device removal call. So get the current power state
1701 * so that things like MSI message writing will behave as expected
1702 * (e.g. if the device really is in D0 at enable time).
1704 if (dev->pm_cap) {
1705 u16 pmcsr;
1706 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1707 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1710 if (atomic_inc_return(&dev->enable_cnt) > 1)
1711 return 0; /* already enabled */
1713 bridge = pci_upstream_bridge(dev);
1714 if (bridge)
1715 pci_enable_bridge(bridge);
1717 /* only skip sriov related */
1718 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1719 if (dev->resource[i].flags & flags)
1720 bars |= (1 << i);
1721 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1722 if (dev->resource[i].flags & flags)
1723 bars |= (1 << i);
1725 err = do_pci_enable_device(dev, bars);
1726 if (err < 0)
1727 atomic_dec(&dev->enable_cnt);
1728 return err;
1732 * pci_enable_device_io - Initialize a device for use with IO space
1733 * @dev: PCI device to be initialized
1735 * Initialize device before it's used by a driver. Ask low-level code
1736 * to enable I/O resources. Wake up the device if it was suspended.
1737 * Beware, this function can fail.
1739 int pci_enable_device_io(struct pci_dev *dev)
1741 return pci_enable_device_flags(dev, IORESOURCE_IO);
1743 EXPORT_SYMBOL(pci_enable_device_io);
1746 * pci_enable_device_mem - Initialize a device for use with Memory space
1747 * @dev: PCI device to be initialized
1749 * Initialize device before it's used by a driver. Ask low-level code
1750 * to enable Memory resources. Wake up the device if it was suspended.
1751 * Beware, this function can fail.
1753 int pci_enable_device_mem(struct pci_dev *dev)
1755 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1757 EXPORT_SYMBOL(pci_enable_device_mem);
1760 * pci_enable_device - Initialize device before it's used by a driver.
1761 * @dev: PCI device to be initialized
1763 * Initialize device before it's used by a driver. Ask low-level code
1764 * to enable I/O and memory. Wake up the device if it was suspended.
1765 * Beware, this function can fail.
1767 * Note we don't actually enable the device many times if we call
1768 * this function repeatedly (we just increment the count).
1770 int pci_enable_device(struct pci_dev *dev)
1772 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1774 EXPORT_SYMBOL(pci_enable_device);
1777 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1778 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1779 * there's no need to track it separately. pci_devres is initialized
1780 * when a device is enabled using managed PCI device enable interface.
1782 struct pci_devres {
1783 unsigned int enabled:1;
1784 unsigned int pinned:1;
1785 unsigned int orig_intx:1;
1786 unsigned int restore_intx:1;
1787 unsigned int mwi:1;
1788 u32 region_mask;
1791 static void pcim_release(struct device *gendev, void *res)
1793 struct pci_dev *dev = to_pci_dev(gendev);
1794 struct pci_devres *this = res;
1795 int i;
1797 if (dev->msi_enabled)
1798 pci_disable_msi(dev);
1799 if (dev->msix_enabled)
1800 pci_disable_msix(dev);
1802 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1803 if (this->region_mask & (1 << i))
1804 pci_release_region(dev, i);
1806 if (this->mwi)
1807 pci_clear_mwi(dev);
1809 if (this->restore_intx)
1810 pci_intx(dev, this->orig_intx);
1812 if (this->enabled && !this->pinned)
1813 pci_disable_device(dev);
1816 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1818 struct pci_devres *dr, *new_dr;
1820 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1821 if (dr)
1822 return dr;
1824 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1825 if (!new_dr)
1826 return NULL;
1827 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1830 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1832 if (pci_is_managed(pdev))
1833 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1834 return NULL;
1838 * pcim_enable_device - Managed pci_enable_device()
1839 * @pdev: PCI device to be initialized
1841 * Managed pci_enable_device().
1843 int pcim_enable_device(struct pci_dev *pdev)
1845 struct pci_devres *dr;
1846 int rc;
1848 dr = get_pci_dr(pdev);
1849 if (unlikely(!dr))
1850 return -ENOMEM;
1851 if (dr->enabled)
1852 return 0;
1854 rc = pci_enable_device(pdev);
1855 if (!rc) {
1856 pdev->is_managed = 1;
1857 dr->enabled = 1;
1859 return rc;
1861 EXPORT_SYMBOL(pcim_enable_device);
1864 * pcim_pin_device - Pin managed PCI device
1865 * @pdev: PCI device to pin
1867 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1868 * driver detach. @pdev must have been enabled with
1869 * pcim_enable_device().
1871 void pcim_pin_device(struct pci_dev *pdev)
1873 struct pci_devres *dr;
1875 dr = find_pci_dr(pdev);
1876 WARN_ON(!dr || !dr->enabled);
1877 if (dr)
1878 dr->pinned = 1;
1880 EXPORT_SYMBOL(pcim_pin_device);
1883 * pcibios_add_device - provide arch specific hooks when adding device dev
1884 * @dev: the PCI device being added
1886 * Permits the platform to provide architecture specific functionality when
1887 * devices are added. This is the default implementation. Architecture
1888 * implementations can override this.
1890 int __weak pcibios_add_device(struct pci_dev *dev)
1892 return 0;
1896 * pcibios_release_device - provide arch specific hooks when releasing
1897 * device dev
1898 * @dev: the PCI device being released
1900 * Permits the platform to provide architecture specific functionality when
1901 * devices are released. This is the default implementation. Architecture
1902 * implementations can override this.
1904 void __weak pcibios_release_device(struct pci_dev *dev) {}
1907 * pcibios_disable_device - disable arch specific PCI resources for device dev
1908 * @dev: the PCI device to disable
1910 * Disables architecture specific PCI resources for the device. This
1911 * is the default implementation. Architecture implementations can
1912 * override this.
1914 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1917 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1918 * @irq: ISA IRQ to penalize
1919 * @active: IRQ active or not
1921 * Permits the platform to provide architecture-specific functionality when
1922 * penalizing ISA IRQs. This is the default implementation. Architecture
1923 * implementations can override this.
1925 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1927 static void do_pci_disable_device(struct pci_dev *dev)
1929 u16 pci_command;
1931 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1932 if (pci_command & PCI_COMMAND_MASTER) {
1933 pci_command &= ~PCI_COMMAND_MASTER;
1934 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1937 pcibios_disable_device(dev);
1941 * pci_disable_enabled_device - Disable device without updating enable_cnt
1942 * @dev: PCI device to disable
1944 * NOTE: This function is a backend of PCI power management routines and is
1945 * not supposed to be called drivers.
1947 void pci_disable_enabled_device(struct pci_dev *dev)
1949 if (pci_is_enabled(dev))
1950 do_pci_disable_device(dev);
1954 * pci_disable_device - Disable PCI device after use
1955 * @dev: PCI device to be disabled
1957 * Signal to the system that the PCI device is not in use by the system
1958 * anymore. This only involves disabling PCI bus-mastering, if active.
1960 * Note we don't actually disable the device until all callers of
1961 * pci_enable_device() have called pci_disable_device().
1963 void pci_disable_device(struct pci_dev *dev)
1965 struct pci_devres *dr;
1967 dr = find_pci_dr(dev);
1968 if (dr)
1969 dr->enabled = 0;
1971 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1972 "disabling already-disabled device");
1974 if (atomic_dec_return(&dev->enable_cnt) != 0)
1975 return;
1977 do_pci_disable_device(dev);
1979 dev->is_busmaster = 0;
1981 EXPORT_SYMBOL(pci_disable_device);
1984 * pcibios_set_pcie_reset_state - set reset state for device dev
1985 * @dev: the PCIe device reset
1986 * @state: Reset state to enter into
1988 * Set the PCIe reset state for the device. This is the default
1989 * implementation. Architecture implementations can override this.
1991 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1992 enum pcie_reset_state state)
1994 return -EINVAL;
1998 * pci_set_pcie_reset_state - set reset state for device dev
1999 * @dev: the PCIe device reset
2000 * @state: Reset state to enter into
2002 * Sets the PCI reset state for the device.
2004 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2006 return pcibios_set_pcie_reset_state(dev, state);
2008 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2011 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2012 * @dev: PCIe root port or event collector.
2014 void pcie_clear_root_pme_status(struct pci_dev *dev)
2016 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2020 * pci_check_pme_status - Check if given device has generated PME.
2021 * @dev: Device to check.
2023 * Check the PME status of the device and if set, clear it and clear PME enable
2024 * (if set). Return 'true' if PME status and PME enable were both set or
2025 * 'false' otherwise.
2027 bool pci_check_pme_status(struct pci_dev *dev)
2029 int pmcsr_pos;
2030 u16 pmcsr;
2031 bool ret = false;
2033 if (!dev->pm_cap)
2034 return false;
2036 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2037 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2038 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2039 return false;
2041 /* Clear PME status. */
2042 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2043 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2044 /* Disable PME to avoid interrupt flood. */
2045 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2046 ret = true;
2049 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2051 return ret;
2055 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2056 * @dev: Device to handle.
2057 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2059 * Check if @dev has generated PME and queue a resume request for it in that
2060 * case.
2062 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2064 if (pme_poll_reset && dev->pme_poll)
2065 dev->pme_poll = false;
2067 if (pci_check_pme_status(dev)) {
2068 pci_wakeup_event(dev);
2069 pm_request_resume(&dev->dev);
2071 return 0;
2075 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2076 * @bus: Top bus of the subtree to walk.
2078 void pci_pme_wakeup_bus(struct pci_bus *bus)
2080 if (bus)
2081 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2086 * pci_pme_capable - check the capability of PCI device to generate PME#
2087 * @dev: PCI device to handle.
2088 * @state: PCI state from which device will issue PME#.
2090 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2092 if (!dev->pm_cap)
2093 return false;
2095 return !!(dev->pme_support & (1 << state));
2097 EXPORT_SYMBOL(pci_pme_capable);
2099 static void pci_pme_list_scan(struct work_struct *work)
2101 struct pci_pme_device *pme_dev, *n;
2103 mutex_lock(&pci_pme_list_mutex);
2104 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2105 if (pme_dev->dev->pme_poll) {
2106 struct pci_dev *bridge;
2108 bridge = pme_dev->dev->bus->self;
2110 * If bridge is in low power state, the
2111 * configuration space of subordinate devices
2112 * may be not accessible
2114 if (bridge && bridge->current_state != PCI_D0)
2115 continue;
2117 * If the device is in D3cold it should not be
2118 * polled either.
2120 if (pme_dev->dev->current_state == PCI_D3cold)
2121 continue;
2123 pci_pme_wakeup(pme_dev->dev, NULL);
2124 } else {
2125 list_del(&pme_dev->list);
2126 kfree(pme_dev);
2129 if (!list_empty(&pci_pme_list))
2130 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2131 msecs_to_jiffies(PME_TIMEOUT));
2132 mutex_unlock(&pci_pme_list_mutex);
2135 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2137 u16 pmcsr;
2139 if (!dev->pme_support)
2140 return;
2142 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2143 /* Clear PME_Status by writing 1 to it and enable PME# */
2144 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2145 if (!enable)
2146 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2148 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2152 * pci_pme_restore - Restore PME configuration after config space restore.
2153 * @dev: PCI device to update.
2155 void pci_pme_restore(struct pci_dev *dev)
2157 u16 pmcsr;
2159 if (!dev->pme_support)
2160 return;
2162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2163 if (dev->wakeup_prepared) {
2164 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2165 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2166 } else {
2167 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2168 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2170 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2174 * pci_pme_active - enable or disable PCI device's PME# function
2175 * @dev: PCI device to handle.
2176 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2178 * The caller must verify that the device is capable of generating PME# before
2179 * calling this function with @enable equal to 'true'.
2181 void pci_pme_active(struct pci_dev *dev, bool enable)
2183 __pci_pme_active(dev, enable);
2186 * PCI (as opposed to PCIe) PME requires that the device have
2187 * its PME# line hooked up correctly. Not all hardware vendors
2188 * do this, so the PME never gets delivered and the device
2189 * remains asleep. The easiest way around this is to
2190 * periodically walk the list of suspended devices and check
2191 * whether any have their PME flag set. The assumption is that
2192 * we'll wake up often enough anyway that this won't be a huge
2193 * hit, and the power savings from the devices will still be a
2194 * win.
2196 * Although PCIe uses in-band PME message instead of PME# line
2197 * to report PME, PME does not work for some PCIe devices in
2198 * reality. For example, there are devices that set their PME
2199 * status bits, but don't really bother to send a PME message;
2200 * there are PCI Express Root Ports that don't bother to
2201 * trigger interrupts when they receive PME messages from the
2202 * devices below. So PME poll is used for PCIe devices too.
2205 if (dev->pme_poll) {
2206 struct pci_pme_device *pme_dev;
2207 if (enable) {
2208 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2209 GFP_KERNEL);
2210 if (!pme_dev) {
2211 pci_warn(dev, "can't enable PME#\n");
2212 return;
2214 pme_dev->dev = dev;
2215 mutex_lock(&pci_pme_list_mutex);
2216 list_add(&pme_dev->list, &pci_pme_list);
2217 if (list_is_singular(&pci_pme_list))
2218 queue_delayed_work(system_freezable_wq,
2219 &pci_pme_work,
2220 msecs_to_jiffies(PME_TIMEOUT));
2221 mutex_unlock(&pci_pme_list_mutex);
2222 } else {
2223 mutex_lock(&pci_pme_list_mutex);
2224 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2225 if (pme_dev->dev == dev) {
2226 list_del(&pme_dev->list);
2227 kfree(pme_dev);
2228 break;
2231 mutex_unlock(&pci_pme_list_mutex);
2235 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2237 EXPORT_SYMBOL(pci_pme_active);
2240 * __pci_enable_wake - enable PCI device as wakeup event source
2241 * @dev: PCI device affected
2242 * @state: PCI state from which device will issue wakeup events
2243 * @enable: True to enable event generation; false to disable
2245 * This enables the device as a wakeup event source, or disables it.
2246 * When such events involves platform-specific hooks, those hooks are
2247 * called automatically by this routine.
2249 * Devices with legacy power management (no standard PCI PM capabilities)
2250 * always require such platform hooks.
2252 * RETURN VALUE:
2253 * 0 is returned on success
2254 * -EINVAL is returned if device is not supposed to wake up the system
2255 * Error code depending on the platform is returned if both the platform and
2256 * the native mechanism fail to enable the generation of wake-up events
2258 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2260 int ret = 0;
2263 * Bridges that are not power-manageable directly only signal
2264 * wakeup on behalf of subordinate devices which is set up
2265 * elsewhere, so skip them. However, bridges that are
2266 * power-manageable may signal wakeup for themselves (for example,
2267 * on a hotplug event) and they need to be covered here.
2269 if (!pci_power_manageable(dev))
2270 return 0;
2272 /* Don't do the same thing twice in a row for one device. */
2273 if (!!enable == !!dev->wakeup_prepared)
2274 return 0;
2277 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2278 * Anderson we should be doing PME# wake enable followed by ACPI wake
2279 * enable. To disable wake-up we call the platform first, for symmetry.
2282 if (enable) {
2283 int error;
2285 if (pci_pme_capable(dev, state))
2286 pci_pme_active(dev, true);
2287 else
2288 ret = 1;
2289 error = platform_pci_set_wakeup(dev, true);
2290 if (ret)
2291 ret = error;
2292 if (!ret)
2293 dev->wakeup_prepared = true;
2294 } else {
2295 platform_pci_set_wakeup(dev, false);
2296 pci_pme_active(dev, false);
2297 dev->wakeup_prepared = false;
2300 return ret;
2304 * pci_enable_wake - change wakeup settings for a PCI device
2305 * @pci_dev: Target device
2306 * @state: PCI state from which device will issue wakeup events
2307 * @enable: Whether or not to enable event generation
2309 * If @enable is set, check device_may_wakeup() for the device before calling
2310 * __pci_enable_wake() for it.
2312 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2314 if (enable && !device_may_wakeup(&pci_dev->dev))
2315 return -EINVAL;
2317 return __pci_enable_wake(pci_dev, state, enable);
2319 EXPORT_SYMBOL(pci_enable_wake);
2322 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2323 * @dev: PCI device to prepare
2324 * @enable: True to enable wake-up event generation; false to disable
2326 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2327 * and this function allows them to set that up cleanly - pci_enable_wake()
2328 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2329 * ordering constraints.
2331 * This function only returns error code if the device is not allowed to wake
2332 * up the system from sleep or it is not capable of generating PME# from both
2333 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2335 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2337 return pci_pme_capable(dev, PCI_D3cold) ?
2338 pci_enable_wake(dev, PCI_D3cold, enable) :
2339 pci_enable_wake(dev, PCI_D3hot, enable);
2341 EXPORT_SYMBOL(pci_wake_from_d3);
2344 * pci_target_state - find an appropriate low power state for a given PCI dev
2345 * @dev: PCI device
2346 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2348 * Use underlying platform code to find a supported low power state for @dev.
2349 * If the platform can't manage @dev, return the deepest state from which it
2350 * can generate wake events, based on any available PME info.
2352 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2354 pci_power_t target_state = PCI_D3hot;
2356 if (platform_pci_power_manageable(dev)) {
2358 * Call the platform to find the target state for the device.
2360 pci_power_t state = platform_pci_choose_state(dev);
2362 switch (state) {
2363 case PCI_POWER_ERROR:
2364 case PCI_UNKNOWN:
2365 break;
2366 case PCI_D1:
2367 case PCI_D2:
2368 if (pci_no_d1d2(dev))
2369 break;
2370 /* else, fall through */
2371 default:
2372 target_state = state;
2375 return target_state;
2378 if (!dev->pm_cap)
2379 target_state = PCI_D0;
2382 * If the device is in D3cold even though it's not power-manageable by
2383 * the platform, it may have been powered down by non-standard means.
2384 * Best to let it slumber.
2386 if (dev->current_state == PCI_D3cold)
2387 target_state = PCI_D3cold;
2389 if (wakeup) {
2391 * Find the deepest state from which the device can generate
2392 * PME#.
2394 if (dev->pme_support) {
2395 while (target_state
2396 && !(dev->pme_support & (1 << target_state)))
2397 target_state--;
2401 return target_state;
2405 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2406 * into a sleep state
2407 * @dev: Device to handle.
2409 * Choose the power state appropriate for the device depending on whether
2410 * it can wake up the system and/or is power manageable by the platform
2411 * (PCI_D3hot is the default) and put the device into that state.
2413 int pci_prepare_to_sleep(struct pci_dev *dev)
2415 bool wakeup = device_may_wakeup(&dev->dev);
2416 pci_power_t target_state = pci_target_state(dev, wakeup);
2417 int error;
2419 if (target_state == PCI_POWER_ERROR)
2420 return -EIO;
2422 pci_enable_wake(dev, target_state, wakeup);
2424 error = pci_set_power_state(dev, target_state);
2426 if (error)
2427 pci_enable_wake(dev, target_state, false);
2429 return error;
2431 EXPORT_SYMBOL(pci_prepare_to_sleep);
2434 * pci_back_from_sleep - turn PCI device on during system-wide transition
2435 * into working state
2436 * @dev: Device to handle.
2438 * Disable device's system wake-up capability and put it into D0.
2440 int pci_back_from_sleep(struct pci_dev *dev)
2442 pci_enable_wake(dev, PCI_D0, false);
2443 return pci_set_power_state(dev, PCI_D0);
2445 EXPORT_SYMBOL(pci_back_from_sleep);
2448 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2449 * @dev: PCI device being suspended.
2451 * Prepare @dev to generate wake-up events at run time and put it into a low
2452 * power state.
2454 int pci_finish_runtime_suspend(struct pci_dev *dev)
2456 pci_power_t target_state;
2457 int error;
2459 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2460 if (target_state == PCI_POWER_ERROR)
2461 return -EIO;
2463 dev->runtime_d3cold = target_state == PCI_D3cold;
2465 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2467 error = pci_set_power_state(dev, target_state);
2469 if (error) {
2470 pci_enable_wake(dev, target_state, false);
2471 dev->runtime_d3cold = false;
2474 return error;
2478 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2479 * @dev: Device to check.
2481 * Return true if the device itself is capable of generating wake-up events
2482 * (through the platform or using the native PCIe PME) or if the device supports
2483 * PME and one of its upstream bridges can generate wake-up events.
2485 bool pci_dev_run_wake(struct pci_dev *dev)
2487 struct pci_bus *bus = dev->bus;
2489 if (!dev->pme_support)
2490 return false;
2492 /* PME-capable in principle, but not from the target power state */
2493 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2494 return false;
2496 if (device_can_wakeup(&dev->dev))
2497 return true;
2499 while (bus->parent) {
2500 struct pci_dev *bridge = bus->self;
2502 if (device_can_wakeup(&bridge->dev))
2503 return true;
2505 bus = bus->parent;
2508 /* We have reached the root bus. */
2509 if (bus->bridge)
2510 return device_can_wakeup(bus->bridge);
2512 return false;
2514 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2517 * pci_dev_need_resume - Check if it is necessary to resume the device.
2518 * @pci_dev: Device to check.
2520 * Return 'true' if the device is not runtime-suspended or it has to be
2521 * reconfigured due to wakeup settings difference between system and runtime
2522 * suspend, or the current power state of it is not suitable for the upcoming
2523 * (system-wide) transition.
2525 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2527 struct device *dev = &pci_dev->dev;
2528 pci_power_t target_state;
2530 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2531 return true;
2533 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2536 * If the earlier platform check has not triggered, D3cold is just power
2537 * removal on top of D3hot, so no need to resume the device in that
2538 * case.
2540 return target_state != pci_dev->current_state &&
2541 target_state != PCI_D3cold &&
2542 pci_dev->current_state != PCI_D3hot;
2546 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2547 * @pci_dev: Device to check.
2549 * If the device is suspended and it is not configured for system wakeup,
2550 * disable PME for it to prevent it from waking up the system unnecessarily.
2552 * Note that if the device's power state is D3cold and the platform check in
2553 * pci_dev_need_resume() has not triggered, the device's configuration need not
2554 * be changed.
2556 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2558 struct device *dev = &pci_dev->dev;
2560 spin_lock_irq(&dev->power.lock);
2562 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2563 pci_dev->current_state < PCI_D3cold)
2564 __pci_pme_active(pci_dev, false);
2566 spin_unlock_irq(&dev->power.lock);
2570 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2571 * @pci_dev: Device to handle.
2573 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2574 * it might have been disabled during the prepare phase of system suspend if
2575 * the device was not configured for system wakeup.
2577 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2579 struct device *dev = &pci_dev->dev;
2581 if (!pci_dev_run_wake(pci_dev))
2582 return;
2584 spin_lock_irq(&dev->power.lock);
2586 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2587 __pci_pme_active(pci_dev, true);
2589 spin_unlock_irq(&dev->power.lock);
2592 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2594 struct device *dev = &pdev->dev;
2595 struct device *parent = dev->parent;
2597 if (parent)
2598 pm_runtime_get_sync(parent);
2599 pm_runtime_get_noresume(dev);
2601 * pdev->current_state is set to PCI_D3cold during suspending,
2602 * so wait until suspending completes
2604 pm_runtime_barrier(dev);
2606 * Only need to resume devices in D3cold, because config
2607 * registers are still accessible for devices suspended but
2608 * not in D3cold.
2610 if (pdev->current_state == PCI_D3cold)
2611 pm_runtime_resume(dev);
2614 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2616 struct device *dev = &pdev->dev;
2617 struct device *parent = dev->parent;
2619 pm_runtime_put(dev);
2620 if (parent)
2621 pm_runtime_put_sync(parent);
2624 static const struct dmi_system_id bridge_d3_blacklist[] = {
2625 #ifdef CONFIG_X86
2628 * Gigabyte X299 root port is not marked as hotplug capable
2629 * which allows Linux to power manage it. However, this
2630 * confuses the BIOS SMI handler so don't power manage root
2631 * ports on that system.
2633 .ident = "X299 DESIGNARE EX-CF",
2634 .matches = {
2635 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2636 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2639 #endif
2644 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2645 * @bridge: Bridge to check
2647 * This function checks if it is possible to move the bridge to D3.
2648 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2650 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2652 if (!pci_is_pcie(bridge))
2653 return false;
2655 switch (pci_pcie_type(bridge)) {
2656 case PCI_EXP_TYPE_ROOT_PORT:
2657 case PCI_EXP_TYPE_UPSTREAM:
2658 case PCI_EXP_TYPE_DOWNSTREAM:
2659 if (pci_bridge_d3_disable)
2660 return false;
2663 * Hotplug ports handled by firmware in System Management Mode
2664 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2666 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2667 return false;
2669 if (pci_bridge_d3_force)
2670 return true;
2672 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2673 if (bridge->is_thunderbolt)
2674 return true;
2676 /* Platform might know better if the bridge supports D3 */
2677 if (platform_pci_bridge_d3(bridge))
2678 return true;
2681 * Hotplug ports handled natively by the OS were not validated
2682 * by vendors for runtime D3 at least until 2018 because there
2683 * was no OS support.
2685 if (bridge->is_hotplug_bridge)
2686 return false;
2688 if (dmi_check_system(bridge_d3_blacklist))
2689 return false;
2692 * It should be safe to put PCIe ports from 2015 or newer
2693 * to D3.
2695 if (dmi_get_bios_year() >= 2015)
2696 return true;
2697 break;
2700 return false;
2703 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2705 bool *d3cold_ok = data;
2707 if (/* The device needs to be allowed to go D3cold ... */
2708 dev->no_d3cold || !dev->d3cold_allowed ||
2710 /* ... and if it is wakeup capable to do so from D3cold. */
2711 (device_may_wakeup(&dev->dev) &&
2712 !pci_pme_capable(dev, PCI_D3cold)) ||
2714 /* If it is a bridge it must be allowed to go to D3. */
2715 !pci_power_manageable(dev))
2717 *d3cold_ok = false;
2719 return !*d3cold_ok;
2723 * pci_bridge_d3_update - Update bridge D3 capabilities
2724 * @dev: PCI device which is changed
2726 * Update upstream bridge PM capabilities accordingly depending on if the
2727 * device PM configuration was changed or the device is being removed. The
2728 * change is also propagated upstream.
2730 void pci_bridge_d3_update(struct pci_dev *dev)
2732 bool remove = !device_is_registered(&dev->dev);
2733 struct pci_dev *bridge;
2734 bool d3cold_ok = true;
2736 bridge = pci_upstream_bridge(dev);
2737 if (!bridge || !pci_bridge_d3_possible(bridge))
2738 return;
2741 * If D3 is currently allowed for the bridge, removing one of its
2742 * children won't change that.
2744 if (remove && bridge->bridge_d3)
2745 return;
2748 * If D3 is currently allowed for the bridge and a child is added or
2749 * changed, disallowance of D3 can only be caused by that child, so
2750 * we only need to check that single device, not any of its siblings.
2752 * If D3 is currently not allowed for the bridge, checking the device
2753 * first may allow us to skip checking its siblings.
2755 if (!remove)
2756 pci_dev_check_d3cold(dev, &d3cold_ok);
2759 * If D3 is currently not allowed for the bridge, this may be caused
2760 * either by the device being changed/removed or any of its siblings,
2761 * so we need to go through all children to find out if one of them
2762 * continues to block D3.
2764 if (d3cold_ok && !bridge->bridge_d3)
2765 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2766 &d3cold_ok);
2768 if (bridge->bridge_d3 != d3cold_ok) {
2769 bridge->bridge_d3 = d3cold_ok;
2770 /* Propagate change to upstream bridges */
2771 pci_bridge_d3_update(bridge);
2776 * pci_d3cold_enable - Enable D3cold for device
2777 * @dev: PCI device to handle
2779 * This function can be used in drivers to enable D3cold from the device
2780 * they handle. It also updates upstream PCI bridge PM capabilities
2781 * accordingly.
2783 void pci_d3cold_enable(struct pci_dev *dev)
2785 if (dev->no_d3cold) {
2786 dev->no_d3cold = false;
2787 pci_bridge_d3_update(dev);
2790 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2793 * pci_d3cold_disable - Disable D3cold for device
2794 * @dev: PCI device to handle
2796 * This function can be used in drivers to disable D3cold from the device
2797 * they handle. It also updates upstream PCI bridge PM capabilities
2798 * accordingly.
2800 void pci_d3cold_disable(struct pci_dev *dev)
2802 if (!dev->no_d3cold) {
2803 dev->no_d3cold = true;
2804 pci_bridge_d3_update(dev);
2807 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2810 * pci_pm_init - Initialize PM functions of given PCI device
2811 * @dev: PCI device to handle.
2813 void pci_pm_init(struct pci_dev *dev)
2815 int pm;
2816 u16 status;
2817 u16 pmc;
2819 pm_runtime_forbid(&dev->dev);
2820 pm_runtime_set_active(&dev->dev);
2821 pm_runtime_enable(&dev->dev);
2822 device_enable_async_suspend(&dev->dev);
2823 dev->wakeup_prepared = false;
2825 dev->pm_cap = 0;
2826 dev->pme_support = 0;
2828 /* find PCI PM capability in list */
2829 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2830 if (!pm)
2831 return;
2832 /* Check device's ability to generate PME# */
2833 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2835 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2836 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2837 pmc & PCI_PM_CAP_VER_MASK);
2838 return;
2841 dev->pm_cap = pm;
2842 dev->d3_delay = PCI_PM_D3_WAIT;
2843 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2844 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2845 dev->d3cold_allowed = true;
2847 dev->d1_support = false;
2848 dev->d2_support = false;
2849 if (!pci_no_d1d2(dev)) {
2850 if (pmc & PCI_PM_CAP_D1)
2851 dev->d1_support = true;
2852 if (pmc & PCI_PM_CAP_D2)
2853 dev->d2_support = true;
2855 if (dev->d1_support || dev->d2_support)
2856 pci_info(dev, "supports%s%s\n",
2857 dev->d1_support ? " D1" : "",
2858 dev->d2_support ? " D2" : "");
2861 pmc &= PCI_PM_CAP_PME_MASK;
2862 if (pmc) {
2863 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2864 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2865 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2866 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2867 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2868 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2869 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2870 dev->pme_poll = true;
2872 * Make device's PM flags reflect the wake-up capability, but
2873 * let the user space enable it to wake up the system as needed.
2875 device_set_wakeup_capable(&dev->dev, true);
2876 /* Disable the PME# generation functionality */
2877 pci_pme_active(dev, false);
2880 pci_read_config_word(dev, PCI_STATUS, &status);
2881 if (status & PCI_STATUS_IMM_READY)
2882 dev->imm_ready = 1;
2885 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2887 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2889 switch (prop) {
2890 case PCI_EA_P_MEM:
2891 case PCI_EA_P_VF_MEM:
2892 flags |= IORESOURCE_MEM;
2893 break;
2894 case PCI_EA_P_MEM_PREFETCH:
2895 case PCI_EA_P_VF_MEM_PREFETCH:
2896 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2897 break;
2898 case PCI_EA_P_IO:
2899 flags |= IORESOURCE_IO;
2900 break;
2901 default:
2902 return 0;
2905 return flags;
2908 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2909 u8 prop)
2911 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2912 return &dev->resource[bei];
2913 #ifdef CONFIG_PCI_IOV
2914 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2915 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2916 return &dev->resource[PCI_IOV_RESOURCES +
2917 bei - PCI_EA_BEI_VF_BAR0];
2918 #endif
2919 else if (bei == PCI_EA_BEI_ROM)
2920 return &dev->resource[PCI_ROM_RESOURCE];
2921 else
2922 return NULL;
2925 /* Read an Enhanced Allocation (EA) entry */
2926 static int pci_ea_read(struct pci_dev *dev, int offset)
2928 struct resource *res;
2929 int ent_size, ent_offset = offset;
2930 resource_size_t start, end;
2931 unsigned long flags;
2932 u32 dw0, bei, base, max_offset;
2933 u8 prop;
2934 bool support_64 = (sizeof(resource_size_t) >= 8);
2936 pci_read_config_dword(dev, ent_offset, &dw0);
2937 ent_offset += 4;
2939 /* Entry size field indicates DWORDs after 1st */
2940 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2942 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2943 goto out;
2945 bei = (dw0 & PCI_EA_BEI) >> 4;
2946 prop = (dw0 & PCI_EA_PP) >> 8;
2949 * If the Property is in the reserved range, try the Secondary
2950 * Property instead.
2952 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2953 prop = (dw0 & PCI_EA_SP) >> 16;
2954 if (prop > PCI_EA_P_BRIDGE_IO)
2955 goto out;
2957 res = pci_ea_get_resource(dev, bei, prop);
2958 if (!res) {
2959 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2960 goto out;
2963 flags = pci_ea_flags(dev, prop);
2964 if (!flags) {
2965 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2966 goto out;
2969 /* Read Base */
2970 pci_read_config_dword(dev, ent_offset, &base);
2971 start = (base & PCI_EA_FIELD_MASK);
2972 ent_offset += 4;
2974 /* Read MaxOffset */
2975 pci_read_config_dword(dev, ent_offset, &max_offset);
2976 ent_offset += 4;
2978 /* Read Base MSBs (if 64-bit entry) */
2979 if (base & PCI_EA_IS_64) {
2980 u32 base_upper;
2982 pci_read_config_dword(dev, ent_offset, &base_upper);
2983 ent_offset += 4;
2985 flags |= IORESOURCE_MEM_64;
2987 /* entry starts above 32-bit boundary, can't use */
2988 if (!support_64 && base_upper)
2989 goto out;
2991 if (support_64)
2992 start |= ((u64)base_upper << 32);
2995 end = start + (max_offset | 0x03);
2997 /* Read MaxOffset MSBs (if 64-bit entry) */
2998 if (max_offset & PCI_EA_IS_64) {
2999 u32 max_offset_upper;
3001 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3002 ent_offset += 4;
3004 flags |= IORESOURCE_MEM_64;
3006 /* entry too big, can't use */
3007 if (!support_64 && max_offset_upper)
3008 goto out;
3010 if (support_64)
3011 end += ((u64)max_offset_upper << 32);
3014 if (end < start) {
3015 pci_err(dev, "EA Entry crosses address boundary\n");
3016 goto out;
3019 if (ent_size != ent_offset - offset) {
3020 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3021 ent_size, ent_offset - offset);
3022 goto out;
3025 res->name = pci_name(dev);
3026 res->start = start;
3027 res->end = end;
3028 res->flags = flags;
3030 if (bei <= PCI_EA_BEI_BAR5)
3031 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3032 bei, res, prop);
3033 else if (bei == PCI_EA_BEI_ROM)
3034 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3035 res, prop);
3036 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3037 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3038 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3039 else
3040 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3041 bei, res, prop);
3043 out:
3044 return offset + ent_size;
3047 /* Enhanced Allocation Initialization */
3048 void pci_ea_init(struct pci_dev *dev)
3050 int ea;
3051 u8 num_ent;
3052 int offset;
3053 int i;
3055 /* find PCI EA capability in list */
3056 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3057 if (!ea)
3058 return;
3060 /* determine the number of entries */
3061 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3062 &num_ent);
3063 num_ent &= PCI_EA_NUM_ENT_MASK;
3065 offset = ea + PCI_EA_FIRST_ENT;
3067 /* Skip DWORD 2 for type 1 functions */
3068 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3069 offset += 4;
3071 /* parse each EA entry */
3072 for (i = 0; i < num_ent; ++i)
3073 offset = pci_ea_read(dev, offset);
3076 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3077 struct pci_cap_saved_state *new_cap)
3079 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3083 * _pci_add_cap_save_buffer - allocate buffer for saving given
3084 * capability registers
3085 * @dev: the PCI device
3086 * @cap: the capability to allocate the buffer for
3087 * @extended: Standard or Extended capability ID
3088 * @size: requested size of the buffer
3090 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3091 bool extended, unsigned int size)
3093 int pos;
3094 struct pci_cap_saved_state *save_state;
3096 if (extended)
3097 pos = pci_find_ext_capability(dev, cap);
3098 else
3099 pos = pci_find_capability(dev, cap);
3101 if (!pos)
3102 return 0;
3104 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3105 if (!save_state)
3106 return -ENOMEM;
3108 save_state->cap.cap_nr = cap;
3109 save_state->cap.cap_extended = extended;
3110 save_state->cap.size = size;
3111 pci_add_saved_cap(dev, save_state);
3113 return 0;
3116 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3118 return _pci_add_cap_save_buffer(dev, cap, false, size);
3121 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3123 return _pci_add_cap_save_buffer(dev, cap, true, size);
3127 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3128 * @dev: the PCI device
3130 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3132 int error;
3134 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3135 PCI_EXP_SAVE_REGS * sizeof(u16));
3136 if (error)
3137 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3139 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3140 if (error)
3141 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3143 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3144 2 * sizeof(u16));
3145 if (error)
3146 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3148 pci_allocate_vc_save_buffers(dev);
3151 void pci_free_cap_save_buffers(struct pci_dev *dev)
3153 struct pci_cap_saved_state *tmp;
3154 struct hlist_node *n;
3156 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3157 kfree(tmp);
3161 * pci_configure_ari - enable or disable ARI forwarding
3162 * @dev: the PCI device
3164 * If @dev and its upstream bridge both support ARI, enable ARI in the
3165 * bridge. Otherwise, disable ARI in the bridge.
3167 void pci_configure_ari(struct pci_dev *dev)
3169 u32 cap;
3170 struct pci_dev *bridge;
3172 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3173 return;
3175 bridge = dev->bus->self;
3176 if (!bridge)
3177 return;
3179 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3180 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3181 return;
3183 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3184 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3185 PCI_EXP_DEVCTL2_ARI);
3186 bridge->ari_enabled = 1;
3187 } else {
3188 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3189 PCI_EXP_DEVCTL2_ARI);
3190 bridge->ari_enabled = 0;
3194 static int pci_acs_enable;
3197 * pci_request_acs - ask for ACS to be enabled if supported
3199 void pci_request_acs(void)
3201 pci_acs_enable = 1;
3204 static const char *disable_acs_redir_param;
3207 * pci_disable_acs_redir - disable ACS redirect capabilities
3208 * @dev: the PCI device
3210 * For only devices specified in the disable_acs_redir parameter.
3212 static void pci_disable_acs_redir(struct pci_dev *dev)
3214 int ret = 0;
3215 const char *p;
3216 int pos;
3217 u16 ctrl;
3219 if (!disable_acs_redir_param)
3220 return;
3222 p = disable_acs_redir_param;
3223 while (*p) {
3224 ret = pci_dev_str_match(dev, p, &p);
3225 if (ret < 0) {
3226 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3227 disable_acs_redir_param);
3229 break;
3230 } else if (ret == 1) {
3231 /* Found a match */
3232 break;
3235 if (*p != ';' && *p != ',') {
3236 /* End of param or invalid format */
3237 break;
3239 p++;
3242 if (ret != 1)
3243 return;
3245 if (!pci_dev_specific_disable_acs_redir(dev))
3246 return;
3248 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3249 if (!pos) {
3250 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3251 return;
3254 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3256 /* P2P Request & Completion Redirect */
3257 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3259 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3261 pci_info(dev, "disabled ACS redirect\n");
3265 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3266 * @dev: the PCI device
3268 static void pci_std_enable_acs(struct pci_dev *dev)
3270 int pos;
3271 u16 cap;
3272 u16 ctrl;
3274 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3275 if (!pos)
3276 return;
3278 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3279 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3281 /* Source Validation */
3282 ctrl |= (cap & PCI_ACS_SV);
3284 /* P2P Request Redirect */
3285 ctrl |= (cap & PCI_ACS_RR);
3287 /* P2P Completion Redirect */
3288 ctrl |= (cap & PCI_ACS_CR);
3290 /* Upstream Forwarding */
3291 ctrl |= (cap & PCI_ACS_UF);
3293 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3297 * pci_enable_acs - enable ACS if hardware support it
3298 * @dev: the PCI device
3300 void pci_enable_acs(struct pci_dev *dev)
3302 if (!pci_acs_enable)
3303 goto disable_acs_redir;
3305 if (!pci_dev_specific_enable_acs(dev))
3306 goto disable_acs_redir;
3308 pci_std_enable_acs(dev);
3310 disable_acs_redir:
3312 * Note: pci_disable_acs_redir() must be called even if ACS was not
3313 * enabled by the kernel because it may have been enabled by
3314 * platform firmware. So if we are told to disable it, we should
3315 * always disable it after setting the kernel's default
3316 * preferences.
3318 pci_disable_acs_redir(dev);
3321 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3323 int pos;
3324 u16 cap, ctrl;
3326 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3327 if (!pos)
3328 return false;
3331 * Except for egress control, capabilities are either required
3332 * or only required if controllable. Features missing from the
3333 * capability field can therefore be assumed as hard-wired enabled.
3335 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3336 acs_flags &= (cap | PCI_ACS_EC);
3338 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3339 return (ctrl & acs_flags) == acs_flags;
3343 * pci_acs_enabled - test ACS against required flags for a given device
3344 * @pdev: device to test
3345 * @acs_flags: required PCI ACS flags
3347 * Return true if the device supports the provided flags. Automatically
3348 * filters out flags that are not implemented on multifunction devices.
3350 * Note that this interface checks the effective ACS capabilities of the
3351 * device rather than the actual capabilities. For instance, most single
3352 * function endpoints are not required to support ACS because they have no
3353 * opportunity for peer-to-peer access. We therefore return 'true'
3354 * regardless of whether the device exposes an ACS capability. This makes
3355 * it much easier for callers of this function to ignore the actual type
3356 * or topology of the device when testing ACS support.
3358 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3360 int ret;
3362 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3363 if (ret >= 0)
3364 return ret > 0;
3367 * Conventional PCI and PCI-X devices never support ACS, either
3368 * effectively or actually. The shared bus topology implies that
3369 * any device on the bus can receive or snoop DMA.
3371 if (!pci_is_pcie(pdev))
3372 return false;
3374 switch (pci_pcie_type(pdev)) {
3376 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3377 * but since their primary interface is PCI/X, we conservatively
3378 * handle them as we would a non-PCIe device.
3380 case PCI_EXP_TYPE_PCIE_BRIDGE:
3382 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3383 * applicable... must never implement an ACS Extended Capability...".
3384 * This seems arbitrary, but we take a conservative interpretation
3385 * of this statement.
3387 case PCI_EXP_TYPE_PCI_BRIDGE:
3388 case PCI_EXP_TYPE_RC_EC:
3389 return false;
3391 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3392 * implement ACS in order to indicate their peer-to-peer capabilities,
3393 * regardless of whether they are single- or multi-function devices.
3395 case PCI_EXP_TYPE_DOWNSTREAM:
3396 case PCI_EXP_TYPE_ROOT_PORT:
3397 return pci_acs_flags_enabled(pdev, acs_flags);
3399 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3400 * implemented by the remaining PCIe types to indicate peer-to-peer
3401 * capabilities, but only when they are part of a multifunction
3402 * device. The footnote for section 6.12 indicates the specific
3403 * PCIe types included here.
3405 case PCI_EXP_TYPE_ENDPOINT:
3406 case PCI_EXP_TYPE_UPSTREAM:
3407 case PCI_EXP_TYPE_LEG_END:
3408 case PCI_EXP_TYPE_RC_END:
3409 if (!pdev->multifunction)
3410 break;
3412 return pci_acs_flags_enabled(pdev, acs_flags);
3416 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3417 * to single function devices with the exception of downstream ports.
3419 return true;
3423 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3424 * @start: starting downstream device
3425 * @end: ending upstream device or NULL to search to the root bus
3426 * @acs_flags: required flags
3428 * Walk up a device tree from start to end testing PCI ACS support. If
3429 * any step along the way does not support the required flags, return false.
3431 bool pci_acs_path_enabled(struct pci_dev *start,
3432 struct pci_dev *end, u16 acs_flags)
3434 struct pci_dev *pdev, *parent = start;
3436 do {
3437 pdev = parent;
3439 if (!pci_acs_enabled(pdev, acs_flags))
3440 return false;
3442 if (pci_is_root_bus(pdev->bus))
3443 return (end == NULL);
3445 parent = pdev->bus->self;
3446 } while (pdev != end);
3448 return true;
3452 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3453 * @pdev: PCI device
3454 * @bar: BAR to find
3456 * Helper to find the position of the ctrl register for a BAR.
3457 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3458 * Returns -ENOENT if no ctrl register for the BAR could be found.
3460 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3462 unsigned int pos, nbars, i;
3463 u32 ctrl;
3465 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3466 if (!pos)
3467 return -ENOTSUPP;
3469 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3470 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3471 PCI_REBAR_CTRL_NBAR_SHIFT;
3473 for (i = 0; i < nbars; i++, pos += 8) {
3474 int bar_idx;
3476 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3477 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3478 if (bar_idx == bar)
3479 return pos;
3482 return -ENOENT;
3486 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3487 * @pdev: PCI device
3488 * @bar: BAR to query
3490 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3491 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3493 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3495 int pos;
3496 u32 cap;
3498 pos = pci_rebar_find_pos(pdev, bar);
3499 if (pos < 0)
3500 return 0;
3502 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3503 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3507 * pci_rebar_get_current_size - get the current size of a BAR
3508 * @pdev: PCI device
3509 * @bar: BAR to set size to
3511 * Read the size of a BAR from the resizable BAR config.
3512 * Returns size if found or negative error code.
3514 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3516 int pos;
3517 u32 ctrl;
3519 pos = pci_rebar_find_pos(pdev, bar);
3520 if (pos < 0)
3521 return pos;
3523 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3524 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3528 * pci_rebar_set_size - set a new size for a BAR
3529 * @pdev: PCI device
3530 * @bar: BAR to set size to
3531 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3533 * Set the new size of a BAR as defined in the spec.
3534 * Returns zero if resizing was successful, error code otherwise.
3536 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3538 int pos;
3539 u32 ctrl;
3541 pos = pci_rebar_find_pos(pdev, bar);
3542 if (pos < 0)
3543 return pos;
3545 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3546 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3547 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3548 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3549 return 0;
3553 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3554 * @dev: the PCI device
3555 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3556 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3557 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3558 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3560 * Return 0 if all upstream bridges support AtomicOp routing, egress
3561 * blocking is disabled on all upstream ports, and the root port supports
3562 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3563 * AtomicOp completion), or negative otherwise.
3565 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3567 struct pci_bus *bus = dev->bus;
3568 struct pci_dev *bridge;
3569 u32 cap, ctl2;
3571 if (!pci_is_pcie(dev))
3572 return -EINVAL;
3575 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3576 * AtomicOp requesters. For now, we only support endpoints as
3577 * requesters and root ports as completers. No endpoints as
3578 * completers, and no peer-to-peer.
3581 switch (pci_pcie_type(dev)) {
3582 case PCI_EXP_TYPE_ENDPOINT:
3583 case PCI_EXP_TYPE_LEG_END:
3584 case PCI_EXP_TYPE_RC_END:
3585 break;
3586 default:
3587 return -EINVAL;
3590 while (bus->parent) {
3591 bridge = bus->self;
3593 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3595 switch (pci_pcie_type(bridge)) {
3596 /* Ensure switch ports support AtomicOp routing */
3597 case PCI_EXP_TYPE_UPSTREAM:
3598 case PCI_EXP_TYPE_DOWNSTREAM:
3599 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3600 return -EINVAL;
3601 break;
3603 /* Ensure root port supports all the sizes we care about */
3604 case PCI_EXP_TYPE_ROOT_PORT:
3605 if ((cap & cap_mask) != cap_mask)
3606 return -EINVAL;
3607 break;
3610 /* Ensure upstream ports don't block AtomicOps on egress */
3611 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3612 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3613 &ctl2);
3614 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3615 return -EINVAL;
3618 bus = bus->parent;
3621 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3622 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3623 return 0;
3625 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3628 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3629 * @dev: the PCI device
3630 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3632 * Perform INTx swizzling for a device behind one level of bridge. This is
3633 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3634 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3635 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3636 * the PCI Express Base Specification, Revision 2.1)
3638 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3640 int slot;
3642 if (pci_ari_enabled(dev->bus))
3643 slot = 0;
3644 else
3645 slot = PCI_SLOT(dev->devfn);
3647 return (((pin - 1) + slot) % 4) + 1;
3650 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3652 u8 pin;
3654 pin = dev->pin;
3655 if (!pin)
3656 return -1;
3658 while (!pci_is_root_bus(dev->bus)) {
3659 pin = pci_swizzle_interrupt_pin(dev, pin);
3660 dev = dev->bus->self;
3662 *bridge = dev;
3663 return pin;
3667 * pci_common_swizzle - swizzle INTx all the way to root bridge
3668 * @dev: the PCI device
3669 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3671 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3672 * bridges all the way up to a PCI root bus.
3674 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3676 u8 pin = *pinp;
3678 while (!pci_is_root_bus(dev->bus)) {
3679 pin = pci_swizzle_interrupt_pin(dev, pin);
3680 dev = dev->bus->self;
3682 *pinp = pin;
3683 return PCI_SLOT(dev->devfn);
3685 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3688 * pci_release_region - Release a PCI bar
3689 * @pdev: PCI device whose resources were previously reserved by
3690 * pci_request_region()
3691 * @bar: BAR to release
3693 * Releases the PCI I/O and memory resources previously reserved by a
3694 * successful call to pci_request_region(). Call this function only
3695 * after all use of the PCI regions has ceased.
3697 void pci_release_region(struct pci_dev *pdev, int bar)
3699 struct pci_devres *dr;
3701 if (pci_resource_len(pdev, bar) == 0)
3702 return;
3703 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3704 release_region(pci_resource_start(pdev, bar),
3705 pci_resource_len(pdev, bar));
3706 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3707 release_mem_region(pci_resource_start(pdev, bar),
3708 pci_resource_len(pdev, bar));
3710 dr = find_pci_dr(pdev);
3711 if (dr)
3712 dr->region_mask &= ~(1 << bar);
3714 EXPORT_SYMBOL(pci_release_region);
3717 * __pci_request_region - Reserved PCI I/O and memory resource
3718 * @pdev: PCI device whose resources are to be reserved
3719 * @bar: BAR to be reserved
3720 * @res_name: Name to be associated with resource.
3721 * @exclusive: whether the region access is exclusive or not
3723 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3724 * being reserved by owner @res_name. Do not access any
3725 * address inside the PCI regions unless this call returns
3726 * successfully.
3728 * If @exclusive is set, then the region is marked so that userspace
3729 * is explicitly not allowed to map the resource via /dev/mem or
3730 * sysfs MMIO access.
3732 * Returns 0 on success, or %EBUSY on error. A warning
3733 * message is also printed on failure.
3735 static int __pci_request_region(struct pci_dev *pdev, int bar,
3736 const char *res_name, int exclusive)
3738 struct pci_devres *dr;
3740 if (pci_resource_len(pdev, bar) == 0)
3741 return 0;
3743 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3744 if (!request_region(pci_resource_start(pdev, bar),
3745 pci_resource_len(pdev, bar), res_name))
3746 goto err_out;
3747 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3748 if (!__request_mem_region(pci_resource_start(pdev, bar),
3749 pci_resource_len(pdev, bar), res_name,
3750 exclusive))
3751 goto err_out;
3754 dr = find_pci_dr(pdev);
3755 if (dr)
3756 dr->region_mask |= 1 << bar;
3758 return 0;
3760 err_out:
3761 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3762 &pdev->resource[bar]);
3763 return -EBUSY;
3767 * pci_request_region - Reserve PCI I/O and memory resource
3768 * @pdev: PCI device whose resources are to be reserved
3769 * @bar: BAR to be reserved
3770 * @res_name: Name to be associated with resource
3772 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3773 * being reserved by owner @res_name. Do not access any
3774 * address inside the PCI regions unless this call returns
3775 * successfully.
3777 * Returns 0 on success, or %EBUSY on error. A warning
3778 * message is also printed on failure.
3780 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3782 return __pci_request_region(pdev, bar, res_name, 0);
3784 EXPORT_SYMBOL(pci_request_region);
3787 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3788 * @pdev: PCI device whose resources were previously reserved
3789 * @bars: Bitmask of BARs to be released
3791 * Release selected PCI I/O and memory resources previously reserved.
3792 * Call this function only after all use of the PCI regions has ceased.
3794 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3796 int i;
3798 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3799 if (bars & (1 << i))
3800 pci_release_region(pdev, i);
3802 EXPORT_SYMBOL(pci_release_selected_regions);
3804 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3805 const char *res_name, int excl)
3807 int i;
3809 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3810 if (bars & (1 << i))
3811 if (__pci_request_region(pdev, i, res_name, excl))
3812 goto err_out;
3813 return 0;
3815 err_out:
3816 while (--i >= 0)
3817 if (bars & (1 << i))
3818 pci_release_region(pdev, i);
3820 return -EBUSY;
3825 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3826 * @pdev: PCI device whose resources are to be reserved
3827 * @bars: Bitmask of BARs to be requested
3828 * @res_name: Name to be associated with resource
3830 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3831 const char *res_name)
3833 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3835 EXPORT_SYMBOL(pci_request_selected_regions);
3837 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3838 const char *res_name)
3840 return __pci_request_selected_regions(pdev, bars, res_name,
3841 IORESOURCE_EXCLUSIVE);
3843 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3846 * pci_release_regions - Release reserved PCI I/O and memory resources
3847 * @pdev: PCI device whose resources were previously reserved by
3848 * pci_request_regions()
3850 * Releases all PCI I/O and memory resources previously reserved by a
3851 * successful call to pci_request_regions(). Call this function only
3852 * after all use of the PCI regions has ceased.
3855 void pci_release_regions(struct pci_dev *pdev)
3857 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3859 EXPORT_SYMBOL(pci_release_regions);
3862 * pci_request_regions - Reserve PCI I/O and memory resources
3863 * @pdev: PCI device whose resources are to be reserved
3864 * @res_name: Name to be associated with resource.
3866 * Mark all PCI regions associated with PCI device @pdev as
3867 * being reserved by owner @res_name. Do not access any
3868 * address inside the PCI regions unless this call returns
3869 * successfully.
3871 * Returns 0 on success, or %EBUSY on error. A warning
3872 * message is also printed on failure.
3874 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3876 return pci_request_selected_regions(pdev,
3877 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3879 EXPORT_SYMBOL(pci_request_regions);
3882 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3883 * @pdev: PCI device whose resources are to be reserved
3884 * @res_name: Name to be associated with resource.
3886 * Mark all PCI regions associated with PCI device @pdev as being reserved
3887 * by owner @res_name. Do not access any address inside the PCI regions
3888 * unless this call returns successfully.
3890 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3891 * and the sysfs MMIO access will not be allowed.
3893 * Returns 0 on success, or %EBUSY on error. A warning message is also
3894 * printed on failure.
3896 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3898 return pci_request_selected_regions_exclusive(pdev,
3899 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3901 EXPORT_SYMBOL(pci_request_regions_exclusive);
3904 * Record the PCI IO range (expressed as CPU physical address + size).
3905 * Return a negative value if an error has occurred, zero otherwise
3907 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3908 resource_size_t size)
3910 int ret = 0;
3911 #ifdef PCI_IOBASE
3912 struct logic_pio_hwaddr *range;
3914 if (!size || addr + size < addr)
3915 return -EINVAL;
3917 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3918 if (!range)
3919 return -ENOMEM;
3921 range->fwnode = fwnode;
3922 range->size = size;
3923 range->hw_start = addr;
3924 range->flags = LOGIC_PIO_CPU_MMIO;
3926 ret = logic_pio_register_range(range);
3927 if (ret)
3928 kfree(range);
3929 #endif
3931 return ret;
3934 phys_addr_t pci_pio_to_address(unsigned long pio)
3936 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3938 #ifdef PCI_IOBASE
3939 if (pio >= MMIO_UPPER_LIMIT)
3940 return address;
3942 address = logic_pio_to_hwaddr(pio);
3943 #endif
3945 return address;
3948 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3950 #ifdef PCI_IOBASE
3951 return logic_pio_trans_cpuaddr(address);
3952 #else
3953 if (address > IO_SPACE_LIMIT)
3954 return (unsigned long)-1;
3956 return (unsigned long) address;
3957 #endif
3961 * pci_remap_iospace - Remap the memory mapped I/O space
3962 * @res: Resource describing the I/O space
3963 * @phys_addr: physical address of range to be mapped
3965 * Remap the memory mapped I/O space described by the @res and the CPU
3966 * physical address @phys_addr into virtual address space. Only
3967 * architectures that have memory mapped IO functions defined (and the
3968 * PCI_IOBASE value defined) should call this function.
3970 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3972 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3973 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3975 if (!(res->flags & IORESOURCE_IO))
3976 return -EINVAL;
3978 if (res->end > IO_SPACE_LIMIT)
3979 return -EINVAL;
3981 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3982 pgprot_device(PAGE_KERNEL));
3983 #else
3985 * This architecture does not have memory mapped I/O space,
3986 * so this function should never be called
3988 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3989 return -ENODEV;
3990 #endif
3992 EXPORT_SYMBOL(pci_remap_iospace);
3995 * pci_unmap_iospace - Unmap the memory mapped I/O space
3996 * @res: resource to be unmapped
3998 * Unmap the CPU virtual address @res from virtual address space. Only
3999 * architectures that have memory mapped IO functions defined (and the
4000 * PCI_IOBASE value defined) should call this function.
4002 void pci_unmap_iospace(struct resource *res)
4004 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4005 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4007 unmap_kernel_range(vaddr, resource_size(res));
4008 #endif
4010 EXPORT_SYMBOL(pci_unmap_iospace);
4012 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4014 struct resource **res = ptr;
4016 pci_unmap_iospace(*res);
4020 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4021 * @dev: Generic device to remap IO address for
4022 * @res: Resource describing the I/O space
4023 * @phys_addr: physical address of range to be mapped
4025 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4026 * detach.
4028 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4029 phys_addr_t phys_addr)
4031 const struct resource **ptr;
4032 int error;
4034 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4035 if (!ptr)
4036 return -ENOMEM;
4038 error = pci_remap_iospace(res, phys_addr);
4039 if (error) {
4040 devres_free(ptr);
4041 } else {
4042 *ptr = res;
4043 devres_add(dev, ptr);
4046 return error;
4048 EXPORT_SYMBOL(devm_pci_remap_iospace);
4051 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4052 * @dev: Generic device to remap IO address for
4053 * @offset: Resource address to map
4054 * @size: Size of map
4056 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4057 * detach.
4059 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4060 resource_size_t offset,
4061 resource_size_t size)
4063 void __iomem **ptr, *addr;
4065 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4066 if (!ptr)
4067 return NULL;
4069 addr = pci_remap_cfgspace(offset, size);
4070 if (addr) {
4071 *ptr = addr;
4072 devres_add(dev, ptr);
4073 } else
4074 devres_free(ptr);
4076 return addr;
4078 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4081 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4082 * @dev: generic device to handle the resource for
4083 * @res: configuration space resource to be handled
4085 * Checks that a resource is a valid memory region, requests the memory
4086 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4087 * proper PCI configuration space memory attributes are guaranteed.
4089 * All operations are managed and will be undone on driver detach.
4091 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4092 * on failure. Usage example::
4094 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4095 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4096 * if (IS_ERR(base))
4097 * return PTR_ERR(base);
4099 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4100 struct resource *res)
4102 resource_size_t size;
4103 const char *name;
4104 void __iomem *dest_ptr;
4106 BUG_ON(!dev);
4108 if (!res || resource_type(res) != IORESOURCE_MEM) {
4109 dev_err(dev, "invalid resource\n");
4110 return IOMEM_ERR_PTR(-EINVAL);
4113 size = resource_size(res);
4114 name = res->name ?: dev_name(dev);
4116 if (!devm_request_mem_region(dev, res->start, size, name)) {
4117 dev_err(dev, "can't request region for resource %pR\n", res);
4118 return IOMEM_ERR_PTR(-EBUSY);
4121 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4122 if (!dest_ptr) {
4123 dev_err(dev, "ioremap failed for resource %pR\n", res);
4124 devm_release_mem_region(dev, res->start, size);
4125 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4128 return dest_ptr;
4130 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4132 static void __pci_set_master(struct pci_dev *dev, bool enable)
4134 u16 old_cmd, cmd;
4136 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4137 if (enable)
4138 cmd = old_cmd | PCI_COMMAND_MASTER;
4139 else
4140 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4141 if (cmd != old_cmd) {
4142 pci_dbg(dev, "%s bus mastering\n",
4143 enable ? "enabling" : "disabling");
4144 pci_write_config_word(dev, PCI_COMMAND, cmd);
4146 dev->is_busmaster = enable;
4150 * pcibios_setup - process "pci=" kernel boot arguments
4151 * @str: string used to pass in "pci=" kernel boot arguments
4153 * Process kernel boot arguments. This is the default implementation.
4154 * Architecture specific implementations can override this as necessary.
4156 char * __weak __init pcibios_setup(char *str)
4158 return str;
4162 * pcibios_set_master - enable PCI bus-mastering for device dev
4163 * @dev: the PCI device to enable
4165 * Enables PCI bus-mastering for the device. This is the default
4166 * implementation. Architecture specific implementations can override
4167 * this if necessary.
4169 void __weak pcibios_set_master(struct pci_dev *dev)
4171 u8 lat;
4173 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4174 if (pci_is_pcie(dev))
4175 return;
4177 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4178 if (lat < 16)
4179 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4180 else if (lat > pcibios_max_latency)
4181 lat = pcibios_max_latency;
4182 else
4183 return;
4185 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4189 * pci_set_master - enables bus-mastering for device dev
4190 * @dev: the PCI device to enable
4192 * Enables bus-mastering on the device and calls pcibios_set_master()
4193 * to do the needed arch specific settings.
4195 void pci_set_master(struct pci_dev *dev)
4197 __pci_set_master(dev, true);
4198 pcibios_set_master(dev);
4200 EXPORT_SYMBOL(pci_set_master);
4203 * pci_clear_master - disables bus-mastering for device dev
4204 * @dev: the PCI device to disable
4206 void pci_clear_master(struct pci_dev *dev)
4208 __pci_set_master(dev, false);
4210 EXPORT_SYMBOL(pci_clear_master);
4213 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4214 * @dev: the PCI device for which MWI is to be enabled
4216 * Helper function for pci_set_mwi.
4217 * Originally copied from drivers/net/acenic.c.
4218 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4220 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4222 int pci_set_cacheline_size(struct pci_dev *dev)
4224 u8 cacheline_size;
4226 if (!pci_cache_line_size)
4227 return -EINVAL;
4229 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4230 equal to or multiple of the right value. */
4231 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4232 if (cacheline_size >= pci_cache_line_size &&
4233 (cacheline_size % pci_cache_line_size) == 0)
4234 return 0;
4236 /* Write the correct value. */
4237 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4238 /* Read it back. */
4239 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4240 if (cacheline_size == pci_cache_line_size)
4241 return 0;
4243 pci_info(dev, "cache line size of %d is not supported\n",
4244 pci_cache_line_size << 2);
4246 return -EINVAL;
4248 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4251 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4252 * @dev: the PCI device for which MWI is enabled
4254 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4256 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4258 int pci_set_mwi(struct pci_dev *dev)
4260 #ifdef PCI_DISABLE_MWI
4261 return 0;
4262 #else
4263 int rc;
4264 u16 cmd;
4266 rc = pci_set_cacheline_size(dev);
4267 if (rc)
4268 return rc;
4270 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4271 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4272 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4273 cmd |= PCI_COMMAND_INVALIDATE;
4274 pci_write_config_word(dev, PCI_COMMAND, cmd);
4276 return 0;
4277 #endif
4279 EXPORT_SYMBOL(pci_set_mwi);
4282 * pcim_set_mwi - a device-managed pci_set_mwi()
4283 * @dev: the PCI device for which MWI is enabled
4285 * Managed pci_set_mwi().
4287 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4289 int pcim_set_mwi(struct pci_dev *dev)
4291 struct pci_devres *dr;
4293 dr = find_pci_dr(dev);
4294 if (!dr)
4295 return -ENOMEM;
4297 dr->mwi = 1;
4298 return pci_set_mwi(dev);
4300 EXPORT_SYMBOL(pcim_set_mwi);
4303 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4304 * @dev: the PCI device for which MWI is enabled
4306 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4307 * Callers are not required to check the return value.
4309 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4311 int pci_try_set_mwi(struct pci_dev *dev)
4313 #ifdef PCI_DISABLE_MWI
4314 return 0;
4315 #else
4316 return pci_set_mwi(dev);
4317 #endif
4319 EXPORT_SYMBOL(pci_try_set_mwi);
4322 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4323 * @dev: the PCI device to disable
4325 * Disables PCI Memory-Write-Invalidate transaction on the device
4327 void pci_clear_mwi(struct pci_dev *dev)
4329 #ifndef PCI_DISABLE_MWI
4330 u16 cmd;
4332 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4333 if (cmd & PCI_COMMAND_INVALIDATE) {
4334 cmd &= ~PCI_COMMAND_INVALIDATE;
4335 pci_write_config_word(dev, PCI_COMMAND, cmd);
4337 #endif
4339 EXPORT_SYMBOL(pci_clear_mwi);
4342 * pci_intx - enables/disables PCI INTx for device dev
4343 * @pdev: the PCI device to operate on
4344 * @enable: boolean: whether to enable or disable PCI INTx
4346 * Enables/disables PCI INTx for device @pdev
4348 void pci_intx(struct pci_dev *pdev, int enable)
4350 u16 pci_command, new;
4352 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4354 if (enable)
4355 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4356 else
4357 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4359 if (new != pci_command) {
4360 struct pci_devres *dr;
4362 pci_write_config_word(pdev, PCI_COMMAND, new);
4364 dr = find_pci_dr(pdev);
4365 if (dr && !dr->restore_intx) {
4366 dr->restore_intx = 1;
4367 dr->orig_intx = !enable;
4371 EXPORT_SYMBOL_GPL(pci_intx);
4373 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4375 struct pci_bus *bus = dev->bus;
4376 bool mask_updated = true;
4377 u32 cmd_status_dword;
4378 u16 origcmd, newcmd;
4379 unsigned long flags;
4380 bool irq_pending;
4383 * We do a single dword read to retrieve both command and status.
4384 * Document assumptions that make this possible.
4386 BUILD_BUG_ON(PCI_COMMAND % 4);
4387 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4389 raw_spin_lock_irqsave(&pci_lock, flags);
4391 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4393 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4396 * Check interrupt status register to see whether our device
4397 * triggered the interrupt (when masking) or the next IRQ is
4398 * already pending (when unmasking).
4400 if (mask != irq_pending) {
4401 mask_updated = false;
4402 goto done;
4405 origcmd = cmd_status_dword;
4406 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4407 if (mask)
4408 newcmd |= PCI_COMMAND_INTX_DISABLE;
4409 if (newcmd != origcmd)
4410 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4412 done:
4413 raw_spin_unlock_irqrestore(&pci_lock, flags);
4415 return mask_updated;
4419 * pci_check_and_mask_intx - mask INTx on pending interrupt
4420 * @dev: the PCI device to operate on
4422 * Check if the device dev has its INTx line asserted, mask it and return
4423 * true in that case. False is returned if no interrupt was pending.
4425 bool pci_check_and_mask_intx(struct pci_dev *dev)
4427 return pci_check_and_set_intx_mask(dev, true);
4429 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4432 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4433 * @dev: the PCI device to operate on
4435 * Check if the device dev has its INTx line asserted, unmask it if not and
4436 * return true. False is returned and the mask remains active if there was
4437 * still an interrupt pending.
4439 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4441 return pci_check_and_set_intx_mask(dev, false);
4443 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4446 * pci_wait_for_pending_transaction - wait for pending transaction
4447 * @dev: the PCI device to operate on
4449 * Return 0 if transaction is pending 1 otherwise.
4451 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4453 if (!pci_is_pcie(dev))
4454 return 1;
4456 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4457 PCI_EXP_DEVSTA_TRPND);
4459 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4462 * pcie_has_flr - check if a device supports function level resets
4463 * @dev: device to check
4465 * Returns true if the device advertises support for PCIe function level
4466 * resets.
4468 bool pcie_has_flr(struct pci_dev *dev)
4470 u32 cap;
4472 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4473 return false;
4475 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4476 return cap & PCI_EXP_DEVCAP_FLR;
4478 EXPORT_SYMBOL_GPL(pcie_has_flr);
4481 * pcie_flr - initiate a PCIe function level reset
4482 * @dev: device to reset
4484 * Initiate a function level reset on @dev. The caller should ensure the
4485 * device supports FLR before calling this function, e.g. by using the
4486 * pcie_has_flr() helper.
4488 int pcie_flr(struct pci_dev *dev)
4490 if (!pci_wait_for_pending_transaction(dev))
4491 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4493 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4495 if (dev->imm_ready)
4496 return 0;
4499 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4500 * 100ms, but may silently discard requests while the FLR is in
4501 * progress. Wait 100ms before trying to access the device.
4503 msleep(100);
4505 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4507 EXPORT_SYMBOL_GPL(pcie_flr);
4509 static int pci_af_flr(struct pci_dev *dev, int probe)
4511 int pos;
4512 u8 cap;
4514 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4515 if (!pos)
4516 return -ENOTTY;
4518 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4519 return -ENOTTY;
4521 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4522 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4523 return -ENOTTY;
4525 if (probe)
4526 return 0;
4529 * Wait for Transaction Pending bit to clear. A word-aligned test
4530 * is used, so we use the control offset rather than status and shift
4531 * the test bit to match.
4533 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4534 PCI_AF_STATUS_TP << 8))
4535 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4537 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4539 if (dev->imm_ready)
4540 return 0;
4543 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4544 * updated 27 July 2006; a device must complete an FLR within
4545 * 100ms, but may silently discard requests while the FLR is in
4546 * progress. Wait 100ms before trying to access the device.
4548 msleep(100);
4550 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4554 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4555 * @dev: Device to reset.
4556 * @probe: If set, only check if the device can be reset this way.
4558 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4559 * unset, it will be reinitialized internally when going from PCI_D3hot to
4560 * PCI_D0. If that's the case and the device is not in a low-power state
4561 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4563 * NOTE: This causes the caller to sleep for twice the device power transition
4564 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4565 * by default (i.e. unless the @dev's d3_delay field has a different value).
4566 * Moreover, only devices in D0 can be reset by this function.
4568 static int pci_pm_reset(struct pci_dev *dev, int probe)
4570 u16 csr;
4572 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4573 return -ENOTTY;
4575 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4576 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4577 return -ENOTTY;
4579 if (probe)
4580 return 0;
4582 if (dev->current_state != PCI_D0)
4583 return -EINVAL;
4585 csr &= ~PCI_PM_CTRL_STATE_MASK;
4586 csr |= PCI_D3hot;
4587 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4588 pci_dev_d3_sleep(dev);
4590 csr &= ~PCI_PM_CTRL_STATE_MASK;
4591 csr |= PCI_D0;
4592 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4593 pci_dev_d3_sleep(dev);
4595 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4599 * pcie_wait_for_link_delay - Wait until link is active or inactive
4600 * @pdev: Bridge device
4601 * @active: waiting for active or inactive?
4602 * @delay: Delay to wait after link has become active (in ms)
4604 * Use this to wait till link becomes active or inactive.
4606 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4607 int delay)
4609 int timeout = 1000;
4610 bool ret;
4611 u16 lnk_status;
4614 * Some controllers might not implement link active reporting. In this
4615 * case, we wait for 1000 + 100 ms.
4617 if (!pdev->link_active_reporting) {
4618 msleep(1100);
4619 return true;
4623 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4624 * after which we should expect an link active if the reset was
4625 * successful. If so, software must wait a minimum 100ms before sending
4626 * configuration requests to devices downstream this port.
4628 * If the link fails to activate, either the device was physically
4629 * removed or the link is permanently failed.
4631 if (active)
4632 msleep(20);
4633 for (;;) {
4634 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4635 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4636 if (ret == active)
4637 break;
4638 if (timeout <= 0)
4639 break;
4640 msleep(10);
4641 timeout -= 10;
4643 if (active && ret)
4644 msleep(delay);
4645 else if (ret != active)
4646 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4647 active ? "set" : "cleared");
4648 return ret == active;
4652 * pcie_wait_for_link - Wait until link is active or inactive
4653 * @pdev: Bridge device
4654 * @active: waiting for active or inactive?
4656 * Use this to wait till link becomes active or inactive.
4658 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4660 return pcie_wait_for_link_delay(pdev, active, 100);
4664 * Find maximum D3cold delay required by all the devices on the bus. The
4665 * spec says 100 ms, but firmware can lower it and we allow drivers to
4666 * increase it as well.
4668 * Called with @pci_bus_sem locked for reading.
4670 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4672 const struct pci_dev *pdev;
4673 int min_delay = 100;
4674 int max_delay = 0;
4676 list_for_each_entry(pdev, &bus->devices, bus_list) {
4677 if (pdev->d3cold_delay < min_delay)
4678 min_delay = pdev->d3cold_delay;
4679 if (pdev->d3cold_delay > max_delay)
4680 max_delay = pdev->d3cold_delay;
4683 return max(min_delay, max_delay);
4687 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4688 * @dev: PCI bridge
4690 * Handle necessary delays before access to the devices on the secondary
4691 * side of the bridge are permitted after D3cold to D0 transition.
4693 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4694 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4695 * 4.3.2.
4697 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4699 struct pci_dev *child;
4700 int delay;
4702 if (pci_dev_is_disconnected(dev))
4703 return;
4705 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4706 return;
4708 down_read(&pci_bus_sem);
4711 * We only deal with devices that are present currently on the bus.
4712 * For any hot-added devices the access delay is handled in pciehp
4713 * board_added(). In case of ACPI hotplug the firmware is expected
4714 * to configure the devices before OS is notified.
4716 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4717 up_read(&pci_bus_sem);
4718 return;
4721 /* Take d3cold_delay requirements into account */
4722 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4723 if (!delay) {
4724 up_read(&pci_bus_sem);
4725 return;
4728 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4729 bus_list);
4730 up_read(&pci_bus_sem);
4733 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4734 * accessing the device after reset (that is 1000 ms + 100 ms). In
4735 * practice this should not be needed because we don't do power
4736 * management for them (see pci_bridge_d3_possible()).
4738 if (!pci_is_pcie(dev)) {
4739 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4740 msleep(1000 + delay);
4741 return;
4745 * For PCIe downstream and root ports that do not support speeds
4746 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4747 * speeds (gen3) we need to wait first for the data link layer to
4748 * become active.
4750 * However, 100 ms is the minimum and the PCIe spec says the
4751 * software must allow at least 1s before it can determine that the
4752 * device that did not respond is a broken device. There is
4753 * evidence that 100 ms is not always enough, for example certain
4754 * Titan Ridge xHCI controller does not always respond to
4755 * configuration requests if we only wait for 100 ms (see
4756 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4758 * Therefore we wait for 100 ms and check for the device presence.
4759 * If it is still not present give it an additional 100 ms.
4761 if (!pcie_downstream_port(dev))
4762 return;
4764 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4765 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4766 msleep(delay);
4767 } else {
4768 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4769 delay);
4770 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4771 /* Did not train, no need to wait any further */
4772 return;
4776 if (!pci_device_is_present(child)) {
4777 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4778 msleep(delay);
4782 void pci_reset_secondary_bus(struct pci_dev *dev)
4784 u16 ctrl;
4786 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4787 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4788 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4791 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4792 * this to 2ms to ensure that we meet the minimum requirement.
4794 msleep(2);
4796 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4797 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4800 * Trhfa for conventional PCI is 2^25 clock cycles.
4801 * Assuming a minimum 33MHz clock this results in a 1s
4802 * delay before we can consider subordinate devices to
4803 * be re-initialized. PCIe has some ways to shorten this,
4804 * but we don't make use of them yet.
4806 ssleep(1);
4809 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4811 pci_reset_secondary_bus(dev);
4815 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4816 * @dev: Bridge device
4818 * Use the bridge control register to assert reset on the secondary bus.
4819 * Devices on the secondary bus are left in power-on state.
4821 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4823 pcibios_reset_secondary_bus(dev);
4825 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4827 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4829 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4831 struct pci_dev *pdev;
4833 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4834 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4835 return -ENOTTY;
4837 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4838 if (pdev != dev)
4839 return -ENOTTY;
4841 if (probe)
4842 return 0;
4844 return pci_bridge_secondary_bus_reset(dev->bus->self);
4847 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4849 int rc = -ENOTTY;
4851 if (!hotplug || !try_module_get(hotplug->owner))
4852 return rc;
4854 if (hotplug->ops->reset_slot)
4855 rc = hotplug->ops->reset_slot(hotplug, probe);
4857 module_put(hotplug->owner);
4859 return rc;
4862 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4864 struct pci_dev *pdev;
4866 if (dev->subordinate || !dev->slot ||
4867 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4868 return -ENOTTY;
4870 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4871 if (pdev != dev && pdev->slot == dev->slot)
4872 return -ENOTTY;
4874 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4877 static void pci_dev_lock(struct pci_dev *dev)
4879 pci_cfg_access_lock(dev);
4880 /* block PM suspend, driver probe, etc. */
4881 device_lock(&dev->dev);
4884 /* Return 1 on successful lock, 0 on contention */
4885 static int pci_dev_trylock(struct pci_dev *dev)
4887 if (pci_cfg_access_trylock(dev)) {
4888 if (device_trylock(&dev->dev))
4889 return 1;
4890 pci_cfg_access_unlock(dev);
4893 return 0;
4896 static void pci_dev_unlock(struct pci_dev *dev)
4898 device_unlock(&dev->dev);
4899 pci_cfg_access_unlock(dev);
4902 static void pci_dev_save_and_disable(struct pci_dev *dev)
4904 const struct pci_error_handlers *err_handler =
4905 dev->driver ? dev->driver->err_handler : NULL;
4908 * dev->driver->err_handler->reset_prepare() is protected against
4909 * races with ->remove() by the device lock, which must be held by
4910 * the caller.
4912 if (err_handler && err_handler->reset_prepare)
4913 err_handler->reset_prepare(dev);
4916 * Wake-up device prior to save. PM registers default to D0 after
4917 * reset and a simple register restore doesn't reliably return
4918 * to a non-D0 state anyway.
4920 pci_set_power_state(dev, PCI_D0);
4922 pci_save_state(dev);
4924 * Disable the device by clearing the Command register, except for
4925 * INTx-disable which is set. This not only disables MMIO and I/O port
4926 * BARs, but also prevents the device from being Bus Master, preventing
4927 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4928 * compliant devices, INTx-disable prevents legacy interrupts.
4930 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4933 static void pci_dev_restore(struct pci_dev *dev)
4935 const struct pci_error_handlers *err_handler =
4936 dev->driver ? dev->driver->err_handler : NULL;
4938 pci_restore_state(dev);
4941 * dev->driver->err_handler->reset_done() is protected against
4942 * races with ->remove() by the device lock, which must be held by
4943 * the caller.
4945 if (err_handler && err_handler->reset_done)
4946 err_handler->reset_done(dev);
4950 * __pci_reset_function_locked - reset a PCI device function while holding
4951 * the @dev mutex lock.
4952 * @dev: PCI device to reset
4954 * Some devices allow an individual function to be reset without affecting
4955 * other functions in the same device. The PCI device must be responsive
4956 * to PCI config space in order to use this function.
4958 * The device function is presumed to be unused and the caller is holding
4959 * the device mutex lock when this function is called.
4961 * Resetting the device will make the contents of PCI configuration space
4962 * random, so any caller of this must be prepared to reinitialise the
4963 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4964 * etc.
4966 * Returns 0 if the device function was successfully reset or negative if the
4967 * device doesn't support resetting a single function.
4969 int __pci_reset_function_locked(struct pci_dev *dev)
4971 int rc;
4973 might_sleep();
4976 * A reset method returns -ENOTTY if it doesn't support this device
4977 * and we should try the next method.
4979 * If it returns 0 (success), we're finished. If it returns any
4980 * other error, we're also finished: this indicates that further
4981 * reset mechanisms might be broken on the device.
4983 rc = pci_dev_specific_reset(dev, 0);
4984 if (rc != -ENOTTY)
4985 return rc;
4986 if (pcie_has_flr(dev)) {
4987 rc = pcie_flr(dev);
4988 if (rc != -ENOTTY)
4989 return rc;
4991 rc = pci_af_flr(dev, 0);
4992 if (rc != -ENOTTY)
4993 return rc;
4994 rc = pci_pm_reset(dev, 0);
4995 if (rc != -ENOTTY)
4996 return rc;
4997 rc = pci_dev_reset_slot_function(dev, 0);
4998 if (rc != -ENOTTY)
4999 return rc;
5000 return pci_parent_bus_reset(dev, 0);
5002 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5005 * pci_probe_reset_function - check whether the device can be safely reset
5006 * @dev: PCI device to reset
5008 * Some devices allow an individual function to be reset without affecting
5009 * other functions in the same device. The PCI device must be responsive
5010 * to PCI config space in order to use this function.
5012 * Returns 0 if the device function can be reset or negative if the
5013 * device doesn't support resetting a single function.
5015 int pci_probe_reset_function(struct pci_dev *dev)
5017 int rc;
5019 might_sleep();
5021 rc = pci_dev_specific_reset(dev, 1);
5022 if (rc != -ENOTTY)
5023 return rc;
5024 if (pcie_has_flr(dev))
5025 return 0;
5026 rc = pci_af_flr(dev, 1);
5027 if (rc != -ENOTTY)
5028 return rc;
5029 rc = pci_pm_reset(dev, 1);
5030 if (rc != -ENOTTY)
5031 return rc;
5032 rc = pci_dev_reset_slot_function(dev, 1);
5033 if (rc != -ENOTTY)
5034 return rc;
5036 return pci_parent_bus_reset(dev, 1);
5040 * pci_reset_function - quiesce and reset a PCI device function
5041 * @dev: PCI device to reset
5043 * Some devices allow an individual function to be reset without affecting
5044 * other functions in the same device. The PCI device must be responsive
5045 * to PCI config space in order to use this function.
5047 * This function does not just reset the PCI portion of a device, but
5048 * clears all the state associated with the device. This function differs
5049 * from __pci_reset_function_locked() in that it saves and restores device state
5050 * over the reset and takes the PCI device lock.
5052 * Returns 0 if the device function was successfully reset or negative if the
5053 * device doesn't support resetting a single function.
5055 int pci_reset_function(struct pci_dev *dev)
5057 int rc;
5059 if (!dev->reset_fn)
5060 return -ENOTTY;
5062 pci_dev_lock(dev);
5063 pci_dev_save_and_disable(dev);
5065 rc = __pci_reset_function_locked(dev);
5067 pci_dev_restore(dev);
5068 pci_dev_unlock(dev);
5070 return rc;
5072 EXPORT_SYMBOL_GPL(pci_reset_function);
5075 * pci_reset_function_locked - quiesce and reset a PCI device function
5076 * @dev: PCI device to reset
5078 * Some devices allow an individual function to be reset without affecting
5079 * other functions in the same device. The PCI device must be responsive
5080 * to PCI config space in order to use this function.
5082 * This function does not just reset the PCI portion of a device, but
5083 * clears all the state associated with the device. This function differs
5084 * from __pci_reset_function_locked() in that it saves and restores device state
5085 * over the reset. It also differs from pci_reset_function() in that it
5086 * requires the PCI device lock to be held.
5088 * Returns 0 if the device function was successfully reset or negative if the
5089 * device doesn't support resetting a single function.
5091 int pci_reset_function_locked(struct pci_dev *dev)
5093 int rc;
5095 if (!dev->reset_fn)
5096 return -ENOTTY;
5098 pci_dev_save_and_disable(dev);
5100 rc = __pci_reset_function_locked(dev);
5102 pci_dev_restore(dev);
5104 return rc;
5106 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5109 * pci_try_reset_function - quiesce and reset a PCI device function
5110 * @dev: PCI device to reset
5112 * Same as above, except return -EAGAIN if unable to lock device.
5114 int pci_try_reset_function(struct pci_dev *dev)
5116 int rc;
5118 if (!dev->reset_fn)
5119 return -ENOTTY;
5121 if (!pci_dev_trylock(dev))
5122 return -EAGAIN;
5124 pci_dev_save_and_disable(dev);
5125 rc = __pci_reset_function_locked(dev);
5126 pci_dev_restore(dev);
5127 pci_dev_unlock(dev);
5129 return rc;
5131 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5133 /* Do any devices on or below this bus prevent a bus reset? */
5134 static bool pci_bus_resetable(struct pci_bus *bus)
5136 struct pci_dev *dev;
5139 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5140 return false;
5142 list_for_each_entry(dev, &bus->devices, bus_list) {
5143 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5144 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5145 return false;
5148 return true;
5151 /* Lock devices from the top of the tree down */
5152 static void pci_bus_lock(struct pci_bus *bus)
5154 struct pci_dev *dev;
5156 list_for_each_entry(dev, &bus->devices, bus_list) {
5157 pci_dev_lock(dev);
5158 if (dev->subordinate)
5159 pci_bus_lock(dev->subordinate);
5163 /* Unlock devices from the bottom of the tree up */
5164 static void pci_bus_unlock(struct pci_bus *bus)
5166 struct pci_dev *dev;
5168 list_for_each_entry(dev, &bus->devices, bus_list) {
5169 if (dev->subordinate)
5170 pci_bus_unlock(dev->subordinate);
5171 pci_dev_unlock(dev);
5175 /* Return 1 on successful lock, 0 on contention */
5176 static int pci_bus_trylock(struct pci_bus *bus)
5178 struct pci_dev *dev;
5180 list_for_each_entry(dev, &bus->devices, bus_list) {
5181 if (!pci_dev_trylock(dev))
5182 goto unlock;
5183 if (dev->subordinate) {
5184 if (!pci_bus_trylock(dev->subordinate)) {
5185 pci_dev_unlock(dev);
5186 goto unlock;
5190 return 1;
5192 unlock:
5193 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5194 if (dev->subordinate)
5195 pci_bus_unlock(dev->subordinate);
5196 pci_dev_unlock(dev);
5198 return 0;
5201 /* Do any devices on or below this slot prevent a bus reset? */
5202 static bool pci_slot_resetable(struct pci_slot *slot)
5204 struct pci_dev *dev;
5206 if (slot->bus->self &&
5207 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5208 return false;
5210 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5211 if (!dev->slot || dev->slot != slot)
5212 continue;
5213 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5214 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5215 return false;
5218 return true;
5221 /* Lock devices from the top of the tree down */
5222 static void pci_slot_lock(struct pci_slot *slot)
5224 struct pci_dev *dev;
5226 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5227 if (!dev->slot || dev->slot != slot)
5228 continue;
5229 pci_dev_lock(dev);
5230 if (dev->subordinate)
5231 pci_bus_lock(dev->subordinate);
5235 /* Unlock devices from the bottom of the tree up */
5236 static void pci_slot_unlock(struct pci_slot *slot)
5238 struct pci_dev *dev;
5240 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5241 if (!dev->slot || dev->slot != slot)
5242 continue;
5243 if (dev->subordinate)
5244 pci_bus_unlock(dev->subordinate);
5245 pci_dev_unlock(dev);
5249 /* Return 1 on successful lock, 0 on contention */
5250 static int pci_slot_trylock(struct pci_slot *slot)
5252 struct pci_dev *dev;
5254 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5255 if (!dev->slot || dev->slot != slot)
5256 continue;
5257 if (!pci_dev_trylock(dev))
5258 goto unlock;
5259 if (dev->subordinate) {
5260 if (!pci_bus_trylock(dev->subordinate)) {
5261 pci_dev_unlock(dev);
5262 goto unlock;
5266 return 1;
5268 unlock:
5269 list_for_each_entry_continue_reverse(dev,
5270 &slot->bus->devices, bus_list) {
5271 if (!dev->slot || dev->slot != slot)
5272 continue;
5273 if (dev->subordinate)
5274 pci_bus_unlock(dev->subordinate);
5275 pci_dev_unlock(dev);
5277 return 0;
5281 * Save and disable devices from the top of the tree down while holding
5282 * the @dev mutex lock for the entire tree.
5284 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5286 struct pci_dev *dev;
5288 list_for_each_entry(dev, &bus->devices, bus_list) {
5289 pci_dev_save_and_disable(dev);
5290 if (dev->subordinate)
5291 pci_bus_save_and_disable_locked(dev->subordinate);
5296 * Restore devices from top of the tree down while holding @dev mutex lock
5297 * for the entire tree. Parent bridges need to be restored before we can
5298 * get to subordinate devices.
5300 static void pci_bus_restore_locked(struct pci_bus *bus)
5302 struct pci_dev *dev;
5304 list_for_each_entry(dev, &bus->devices, bus_list) {
5305 pci_dev_restore(dev);
5306 if (dev->subordinate)
5307 pci_bus_restore_locked(dev->subordinate);
5312 * Save and disable devices from the top of the tree down while holding
5313 * the @dev mutex lock for the entire tree.
5315 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5317 struct pci_dev *dev;
5319 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5320 if (!dev->slot || dev->slot != slot)
5321 continue;
5322 pci_dev_save_and_disable(dev);
5323 if (dev->subordinate)
5324 pci_bus_save_and_disable_locked(dev->subordinate);
5329 * Restore devices from top of the tree down while holding @dev mutex lock
5330 * for the entire tree. Parent bridges need to be restored before we can
5331 * get to subordinate devices.
5333 static void pci_slot_restore_locked(struct pci_slot *slot)
5335 struct pci_dev *dev;
5337 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5338 if (!dev->slot || dev->slot != slot)
5339 continue;
5340 pci_dev_restore(dev);
5341 if (dev->subordinate)
5342 pci_bus_restore_locked(dev->subordinate);
5346 static int pci_slot_reset(struct pci_slot *slot, int probe)
5348 int rc;
5350 if (!slot || !pci_slot_resetable(slot))
5351 return -ENOTTY;
5353 if (!probe)
5354 pci_slot_lock(slot);
5356 might_sleep();
5358 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5360 if (!probe)
5361 pci_slot_unlock(slot);
5363 return rc;
5367 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5368 * @slot: PCI slot to probe
5370 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5372 int pci_probe_reset_slot(struct pci_slot *slot)
5374 return pci_slot_reset(slot, 1);
5376 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5379 * __pci_reset_slot - Try to reset a PCI slot
5380 * @slot: PCI slot to reset
5382 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5383 * independent of other slots. For instance, some slots may support slot power
5384 * control. In the case of a 1:1 bus to slot architecture, this function may
5385 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5386 * Generally a slot reset should be attempted before a bus reset. All of the
5387 * function of the slot and any subordinate buses behind the slot are reset
5388 * through this function. PCI config space of all devices in the slot and
5389 * behind the slot is saved before and restored after reset.
5391 * Same as above except return -EAGAIN if the slot cannot be locked
5393 static int __pci_reset_slot(struct pci_slot *slot)
5395 int rc;
5397 rc = pci_slot_reset(slot, 1);
5398 if (rc)
5399 return rc;
5401 if (pci_slot_trylock(slot)) {
5402 pci_slot_save_and_disable_locked(slot);
5403 might_sleep();
5404 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5405 pci_slot_restore_locked(slot);
5406 pci_slot_unlock(slot);
5407 } else
5408 rc = -EAGAIN;
5410 return rc;
5413 static int pci_bus_reset(struct pci_bus *bus, int probe)
5415 int ret;
5417 if (!bus->self || !pci_bus_resetable(bus))
5418 return -ENOTTY;
5420 if (probe)
5421 return 0;
5423 pci_bus_lock(bus);
5425 might_sleep();
5427 ret = pci_bridge_secondary_bus_reset(bus->self);
5429 pci_bus_unlock(bus);
5431 return ret;
5435 * pci_bus_error_reset - reset the bridge's subordinate bus
5436 * @bridge: The parent device that connects to the bus to reset
5438 * This function will first try to reset the slots on this bus if the method is
5439 * available. If slot reset fails or is not available, this will fall back to a
5440 * secondary bus reset.
5442 int pci_bus_error_reset(struct pci_dev *bridge)
5444 struct pci_bus *bus = bridge->subordinate;
5445 struct pci_slot *slot;
5447 if (!bus)
5448 return -ENOTTY;
5450 mutex_lock(&pci_slot_mutex);
5451 if (list_empty(&bus->slots))
5452 goto bus_reset;
5454 list_for_each_entry(slot, &bus->slots, list)
5455 if (pci_probe_reset_slot(slot))
5456 goto bus_reset;
5458 list_for_each_entry(slot, &bus->slots, list)
5459 if (pci_slot_reset(slot, 0))
5460 goto bus_reset;
5462 mutex_unlock(&pci_slot_mutex);
5463 return 0;
5464 bus_reset:
5465 mutex_unlock(&pci_slot_mutex);
5466 return pci_bus_reset(bridge->subordinate, 0);
5470 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5471 * @bus: PCI bus to probe
5473 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5475 int pci_probe_reset_bus(struct pci_bus *bus)
5477 return pci_bus_reset(bus, 1);
5479 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5482 * __pci_reset_bus - Try to reset a PCI bus
5483 * @bus: top level PCI bus to reset
5485 * Same as above except return -EAGAIN if the bus cannot be locked
5487 static int __pci_reset_bus(struct pci_bus *bus)
5489 int rc;
5491 rc = pci_bus_reset(bus, 1);
5492 if (rc)
5493 return rc;
5495 if (pci_bus_trylock(bus)) {
5496 pci_bus_save_and_disable_locked(bus);
5497 might_sleep();
5498 rc = pci_bridge_secondary_bus_reset(bus->self);
5499 pci_bus_restore_locked(bus);
5500 pci_bus_unlock(bus);
5501 } else
5502 rc = -EAGAIN;
5504 return rc;
5508 * pci_reset_bus - Try to reset a PCI bus
5509 * @pdev: top level PCI device to reset via slot/bus
5511 * Same as above except return -EAGAIN if the bus cannot be locked
5513 int pci_reset_bus(struct pci_dev *pdev)
5515 return (!pci_probe_reset_slot(pdev->slot)) ?
5516 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5518 EXPORT_SYMBOL_GPL(pci_reset_bus);
5521 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5522 * @dev: PCI device to query
5524 * Returns mmrbc: maximum designed memory read count in bytes or
5525 * appropriate error value.
5527 int pcix_get_max_mmrbc(struct pci_dev *dev)
5529 int cap;
5530 u32 stat;
5532 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5533 if (!cap)
5534 return -EINVAL;
5536 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5537 return -EINVAL;
5539 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5541 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5544 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5545 * @dev: PCI device to query
5547 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5548 * value.
5550 int pcix_get_mmrbc(struct pci_dev *dev)
5552 int cap;
5553 u16 cmd;
5555 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5556 if (!cap)
5557 return -EINVAL;
5559 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5560 return -EINVAL;
5562 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5564 EXPORT_SYMBOL(pcix_get_mmrbc);
5567 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5568 * @dev: PCI device to query
5569 * @mmrbc: maximum memory read count in bytes
5570 * valid values are 512, 1024, 2048, 4096
5572 * If possible sets maximum memory read byte count, some bridges have errata
5573 * that prevent this.
5575 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5577 int cap;
5578 u32 stat, v, o;
5579 u16 cmd;
5581 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5582 return -EINVAL;
5584 v = ffs(mmrbc) - 10;
5586 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5587 if (!cap)
5588 return -EINVAL;
5590 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5591 return -EINVAL;
5593 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5594 return -E2BIG;
5596 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5597 return -EINVAL;
5599 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5600 if (o != v) {
5601 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5602 return -EIO;
5604 cmd &= ~PCI_X_CMD_MAX_READ;
5605 cmd |= v << 2;
5606 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5607 return -EIO;
5609 return 0;
5611 EXPORT_SYMBOL(pcix_set_mmrbc);
5614 * pcie_get_readrq - get PCI Express read request size
5615 * @dev: PCI device to query
5617 * Returns maximum memory read request in bytes or appropriate error value.
5619 int pcie_get_readrq(struct pci_dev *dev)
5621 u16 ctl;
5623 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5625 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5627 EXPORT_SYMBOL(pcie_get_readrq);
5630 * pcie_set_readrq - set PCI Express maximum memory read request
5631 * @dev: PCI device to query
5632 * @rq: maximum memory read count in bytes
5633 * valid values are 128, 256, 512, 1024, 2048, 4096
5635 * If possible sets maximum memory read request in bytes
5637 int pcie_set_readrq(struct pci_dev *dev, int rq)
5639 u16 v;
5641 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5642 return -EINVAL;
5645 * If using the "performance" PCIe config, we clamp the read rq
5646 * size to the max packet size to keep the host bridge from
5647 * generating requests larger than we can cope with.
5649 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5650 int mps = pcie_get_mps(dev);
5652 if (mps < rq)
5653 rq = mps;
5656 v = (ffs(rq) - 8) << 12;
5658 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5659 PCI_EXP_DEVCTL_READRQ, v);
5661 EXPORT_SYMBOL(pcie_set_readrq);
5664 * pcie_get_mps - get PCI Express maximum payload size
5665 * @dev: PCI device to query
5667 * Returns maximum payload size in bytes
5669 int pcie_get_mps(struct pci_dev *dev)
5671 u16 ctl;
5673 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5675 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5677 EXPORT_SYMBOL(pcie_get_mps);
5680 * pcie_set_mps - set PCI Express maximum payload size
5681 * @dev: PCI device to query
5682 * @mps: maximum payload size in bytes
5683 * valid values are 128, 256, 512, 1024, 2048, 4096
5685 * If possible sets maximum payload size
5687 int pcie_set_mps(struct pci_dev *dev, int mps)
5689 u16 v;
5691 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5692 return -EINVAL;
5694 v = ffs(mps) - 8;
5695 if (v > dev->pcie_mpss)
5696 return -EINVAL;
5697 v <<= 5;
5699 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5700 PCI_EXP_DEVCTL_PAYLOAD, v);
5702 EXPORT_SYMBOL(pcie_set_mps);
5705 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5706 * device and its bandwidth limitation
5707 * @dev: PCI device to query
5708 * @limiting_dev: storage for device causing the bandwidth limitation
5709 * @speed: storage for speed of limiting device
5710 * @width: storage for width of limiting device
5712 * Walk up the PCI device chain and find the point where the minimum
5713 * bandwidth is available. Return the bandwidth available there and (if
5714 * limiting_dev, speed, and width pointers are supplied) information about
5715 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5716 * raw bandwidth.
5718 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5719 enum pci_bus_speed *speed,
5720 enum pcie_link_width *width)
5722 u16 lnksta;
5723 enum pci_bus_speed next_speed;
5724 enum pcie_link_width next_width;
5725 u32 bw, next_bw;
5727 if (speed)
5728 *speed = PCI_SPEED_UNKNOWN;
5729 if (width)
5730 *width = PCIE_LNK_WIDTH_UNKNOWN;
5732 bw = 0;
5734 while (dev) {
5735 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5737 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5738 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5739 PCI_EXP_LNKSTA_NLW_SHIFT;
5741 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5743 /* Check if current device limits the total bandwidth */
5744 if (!bw || next_bw <= bw) {
5745 bw = next_bw;
5747 if (limiting_dev)
5748 *limiting_dev = dev;
5749 if (speed)
5750 *speed = next_speed;
5751 if (width)
5752 *width = next_width;
5755 dev = pci_upstream_bridge(dev);
5758 return bw;
5760 EXPORT_SYMBOL(pcie_bandwidth_available);
5763 * pcie_get_speed_cap - query for the PCI device's link speed capability
5764 * @dev: PCI device to query
5766 * Query the PCI device speed capability. Return the maximum link speed
5767 * supported by the device.
5769 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5771 u32 lnkcap2, lnkcap;
5774 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5775 * implementation note there recommends using the Supported Link
5776 * Speeds Vector in Link Capabilities 2 when supported.
5778 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5779 * should use the Supported Link Speeds field in Link Capabilities,
5780 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5782 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5783 if (lnkcap2) { /* PCIe r3.0-compliant */
5784 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5785 return PCIE_SPEED_32_0GT;
5786 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5787 return PCIE_SPEED_16_0GT;
5788 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5789 return PCIE_SPEED_8_0GT;
5790 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5791 return PCIE_SPEED_5_0GT;
5792 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5793 return PCIE_SPEED_2_5GT;
5794 return PCI_SPEED_UNKNOWN;
5797 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5798 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5799 return PCIE_SPEED_5_0GT;
5800 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5801 return PCIE_SPEED_2_5GT;
5803 return PCI_SPEED_UNKNOWN;
5805 EXPORT_SYMBOL(pcie_get_speed_cap);
5808 * pcie_get_width_cap - query for the PCI device's link width capability
5809 * @dev: PCI device to query
5811 * Query the PCI device width capability. Return the maximum link width
5812 * supported by the device.
5814 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5816 u32 lnkcap;
5818 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5819 if (lnkcap)
5820 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5822 return PCIE_LNK_WIDTH_UNKNOWN;
5824 EXPORT_SYMBOL(pcie_get_width_cap);
5827 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5828 * @dev: PCI device
5829 * @speed: storage for link speed
5830 * @width: storage for link width
5832 * Calculate a PCI device's link bandwidth by querying for its link speed
5833 * and width, multiplying them, and applying encoding overhead. The result
5834 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5836 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5837 enum pcie_link_width *width)
5839 *speed = pcie_get_speed_cap(dev);
5840 *width = pcie_get_width_cap(dev);
5842 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5843 return 0;
5845 return *width * PCIE_SPEED2MBS_ENC(*speed);
5849 * __pcie_print_link_status - Report the PCI device's link speed and width
5850 * @dev: PCI device to query
5851 * @verbose: Print info even when enough bandwidth is available
5853 * If the available bandwidth at the device is less than the device is
5854 * capable of, report the device's maximum possible bandwidth and the
5855 * upstream link that limits its performance. If @verbose, always print
5856 * the available bandwidth, even if the device isn't constrained.
5858 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5860 enum pcie_link_width width, width_cap;
5861 enum pci_bus_speed speed, speed_cap;
5862 struct pci_dev *limiting_dev = NULL;
5863 u32 bw_avail, bw_cap;
5865 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5866 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5868 if (bw_avail >= bw_cap && verbose)
5869 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5870 bw_cap / 1000, bw_cap % 1000,
5871 PCIE_SPEED2STR(speed_cap), width_cap);
5872 else if (bw_avail < bw_cap)
5873 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5874 bw_avail / 1000, bw_avail % 1000,
5875 PCIE_SPEED2STR(speed), width,
5876 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5877 bw_cap / 1000, bw_cap % 1000,
5878 PCIE_SPEED2STR(speed_cap), width_cap);
5882 * pcie_print_link_status - Report the PCI device's link speed and width
5883 * @dev: PCI device to query
5885 * Report the available bandwidth at the device.
5887 void pcie_print_link_status(struct pci_dev *dev)
5889 __pcie_print_link_status(dev, true);
5891 EXPORT_SYMBOL(pcie_print_link_status);
5894 * pci_select_bars - Make BAR mask from the type of resource
5895 * @dev: the PCI device for which BAR mask is made
5896 * @flags: resource type mask to be selected
5898 * This helper routine makes bar mask from the type of resource.
5900 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5902 int i, bars = 0;
5903 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5904 if (pci_resource_flags(dev, i) & flags)
5905 bars |= (1 << i);
5906 return bars;
5908 EXPORT_SYMBOL(pci_select_bars);
5910 /* Some architectures require additional programming to enable VGA */
5911 static arch_set_vga_state_t arch_set_vga_state;
5913 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5915 arch_set_vga_state = func; /* NULL disables */
5918 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5919 unsigned int command_bits, u32 flags)
5921 if (arch_set_vga_state)
5922 return arch_set_vga_state(dev, decode, command_bits,
5923 flags);
5924 return 0;
5928 * pci_set_vga_state - set VGA decode state on device and parents if requested
5929 * @dev: the PCI device
5930 * @decode: true = enable decoding, false = disable decoding
5931 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5932 * @flags: traverse ancestors and change bridges
5933 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5935 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5936 unsigned int command_bits, u32 flags)
5938 struct pci_bus *bus;
5939 struct pci_dev *bridge;
5940 u16 cmd;
5941 int rc;
5943 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5945 /* ARCH specific VGA enables */
5946 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5947 if (rc)
5948 return rc;
5950 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5951 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5952 if (decode == true)
5953 cmd |= command_bits;
5954 else
5955 cmd &= ~command_bits;
5956 pci_write_config_word(dev, PCI_COMMAND, cmd);
5959 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5960 return 0;
5962 bus = dev->bus;
5963 while (bus) {
5964 bridge = bus->self;
5965 if (bridge) {
5966 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5967 &cmd);
5968 if (decode == true)
5969 cmd |= PCI_BRIDGE_CTL_VGA;
5970 else
5971 cmd &= ~PCI_BRIDGE_CTL_VGA;
5972 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5973 cmd);
5975 bus = bus->parent;
5977 return 0;
5980 #ifdef CONFIG_ACPI
5981 bool pci_pr3_present(struct pci_dev *pdev)
5983 struct acpi_device *adev;
5985 if (acpi_disabled)
5986 return false;
5988 adev = ACPI_COMPANION(&pdev->dev);
5989 if (!adev)
5990 return false;
5992 return adev->power.flags.power_resources &&
5993 acpi_has_method(adev->handle, "_PR3");
5995 EXPORT_SYMBOL_GPL(pci_pr3_present);
5996 #endif
5999 * pci_add_dma_alias - Add a DMA devfn alias for a device
6000 * @dev: the PCI device for which alias is added
6001 * @devfn: alias slot and function
6003 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6004 * which is used to program permissible bus-devfn source addresses for DMA
6005 * requests in an IOMMU. These aliases factor into IOMMU group creation
6006 * and are useful for devices generating DMA requests beyond or different
6007 * from their logical bus-devfn. Examples include device quirks where the
6008 * device simply uses the wrong devfn, as well as non-transparent bridges
6009 * where the alias may be a proxy for devices in another domain.
6011 * IOMMU group creation is performed during device discovery or addition,
6012 * prior to any potential DMA mapping and therefore prior to driver probing
6013 * (especially for userspace assigned devices where IOMMU group definition
6014 * cannot be left as a userspace activity). DMA aliases should therefore
6015 * be configured via quirks, such as the PCI fixup header quirk.
6017 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
6019 if (!dev->dma_alias_mask)
6020 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
6021 if (!dev->dma_alias_mask) {
6022 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6023 return;
6026 set_bit(devfn, dev->dma_alias_mask);
6027 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6028 PCI_SLOT(devfn), PCI_FUNC(devfn));
6031 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6033 return (dev1->dma_alias_mask &&
6034 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6035 (dev2->dma_alias_mask &&
6036 test_bit(dev1->devfn, dev2->dma_alias_mask));
6039 bool pci_device_is_present(struct pci_dev *pdev)
6041 u32 v;
6043 if (pci_dev_is_disconnected(pdev))
6044 return false;
6045 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6047 EXPORT_SYMBOL_GPL(pci_device_is_present);
6049 void pci_ignore_hotplug(struct pci_dev *dev)
6051 struct pci_dev *bridge = dev->bus->self;
6053 dev->ignore_hotplug = 1;
6054 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6055 if (bridge)
6056 bridge->ignore_hotplug = 1;
6058 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6060 resource_size_t __weak pcibios_default_alignment(void)
6062 return 0;
6066 * Arches that don't want to expose struct resource to userland as-is in
6067 * sysfs and /proc can implement their own pci_resource_to_user().
6069 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6070 const struct resource *rsrc,
6071 resource_size_t *start, resource_size_t *end)
6073 *start = rsrc->start;
6074 *end = rsrc->end;
6077 static char *resource_alignment_param;
6078 static DEFINE_SPINLOCK(resource_alignment_lock);
6081 * pci_specified_resource_alignment - get resource alignment specified by user.
6082 * @dev: the PCI device to get
6083 * @resize: whether or not to change resources' size when reassigning alignment
6085 * RETURNS: Resource alignment if it is specified.
6086 * Zero if it is not specified.
6088 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6089 bool *resize)
6091 int align_order, count;
6092 resource_size_t align = pcibios_default_alignment();
6093 const char *p;
6094 int ret;
6096 spin_lock(&resource_alignment_lock);
6097 p = resource_alignment_param;
6098 if (!p || !*p)
6099 goto out;
6100 if (pci_has_flag(PCI_PROBE_ONLY)) {
6101 align = 0;
6102 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6103 goto out;
6106 while (*p) {
6107 count = 0;
6108 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6109 p[count] == '@') {
6110 p += count + 1;
6111 } else {
6112 align_order = -1;
6115 ret = pci_dev_str_match(dev, p, &p);
6116 if (ret == 1) {
6117 *resize = true;
6118 if (align_order == -1)
6119 align = PAGE_SIZE;
6120 else
6121 align = 1 << align_order;
6122 break;
6123 } else if (ret < 0) {
6124 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6126 break;
6129 if (*p != ';' && *p != ',') {
6130 /* End of param or invalid format */
6131 break;
6133 p++;
6135 out:
6136 spin_unlock(&resource_alignment_lock);
6137 return align;
6140 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6141 resource_size_t align, bool resize)
6143 struct resource *r = &dev->resource[bar];
6144 resource_size_t size;
6146 if (!(r->flags & IORESOURCE_MEM))
6147 return;
6149 if (r->flags & IORESOURCE_PCI_FIXED) {
6150 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6151 bar, r, (unsigned long long)align);
6152 return;
6155 size = resource_size(r);
6156 if (size >= align)
6157 return;
6160 * Increase the alignment of the resource. There are two ways we
6161 * can do this:
6163 * 1) Increase the size of the resource. BARs are aligned on their
6164 * size, so when we reallocate space for this resource, we'll
6165 * allocate it with the larger alignment. This also prevents
6166 * assignment of any other BARs inside the alignment region, so
6167 * if we're requesting page alignment, this means no other BARs
6168 * will share the page.
6170 * The disadvantage is that this makes the resource larger than
6171 * the hardware BAR, which may break drivers that compute things
6172 * based on the resource size, e.g., to find registers at a
6173 * fixed offset before the end of the BAR.
6175 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6176 * set r->start to the desired alignment. By itself this
6177 * doesn't prevent other BARs being put inside the alignment
6178 * region, but if we realign *every* resource of every device in
6179 * the system, none of them will share an alignment region.
6181 * When the user has requested alignment for only some devices via
6182 * the "pci=resource_alignment" argument, "resize" is true and we
6183 * use the first method. Otherwise we assume we're aligning all
6184 * devices and we use the second.
6187 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6188 bar, r, (unsigned long long)align);
6190 if (resize) {
6191 r->start = 0;
6192 r->end = align - 1;
6193 } else {
6194 r->flags &= ~IORESOURCE_SIZEALIGN;
6195 r->flags |= IORESOURCE_STARTALIGN;
6196 r->start = align;
6197 r->end = r->start + size - 1;
6199 r->flags |= IORESOURCE_UNSET;
6203 * This function disables memory decoding and releases memory resources
6204 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6205 * It also rounds up size to specified alignment.
6206 * Later on, the kernel will assign page-aligned memory resource back
6207 * to the device.
6209 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6211 int i;
6212 struct resource *r;
6213 resource_size_t align;
6214 u16 command;
6215 bool resize = false;
6218 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6219 * 3.4.1.11. Their resources are allocated from the space
6220 * described by the VF BARx register in the PF's SR-IOV capability.
6221 * We can't influence their alignment here.
6223 if (dev->is_virtfn)
6224 return;
6226 /* check if specified PCI is target device to reassign */
6227 align = pci_specified_resource_alignment(dev, &resize);
6228 if (!align)
6229 return;
6231 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6232 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6233 pci_warn(dev, "Can't reassign resources to host bridge\n");
6234 return;
6237 pci_read_config_word(dev, PCI_COMMAND, &command);
6238 command &= ~PCI_COMMAND_MEMORY;
6239 pci_write_config_word(dev, PCI_COMMAND, command);
6241 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6242 pci_request_resource_alignment(dev, i, align, resize);
6245 * Need to disable bridge's resource window,
6246 * to enable the kernel to reassign new resource
6247 * window later on.
6249 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6250 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6251 r = &dev->resource[i];
6252 if (!(r->flags & IORESOURCE_MEM))
6253 continue;
6254 r->flags |= IORESOURCE_UNSET;
6255 r->end = resource_size(r) - 1;
6256 r->start = 0;
6258 pci_disable_bridge_window(dev);
6262 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6264 size_t count = 0;
6266 spin_lock(&resource_alignment_lock);
6267 if (resource_alignment_param)
6268 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6269 spin_unlock(&resource_alignment_lock);
6272 * When set by the command line, resource_alignment_param will not
6273 * have a trailing line feed, which is ugly. So conditionally add
6274 * it here.
6276 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6277 buf[count - 1] = '\n';
6278 buf[count++] = 0;
6281 return count;
6284 static ssize_t resource_alignment_store(struct bus_type *bus,
6285 const char *buf, size_t count)
6287 char *param = kstrndup(buf, count, GFP_KERNEL);
6289 if (!param)
6290 return -ENOMEM;
6292 spin_lock(&resource_alignment_lock);
6293 kfree(resource_alignment_param);
6294 resource_alignment_param = param;
6295 spin_unlock(&resource_alignment_lock);
6296 return count;
6299 static BUS_ATTR_RW(resource_alignment);
6301 static int __init pci_resource_alignment_sysfs_init(void)
6303 return bus_create_file(&pci_bus_type,
6304 &bus_attr_resource_alignment);
6306 late_initcall(pci_resource_alignment_sysfs_init);
6308 static void pci_no_domains(void)
6310 #ifdef CONFIG_PCI_DOMAINS
6311 pci_domains_supported = 0;
6312 #endif
6315 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6316 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6318 static int pci_get_new_domain_nr(void)
6320 return atomic_inc_return(&__domain_nr);
6323 static int of_pci_bus_find_domain_nr(struct device *parent)
6325 static int use_dt_domains = -1;
6326 int domain = -1;
6328 if (parent)
6329 domain = of_get_pci_domain_nr(parent->of_node);
6332 * Check DT domain and use_dt_domains values.
6334 * If DT domain property is valid (domain >= 0) and
6335 * use_dt_domains != 0, the DT assignment is valid since this means
6336 * we have not previously allocated a domain number by using
6337 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6338 * 1, to indicate that we have just assigned a domain number from
6339 * DT.
6341 * If DT domain property value is not valid (ie domain < 0), and we
6342 * have not previously assigned a domain number from DT
6343 * (use_dt_domains != 1) we should assign a domain number by
6344 * using the:
6346 * pci_get_new_domain_nr()
6348 * API and update the use_dt_domains value to keep track of method we
6349 * are using to assign domain numbers (use_dt_domains = 0).
6351 * All other combinations imply we have a platform that is trying
6352 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6353 * which is a recipe for domain mishandling and it is prevented by
6354 * invalidating the domain value (domain = -1) and printing a
6355 * corresponding error.
6357 if (domain >= 0 && use_dt_domains) {
6358 use_dt_domains = 1;
6359 } else if (domain < 0 && use_dt_domains != 1) {
6360 use_dt_domains = 0;
6361 domain = pci_get_new_domain_nr();
6362 } else {
6363 if (parent)
6364 pr_err("Node %pOF has ", parent->of_node);
6365 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6366 domain = -1;
6369 return domain;
6372 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6374 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6375 acpi_pci_bus_find_domain_nr(bus);
6377 #endif
6380 * pci_ext_cfg_avail - can we access extended PCI config space?
6382 * Returns 1 if we can access PCI extended config space (offsets
6383 * greater than 0xff). This is the default implementation. Architecture
6384 * implementations can override this.
6386 int __weak pci_ext_cfg_avail(void)
6388 return 1;
6391 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6394 EXPORT_SYMBOL(pci_fixup_cardbus);
6396 static int __init pci_setup(char *str)
6398 while (str) {
6399 char *k = strchr(str, ',');
6400 if (k)
6401 *k++ = 0;
6402 if (*str && (str = pcibios_setup(str)) && *str) {
6403 if (!strcmp(str, "nomsi")) {
6404 pci_no_msi();
6405 } else if (!strncmp(str, "noats", 5)) {
6406 pr_info("PCIe: ATS is disabled\n");
6407 pcie_ats_disabled = true;
6408 } else if (!strcmp(str, "noaer")) {
6409 pci_no_aer();
6410 } else if (!strcmp(str, "earlydump")) {
6411 pci_early_dump = true;
6412 } else if (!strncmp(str, "realloc=", 8)) {
6413 pci_realloc_get_opt(str + 8);
6414 } else if (!strncmp(str, "realloc", 7)) {
6415 pci_realloc_get_opt("on");
6416 } else if (!strcmp(str, "nodomains")) {
6417 pci_no_domains();
6418 } else if (!strncmp(str, "noari", 5)) {
6419 pcie_ari_disabled = true;
6420 } else if (!strncmp(str, "cbiosize=", 9)) {
6421 pci_cardbus_io_size = memparse(str + 9, &str);
6422 } else if (!strncmp(str, "cbmemsize=", 10)) {
6423 pci_cardbus_mem_size = memparse(str + 10, &str);
6424 } else if (!strncmp(str, "resource_alignment=", 19)) {
6425 resource_alignment_param = str + 19;
6426 } else if (!strncmp(str, "ecrc=", 5)) {
6427 pcie_ecrc_get_policy(str + 5);
6428 } else if (!strncmp(str, "hpiosize=", 9)) {
6429 pci_hotplug_io_size = memparse(str + 9, &str);
6430 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6431 pci_hotplug_mmio_size = memparse(str + 11, &str);
6432 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6433 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6434 } else if (!strncmp(str, "hpmemsize=", 10)) {
6435 pci_hotplug_mmio_size = memparse(str + 10, &str);
6436 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6437 } else if (!strncmp(str, "hpbussize=", 10)) {
6438 pci_hotplug_bus_size =
6439 simple_strtoul(str + 10, &str, 0);
6440 if (pci_hotplug_bus_size > 0xff)
6441 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6442 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6443 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6444 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6445 pcie_bus_config = PCIE_BUS_SAFE;
6446 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6447 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6448 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6449 pcie_bus_config = PCIE_BUS_PEER2PEER;
6450 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6451 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6452 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6453 disable_acs_redir_param = str + 18;
6454 } else {
6455 pr_err("PCI: Unknown option `%s'\n", str);
6458 str = k;
6460 return 0;
6462 early_param("pci", pci_setup);
6465 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6466 * in pci_setup(), above, to point to data in the __initdata section which
6467 * will be freed after the init sequence is complete. We can't allocate memory
6468 * in pci_setup() because some architectures do not have any memory allocation
6469 * service available during an early_param() call. So we allocate memory and
6470 * copy the variable here before the init section is freed.
6473 static int __init pci_realloc_setup_params(void)
6475 resource_alignment_param = kstrdup(resource_alignment_param,
6476 GFP_KERNEL);
6477 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6479 return 0;
6481 pure_initcall(pci_realloc_setup_params);